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In this paper, we have developed a new approach based on a combination of the Arnoldi
and frontal methods, which is suitable for solving large sparse asymmetric and generalized
complex eigenvalue problems. The new eigensolver seeks the most unstable eigen-solution
in the Krylov subspace and makes use of the efficiency of the frontal solver developed
for the finite element methods. The approach is used for a stability analysis of flows in
a collapsible channel and is found to significantly improve the computational efficiency
compared to the traditionally used QZ solver or a standard Arnoldi method. With the
new approach, we are able to validate the previous results obtained either on a much
coarser mesh or estimated from unsteady simulations. New neutral stability solutions of
the system are also obtained which are beyond the limit of previously used methods.

Keywords: Arnoldi method; stability analysis; collapsible channel flows; generalized
eigenvalue problem; frontal solver; finite element method

1. Introduction

Eigenvalue problems occur frequently in problems arising in many branches of sci-

ence, such as computational fluid mechanics [Cliffe et al., 1994], statistics [Rapcsak,

2004], engineering [Roger et al., 1986; Bathe and Wilson, 1973; Andy and Nair,

2005; Auckenthaler et al., 2011; Misrikhanov and Ryabchenko, 2006], quantum

physics [Scott et al., 1990], and meteorologic modelling [Cullum and Willoughby,

1986]. Such problems are usually solved using numerical methods. Often the dis-

cretization of the systems leads to large asymmetric matrices that require efficient

algorithms to manipulate and store. Seeking such algorithms has been a central

focus over the last 50 years. Although various advances have been made, there is no

single algorithm which is effective and efficient for different engineering problems.

A traditionally used eigensolver for a generalized eigenvalue problem,

AX = λX,

is the generalized Schur decomposition method, which factorises both matrices as

A = QSZH and B = QTZH , where Q and Z are unitary, H denotes a conjugate-

transpose, and S and T are upper triangular matrices [Moler and Stewart, 1973].

The generalised Schur decomposition is also known as the QZ method. This is

based on the QR decomposition of a matrix A into a product A = QR of an
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orthogonal matrix Q and an upper triangular matrix R. The QZ method solves

for all the eigenmodes of the system. As such, it is only suitable for smaller sized

eigenvalue problems (matrix size in the order of hundreds) and is impractical when

the dimensions of the problem become large (e.g. matrix size > 5000 × 5000). To

overcome this problem, various projection methods have been developed since the

1950s [Wu and Simon, 2000; Parlett et al., 1985; Freund et al., 1993; Parlett and

cott, 1979; Bathe, 1971, 2013; Morgan, 2000].

Among these, the Arnoldi-type method [Morgan, 2000] is the one that can be used

to solve large sparse asymmetric (non-Hermitian) eigenvalue problems. Such a prob-

lem commonly occurs in the stability analysis of complex systems, such as flows in

a collapsible channel [Luo et al., 2008; Stewart et al., 2010b; Xu et al., 2013, 2014].

Flows in collapsible tubes, or flows in collapsible channels when simplified in two di-

mensions, have grasped researchers’ attention over the last 30 years [Shapiro, 1977;

Elad et al., 1987; Kamm and Shapiro, 1979; Cancelli and Pedley, 1985; Jensen,

1990; Luo and Pedley, 1996; Stewart et al., 2010a], because it has provided insight

for many physiological applications such as flow through vocal folds [Cisonni et al.,

2010], collapsed intramyocardial coronary blood arteries during heart contraction

in systole [Guiot et al., 1990], branchial arteries compressed by a sphygmomanom-

etry cuff [Bertram and Ribreau, 1989], and flows in giraffe jugular veins [Brook and

Pedley, 2002]. One characteristic of such systems is that they can be dynamically

unstable due to fluid-structure interaction. Stability analysis has been widely used

for studying the various oscillation mechanisms [Luo and Pedley, 1998]. Often such

an analysis leads to a generalised eigenvalue problem with asymmetric large sparse

matrices [Cai and Luo, 2003]. Recent work by Liu et al. [2012], using the QZ solver,

showed that the stability structure in collapsible channel flows can be quite differ-

ent in the flow- and pressure-driven systems (where the driving force is either the

flow rate or the pressure drop along the channel). However, further investigation on

these stability structures is prohibited by the extensive memory and CPU require-

ments of the QZ solver they used. Using an orthogonal projection method such as

the Arnoldi iteration enables us to solve a reduced eigenproblem containing only

the first few eigenpairs. However, even with such a model reduction, the memory

requirement of the Arnoldi iteration can still be huge as it requires the full assem-

bly of the global matrices. In order to solve the stability problem for collapsible

channel flows with a non-trivial basic state, one needs first to solve the nonlinear

fluid-structure interaction equations numerically [Luo, 2015]. To avoid dealing with

the large sparse matrices from the discretization of the finite element (FE) govern-

ing equations, a frontal scheme developed by Irons [Irons, 1970] was successfully

used in the full numerical simulations [Rast, 1994; Luo and Pedley, 1998; Cai and

Luo, 2003; Luo et al., 2008; Liu et al., 2012]. The frontal solver is CPU efficient as

it assembles the large sparse matrix and eliminates equations only on the “front”,

i.e., a subset of elements, at a time. The front represents the transition region be-

tween the active and inactive element entries of the global matrices. In this work,
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we develop a combined Arnoldi-frontal approach and use it to solve the eigenvalue

problem of the collapsible channel flows for the first time. Similar ideas, albeit for

simpler problems, have been explored by Meerbergen et al. [Meerbergen and Roose,

1996, 1997], and Lehoucq et al. [Lehoucq et al., 1997, 1998]. For example, Lehoucq

et al. [1997] used the implicitly restarted Arnoldi methods with matrix transfor-

mation to compute the eigenvalues for discretised Navier-Stokes equations. They

concluded that with careful implementation, implicitly restarted Arnoldi methods

are reliable for linear stability analysis. This group also applied the Arnoldi iteration

driven by a novel implementation of the Cayley transformation to the stability anal-

ysis of three dimensional steady flows on parallel computers [Lehoucq and Salinger,

2001]. We extend the previous studies by applying the analysis to a strongly cou-

pled fluid-structure interaction problem, and show that by combining the implicitly

restarted Arnoldi Method [Lehoucq et al., 1997] with the frontal solver for our gen-

eral asymmetric eigenvalue problem, we not only resolve the memory issue but also

significantly reduce the computational time. Thus, the new solver enables us to val-

idate the previous results and obtain additional neutral points that are beyond the

reach of the QZ solver.

