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Abstract8

New Keynesian analysis relies heavily on two workhorse models of nominal in-9

ertia - due to (Calvo, 1983) and (Rotemberg, 1982), respectively - to generate a10

meaningful role for monetary policy. These are often used interchangeably since11

they imply an isomorphic linearized Phillips curve and, if the steady-state is effi-12

cient, the same policy conclusions. In this paper we compute time-consistent optimal13

monetary policy in the benchmark New Keynesian model containing each form of14

price stickiness using global solution techniques. We find that, due to an offsetting15

endogenous impact on average markups, the inflation bias problem under Calvo16

contracts is often significantly greater than under Rotemberg pricing, despite the17

fact that the former typically exhibits far greater welfare costs of inflation. The18

nonlinearities inherent in the New Keynesian model are significant and the form of19

nominal inertia adopted is not innocuous.20
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1 Introduction24

Mainstream macroeconomic analysis of both monetary and fiscal policy relies heavily on25

the New Keynesian model. The distinguishing feature of this model, relative to a more26

classical approach, is that it contains some form of nominal inertia. This allows monetary27

policy to have real effects, and widens the degree of interaction between monetary and28

fiscal policies, since monetary policy affects both the size of the tax base and real debt29

service costs in such models. Typically, one of two workhorse forms of nominal inertia30

are adopted in the literature - Calvo (1983) price contracts, and Rotemberg (1982) price31

adjustment costs. In the former, firms are only able to adjust their prices after random32

intervals of time, such that, outside of a zero inflation steady-state there will be a costly33

dispersion of prices across firms. In the latter, firms behave symmetrically in setting the34

same price but they face quadratic adjustment costs in doing so. Despite this fundamen-35

tal difference, researchers have typically treated the two approaches as being equivalent36

since the New Keynesian Phillips Curves (NKPC) they imply are, to a first order of ap-37

proximation, isomorphic when linearized around a zero inflation steady state. Moreover,38

when that zero inflation steady-state is also efficient (that is, it matches the output level39

that would be chosen by a benevolent social planner) it can be shown that the second-40

order approximation to welfare rewritten in terms of inflation and the output gap is also41

the same across the two approaches (see Nistico, 2007). Under these conditions, to a first42

order of approximation, the two approaches would yield the same policy implications.43

For these reasons the two approaches have largely been treated as synonymous within44

the New Keynesian literature.45

However, despite this broad consensus, there are examples within the literature where46

the two approaches do differ. The first is where the steady-state around which we ap-47

proximate the New Keynesian economy is not efficient. For example, Lombardo and48

Vestin (2008) relax the assumption of Nistico (2007) and consider the second order ap-49

proximation to welfare when the steady state is not efficient. They find that the costs of50

such inefficiencies are typically larger in the Calvo economy. This mirrors the results in51

Damjanovic and Nolan (2011).52

Moreover, there appears to be significant nonlinearities in the New Keynesian model53

which are affected by the size of the steady-state distortion, the degree of unindexed54

inflation and the type of nominal inertia adopted. For example, the trending inflation55

literature (see Ascari and Sbordone (2014) for a survey) finds that the presence of even a56

modest degree of (unindexed) steady-state inflation can radically overturn determinacy57

results, undermine the learnability of rational expectations equilibria, affect the monetary58

policy transmission mechanism and change the nature of optimal policy. In addition, these59

effects can differ across the two forms of nominal inertia (Ascari and Rossi, 2012), with the60

larger impact of trend inflation being felt under Calvo. The large costs of trend inflation61
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under Calvo is also reflected in the analysis of Damjanovic and Nolan (2010b) where the62

seigniorage maximizing rate of inflation is at double digit levels under Rotemberg pricing,63

but only single digits under Calvo. However, this evidence largely comes from studies64

which linearize such economies, either to a first- or second-order approximation, after65

allowing for such factors.66

In this paper we solve the benchmark New Keynesian model nonlinearly using the67

two standard approaches to model price stickiness. Since we are not imposing any kind68

of approximation around a steady-state, we can fully explore the nonlinearities inherent69

in the New Keynesian model and see clearly the extent to which the two approaches70

differ. Moreover, rather than consider the Ramsey problem or commitment to a simple71

monetary policy rule, we shall consider time-consistent optimal policy (commonly known72

as discretion). This in turn, given that we are not using any artificial devices to ensure73

the model’s steady-state being efficient, implies that we can measure the extent of the74

inflationary bias problem under the two forms of nominal inertia.1 In general, this paper75

helps us understand the nature of equilibrium without commitment - a property of mon-76

etary models that is less studied in the literature. To our knowledge, the current paper77

is the first to formally compare and contrast time-consistent optimal policy under the78

two forms of price-setting using global solution algorithms and therefore to assess how79

innocuous the choice of one form of price-setting over the other actually is.80

The inflationary bias problem is driven by a combination of the policy maker’s desire81

to increase an otherwise sub-optimally low level of output by inducing inflation surprises,82

and the fact that they cannot credibly commit not to do so. Economic agents anticipate83

such behavior and raise their inflation expectations until the policy maker is no longer84

tempted to introduce any inflation surprises. Essentially, inflation rises to a level which85

is sufficiently costly to prevent the policy maker from unexpectedly relaxing monetary86

policy, and society suffers the costs of higher inflation without reaping any benefits in87

terms of higher output. Since the costs of inflation are known to be higher under Calvo88

relative to Rotemberg pricing, ceteris paribus, it might be expected that this implies89

the inflationary bias problem is correspondingly lower under Calvo pricing. Our analy-90

sis shows that this is often not the case, and that the inflationary bias problem, while91

significant under both pricing mechanisms, can be much higher under Calvo pricing.92

The possibility of a worsening inflationary bias problem under Calvo arises because of93

the different average markup behavior under the two models. Under Calvo higher inflation94

causes those firms who are able to adjust prices in a particular period to raise that price95

in anticipation of not being able to readjust the price for a prolonged period despite the96

general rise in the price level. This leads to an increase in the average markup as inflation97

rises. In contrast, under Rotemberg all firms set the same price, period by period, but98

