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Abstract. The current paper presents the effort, in the EU AVATAR project, to establish the
necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The
flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at
Reynolds numbers of 3 × 106 and 15 × 106. The necessary grid resolution, domain size, and
iterative convergence criteria to have consistent results are discussed, and suggestions are given
for best practice. For the fully turbulent results four out of seven codes provide consistent
results. For the laminar-turbulent transitional results only three out of seven provided results,
and the agreement is generally lower than for the fully turbulent case.

1. Introduction

In connection with the EU AVATAR project, dealing with the aerodynamics and aeroelasticity
of the wind turbines of the future, a large effort is invested in the exploration of Computational
Fluid Dynamics (CFD) codes. The continuous upscaling of wind turbines requires code
validation for new flow regimes, where the Reynolds numbers increase above 10 × 106, and
the Mach numbers may be in the range [0.01:0.3]. In this region, experimental data relevant
to wind turbines are sparse and costly to obtain. In the EU AVATAR Project a three step
procedure is used to solve this problem:

• Establish the necessary requirements for several CFD solvers to provide consistent results.

• Validate the CFD solvers on the sparse data available.

• Apply the solvers to explore the target flow regime.

Finally, the results from the CFD solvers will be used to develop the engineering methods used
in industry to handle the upscaled turbines.

The present work deals with a code comparison, that aims at establishing the requirement
for the solvers to consistently predict both fully turbulent and transitional 2D airfoil flows. The
focus is on conditions where the Mach number is 0.1 while the Reynolds number is varied from
a moderate value of 3× 106 to a high value of 15× 106. The conditions corresponds to a recent
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wind tunnel test of the DU00-W-212 airfoil, performed in the AVATAR project. Several of
the codes have a long track record, and have previously been validated against data in several
studies, both in connection with blind comparisons, and against data from the open literature,
[29, 30, 28, 10, 23, 2].

The main focus is to investigate the requirement of the codes to have consistent solutions
for the target flow regimes, in terms of the necessary domain size, grid resolution, and iterative
convergence criteria. Even though the issue of obtaining iterative and grid convergence of
numerical methods is not new, it is still an essential problem, see [24, 25, 5].

2. Methods

Both compressible and incompressible Reynolds Averaged Navier-Stokes (RANS) methods are
applied. All solvers apply the k−ω SST turbulence model by Menter [12], while different types
of transition models are applied. The computations are carried out in time or iteration, until the
variation over the last 10 percent of the integration time or iterations, are within 0.05 percent
for the lift, and 0.1 percent for the drag. For most of the solvers, the L2 norm of the residuals
are reduced by 5-6 orders of magnitude to assure this.

The CENER calculations are performed using the code WMB [6]. The code is a structured
multi-block cell-centred finite volume method, based on the compressible Unsteady Reynolds
Averaged Navier-Stokes (URANS) equations. The calculations are done in steady state using
the k − ω SST turbulence model for the fully turbulent calculations, and k − ω SST combined
with the eN method for the transitional ones.

The CRES computations are performed using an incompressible implicit pressure correction
solver. The algorithm introduces a matrix-free algorithm for pressure updating, which
maintains the compatibility of the velocity and pressure field corrections, allowing for practically
unlimited large time steps in steady state calculations. Spatial discretisation is performed on
a computational domain, resulting from a body fitted coordinate transformation using finite
volume schemes. The velocity is stored at grid nodes, while the pressure is computed at mid-
cells. A linear 4th order pressure dissipation term is added into the continuity equation to
prevent velocity-pressure decoupling. Further details can be found in [3]. For turbulent flow
computation, the standard k−ω or the k−ω SST [13] models can be used. In the present paper
all results are produced with the k − ω SST for fully turbulent flow.

The DTU computations are performed in steady state using the EllipSys2D in-house
incompressible finite volume RANS flow solver, see [18, 19], [26]. The convective terms are
discretised using the QUICK scheme, as given by [9]. The turbulent simulations are carried out
using Menter’s k − ω SST model described in [12], while the transitional simulations are based
on the eN transition model, as described in [20].