2. Model of Flows in a Collapsible Channel

2.1. The problem description

Pe

Pd

Pu or U0

Lu L Ld

D

Fig. 1. The model configuration (not to scale), where the upper middle wall is replaced with
an elastic beam of (undeformed) length L. The lengths of the upstream and downstream sections
are denoted as Lu and Ld, respectively, the channel height is D, the external and downstream
pressures are indicated as Pe,and Pd, respectively. Depending on the flow-driven or pressure-driven
systems, either a steady parabolic entry flow with an average velocity U0, or a steady plug flow
with a pressure Pu, is specified at the upstream end.

The model configuration of the collapsible channel flow is shown in Fig. 1. The

rigid channel has a width D, with a part of the upper wall being replaced by an
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elastic beam, which is subjected to an external pressure Pe. The flow is assumed

incompressible and laminar, with the fluid density ρ and viscosity µ. We assume

that the beam is a linear elastic material but allows geometrical nonlinearity. The

extensional and bending stiffness of the beam are EA and EJ , respectively, where

E is the Young’ modulus, A is the cross-sectional area of the beam, and J is the

second moment of cross-sectional area of the beam. The initial tension and the in-

ertia contribution of the beam are assumed to be zero in this paper, the impact of

these parameters has been studied in our earlier work [Luo and Pedley, 1998, 2000].

Damping and rotational inertia of the beam are both neglected.

2.2. The Dimensionless Governing Equations

The governing equations for the fully coupled fluid-structure interaction system are

[Cai and Luo, 2003]:

∂ui
∂t

+ ujui,j = −p,i +
1

Re
ui,jj , ui,i = 0, i, j = 1, 2, (1)

cκκκ
′ + cλλ

′ + λτn = 0, (2)

cκ

(
1

λ
κ′
)′
− cλλκ(λ− 1)− λσn + λpe = 0, (3)

x′1 = λ cos θ, x′2 = λ sin θ, (4)

λκ = θ′, (5)

where (1) are the Navier-Stokes equations for the flow, (2–3) are the momentum

balance equations for the elastic beam, and (4–5) are auxiliary equations which are

introduced to simplify the computations. All the quantities are non-dimensionlized

as:

ui =
ūi
U0
, σij =

σ̄ij
ρU2

0

, p =
p̄

ρU2
0

, t =
t̄U0

D
, l =

l̄

D
, xi =

x̄

D

κ∗ = κD, cλ =
EA

ρU2
0D

, cκ =
EJ

ρU2
0D

3
, Re =

U0Dρ

µ
(6)

where p is the fluid pressure, xi and ui are the coordinates and velocity components

(i = 1, 2), σij are fluid stress components (i, j = 1, 2), and σn, τn denote the fluid

normal and shear stresses acting on the beam, respectively. t is time, l is the material

coordinate of the beam in the undeformed configuration, κ and λ are curvature and

stretch of the beam, respectively, θ is the angle of the beam with respect to the

x-axis, and prime means derivative with respect to l. Re is the Reynolds number,

and cλ and cκ represent the extensional and bending stiffness of the beam.
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2.3. Boundary conditions

The boundary conditions are set up such that at the outlet it is stress free, which

essentially sets the reference pressure to be zero (Pd ' 0); along all the walls, no-

slip boundary condition is applied, with an external pressure Pe, applied along the

beam. At the two ends of the beam, clamped support is employed. Specifically,

rigid wall : u = v = 0, at y = 0, 0 6 x 6 L0, L0 = Lu + L+ Ld
at y = 1, 0 6 x 6 Lu and Lu + L 6 x 6 L0

beam: u = uw, v = vw, at Lu < x < Lu + L and y = 1

Pe = constant

beam ends : θ = 0, at x = Lu, y = 1 and x = Lu + L, y = 1

outlet flow : σn = σt = 0, at x = L0 and 0 6 y 6 1

where x = x1, y = x2 are the system coordinates, with the origin at the bottom

left corner of the channel, u = u1, v = u2, are the velocities of the fluid, and uw, vw
are the velocities of the beam, σn, σt are the normal and tangential fluid stresses,

respectively.

Unlike flows through a rigid tube, here more combinations of control parameters

are possible. For example, one may specify the flow rate Q, or pressure drop Pud,

while keeping downstream transmural pressure Pe−Pd constant. These are referred

to as “flow-driven system”(also known as flux-driven), or “pressure-driven system”,

respectively [Liu et al., 2012]. Each of these settings determines a specific system

with its own unique characteristics. The commonly observed and “pressure-drop

limitation” [Bertram and Castles, 1999], and “flow limitation” [Gavriely et al., 1989],

are interesting phenomena associated to these systems. Experimentally, these can

be achieved by providing a hydraulic head upstream (pressure-driven), or a suction

downstream (flow-driven).