1It is well known that the optimal rate of inflation under commitment is zero, hence the inflation bias
is equal to the equilibrium rate of inflation under discretion.
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face adjustment costs in doing so. In discounting future profits they also discount future99

price adjustment costs. As a result, in the face of higher inflation the firms postpone some100

of the required price adjustment due to this discounting effect, which serves to reduce101

the average markup. Taking stock, the average markup and the associated distortion102

under Calvo is increasing in inflation but decreasing under Rotemberg. Other things103

being equal, the more the economy is distorted away from the efficient allocation, the104

larger the incentive of the policy maker to introduce surprise inflation. Accordingly,105

for a given degree of monopolistic competition which reduces output below its efficient106

level and thereby induces an inflation bias, this distinct average markup behavior further107

raises (lowers) the markup under Calvo (Rotemberg) and thereby worsens (improves)108

the inflationary bias problem, despite the fact that a given level of inflation is typically109

found to be more costly in welfare terms under Calvo. In addition, this difference in the110

endogenous markup effect under the two descriptions of nominal inertia is deepened as111

the degree of monopoly power and/or price stickiness is increased. Therefore, particularly112

as the flexible price markup is increased, the inflationary bias under Calvo will eventually113

rise above that observed under Rotemberg.114

There are some recent papers using global solution techniques which also consider115

optimal discretionary policy in the New Keynesian model under Calvo contracts - see116

Van Zandweghe and Wolman (2011) and Anderson et al. (2010), which is then extended117

in Ngo (2014) to allow for the zero lower bound (ZLB) constraint.2 Solving nonlinear118

representations of an enriched New Keynesian model is typically far more computational-119

ly intensive than conventional perturbation methods, hence some authors instead adopt120

the Rotemberg description of price stickiness since this reduces the number of state vari-121

ables one must consider. For instance, Shibayama and Sunakawa (2012), Nakata (2013),122

Niemann et al. (2013) and Leeper et al. (2016) explore optimal policy in various New123

Keynesian models using Rotemberg pricing. In particular, Shibayama and Sunakawa124

(2012) use a nonlinear method to solve for the discretionary policy under Rotemberg125

pricing, but they do not compare and contrast the inflation bias implications between126

the two pricing mechanisms. A notable exception is Miao and Ngo (2016) which com-127

pares the dynamics of a fully nonlinear New Keynesian model under either Rotemberg or128

Calvo pricing in the presence of the ZLB constraint. They specify a simple Taylor rule129

for monetary policy and highlight how the government spending multiplier differs under130

both pricing, while we study the optimal discretionary monetary policy and focus on how131

2Assuming a rule-based description of policy, there are papers using global solution techniques to deal
with nonlinearities such as the ZLB constraint. Fernández-Villaverde et al. (2015), Wieland (2013) and
Richter et al. (2013) explore equilibrium dynamics around the ZLB in variants of the New Keynesian
model which adopt Calvo price contracts. Other authors also consider issues relating to the ZLB in
models which use Rotemberg pricing, but also introduce extensions such as capital (see Gavin et al.
(2013), Braun and Korber (2011), Johannsen (2014)), consumption habits (Gust et al. (2012) and Aruoba
and Schorfheide (2013)), labor market frictions (Roulleau-Pasdeloup (2013)) or fiscal policy (Johannsen
(2014)).
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inflation bias differs between these two forms of nominal rigidities. Our common message132

is that Calvo and Rotemberg pricing can be far from equivalent in the nonlinear context.133

The rest of the paper is organized as follows. In section 2, we describe the basic134

model under both Calvo and Rotemberg pricing. In section 3, we formulate the optimal135

discretionary policy problem with Rotemberg and Calvo pricing, respectively. In section136

4, we explain the solution method and calibration. In section 5, we present and discuss137

numerical results. We conclude in section 6.138

2 The Model139

This section describes the basic economic structure in our model.140

2.1 Households141

There are a continuum of households of size one. We shall assume complete asset markets,142

such that, through risk sharing, they will face the same budget constraint and make the143

same consumption plans. As a result, at period 0 the typical household will seek to144

maximize the following objective function,145

E0

∞∑
t=0

βtU(Ct, Nt) (1)

where 0 < β < 1 denotes the discount factor, Ct and Nt are a consumption aggregate146

and labor supply at period t, respectively.147

The household purchases differentiated goods in a retail market and combines them148

into composite goods using a CES aggregator:149

Ct =

(∫ 1

0

Ct(j)
ε−1
ε dj

) ε
ε−1

, ε > 1 (2)

where Ct(j) is the demand for differentiated goods of type j.150

The budget constraint at time t is given by151 ∫ 1

0

Pt(j)Ct(j)dj + Et {Qt,t+1Dt+1} = Ξt +Dt +WtNt − Tt (3)

where Pt(j) is the nominal price of type j goods, Dt+1 is the nominal payoff of the152

nominal bonds portfolio held at the end of period t, Ξ is the representative household’s153

share of profits in the imperfectly competitive firms, W are wages, and T are lump-sum154

taxes/transfers.3 Qt,t+1 is the stochastic discount factor for one period ahead payoffs.155

3In Section 5 we shall analyze cost push shocks driven by fluctuations in a revenue tax which shall
be rebated to households in a lump-sum form.
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The labor market is perfectly competitive and wages are fully flexible.156

Households must first decide how to allocate a given level of expenditure across the157

various goods that are available. They do so by adjusting the share of a particular good158

in their consumption bundle to exploit any relative price differences—this minimizes the159

costs of consumption. The demand curve for each good j is,160

Ct(j) =

(
Pt(j)

Pt

)−ε
Ct (4)

where the aggregate price level Pt is defined to be161

Pt =

(∫ 1

0

Pt(j)
1−εdj

) 1
1−ε

. (5)