The NTUA computations are performed using the MaPFlow in-house compressible finite
volume RANS flow solver. The implementation uses Roes scheme, low Mach preconditioning,
and non-preconditioned far-field conditions in Riemann invariant form [22]. Menters k− ω SST
turbulence closure model [12], and the eN transition model as described in [4] are used. In the
present simulations limiters are suppressed. For angles of attack outside of the range [-11:11],
unsteady simulations are performed.

The TUDelft calculations are performed using OpenFOAM v2.3.0, an open source CFD
software distributed under the General Public Licence (GPL), see[7]. OpenFoam is a segregated
finite volume code able to solve compressible and incompressible flows. For this work, the
steady, incompressible RANS equations are solved using the SIMPLE algorithm. The governing
equations are solved using first order upwind discretisation schemes for the convective terms.
Fully turbulent simulations use Menter’s two-equation k-ω SST model [12]. Transitional
simulations are conducted using the kkl-ω model [35], which solves for the laminar and turbulent
kinetic energy, as well as a third transport equation which governs low-frequency velocity

The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing
Journal of Physics: Conference Series 753 (2016) 082019 doi:10.1088/1742-6596/753/8/082019

2



Topo. Chord-wise Normal TE Block Δn Domain Size Nr. Cells Partner
Nr. Cells Nr. Cells Nr. Cells [Chords] [Chords] Total
Airfoil/Wake Wake x TE Normal/Wake

O 384/- 192 - 1× 10−6 40/40 73728 Common
C-H 401/125 155 125× 61 1× 10−6 40/40 108530 UOG
C-H 422/155 156 155× 75 1× 10−6 25/25 123567 CENER

Table 1. Mesh topologies used in the simulations.

fluctuations that trigger transition in the boundary layer.
The UOG computations use the Helicopter Multi-Block (HMB3) code [2], a cell-centred

RANS finite volume approach. The solver uses a fully-implicit time integration. Following
the pseudo-time approach, after the linearisation of the residual at the new pseudo time step,
the discretised RANS result in a large system of linear equations. In HMB3, the latter is
solved employing a Generalised Conjugate Gradient (GCG) method [1], pre-conditioned with an
Incomplete Lower Upper (ILU) factorisation[11]. To discretise the convective part of the Navier-
Stokes equations, a formally third order Monotone Upstream-Centred Scheme for Conservation
Laws (MUSCL) [33] is employed with the Van Albada limiter [34]. In the present work, the Osher
scheme [21] is used for the fluxes, and the turbulent closure is the k − ω SST model of Menter
[13]. When the laminar-turbulent transition is considered, the k − ω SST turbulence model
is coupled with the γ−equation LCTM of Menter [17]. A second order central discretisation
scheme is used for the viscous fluxes.

The USTUTT simulations are performed with the CFD code FLOWer, which is developed
by the German Aerospace Center (DLR), see [8]. FLOWer is a compressible code that solves
the RANS equations in integral form. The numerical scheme is based on a finite-volume
formulation for block-structured grids. To determine the convective fluxes, a second order
central discretisation with artificial damping is used, also called the Jameson-Schmidt-Turkel
(JST) method. Time integration is accomplished by an explicit multi-stage scheme including
local time-stepping. The time-accurate simulations make use of the implicit Dual-time-stepping
method. In the present study, the simulations are performed in steady and unsteady mode if
needed for converged loads. Turbulence modelling is accomplished by the Menter’s k − ω SST
model described in [12].