The boundary conditions for these systems are, at the inlet,

flowrate driven: u = 6y(y − 1), v=0, at x = 0, 0 6 y 6 1

pressure driven: Pud = constant, at x = 0, 0 6 y 6 1

2.4. The stability analysis

A Petrov-Galerkin method is used to discretize the system equations (1)–(5). The

element type for flow is six-node triangular, with the second-order shape function

Ni used for u and v, and the linear shape function Li used for p. For the elastic

beam, the three-node beam elements with second-order shape function are used for

all the variables (x, y, θ, λ, and κ). The discretized finite-element equations of the

coupled system can be written in a matrix form as

M(U)
dU

dt
+ K(U)U− F = 0, (7)
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where U = (uj , vj , pj , xj , yj , θj , λj , κj) is the global vector of unknowns, and

j = 1, . . . , Nod, Nod is the total nodal number. M, K are the n × n mass and

stiffness matrices, respectively, with n ≈ 8×Nod, and F is a force like vector with

dimension n. An arbitrary Lagrangian Eulerian (ALE) solver [Cai and Luo, 2003],

which is shown to satisfy the geometrical conservation law [Liu et al., 2012], is used

to solve (7).

To study the stability of the system, we denote Ū as a steady solution of (7), so

that

K(Ū)Ū− F = 0, (8)

and apply an infinitesimal perturbation ∆U = eωtŨ, to get a perturbed solution,

U = Ū + ∆U, of (7). Here ω (= ωR + iωI) and Ũ are the complex eigenvalues and

eigenvectors, respectively. Specifically,

(∆U)k = Real
[
e(ωR+iωI)t

(
(ŨR)k + i(ŨI)k

)]
= eωRt

[
(ŨR)k cos (ωIt)− (ŨI)k sin (ωIt)

]
= eωRt

[
‖Ũk‖ cos (ωIt+ φk)

]
, k = 1, . . . , 8×Nod (9)

where ‖Ũk‖ =
√

(ŨR)2k + (ŨI)2k, is the eigen-amplitude, and φk =

arctan(ŨI)k/(ŨR)k is the phase angle at t = 0. It is clear that for a positive ωR, the

system is unstable, and for a negative one, the system is stable. ωR = 0 indicates

a neutral stability which is associated with sustained self-excited oscillations when

ωI 6= 0.

Substituting U = Ū + eωtŨ into (7), making use of the Taylor expansion and (8),

we obtain a generalised eigenvalue problem [Luo et al., 2008]:

KŨ = ωMŨ, (10)

where M = M(U), and K = K(U)+∇UK(U)|UU. Both K and M are sparse, and

asymmetric matrices. K is also positive definite. However, M is necessarily singular

since the continuity equation (1)2 does not contribute to the mass matrix. For

simplicity, henceforth we drop the overbar and tilda in (10).

3. The Eigensolvers

Three different algorithms are employed to solve the generalized eigenvalue problem

(10). These are, the QZ Algorithm, the Arnoldi method with global matrices (AR-

G), and the Arnoldi method with a frontal solver (AR-F). In developing these

eigensolvers we have made use of the ARPACK software (http://www.caam.rice.

edu/software/ARPACK).
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3.1. The QZ Algorithm

The QZ solver adopts the following steps [Bai et al., 1987]:

1. K is first reduced to an upper Hessenberg form and M is reduced to an

upper triangular form (Schur form).

2. The effect of a shifted QR decomposition on K−1M (without forming the

matrix product) is simulated by unitary equivalence transformations Q and

Z on the matrix pair K and M. This is done iteratively until K is reduced

to triangular or quasi-triangular form, while preserving the triangular struc-

ture of M.

3. Compute the eigenvalues and eigenvectors from the triangular matrix prob-

lem, and then transform back to get the original eigenpairs.

The QZ algorithm solves for all the eigenvalues and, optionally, all the eigenvectors.

It requires O(n3) floating point operations and O(n2) memory locations, where

n × n is the size of K and M. Therefore the demand on the computer memory is

prohibitively high and is extremely inefficient for problems of large matrices.

3.2. The Arnoldi iterations with global matrices (AR-G)

In the AR-G approach, we first transform the generalised eigenproblem (10) into a

standard eigenproblem:

CU = ΘU, (11)

where Θ = 1/ω, and C = K−1M. The idea of the Arnoldi approach is that for a

given n×n matrix C, information on its largest eigenvalue can be sought by repeated

application of C to a random vector, v1, to form the so-called Krylov subspace

Km(v1, ...vm)[Arnoldi, 1951; Saad, 1996], where vi = Ci−1v1 for i = 1, ...,m. Hence,

C can be projected in the subspace:

CVm = VmHm + rmeTm, (12)

where Vm = (v1,v2, . . . ,vm) is a n×m matrix whose columns form the set of the

Arnoldi vectors, with the normalisation VH
mVm = Im. The matrix Hm = VH

mCVm,

is an m×m upper Hessenberg projection matrix, rm = (In−VmVH
m)Cvm+1 is the

residual vector, and em is the m-th standard basis vector of dimension m. Hence,

we only need to solve a much smaller eigenvalue problem:

Hmy = Θ̃y, (13)

where Vmy ' U in (11), and Θ̃ is an approximation of Θ. The details are shown

in the Algorithm 1.

We remark that while using the Arnoldi iterations reduces the computational time,

it still requires the inversion of the stiffness matrix K, which is expensive. In addi-

tion, the formation of C destroys the sparse structure of the original matrices.
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Algorithm 1 The AR-G solver

Input: Specify dimension of the subspace m (m � n), number of required eigen-

values (k), error tolerance (tol), and the random starting vector (v1)

Output: Eigenpairs.

1: Calculate C = K−1M

2: Iteration:

3: for j = 1 to m do

4: rj = Cvj ,Vj = (v1, . . . ,vj);

5: rj = (I−VjV
H
j )rj ;

6: vj+1 = rj/‖rj‖
7: end for

8: Solving a low-dimensional eigenproblem Hmy = Θ̃y using the QZ algorithm;

the approximate eigenpairs of (11).