The dynamic budget constraint at period t can therefore be rewritten as162

PtCt + Et {Qt,t+1Dt+1} = Ξt +Dt +WtNt − Tt. (6)

The representative household’s decision problem can be dealt with in two stages.163

First, regardless of the level of Ct the household purchases the combination of individual164

goods that minimizes the cost of achieving this level of the composite good. Second,165

given the cost of achieving any given level of Ct, the household chooses Ct, Dt+1 and Nt166

optimally. We have solved the first stage problem above. For tractability, we assume that167

(1) takes the specific form168

E0

∞∑
t=0

βt
(
C1−σ
t − 1

1− σ
− N1+ϕ

t

1 + ϕ

)
. (7)

where σ > 0 is a risk aversion parameter and ϕ > 0 is the inverse of the Frisch elasticity169

of labor supply.170

We can then maximize utility subject to the budget constraint (6) to obtain, after171

taking expectations, the optimal allocation of consumption across time,172

βRtEt

{(
Ct
Ct+1

)σ (
Pt
Pt+1

)}
= 1, (8)

where Rt ≡ 1
Et(Qt,t+1)

is the gross nominal return on a riskless one period bond paying173

off a unit of currency in t + 1. This is the familiar consumption Euler equation which174

implies that consumers are attempting to smooth consumption over time such that the175

marginal utility of consumption is equal across periods (after allowing for tilting due to176

interest rates differing from the household’s rate of time preference).177
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The second first order condition concerning labor supply decision is given by178

Wt

Pt
= Nϕ

t C
σ
t . (9)

2.2 Firms179

Each firm produces a differentiated good j using a constant returns to scale production180

function:181

Yt(j) = AtNt(j) (10)

where Yt(j) is the output of firm j, and Nt(j) denotes the hours hired by the firm, At is182

an exogenous aggregate productivity shock at period t, and at = log(At) is time varying183

and stochastic.4184

Similar to the household’s problem, we first consider the cost minimization problem185

of firm j, which implies that the real marginal cost of production is given by186

mct =
Wt

PtAt
. (11)

Note that the real marginal cost described in (11) does not depend on the output level187

of an individual firm, since its production function exhibits constant returns to scale and188

prices of inputs (here labor) are fully flexible.189

The demand curve the firm j faces is given by190

Yt(j) =

(
Pt(j)

Pt

)−ε
Yt,

where Yt =
(∫ 1

0
Yt(j)

ε−1
ε dj

) ε
ε−1 .191

The intermediate-good sector is monopolistically competitive and the intermediate192

good producers therefore have certain degrees of market power. In the following, we193

consider two alternative forms of price stickiness - firstly that due to Rotemberg (1982)194

and then that of Calvo (1983).195

2.2.1 Rotemberg Pricing196

The Rotemberg model assumes that a monopolistic firm faces a quadratic cost of adjusting197

nominal prices, which can be measured in terms of the final good and given by198

φ

2

(
Pt(j)

Pt−1(j)
− 1

)2

Yt (12)

4Typically, the logarithm of At is assumed to follow an AR(1) process: at = ρaat−1 + eat, 0 ≤ ρa < 1
where technology shock eat is an i.i.d. random variable, which has a zero mean and a finite standard
deviation σa.
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where φ ≥ 0 measures the degree of nominal price rigidity. The adjustment cost, which199

accounts for the negative effects of price changes on the customer–firm relationship, in-200

creases in magnitude with the size of the price change and with the overall scale of201

economic activity Yt.202

The problem for firm j is then to maximize the discounted value of nominal profits,203

max
{Pt(j)}∞t=0

Et

∞∑
s=0

Qt,t+sΞt+s

where nominal profits are defined as204

Ξt = Pt(j)Yt(j)−mctYt(j)Pt −
φ

2

(
Pt(j)

Pt−1(j)
− 1

)2

YtPt (13)

Firms can change their price in each period, subject to their demand curve and pay-205

ment of the adjustment cost. Hence, all the firms face the same problem, and thus206

will choose the same price, and produce the same quantity such that, Pt(j) = Pt and207

Yt(j) = Yt for any j. Hence, the first-order condition for a symmetric equilibrium is208

(1− ε) + εmct − φΠt (Πt − 1) + φβEt

[(
Ct
Ct+1

)σ
Yt+1

Yt
Πt+1 (Πt+1 − 1)

]
= 0. (14)

This is the Rotemberg version of the nonlinear Phillips curve that relates current inflation209

to future expected inflation and to the level of output.210

2.2.2 Calvo Pricing211

Each period, the firms that adjust their price are randomly selected, and a fraction 1− θ212

of all firms adjust while the remaining θ fraction do not adjust. Those firms that do213

adjust their price at time t do so to maximize the expected discounted value of current214

and future profits. Profits at some future date t + s are affected by the choice of price215

at time t only if the firm has not received another opportunity to adjust between t and216

t+ s. The probability of this is θs.217

The adjusting firm’s pricing decision problem then involves picking Pt(j) to maximize218

discounted nominal profits. Using the demand curve for the firm’s product, this objective219

function can be written as220

Et

∞∑
s=0

θsQt,t+s

[
Pt(j)

(
Pt(j)

Pt+s

)−ε
Yt+s −mct+s

(
Pt(j)

Pt+s

)−ε
Yt+sPt+s

]
,
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where the discount factor Qt,t+s is given by βs
(

Ct
Ct+s

)σ
Pt
Pt+s

, and mct+s is the marginal221

cost of production.222

Let P ∗t be the optimal price chosen by all firms able to reset their price at time t. The223

first order condition for the optimal choice of P ∗t is,224

P ∗t
Pt

=

(
ε

ε− 1

)
Kp
t

F p
t

(15)

where

Kp
t = C−σt mctYt + θβEt

[(
Pt+1

Pt

)ε
Kp
t+1

]
F p
t = C−σt Yt + θβEt

[(
Pt+1

Pt

)ε−1

F p
t+1

]
.