2.1. Grid Generation

A common grid is provided for all partners to serve as a reference point, generated by the
hyperbolic grid generation code HypGrid2D [27] around the DU00-W-212 airfoil [32]. The grid
has a single block O-topology with a finite sharp trailing edge, and a total of 73728 cells. The
grid has 384 cells in the chord-wise direction and 192 cells in the normal direction, placing the
outer boundary 40 chords away from the airfoil. The cell spacing in normal direction has a
Δy/Chord 1.5× 10−6, which should assure that y+ is below 2 for both the considered Reynolds
numbers. At the finite trailing edge 16 cells are distributed with a cell size of Δs/Chord 2×10−4

at the sharp corners. At the leading edge the cell size is set to Δs/Chord 1 × 10−3. The
stretching in the chord-wise and normal directions is accomplished by double sided tanh
stretching functions, giving low expansion rates. Most partners are using the common grid, but
two partners used their own grids, namely the UOG and CENER. Additionally, some partners
tested other mesh topologies (C, OCH), resolutions, and domain sizes.

Even though CENER tested the common O-mesh, the results presented here is computed on
a C-H meshes topology generated in ANSYS ICEMCFD, and coarsened by the same method as
the common grid, see Table 1. The UOG computations are performed on a special C-H mesh,
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Figure 1. Details of the grids near the surface for the described grid coarsening from left to
right, L1, L2, and L3.

where the coarser grids are regenerated reducing the number of points by a factor of 2.5 (L2)
and 3.5 (L3) keeping the y+ constant.

2.2. Grid refinement method

As the applied common grid is a block structured grid, the grid refinement/coarsening approach
is kept simple. The coarser grid is constructed from the finest grid (L1) by removing every
second point in both directions, resulting in the medium grid (L2). By repeating the coarsening
procedure even coarser levels can be obtained. Here the coarsening is limited to two consecutive
times, resulting in three grid levels, the finest L1, the medium L2, and the coarsest L3, see
Figure 1

The advantage of this approach, identical to the approach which has been used within the
EllipSys solver for years to do grid-sequencing, is that it is a very tough test where all parameters
are varied at the same time. The cell size, the y+ value at the wall surface, and the grid expansion
rate is more than doubled, while the number of cells within the boundary layer is halved. Looking
at the glide ratio, focusing on the AOA region between [-5:9] degrees the discretisation error for
the best performing code is around 2 percent. The discretisation error of most of the codes are 4-
7 percent. For three of the codes, the discretisation error is more than 10 percent. It is important
to remember that grid independence does not guarantee that the solution is approximating the
physics, only that the solution is a true representation of the implemented models.

2.3. Far-field boundary condition

Initial investigations revealed that even with a domain size of 40 Chords, a point vortex correction
is needed by some solvers to account for the induced velocity in the far-field and to provide a
domain size independent solution on the common O-mesh, eg. the FLOWer solver. Other solvers
worked well for the common O-mesh configuration, while CH- and OCH-meshes, constructed
with a similar domain size, revealed the need for a vortex correction on these topologies to
avoid influence on the integral quantities from the pressure disturbance in the far-field, eg. the
EllipSys2D solver. The influence from a lifting airfoil on its surroundings can be approximated
from simple potential flow, using the Kutta-Jukowski theorem and the Biot-Savart law, resulting
in the following boundary condition at the outer boundary:

Uθ = U∞

Cl

4π r

Chord

(1)

where Cl is the Lift coefficient per unit span, U∞ is the free stream velocity, and r/Chord is
the normalized distance from the domain centre. As an alternative to applying the point vortex
correction, the expression can be used to determine the necessary domain size to reduce the
neglected induced velocity at the far-field below a given threshold value. The effect of including
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Figure 2. The effect of a point vortex correction on the pressure, illustrated by iso-bars showing
the uncorrected results on an O- and OCH-mesh left and the corrected results right, based on
the EllipSys2D results. The red colours represents high pressure values, while the blue colours
represent low pressure values.

the vortex correction in the EllipSys2D computations is illustrated in Figure 2, where it is
evident that the correction limits the distortion of the iso-bars near the outer boundary.