9: If ‖rj‖|eTmy| < ‖Hm‖tol, stop. Otherwise, go to step 3.

10: Restart: go to 3 with a new v1.

3.3. The Arnoldi iterations with a frontal solver (AR-F)

The AR-F approach is developed to avoid the explicit formation of the two sparse

matrices K and M as in §3.2, by making use of the frontal solver [Irons, 1970; Hood,

1976]. The frontal approach is a very efficient method for solving the finite element

global matrix equations. Building on a LU or Cholesky decomposition, it assembles

the global matrix and eliminates the equations only on a subset of elements at a

time. The subset is so-called the “front” and it is essentially the transitional region

between the part of the system already finished and the part untouched. During

the whole process, the fully sparse matrix is never assembled. Only the parts of the

matrix are assembled as they enter the front. Processing the front involves dense

matrix operations, which uses the CPU efficiently.

In essence, for the AR-F solver, instead of generating the large matrix C, we make

use of the frontal solver by storing the element matrices together with a steering

matrix which gives the location of the frontal element entries in the global matrices.

The flow chart of the AR-F algorithm is shown in Fig. 2.
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Start

Obtain element

matrices Kl
e,M

l
e

j = 1?

vj =
vj
‖vj‖

Create v1

b =
∑nel
l=1 Ml

evj

∑nel
l=1 Kl

erj = b

Vj = (v1, · · · ,vj)
Restarting

strategy

vj+1 =(
In −VH

j Vj

)
rj

j < m?

Hmy = Θ̃y

‖rm‖|eTmy| <
‖Hm‖tol ?

Post processing

End

No

No

Yes

Yes

Yes

No

Fig. 2. The flowchart of AR-F, where the the element matrices Kl
e, M

l
e are used via the frontal

method, and nel is the total number of the finite elements.
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4. Numerical Results

4.1. Choice of parameters for the eigenvalue problem

We choose the dimensional parameters to be µ = 10−3 Pas−1, ρ = 103 kgm−3,

D = 10−2 m, thus the non-dimensional parameters are Lu = L = 5, Ld = 30,

Re = 1 − 600, T = 0, ρm = 0, Pe − Pd=1.95, Pd = 0, cλ = 1 − 2500, and cκ/cλ =

h2/12D2 ≈ 10−5 (h/D = 0.01). The mid-point of the elastic beam will be x = 7.5.

The values are chosen to be in the range of parameters that have been used in

previous studies [Cai and Luo, 2003; Luo et al., 2008; Liu et al., 2012].

4.2. Choice of parameters for the Arnoldi solvers

The Arnoldi algorithms require the selection of several parameters, namely, the

number of eigenpairs required (NEV/2), the rank of the subspace (m=NCV), and the

maximum number of iterations (MAXITR). The number of converged eigenpairs is

denoted as NO/2, which is usually smaller or equal to NEV/2. In principle, the greater

the rank of the subspace and number of iterations allowed, the more likely the

eigensolution in question can be located in the Krylov subspace, but the longer the

computation. To strike a balance between the computational time and the solution

approximation, an “optimal” group of parameters of NEV, NCV, and MAXITR, in the

ranges of 2 to 8 (NEV), 20 to 200 (NCV), and 50-300 (MAXITR), are carefully selected

after extensive computational tests. The results of the tests are shown in Table 1.

4.3. Computational verifications

Since the eigensolvers require one to solve for steady solutions iteratively, these are

performed using a Python script, which allows us to automatically search for the

neutral solutions in a systematic way. In all the computations, the tolerance for

the Arnoldi iteration is set to be 1 × 10−16, which is the default value used in the

ARPACK.

To validate our eigensolvers, we first test the results with the solutions from the

eigs subroutine in Matlab for a much smaller matrix size. This has led to a good

agreement. We then increase the grid points to test the grid independence. The

corresponding dimensions of the finite element (FE) matrices are n×n, for n=933,

2063, 2629, 3942, 5117, 6152, 7325, and 55329, respectively. All three solvers yield

the same eigenpairs at the same physical parameters, for the same grid, except

when N=55329, which is too big for either the QZ or the AR-G solver to cope.

All computations were run on the Linux Workstations (2×Hexa-core HT Intel(R),

Xeon(R), CPU E5650, 2.65 GHz) at the School of Mathematics and Statistics, the

University of Glasgow.
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Table 1: The optimal sets of parameters, and lapsed time(in seconds) of different

meshes for the same input parameters (cλ, Re or Pud)

Matrix QZ AR-G AR-F

n time (s) NEV NCV MAXIT NO. TIME(s) NEV NCV MAXIT NO. TIME(s)

933 18 2 20 50 2 15 2 40 50 2 7

2063 261 2 20 100 2 151 2 20 100 2 23

2 40 50 2 144 2 60 50 2 19

2 60 50 2 336 2 60 50 2 28

2629 577 4 40 150 2 610 4 40 150 4 169

6 40 150 6 726 6 40 150 6 164

6 40 200 6 726 6 40 200 6 164

6 40 250 4 392 6 60 250 6 164

3942 2554 2 40 50 2 1196 2 40 50 2 50

2 60 50 2 1156 2 60 50 2 55

5117 5116 2 40 50 2 2687 2 40 50 2 78

2 60 50 2 2670 2 60 50 2 70

6152 9158 2 40 50 2 4879 2 40 50 2 93

2 40 100 2 4822 2 40 100 2 92

7325 16816 2 80 250 2 8053 2 40 50 2 115

2 80 300 2 8052 2 40 100 2 116

55392 N/A N/A 2 60 100 2 3426

2 90 100 2 4584
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4.4. Comparison of the three eigensolvers

100

101

102

103

104

105

10000 50000

ti
m

e
(s

)

n

QZ
AR-G
AR-F
n3

n

Fig. 3. Comparison of the computational time (seconds) against the matrix size indicator (n)
using the QZ, AR-G & AR-F solvers. The AR-F method costs scales between O(n) and O(n2),
while the QZ and AR-G solvers scale to O(n3), although the AR-G solver is slightly more efficient
than the QZ solver. Note the shortest times required by each solver, using combinations of the
parameters as shown in Table 1, are used to plot this figure.