The price index evolves according to225

1 = (1− θ)
(
P ∗t
Pt

)1−ε

+ θ(Πt)
ε−1 with Πt ≡

Pt
Pt−1

. (16)

and price dispersion is described by226

∆t ≡
∫ 1

0

(
Pt(j)

Pt

)−ε
dj = (1− θ)

(
P ∗t
Pt

)−ε
+ θ

(
Pt
Pt−1

)ε
∆t−1. (17)

2.3 Aggregate Conditions227

Under Rotemberg pricing, as all the firms will employ the same amount of labor, the228

aggregate production function is simply given by229

Yt = AtNt,

and the aggregate resource constraint is given by230

Yt = Ct +
φ

2
(Πt − 1)2 Yt.

Note that the Rotemberg adjustment cost creates an inefficiency wedge ψRt between out-231

put and consumption232

Ct =
(
1− ψRt

)
Yt =

(
1− ψRt

)
AtNt (18)

where ψRt = φ
2

(Πt − 1)2.233

In the case of Calvo pricing, firms changing prices in different periods will generally234

have different prices. Thus, the model features price dispersion. When firms have different235

relative prices, there are distortions that create a wedge between the aggregate output236
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measured in terms of production factor inputs and aggregate demand measured in terms237

of the composite goods. Specifically,238

Nt(j) =
Yt(j)

At
=

(
Pt(j)

Pt

)−ε
Yt
At

which yields,239

Nt =

∫ 1

0

Nt(j)dj =
Yt
At

∫ 1

0

(
Pt(j)

Pt

)−ε
dj =

Yt∆t

At

after integrating across firms. ∆t ≥ 1 implies that price dispersion is always costly in240

terms of aggregate output: the higher ∆t, the more labor is needed to produce a given241

level of output. Moreover, under Calvo different firms with different prices will employ242

different amounts of labor. This explains why higher price dispersion acts as a negative243

productivity shift in the aggregate production function: Yt = (At/∆t)Nt. In addition,244

price dispersion is a backward-looking variable which introduces an inertial component245

into the model.246

Under Calvo, the aggregate resource constraint is simply given by247

Yt = Ct.

Hence, after defining ψct = ∆t − 1 as an inefficiency wedge under Calvo, we have248

Ct = Yt =
AtNt

(1 + ψct )
. (19)

Comparing (18) and (19), it is illuminating to note that the Rotemberg adjustment249

cost creates a wedge ψRt between aggregate consumption and aggregate output, while the250

Calvo price dispersion creates a wedge ψct between aggregate hours and aggregate output.251

In addition, both wedges are nonlinear functions of inflation. They are minimized at one252

when steady-state net inflation equals zero (Π = 1), and increase as trend inflation moves253

away from zero. See Ascari and Rossi (2012) for a discussion.254

Appendix C.1 summarizes the models under Rotemberg and Calvo pricing.255

3 Optimal Policy Problem Under Discretion256

In this section, following Woodford (2003) and Anderson et al. (2010), we interpret the257

monetary authority’s problem without commitment as an optimal planning problem, as258

opposed to choosing a particular policy instrument. Under discretion, the monetary au-259

thority solves a sequential or period-by-period optimization problem, which maximizes260

the representative household’s expected discounted utility subject to the optimality con-261

ditions from market participants, the aggregate conditions, and the law of motion for the262
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state variables. Therefore, under optimal discretion, the policymaker cannot commit to263

a plan in the hope of influencing economic agents’ expectations.264

3.1 Rotemberg Pricing265

Let V (At) represents the value function at period t in the Bellman equation for the optimal266

policy problem. The optimal monetary policy then solves the following optimization267

problem:268

V (At) = max
{Ct,Yt,Πt}

{
C1−σ
t − 1

1− σ
− (Yt/At)

1+ϕ

1 + ϕ
+ βEt [V (At+1)]

}
, (20)

subject to,269

Ct =

[
1− φ

2
(Πt − 1)2

]
Yt, (21)

and,270

(1−ε)+εYt
ϕCσ

t At
−ϕ−1−φΠt (Πt − 1)+φβEt

[(
Ct
Ct+1

)σ
Yt+1

Yt
Πt+1 (Πt+1 − 1)

]
= 0. (22)

Defining an auxiliary function,271

M(At+1) ≡ C−σt+1Yt+1Πt+1 (Πt+1 − 1) ,

we can rewrite the Phillips curve (22) as,272

(1− ε) + εYt
ϕCσ

t At
−ϕ−1 − φΠt (Πt − 1) + φβCσ

t Y
−1
t Et [M(At+1)] = 0,

which captures the fact that the policy maker recognizes that any change in the state
variable will affect expectations, but cannot promise to behave in a particular way to-
morrow in order to influence expectations today. The optimal policy problem can then
be formulated as the following Lagrangian,

L =
C1−σ
t − 1

1− σ
− (Yt/At)

1+ϕ

1 + ϕ
+ βEt [V (At+1)] + λ1t

{[
1− φ

2
(Πt − 1)2

]
Yt − Ct

}
+ λ2t

{
(1− ε) + εYt

ϕCσ
t At

−ϕ−1 − φΠt (Πt − 1) + φβCσ
t Y
−1
t Et [M(At+1)]

}
,

where λ1t and λ2t are the Lagrange multipliers. The first order conditions are given as273

follows:274

consumption,275

C−σt = λ1t − λ2t

{
σεYt

ϕCσ−1
t At

−ϕ−1 + σφβCσ−1
t Y −1

t Et [M(At+1)]
}
; (23)
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output,276

Yt
ϕAt

−1−ϕ = λ1t

[
1− φ

2
(Πt − 1)2

]
+ λ2t

{
εϕYt

ϕ−1Cσ
t At

−ϕ−1 − φβCσ
t Y
−2
t Et [M(At+1)]