3. Results

3.1. Fully turbulent results

A direct comparison of all partner results on the finest grid level (L1) with respect to the glide
ratio (Cl/Cd), is shown in Figure 3. Here all partners are shown with identical colour, with the
sole intention of indicating the spread. The glide ratio is an important parameter in connection
with wind turbine design, and additionally a highly sensitive parameter. At the maximum glide
ratio, the difference in the glide ratio at the low and high Reynolds numbers are 8 and 18 percent,
respectively.

In Figure 4, a representative example of the spread between the seven individual results is
illustrated. As seen in the left side of the figure, the pressure distributions are in very good
agreement, and only one of the codes can be seen to deviate slightly. For the skin-friction, one
of the codes show some numerical wiggles, while the remaining codes show acceptable mutual
agreement.

A representative picture can be seen when comparing the grid dependence of the glide ratio
computed by the different solvers for the fully turbulent simulation at Re=15 × 106, using
consecutive coarsenings of the grids, see Figure 6. Several of the solvers do not provide grid
independence results, even in the attached flow region of [-8:10] degrees, where RANS solvers are
expected to provide good predictions. It is also evident from this figure, that grid dependence
varies with the AOA. Based on this, it is concluded that the grid dependence must be investigated
for the full AOA range of interest.
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Figure 3. The spread in the glide ratio predicted by the individual partners, fully turbulent
conditions at Re=3× 106 left, and Re=15× 106 right.
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Figure 4. A comparison of the predicted pressure, and skin-friction distributions for all partners
at a Reynolds number of 3 × 106, and an angle of attack of 4 degrees. The figures are solely
shown to indicate the spread, and all partners are shown with identical colour.
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Figure 5. Glide ratio predicted by four of the seven codes, fully turbulent conditions at
Re=3× 106 left, and Re=15× 106 right.
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DTU NTUA USTUTT TUD CRES UOG CENER
Cl 1.2177 1.2204 1.2257 1.2249 1.1920 1.2195 1.2316
Cd 0.0115 0.0116 0.0115 0.0118 0.0115 0.0125 0.0110

Table 2. Lift and drag at an angle of attack equal to 8 degrees for fully turbulent conditions
at Re=15× 106.

As grid independence is a necessary prerequisite for comparing the solution between different
solvers, the three solvers having the highest variability with grid refinement from level 2 to level
1 are excluded, and the four remaining solvers are compared. Comparing the four remaining
solvers, see Figure 5, the deviation between the solvers is down to less than 2 percent in glide
ratio. Looking at the lift and drag values at 8 degrees, close to maximum glide ratio, it can be
derived from Table 2 that most codes are agreeing within 0.25 percent in lift, and 2 percent in
drag.

3.2. Results including the laminar-turbulent transition process

A similar exercise is done for the transitional cases, looking again at Reynolds numbers of 3×106

and 15×106. In the present study, only three codes were applied successfully to the transitional
computations, all based on the eN type transition models. Results are not included for the
correlation based transition model by Menter and Langtry [15], [16], available in some of the
codes, as it fails to correctly predict the natural transition behaviour at high Reynolds numbers.
This was first experienced by some of the authors in connection with the studies of the DTU 10
MW turbine, in the INNWIND EU project back in 2013, and illustrated in some detail in 2014
[31].

Looking at the glide ratio, as shown in Figure 7, several tendencies are similar to the
observations for the fully turbulent computations. Two out of the three codes have only minor
variation in glide ratio between the finest grid level L1, and the coarser L2, for angles between
[-10:10]. The third code exhibits large differences between the two finest grid levels, similar to
its fully turbulent behaviour. Even though the third code exhibits a large variation from L2 to
L1, the actual computed values on L1 is close to the values computed by the two other codes.
To verify whether the result of the third code on grid L1 is grid independent, a refined version
of the L1 grid was generated and tested. The results are not shown here, but the solution on the
refined grid showed good agreement with the L1 solution. Generally, the transitional results are
showing larger spread than the fully turbulent results, which indicate that transition prediction
is not as well tested as the fully turbulent approach.

4. Discussion

Several lessons were re-learned by the partners during the exercise, when going into the new
regime of high Re and low Mach that will be experienced on wind turbines in the future.