Figure 3 shows the log-plot of the CPU time versus n of the matrix size n × n

for these three algorithms. For comparison purposes, n2 and n3 are also shown as

dotted and dash-dot lines. We can see that the QZ algorithm converges in the order

of O(n3). Whereas AR-G, though in general requires less time, converges with the

rate only slightly less than the QZ solver. The AR-F algorithm, on the other hand,

converges approximately in the order between O(n) and O(n2), hence is by far

the most efficient one. It is also clear that the AR-F solver can solve much large

eigenvalue problems. However, we must mention that the QZ solver obtains all the

eigensolutions by the end of the computations, while the Arnoldi solvers can only

locate the first or first couple of eigenpairs.

4.5. Neutral stability of the system

We now apply the AR-F algorithm in the stability analysis of collapsible channel

flows. The eigenmodes are classified according to the number of wavelengths in the
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oscillation of the elastic section, mode-i means there are i/2 full wavelengths.

For the flow driven-system, Luo et al. [2008] revealed a cascade structure, in par-

ticular, they obtained a mode-2 neutral stability curve in the cλ-Re space using the

QZ algorithm for a relatively coarse grid of n=6152.

For the pressure-driven system, Liu et al. [2012] identified a mode-1 neutral curve.

Mathematically, the pressure-driven system is a harder to be solved numerically as

it presents a very thin boundary layer upstream of the collapsed section, it requires

a much-refined mesh to resolve the flow there. Liu et al. [2012] were unable to

perform the eigenvalue analysis for all the dimensions required using the QZ solver,

so they resorted to testing the stability by laboriously running the unsteady FE

solver combined with a bisection search.

In the following, we use the AR-F solver for the stability analysis of both systems.

4.5.1. Flow-driven system
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Fig. 4. The mode-2 neutral curve in the Re - cλ space obtained using the AR-F solver for a very
dense mesh where n=55392 (red solid line), compared to the one obtained by Luo et al. [2008]
using a coarse mesh n = 6152 (dotted line). The parameters are listed in Table 2.
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For the flow-driven system, we revisit the eigensolutions at the neutral stability

points using the AR-F solver for a very dense mesh (n = 55392). The results are

plotted in the Re - cλ space (where cλ indicates how stiff the elastic beam is) and

are compared with those obtained by Luo et al. [2008] in Fig. 4 where they used

n = 6152. The neutral curves consists of two branches, N2 branch represents the

solution of a mode-2 neutral curve, and the N3 and N4 branches are the mode-3

and mode-4 neutral solutions, respectively. Details of the neutral behaviour of the

system were discussed in [Luo et al., 2008].

Figure 4 suggests that the cascade structure found by Luo et al. [2008] using a much

coarser mesh is reasonable but with some discrepancies; the upper curve is shifted

upwards, and the lower branch moves slightly rightwards. However, the qualitative

behaviour remains the same. Notice that although many more points along the curve

are computed, only a selection of the solutions (marked by blue dots and named as

N2-1, N2-2, etc.) are listed in Table 2. Three eigen-solutions, one at each branch

(i.e. N2-1, N3-2, and N4-1) - computed using the AR-F solver, are also plotted in

Fig. 5. We have tested that, when converged, all the three solvers give the same

eigensolutions.

Table 2 Neutral points of the flow-driven system using the AR-F solver for n=55392.

Point Re cλ ωR ωI Mode

N2-1 700 1672 -3.30023×10−5 2.40366 Mode-2

N2-2 600 1797.5 1.14649×10−6 2.42381 Mode-2

N2-3 500 1800 6.13079×10−6 2.35544 Mode-2

N2-4 300 1937 -1.76015×10−6 2.03575 Mode-2

N2-5 235 2410 -1.93529×10−7 1.72480 Mode-2

N2-6 220 2727 -1.22905×10−6 1.57726 Mode-2

N2-7 213 2436 -6.90523×10−7 1.43017 Mode-2

N2-8 212 1600 -2.39754×10−4 1.30612 Mode-2

N2-9 240 580 2.62525×10−6 1.24025 Mode-2

N2-10 300 447 -3.63519×10−5 1.27266 Mode-2

N2-11 380 397.5 3.62141×10−6 1.24308 Mode-2

N2-12 440 369 -9.00410×10−6 1.20026 Mode-2

N3-1 300 335.61 5.67991×10−6 4.07781 Mode-3

N3-2 250 311 -7.02530×10−5 3.61682 Mode-3

N4-1 231.15 60 -9.69742×10−6 3.85157 Mode-4
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(a) y(x,t) (b) y(x, t) at x = 7.5

Fig. 5. Neutral solutions for the flow-driven system. (a) The elastic beam shape y(x, t) for x =
5−10 at t = 0 (red solid), π/3 (blue dotted), and 2π/3 (black solid), and (b) history of the middle
point of the beam y(x, t) at x = 7.5. These are plotted for points N2-1 (top), N3-2 (middle), and
N4-1 (bottom) (see Fig. 4 and Table 2). Notice the absolute values of these solutions are arbitrary.
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4.5.2. Pressure-driven system

To study the mode-1 neutral curve in the pressure-driven system, we use the same

grids as used by Liu et al. [2012] (N = 55416). The neutral curve in the pressure-

driven system can be more conveniently shown in the cλ − Pud space, since Pud is

now the control parameter, and the flow rate (or U0), on which the Reynolds number

is defined, becomes an output. The AR-F solver can reproduce all the neutral points

obtained previously [Liu et al., 2012], as shown in Table 3 and Fig. 6. Again, many

more points along the curve are computed, but only a selection of the solutions are

listed in Table 3. In particular, we have obtained the neutral solutions between N1-

2 and N1-1, which were estimated by Liu et al. [2012] from unsteady simulations

since the size of the matrix is too big for the QZ solver. Using an unsteady solver

to identify a neutral point is a very lengthy process; it takes a week to pinpoint a

neutral point, but requires only 30 minutes using the AR-F solver.