}
;

(24)
and inflation,277

λ1tφ (Πt − 1)Yt = −λ2tφ (2Πt − 1) . (25)

Note that the consumption Euler equation serves only to define the nominal interest rate.278

The fully nonlinear problem is then to find five policy functions which relate the three279

choice variables {Yt, Ct, Πt} and two Lagrange multipliers {λ1t, λ2t} to the state variable280

At, that is, Yt = Y (At), Ct = C(At), Πt = Π(At), λ1t = λ1(At), and λ2t = λ2(At).281

We will use the Chebyshev collocation method to approximate these five time invariant282

policy rules.283

3.2 Calvo Pricing284

Let V (∆t−1, At) denote the value function at period t in the Bellman equation for the285

optimal policy problem. The optimal monetary policy under discretion then can be286

described as a set of decision rules for {Ct, Nt,Πt, K
p
t , F

p
t ,∆t} which maximize,287

V (∆t−1, At) = max

{
C1−σ
t − 1

1− σ
− N1+ϕ

t

1 + ϕ
+ βEt [V (∆t, At+1)]

}
,

subject to the following constraints:288

NtAt
∆t

= Ct,

Kp
t

(1− ε−1)
=

(
1− θΠt

ε−1

1− θ

) 1
1−ε

F p
t ,

F p
t = C1−σ

t + θβEt [L(∆t, At+1)] ,
289

Kp
t =

Nϕ+1
t

∆t

+ θβEt [M(∆t, At+1)] ,

∆t = (1− θ)
(

1− θΠt
ε−1

1− θ

) −ε
1−ε

+ θΠε
t∆t−1,

where we have utilized two auxiliary functions,290

M(∆t, At+1) = Πε
t+1K

p
t+1,
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and291

L(∆t, At+1) = Πε−1
t+1F

p
t+1,

which again captures the fact that the policy maker recognizes that any change in the292

state variable will affect expectations, but cannot make credible promises about their293

future behavior.294

As before, the policy problem can be written in Lagrangian form as follows:295

L =
C1−σ
t − 1

1− σ
− Nt

1+ϕ

1 + ϕ
+ βEt [V (∆t, At+1)] + λ1t

[
NtAt
∆t

− Ct
]

296

+λ2t

[
C1−σ
t + θβEt [L(∆t, At+1)]− F p

t

]
297

+λ3t

[
Nϕ+1
t

∆t

+ θβEt [M(∆t, At+1)]−Kp
t

]
298

+λ4t

[
(1− θ)

(
1− θΠt

ε−1

1− θ

) −ε
1−ε

+ θΠε
t∆t−1 −∆t

]
299

+λ5t

[(
1− θΠt

ε−1

1− θ

) 1
1−ε

F p
t −

Kp
t

(1− ε−1)

]
,

where λjt (j = 1, .., 5) are the Lagrange multipliers. The first order conditions are given300

as follows:301

consumption,302

C−σt − λ1t + (1− σ)C−σt λ2t = 0; (26)

labor,303

−∆tN
ϕ
t + Atλ1t + (1 + ϕ)Nϕ

t λ3t = 0; (27)

inflation,304

− ε

((
1− θΠt

ε−1

1− θ

) 1
ε−1

− Πt∆t−1

)
λ4t =

(
1− θΠt

ε−1

1− θ

) ε
1−ε F p

t λ5t

1− θ
; (28)

numerator of optimal price Kp
t ,305

λ3t +
λ5t

(1− ε−1)
= 0; (29)

denominator of optimal price F p
t ,306

− λ2t +

(
1− θΠt

ε−1

1− θ

) 1
1−ε

λ5t = 0; (30)
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and price dispersion,

0 = β
∂Et [V (∆t, At+1)]

∂∆t

− NtAtλ1t

∆2
t

+ θβ
∂Et [L(∆t, At+1)]

∂∆t

λ2t

+

(
θβ
∂Et [M(∆t, At+1)]

∂∆t

− Nϕ+1
t

∆2
t

)
λ3t − λ4t.

Note that the envelope theorem yields307

∂V (∆t−1, At)

∂∆t−1

= θΠε
tλ4t,

which allows us to rewrite the first order condition for price dispersion as,

0 =
Ctλ1t

∆t

+
Nϕ
t Ct

At∆t

λ3t + λ4t − θβλ2t
∂Et [L(∆t, At+1)]

∂∆t

(31)

− θβλ3t
∂Et [M(∆t, At+1)]

∂∆t

− θβEt
[
Πε
t+1λ4t+1

]
.

We can solve the nonlinear system consisting of these six first order conditions and the308

five constraints to yield the time-consistent optimal policy under Calvo pricing. Specifi-309

cally, without commitment, we need to find these eleven time-invariant policy rules which310

are functions of the two state variables {∆t−1, At}. That is, we need to find policy func-311

tions such as F p
t = F p (∆t−1, At), Kp

t = Kp (∆t−1, At), and Πt = Π (∆t−1, At). Similar312

to the Rotemberg case, the Chebyshev collocation method will be used to approximate313

these policy functions.314

4 Numerical Analysis315

This section starts with a description of the global solution method to numerically solve316

for the discretionary equilibrium. Then, the calibration of parameters is discussed.317

4.1 Solution Method318

We use the Chebyshev collocation method with time iteration to globally approximate319

the policy functions.5 In contrast to the linear-quadratic approximation method, this320

projection method can capture the extent to which the two approaches modeling price321

stickiness differ, due to the nonlinearities inherent in the New Keynesian model. First, we322

discretize the state space into a set of collocation nodes. In the Rotemberg model, there is323

one state variable (At), while in the Calvo model there are two state variables (∆t−1, At).324

Accordingly, the space of the approximating functions for the Rotemberg pricing consists325

of one-dimensional Chebyshev polynomials. In comparison, the space of approximating326