Grid generation has to be done very carefully. This implies using e.g. hyperbolic tangent
stretching to limit the expansion rate in the high gradient regions, both chord-wise and in the
normal direction. At the high Reynolds numbers dealt with here, the very small cells needed at
the wall will result in slow iterative convergence for many solves. Comparing the results from
the seven codes is illustrative, and it is observed that for codes formally of second order, the
grid requirement to obtain grid independent results might differ.

The effect of the domain size is illustrated, and it is concluded that a large domain size of
the order of 100 chords or including a vortex correction, is necessary to have consistent results
between the codes.
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Figure 7. Grid dependency of the individual partner results for transitional results, left
Re=3× 106, and right Re=15× 106.

Additionally, it was observed that the individual formulations require a very different number
of iteration or time-steps to converge. The fastest solver might require less than 1000 iterations,
while others required more than 20000 iterations. The efficiency with respect to computing time,
not discussed here, will depend on the cost of the iteration or time-step.

For the laminar-turbulent transitional computations, only three partners contributed with
results. Even though the standard correlation based model is available in some of the codes,
it is not applied due to the problem of predicting the natural transition on an airfoil at high
Reynolds numbers. Generally, the three codes predict results in decent agreement, even though
it is not as good as for the fully turbulent computations. Finally, it was illustrated that grid
dependency should be investigated at all angles of attack of interest. For structured grids, a
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simple coarsening where every second cell is removed in the chord-wise, and the normal direction,
is well suited for the purpose.

5. Conclusion

This paper presents the effort to make seven different RANS CFD solvers provide consistent
results. Even though the results are not fully satisfactory for all solvers, four out of seven
codes are capable of predicting the maximum glide-ratio with a difference below 2 percent for
fully turbulent conditions. To obtain this level of agreement domain size, careful treatment of
boundary conditions, grid quality, and iterative convergence must be in focus.

More work is need to fully establish the application of laminar-turbulent transition models
for the flow regime of the wind turbines of the future. This conclusion is based on the fact that
several codes are not capable of providing transitional results, and that the mutual agreement
between the results from the codes are inferior to the fully turbulent behaviour.
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[10] T. Lutz, K. Meister, and E. Krämer. Near Wake Studies of the MEXICO Rotor. In EWEC 2011 Proceedings

online. EWEC, 2011. Presented at: 2011 European Wind Energy Conference and Exhibition: Brussels
(BE), 14-17 Mar, 2011.

[11] J. Meijerink and H. van der Vorst. Guidelines for the Usage of Incomplete Decompositions in Solving Sets of
Linear Equations as They Occur in Practical Problems. Journal of Computational Physics, 44(1):134–155,
1981.

[12] F. R. Menter. Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows. AIAA paper 1993-2906,
1993.

[13] F. Menter. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal,
32(8):1598–1605, 1994.

[14] F. R. Menter and T. Esch, Elements of industrial heat transfer predictions, In 16th Brazilian Congress of
Mechanical Engineering, 2001.

[15] F. R. Menter, R. B. Langtry, S. R. Likki, Y. B. Suzen, P. G. Huang, and S. Völker. A Correlation-Based
Transition Model Using Local Variables, Part I - Model Formulation. In Proceedings of ASME Turbo Expo

2004, Power for Land, Sea, and Air, Vienna, Austria, June 14-17 2004. ASME. GT2004-53452.
[16] F. R. Menter, R. B. Langtry, S. R. Likki, Y. B. Suzen, P. G. Huang, and S. Völker. A Correlation-Based

Transition Model Using Local Variables, Part II - Test Cases and Industrial Applications. In Proceedings

The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing
Journal of Physics: Conference Series 753 (2016) 082019 doi:10.1088/1742-6596/753/8/082019

10



of ASME Turbo Expo 2004, Power for Land, Sea, and Air, Vienna, Austria, June 14-17 2004. ASME.
GT2004-53454.