Table 3 shows that the AR-F solver reproduced the solutions obtained by Liu et al.

[2012], with a percentage difference less than 3%. This is because both solvers used

the same (and very fine) mesh. However, with the AR-F solver, we can also computer

new points above the point N1-1 (when cλ ≥ 2.0× 107) – the upper limit that Liu

et al. [2012] could reach with the unsteady solver. In addition, the AR-F solver gives

the eigen-frequencies of the neutral points, which was difficult to estimate from the

unsteady simulations. The corresponding Reynolds numbers are also listed in Table

3, which are in the similar range to the (most of) neutral points obtained from the

flow-driven system. Three selected eigensolutions using the AR-F solver are shown

in Fig. 7.
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Table 3: The neutral points of the pressure-driven system using the AR-F solver. The top five points

were compared against the computed solutions by Liu et al. [2012] (in brackets, with percentage

difference) for the matrix size (n = 55416 × 55416). The bottom (unnamed) points are the new

points obtained in this study.

Points Pud cλ Re ωR ωI

N1-5 1.0 308.40 115.61 9.003× 10−6 0.519

(Liu et al. [2012]) (1.0, 0%) (307.85, 0.2%) (115.60, 0%) (N/A) (0.519, 0.02%)

N1-4 0.703 927 107.89 1.607× 10−5 0.726

(Liu et al. [2012]) (0.7,0.45%) (927, 0%) (107.40, 0.5%) (N/A) (0.726, 0.0%)

N1-3 0.687 2000 113.83 3.317× 10−5 0.847

(Liu et al. [2012]) (0.68, 1%) (2000, 0%) (112.66, 1%) (N/A) (0.848, 0.18%)

(Liu et al. [2012]) 0.708 5500 122.16 −4.591× 10−6 1.014

N1-2 (0.7, 1.2%) (5500,0%) (121.90, 0.21%) (N/A) (1.016, 0.16%)

N1-1 1.21 2.0× 107 226.62 −7.085× 10−6 3.619

(Liu et al. [2012]) (1.2, 0.83%) (2.0× 107, 0%) (219.00, 3.4%) (N/A) (3.623, 0.11%)

1.263 3.0× 107 237.02 2.177× 10−5 3.967

1.290 3.5× 107 241.64 −3.590× 10−6 4.144

1.315 4.0× 107 253.02 2.735× 10−6 4.325

new 1.413 6.0× 107 264.91 5.713× 10−6 5.037

points 1.499 8.0× 107 281.09 −6.634× 10−6 5.713

above N1-1 1.608 1.1× 108 301.79 2.088× 10−6 6.637

1.728 1.5× 108 322.68 −4.890× 10−7 7.724

1.849 2.0× 108 347.15 −4.533× 10−6 8.913
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Fig. 6. The mode-1 neutral curve in the cλ-Pud space of the pressure-driven system obtained
using the AR-F solver. The neutral points below N1-1 agree with those obtained by Liu et al.
[2012], see details in Table 3. The points above N1-1 (in black) are the new solutions.



July 28, 2016 18:23 WSPC/INSTRUCTION FILE Arnoldi-paper-2016-
final

18

(a) y(x, t) (b) y(x, t) at x = 7.5

Fig. 7. Neutral solutions for the pressure-driven system. (a) The elastic beam shape y(x, t) for
x = 5 − 10 at t = 0 (red solid), π/3 (blue dotted), and 2π/3 (black solid), and (b) history of the
middle point of the beam y(x, t) at x = 7.5. These are plotted for the new point (Pud = 1.849,
cλ = 2.0 × 108)(top), N1-1 (middle), and N1-5 (bottom) (see Fig. 6 and Table 3). Notice the
absolute values of these solutions are arbitrary.
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5. Discussion

Stability analysis of collapsible channel flows has been a great challenge numeri-

cally due to the large matrix size and the asymmetric structure of the eigenvalue

problems. Previous studies used the QZ method to solve for all the eigensolutions,

which requires extremely large memory and CPU time and is impractical in many

applications. The pressure-driven system of the flows in a collapsible channel, in

particular, can generate very thin boundary layers upstream the elastic section. If

the flow details of these boundary layers are not resolved, the eigensolutions com-

puted are either inaccurate or the solvers fail to converge. Therefore, the advantages

of the AR-F solver is particularly useful for systems like this.

In this paper, we are able to produce neutral points faster and identify new solutions

which we cannot obtain using the traditional eigensolvers. The flow-driven system

of the flows in a collapsible channel, on the other hand, does not require such a

refined mesh, since it does not have a very thin boundary layers upstream owing

to the parabolic entry flow. The neutral curve identified by Luo et al. [2008] using

a relatively coarse mesh seems to provide a reasonable approximation with small

discrepancies compared to the new results based on a much finer mesh. We must

mention that although we have presented some new results, we have not devoted

our effort to identifying new neutral curves for a different set of parameters, in

particular, we only studied the cases when Pe−Pd = 1.95, T = 0, and ρm = 0. The

neutral curves will change if different parameter regions are considered.