5Judd (1992), Judd (1998) and Miranda and Fackler (2004) are good references.
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functions for the Calvo pricing is two-dimensional, and is, given by the tensor products327

of two sets of Chebyshev polynomials. Then we define the residual functions based328

on the equilibrium conditions. Gaussian-Hermite quadrature is used to approximate329

expectation terms. Under Calvo pricing, the partial derivatives with respect to price330

dispersion are approximated by differentiating the Chebyshev polynomials. Finally, we331

solve the resultant system of nonlinear equations consisting of the residual functions332

evaluated at each collocation node.6 See appendix C.2 for details.333

4.2 Calibration334

The benchmark parameters for Calvo pricing are taken from Anderson et al. (2010)335

and are standard. Table 1 summarizes the relevant parameter values. We set β =336

(1/1.04)1/4 = 0.99, which is a standard value for models with quarterly data and implies337

a 4% annual real interest rate. The intertemporal elasticity of substitution is set to338

one (σ = 1) which is in the middle of the parameter range typically considered in the339

literature. Labor supply elasticity is set to ϕ−1 = 1. The elasticity of substitution340

between intermediate goods is chosen as ε = 11, which implies a monopolistic markup341

of approximately 10%. The technology parameters are set to ρa = 0.95 and σa = 0.01.342

To make the results from Rotemberg pricing comparable, the value of price adjustment343

cost (φ = 116) is calibrated so that the linear quadratic approximation for both cases are344

equivalent.7 This implies an equivalence between the two forms of pricing provided the345

steady-state is undistorted with a rate of inflation of zero. Admittedly, this commonly346

used strategy is more debatable in the nonlinear context, since it is not guaranteed that347

the equivalence of the two forms of nominal inertia is retained in nonlinear solutions of348

the New Keynesian model where the steady-state is distorted and the rate of inflation349

will typically not be zero. We consider an alternative calibration strategy of matching350

relative inflation/output volatilities in the sensitivity section 5.3 below.351

With this benchmark parameterization, we solve the fully nonlinear models via the352

Chebyshev collocation method. Following Anderson et al. (2010), relative price dispersion353

∆t is bounded by [1, 1.02], and logged productivity at takes values from [−2σa/(1 −354

ρa), 2σa/(1 − ρa)] = [−0.4, 0.4]. For the Rotemberg case, the order of approximation na355

is chosen to be 6, and the number of nodes for Gauss-Hermite quadrature q = 12. This356

combination is quite accurate, since the maximum Euler equation error is of the order of357

10−8. For the Calvo case, the order of approximation na and n∆ are both assigned to be358

6, and q = 12 for Gauss-Hermite quadrature. The maximum Euler equation error over359

6In contrast, Anderson et al. (2010) solve a large system of nonlinear equations consisting of the
residual functions evaluated over all collocation nodes. We use the time iteration method which naturally
divides the large root-finding problem into small problems that can be solved independently. A big
advantage of this method is that parallel computing can be used as the size of system of nonlinear
equations increases.

7That is, φ = (ε−1)θ
(1−θ)(1−βθ) .
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the full range under all the cases is of the order of 10−7. As suggested by Judd (1998),360

this order of accuracy is reasonable.361

5 Results362

This section presents the main results of this paper. First, the inflation bias in the steady363

state between Calvo pricing and Rotemberg pricing is compared. Second, we explain364

why the inflation bias under Calvo can be significantly greater, even though the welfare365

costs of the resulting inflation are substantially greater under Calvo. Finally, sensitivity366

analysis is conducted.367

5.1 Steady State Inflation Bias368

Figure 1 illustrates how the steady-state inflation bias under the two forms of nominal369

rigidities differs as we vary the degree of nominal inertia.8 The black solid line plots the370

annualized inflation bias (in percent) against the Rotemberg adjustment parameter (φ).371

For comparison, the red dashed line plots the inflation bias under Calvo pricing with θ372

ranging from 0.5 to 0.75 - implying average price duration of 2 and 4 quarters, respectively,373

which are reasonable empirical bounds for price adjustment. The mapping between the374

Calvo and Rotemberg parameters, φ for θ, is such that the LQ approximations of the375

two models are equivalent. We can see that the inflation bias problem under Calvo376

pricing (about 2.2%) is more severe than that under Rotemberg pricing (about 1.89%)377

for the benchmark parameters. However, the Calvo pricing does not always imply higher378

inflation bias, as the case with θ = 0.5 shows. More generally, the inflation bias problem379

gradually worsens under Calvo as the degree of nominal inertia is increased, but is largely380

insensitive to the price adjustment cost parameter under Rotemberg, improving very381

slightly as inertia is increased. Conditional on the benchmark values of other calibrated382

parameters, the inflation bias under Calvo rises above that under Rotemberg when the383

probability of price change rises to θ = 0.62 (equivalently φ = 42), an expected duration384

of price contracts of 8 months. This is well within the range of conventional estimates of385

the degree of nominal inertia.386

We now turn to assessing the effect of the monopolistic competition distortion ε/(ε−1)387

on the equilibrium inflation bias by changing the value of ε. We interchangeably describe388

this measure of the monopolistic competition distortion as the flexible-price markup since389

it measures the markup that would be observed under flexible prices. This approach is390

8In general, the steady state here should be called the risky steady state in the sense of Coeurdacier
et al. (2011) since economic agents still anticipate shocks hitting the economy, even if none are actually
realized. When the variance of the productivity shock is set to be effectively zero, the risky steady state
collides with the nonstochastic steady state. In fact, the benchmark productivity shock barely affects
the steady state values. As a double-check, we also shut down the shock and essentially find the same
steady state values.
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based on the fact that the size of the inflation bias depends on the degree of monopolistic391

distortion, which makes steady state (even flexible-price) output inefficient and generates392

the temptation on the part of the policy maker to inflate the economy. Figure 2 shows393

how the size of inflation bias changes as the markup is varied for the Calvo and Rotemberg394

pricing, respectively. The benchmark ε = 11 yields a gross flexible-price markup of 1.1.395