[17] F. Menter, L. Smirnov, P.E. Tao, and R. Avancha. A One-Equation Local Correlation-Based Transition
Model. Flow Turbulence and Combustion, 95(4):583–619, 2015.

[18] J. A. Michelsen. Basis3D - a Platform for Development of Multiblock PDE Solvers. Technical Report
AFM 92-05, Technical University of Denmark, Department of Fluid Mechanics, Technical University of
Denmark, December 1992.

[19] J. A. Michelsen. Block structured Multigrid solution of 2D and 3D elliptic PDE’s. Technical Report AFM
94-06, Technical University of Denmark, Department of Fluid Mechanics, Technical University of Denmark,
May 1994.

[20] J. A. Michelsen. Forskning i aeroelasticitet EFP-2001, chapter Beregning af laminar-turbulent omslag i 2D
og 3D, page 73. Risø-R1349(DA). 2002. In Danish.

[21] S. Osher and S. Chakravarthy. Upwind schemes and boundary conditions with applications to euler equations
in general geometries. Journal of Computational Physics, 50(3):447–481, 1983.

[22] G. Papadakis, Development of a hybrid compressible vortex particle method and ap-
plication to external problems including helicopter flows, PhD thesis NTUA, 2014,
http://dspace.lib.ntua.gr/handle/123456789/40024

[23] H. Rahimi, W. Medjroubi, B. Stoevesandt, and J. Peinke. 2d numerical investigation of the laminar and
turbulent flow over different airfoils using openfoam. Journal of Physics: Conference Series, 555(1):012070,
2014.

[24] L. Richardson and J. Gaunt. The deferred approach to the limit. Part I. Single lattice. Part II.
Interpenetrating lattices. Philos. Trans. R. Soc. London, Ser. a, 226:299–361, 1927.

[25] P. J. Roache, J. L. Lumley, M. van Dyke, and H. L. Reed. Quantification of uncertainty in computational
fluid dynamics. 1997.

[26] N. N. Sørensen. General Purpose Flow Solver Applied to Flow over Hills. Risø-R- 827-(EN), Risø National
Laboratory, Roskilde, Denmark, June 1995.

[27] N. N. Sørensen. HypGrid2D a 2-D Mesh Generator. Risø-R- 1035-(EN), Risø National Laboratory, Roskilde,
Denmark, Feb 1998.

[28] N. N. Sørensen, J. A. Michelsen, and S. Schreck. Navier-Stokes Predictions of the NREL Phase VI Rotor in
the NASA Ames 80 ft × 120 ft Wind Tunnel. Wind Energy, 5:151–169, 2002.

[29] N. N. Sørensen. CFD modelling of laminar-turbulent transition for airfoils and rotors using the γ − R̃eθ
model. Wind Energy, 12(8):715–733, 2009.

[30] N. N. Sørensen. Prediction of Multi Element Airfoils With the EllipSys Code. In T. Buhl, editor, Research
in Aeroelasticity EFP-2007-II, Risø-R-1698(EN), pages 95–102. Risø National Laboratory for Sustainable
Energy, Roskilde, 2009.

[31] N. Sørensen, F. Zahle, and J. Michelsen. Prediction of airfoil performance at high reynolds numbers., 2014.
[32] W. Timmer and R. van Rooij. Summary of the Delft University wind turbine dedicated airfoils. J. Sol.

Energy Eng. Trans.-asme, 125(4):488–496, 2003.
[33] B. van Leer. Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov‘s

Method. Journal of Computational Physics, 32:101–136, 1979.
[34] G. Van Albada, B. Van Leer, and W. Roberts. A Comparative study of Computational methods in Cosmic

Gas Dynamics. Astronomy and Astrophysics, 108, 1982.
[35] D. K. Walters and D. Cokljat. A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged NavierStokes

Simulations of Transitional Flow. J. Fluids Eng., 130(12), 2008.

The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing
Journal of Physics: Conference Series 753 (2016) 082019 doi:10.1088/1742-6596/753/8/082019

11