The AR-F solver converges much faster than the QZ, or the AR-G methods since

the latter still requires solving the inverse of the global FE matrix. The disadvan-

tage of the Arnoldi-type solvers, however, is that we have to select optimal Krylov

subspaces in order to locate the first few eigenvalues of the system. Since the initial

vector is generated randomly, it can only guarantee that the most unstable eigen-

pair (the largest eigenvalue) is secured. With the current approach, it is difficult

to find the second or third unstable eigenpairs consistently. Even if we introduce

shift and orthogonalization to systematically filter out the lower order of the com-

plex eigenvectors, which is non-trivial, we cannot ensure that the Krylov subspace

always contains the next unstable modes. In this sense, the QZ solver is still the

most reliable one in terms of determining all the required eigenpairs in the right

order and hence is recommended for small sized eigenvalue problems.

We remark that although all the computations are performed in serial, the efficiency

of the new approach could equally benefit from parallel simulations. In all the

computations, the tolerance for the Arnoldi iteration is set to be 1×10−16, which is

the default value used in ARPACK. While this may be unnecessary for the coarse

meshes used, we kept this unchanged in order to make fair comparisons of the

computational times used by all the solvers. Finally, we must acknowledge that

linear stability analysis is not applicable to certain fluid dynamics problems, and

different approaches may need to be considered [Trefethen et al., 1993].
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6. Conclusion

In this paper, we have developed a combined Arnoldi-frontal approach for solving

large and complex general eigenvalue problems from the finite element simulations.

We show that this approach not only overcomes the memory limitation for large

sparse matrices but also significantly reduces the computational time. Using our

new solver the rate of the CPU time for a matrix size n×n is reduced from O(n3),

which is required by the QZ or other traditional Arnoldi solvers, to almost O(n).

The memory saving is also huge; instead of storing the full global matrix, only the

front involving a subset of elements is in memory. When the new solver is applied to

the stability analysis of flows in a collapsible channel, both for the flow-driven where

the inlet flow is specified, or the pressure-driven system, where inlet the pressure is

specified, it is able to locate neutral stability points previously unattainable on a

single workstation. A greater advantage of such an approach will be its application

in the three dimensional stability analysis, which is currently underway.

Acknowledgements

This work is supported by the UK Engineering and Physical Sciences Research

Council grants (No. EP/I029990/1 and EP/N014642/1).

References

Andy, J. and Nair, P. [2005] Computational Approaches for Aerospace Design The Pursuit
of Excellence (John Wiley and Sons. Ltd.).

Arnoldi, W. E. [1951] The princilple of minimized iteration in the solution of the matrix
eigenvalue problem, Quart. J. Applied Mathematrics 9, 17–29.

Auckenthaler, T., Blum, V., Bungartz, H., Huckle, T., Johanni, R., Krmer, L., Lang, B.,
Lederer, H. and Willems, P. [2011] Parallel solution of partial symmetric eigenvalue
problems from electronic structure calculations, Parallel Computing 37(12), 783.

Bai, Z., Demmel, J., Dongarra, J., Ruhe, A. and Van Der Vorst, H. [1987] Templates for
the solution of algebraic eigenvalue problems: a practical guide (Society for Industrial
and Applied Mathematics).

Bathe, K. [1971] Solution methods for large generalized eigenvalue problems in structural
engineering (National Technical Information Service, US Department of Commerce).

Bathe, K. and Wilson, E. [1973] Solution methods for eigenvalue problems in structural
mechanics, International Journal for Numerical Methods in Engineering 6, 213–226.

Bathe, K.-J. [2013] The subspace iteration method–revisited, Computers & Structures 126,
177–183.

Bertram, C. and Ribreau, C. [1989] Cross-sectional area measurement in collapsed tubes
using the transformer principle, Medical and Biological Engineering and Computing
27(4), 357–364.

Bertram, C. D. and Castles, R. J. [1999] Flow limitation in uniform thick-walled collapsible
tubes, Journal of Fluids and Structures 13(3), 399–418.

Brook, B. S. and Pedley, T. J. [2002] A model for time-dependent flow in (giraffe jugular)
veins: uniform tube properties, Journal of biomechanics 35(1), 95–107.



July 28, 2016 18:23 WSPC/INSTRUCTION FILE Arnoldi-paper-2016-
final

21

Cai, Z. and Luo, X. [2003] A fluid-beam model for flow in a collapsible channel, Journal
of Fluid and Structures 17, 125–146.

Cancelli, C. and Pedley, T. [1985] A separated-flow model for collapsible-tube oscillations,
Journal of Fluid Mechanics 157(AUG), 375–404.

Cisonni, J., Van Hirtum, A., Luo, X. and Pelorson, X. [2010] Experimental validation of
quasione-dimensional and two-dimensional steady glottal flow models, Med Biol Eng
Comput 48, 903–910.

Cliffe, K., Garratt, T. and Spence, A. [1994] Eigenvalues of block matrices arising from
problems in fluid mechanics, Siam J. Matrix Anal. Appl. 15, 1310–1318.

Cullum, J. and Willoughby, R. [1986] Large Scale Eigenvalue Problems (Elsevier Science.).
Elad, D., Kamm, R. and Shapiro, A. [1987] Choking phenomena in a lung-like model,

Journal of Biomechanical Engineering-Transactions of the ASME 109(1), 1–9.
Freund, R., Guthnecht, M. and Nachtigal, N. [1993] An implementation of the look-ahead

lanczos algorithm for non-Hermitan matrices, SIAM J. Sci. Comp. 14, 137–158.
Gavriely, N., Shee, T. R., Cugell, D. W. and Grotberg, J. B. [1989] Flutter in flow-limited

collapsible tubes: a mechanism for generation of wheezes, Journal of Applied Physi-
ology 66(5), 2251.

Guiot, C., Pianta, P., Cancelli, C. and Pedley, T. [1990] Prediction of coronary blood flow
with a numerical model based on collapsible tube dynamics, American Journal of
Physiology-Heart and Circulatory Physiology 258(5), H1606–H1614.