When ε decreases, the corresponding monopolistic competition distortion and inflation396

bias increases. This has a dramatic impact on the relative size of the inflation bias under397

the two forms of nominal inertia, with the bias under Calvo pricing rising significantly398

above that under Rotemberg.9399

We find that the inflationary bias problem can become significantly greater under400

Calvo as nominal inertia is increased, but especially as the monopolistic competition401

distortion is increased. At the same time Figure 2 shows that consumption falls by402

more, and hours worked by less under Calvo as we increase this distortion, and the403

average markup rises above the flexible price markup under Calvo, while decreasing under404

Rotemberg as a result of the nonlinear effects of the inflation bias. It is also striking that405

the welfare costs of the resulting inflation are substantially greater under Calvo, which406

might have been thought to mitigate the desire to increase inflation in the first place.407

We must, therefore, explain why the high costs of inflation under Calvo do not appear to408

inhibit the inflationary bias problem.409

5.2 Discussion410

In understanding the apparently counterintuitive result that the inflation bias can often be411

significantly higher under Calvo pricing relative to Rotemberg, despite the significantly412

higher welfare costs of inflation under the former, it is helpful to consider the effects413

of inflation on the two models. Ascari and Rossi (2012) discuss how inflation affects414

both models through a ‘wedge’ effect as well as an average markup effect. We shall415

consider the wedge effect first, before turning to the average markup effect, which will416

turn out to be key. Under both forms of nominal inertia the ‘wedge’ implies that the417

representative household’s aggregate consumption will be lower for a given level of labor418

input as inflation rises. Under Calvo, due to price dispersion, the representative household419

consumes relatively more of the cheaper goods to compensate for the expensive goods,420

given diminishing marginal utility in the consumption of each good. As Goodfriend421

and King (1997) and Damjanovic and Nolan (2010a) note, this is akin to a negative422

productivity shock. We can combine the resource and aggregate production function to423

9To illustrate the importance of nonlinearities in this context, the inflation bias for both cases under
the linear-quadratic approximation (LQ) are also presented in Figures 3 and 4 in the online appendix.
The traditional linear-quadratic method becomes increasingly inaccurate for larger distortions.
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yield,424

Ct =
At

(1 + ψct )
Nt,

where the inefficient wedge under Calvo, ψct = ∆t− 1, captures the extent to which price425

dispersion has been raised above one.426

Under Rotemberg the micro-foundation of the wedge is different - adjusting prices427

uses up consumption goods directly. However, we can similarly combine the aggregate428

production function and resource constraint to obtain a similar expression under Rotem-429

berg,430

Ct = At(1− ψRt )Nt,

where the Rotemberg wedge, ψRt = φ
2
(Πt − 1)2, reflects the costs per unit of output of431

changing prices. Therefore in both cases the labor costs of attaining a particular level of432

aggregate consumption are higher, ceteris paribus, as inflation rises.433

In order to assess how this affects the inflation bias problem facing the policy maker,434

it is helpful to imagine how a social planner would respond to a technology shock in the435

presence of such wedges. Given the form of household utility, the social planner would436

choose an optimal level of labor input of437

Nt
σ+ϕ =

(
At

(1 + ψct )

)1−σ

under Calvo, and438

Nt
σ+ϕ =

(
At(1− ψRt )

)1−σ

under Rotemberg. Therefore, for our benchmark calibration of σ = 1 the social planner439

would not seek to adjust the labor input into the production process as a result of increases440

in either of the wedges, but would simply allow consumption to fall. In other words, for441

our benchmark calibration the efficiencies implied by these wedges do not give the policy442

maker a further desire to generate a surprise inflation, ceteris paribus. While if σ > 1 the443

social planner would seek to reduce the labor input as either of these inefficiency wedges444

increased. That is, in this case the wedges would reduce the desire to encourage firms445

to employ more workers, ceteris paribus. We can see this from Table 2 where raising446

the inverse of the intertemporal elasticity of substitution, σ, reduces the inflation bias447

under both pricing models. Therefore the different inefficiency wedges under Calvo and448

Rotemberg are not responsible for the observed inflation biases.449

Instead the differences in inflation bias across the two models are generated by their450

average mark-up behavior, which is fundamentally different. Consider the steady-state of451

the average markup (equal to the inverse of real marginal cost) under Rotemberg which452
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is obtained by rearranging the deterministic steady state of the NKPC as,453

mc−1 =

[
ε− 1

ε
+

(1− β)

ε
φ(Π− 1)Π

]−1

.

The second term within the square brackets exists as a combination of steady-state in-454

flation and discounting on the part of firms (on behalf of their owners, the representative455

household). Essentially as the firms discount future profits they also discount future price456

adjustment costs. As a result, in the face of ongoing inflation, they will opt to partially457

delay the required price adjustment such that the average markup is decreasing in infla-458

tion. This effect, whereby the average markup under Rotemberg is falling in inflation, is459

enhanced as the degree of nominal inertia and/or flexible-price markup increase.460

The effect of inflation on the average markup under Calvo is,461

mc−1 =
ε

ε− 1

(
1− θβΠε−1

1− θβΠε

)(
1− θΠε−1

1− θ

) 1
ε−1

.

In this case the effects of inflation on the average markup are ambiguous. However,462

following King and Wolman (1996) the average markup can be decomposed into two463

elements - the marginal markup,464

P ∗

MC
=

ε

ε− 1

(
1− θβΠε−1

1− θβΠε

)
,

and the price adjustment gap,465

P

P ∗
=

(
1− θΠε−1

1− θ

) 1
ε−1

.