Hood, P. [1976] Frontal solution program for unsymmetric matrices, International Journal
For Numerical Methods In Engineering 10, 379–399.

Irons, B. M. [1970] A frontal solution scheme for finite element analysis. nt. J. Numer.
Methods Eng. 2, 5–32.

Jensen, O. [1990] Instabilities of flow in a collapsed tube, Journal of Fluid Mechanics 220,
623–659.

Kamm, R. and Shapiro, A. [1979] Unsteady-flow in a collapsible tube subjected to external-
pressure or body forces, Journal of Fluid Mechanics 95(NOV), 1–78.

Lehoucq, R., Meerbergen, K. et al. [1998] Using generalized cayley transformations within
an inexact rational krylov sequence method, SIAM Journal on matrix analysis and
applications 20, 131–148.

Lehoucq, R. and Salinger, A. [2001] Large-scale eigenvalue calculations for stability analysis
of steady flows on massively parallel computers, International Journal for Numerical
Methods in Fluids 36(3), 309–327.

Lehoucq, R. B., Sorensen, D. C. and Yang, C. [1997] ARPACK user’s guide: solution of
large scale eigenvalue problems with implicitly restarted Arnoldi methods.

Liu, H., Luo, X. and Cai, Z. [2012] Stability and energy budget of pressure-driven collapsi-
ble channel flows, Journal of Fluid Mechanics 705, 348–370.

Luo, X. [2015] Modelling flows in collapsible tubes, Biomechanics, Doblar’e M and Merodio,
J (eds), Encyclopedia of Life Support Systems (EOLSS) , 213–240.

Luo, X., Cai, Z., Li, W. and Pedley, T. [2008] The cascade structure of linear instability
in collapsible channel flows, Journal of Fluid Mechanics 600, 45–76.

Luo, X. and Pedley, T. [1996] A numerical simulation of unsteady flow in a 2-d collapsible
channel, J. Fluid Mech 314, 191–225.

Luo, X. and Pedley, T. [1998] The effects of wall inertia on flow in a two-dimensional
collapsible channel, Journal of Fluid Mechanics 363, 253–280.

Luo, X. and Pedley, T. [2000] Multiple solutions and flow limitation in collapsible channel
flows, Journal of Fluid Mechanics 420, 301–324.

Meerbergen, K. and Roose, D. [1996] Matrix transformations for computing rightmost
eigenvalues of large sparse non-symmetric eigenvalue problems, IMA Journal of Nu-



July 28, 2016 18:23 WSPC/INSTRUCTION FILE Arnoldi-paper-2016-
final

22

merical Analysis 16(3), 297–346.
Meerbergen, K. and Roose, D. [1997] The restarted Arnoldi method applied to iterative

linear system solvers for the computation of rightmost eigenvalues, SIAM J. Matrix.
Anal. Appl. 18, 1–20.

Misrikhanov, M. and Ryabchenko, V. [2006] The quadratic eigenvalue problem in elctric
power systems, Journal of Automation and Remote Control. 67, 24–47.

Moler, C. B. and Stewart, G. W. [1973] An algorithm for generalized matrix eigenvalue
problems, SIAM Journal on Numerical Analysis 10(2), 241–256.

Morgan, R. [2000] Implicitly restarted GMRES and Arnoldi methods for nonsymmetric
systems of equations, SIAM J. Matrix Anal. Appl. 21, 1112–1135.

Parlett, B., Taylor, D. and Liu, Z. [1985] A look-ahead Lanczos algorithm for unsymmetric
matrices, Math. Comp. 44, 105–124.

Parlett, R. and cott, D. [1979] The Lanczos algorithm with selective orthogonalization,
Math. Comp. 33, 217–238.

Rapcsak, T. [2004] Some optimization problems in multivariate statistic, Journal of Global
Optimization 28, 217–228.

Rast, M. [1994] Simultaneous solution of the navier-stokes and elastic membrane equations
by a finite element method, International journal for numerical methods in fluids
19(12), 1115–1135.

Roger, G., Grimes, J., Lewis and Horst, D. [1986] Eigenvalue problems and algorithms in
structural engineering, North-Holland Mathematics Studies 127, 81–93.

Saad, Y. [1996] Numerical Method for Large Eigenvalue Problems (Manchester University
Press Series in Algorithms and Architectures for Advanced Scientific Computing).

Scott, T., Moore, R., Monagan, M., Fee, G. and Vrscay, E. [1990] Perturbative solutions of
quantum mechanical problems by symbolic computation, Journal of Computational
Physics 87(2), 366–395.

Shapiro, A. [1977] Steady flow in collapsible tubes, Journal of Biomechanical engineering-
Transactions of the ASME 99, 126.

Stewart, H. M., PS, Waters, S. and Jensen, O. [2010a] Sloshing and slamming oscillations
in collapsible channel flow, Journal of Fluid Mechanics 662, 288–319.

Stewart, P. S., Heil, M., Waters, S. L. and Jensen, O. E. [2010b] Sloshing and slamming
oscillations in a collapsible channel flow, Journal of Fluid Mechanics 662, 288–319.

Trefethen, L., Trefethen, A., Reddy, S., Driscoll, T. and Others [1993] Hydrodynamic
stability without eigenvalues, Science 261(5121), 578–584.

Wu, K. and Simon, H. [2000] Thick-restart Lanczos method for large symmetric eigenvalue
problems, SIAM J. Matrix Anal. Appl. 22, 602–616.

Xu, F., Billingham, J. and Jensen, O. E. [2013] Divergence-driven oscillations in a flexible-
channel flow with fixed upstream flux, Journal of Fluid Mechanics 723, 706–733.

Xu, F., Billingham, J. and Jensen, O. E. [2014] Resonance-driven oscillations in a flexible-
channel flow with fixed upstream flux and a long downstream rigid segment, Journal
of Fluid Mechanics 746, 368–404.