Here we can see that higher inflation raises the marginal markup. Firms facing the466

possibility of being stuck with the current price for a prolonged period will tend to raise467

their reset price when that price is likely to be eroded by inflation throughout the life468

of that contract. The effect of inflation on the price-adjustment gap will tend to reduce469

this element of the average markup. However, except at very low rates of inflation, the470

effect of inflation on the average markup through the marginal markup channel is positive.471

Additionally, in contrast to what we find under Rotemberg, greater price stickiness and/or472

a flexible price markup further increase the average markup under Calvo.473

Therefore, we would expect to see average markups rise with inflation under Calvo,474

but fall under Rotemberg, especially as price stickiness and/or the flexible-price markup475

are increased. This, in turn, implies that the inflationary bias problem is worsened under476

Calvo as the rising markups increase the policy makers incentives to introduce a surprise477

inflation, ceteris paribus, at the same time as it is mitigated under Rotemberg. As a478
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result, the inflation bias problem can become significantly higher under Calvo where479

consumption falls by more and hours by less than it does under Rotemberg, despite the480

fact that a given level of inflation is typically found to be more costly in welfare terms481

under Calvo.482

Finally, we do some comparative statics with the model under both pricing approaches,483

in order to explore how other parameters affect the severity of the inflation bias problem484

and the sensitivity of the results obtained from the linear-quadratic approach. Table 2485

summarizes the robustness outcomes for the Calvo and Rotemberg pricing. Notably, there486

are cases where the inflation bias problem is much worse under Calvo pricing, especially487

as the endogenous markup effect is enhanced by raising the flexible-price markup and/or488

the degree of price stickiness.489

5.3 Sensitivity Analysis490

Table 2 considers the robustness of our results across various parameters for Calvo and491

Rotemberg pricing. The first three rows of the table increase the degree of nominal inertia492

(where the Rotemberg price adjustment parameter is adjusted in line with the changes493

in the Calvo parameter such that the linearized NKPC is equivalent across both forms of494

nominal inertia). As we increase the degree of nominal inertia, we find that the inflation495

bias rises under Calvo, but falls under Rotemberg. Figure 1 illustrates this point as well.496

This is for the reasons discussed above. Under Calvo greater price stickiness means that497

firms are likely to be stuck with their current prices for longer, such that they aggressively498

raise prices when given the opportunity to do so. This will tend to raise average markups499

and worsen the inflationary bias problem.10 In contrast, under Rotemberg higher price500

adjustment costs result in firms wishing to delay price adjustment which reduces average501

markups and reduces the inflation bias problem.502

The next piece of sensitivity analysis looks at various parameterizations of the inverse503

of the intertemporal elasticity of substitution, σ. As noted above, at the benchmark504

value of σ = 1, the social planner would not wish to expand employment as either of505

the efficiency wedges due to the two forms of nominal inertia increase. While if σ < (>)506

1 then they would wish to increase (decrease) the labor input as either efficient wedge507

increased. Therefore we see the inflationary bias falling as σ increases across both forms508

of nominal inertia. Finally, we consider an increase in the inverse of the Frisch elasticity509

of labor supply, ϕ, which serves to reduce the inflationary bias problem across both types510

of price stickiness. As labor supply becomes less elastic, there is less desire to use costly511

inflation surprises to achieve only marginal increases in the level of output and therefore512

the inflation bias falls.513

10It is only at extremely high levels of price stickiness (θ = 0.9, or an average price contract duration of
two and a half years) that the steady state rate of inflation begins to fall as the costs of price dispersion
begin to overturn the average markup effect.
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Alternative Calibration Strategy514

In conducting the analysis above, we followed the standard approach in the literature515

of calibrating the Rotemberg price adjustment parameter to ensure the linearized NKPC516

isomorphic across both descriptions of nominal inertia. However, it is not obvious that517

this approach is valid given our model features several key nonlinearities. We therefore518

follow an alternative strategy of choosing the Rotemberg price adjustment cost parameter519

to ensure the relative volatilities of output and inflation are the same across the two520

models.11 To do so, we move away from the technology shock considered in Anderson521

et al. (2010) and introduce a cost-push shock, since the technology shock does not generate522

a plausible degree of inflation volatility.12 We adopt the estimated shock process from523

Chen et al. (2014) which is modeled as a revenue tax rate fluctuating around a steady524

state value of zero,525

ln (1− τpt) = (1− ρτp) ln (1− τp) + ρτp ln (1− τpt−1)− eτt

where eτt ∼ N(0, 0.004862) and ρτp = 0.939. In a log-linearized model this is equivalent526

to allow for fluctuations in the desired markup through variations in ε. However, in our527

nonlinear model allowing ε to be time varying has a direct impact on the measure of528

price dispersion in a way which would not normally be considered to be an inherent part529

of a cost-push shock. Therefore we focus on variations in a revenue tax as a means of530

generating an autocorrelated cost-push shock which is consistent with the data. The531

complete model with this time-varying revenue tax rate is presented in appendix C.4.532

Under the calibration strategy for Calvo parameters of 0.613, 0.615 and 0.617, the533

corresponding Rotemberg adjustment costs parameters are 50, 116 and 250. These are534

increasingly above the conventionally calibrated Rotemberg parameters of around 40, 41535

and 41. Since increasing price-stickiness reduces average markups under Rotemberg, this536

reduces the associated inflation bias to 1.92%, 1.88% and 1.86%, respectively, while im-537

plying a relative worsening of the inflation bias under Calvo to 1.93% across all variants.538

In this sense, the possible inapplicability of the standard calibration strategy does not539

seem to be responsible for our results - if anything it leads them to be under-reported.540

However, it is also important to stress that the impact of changing the Rotemberg ad-541

justment cost function has only a limited impact on the resultant inflation bias, such that542

regardless of the calibration strategy it is relatively easy to find cases where the inflation543

bias rises significantly under Calvo relative to Rotemberg through the endogenous markup544

effects highlighted in the paper. It is not possible to apply this alternative calibration545

11We thank the associate editor Andre Kurmann for suggesting this alternative approach.
12The technology shock already present in our model does not create meaningful policy trade-offs

under our benchmark calibration since the policy maker will apply offsetting interest rate movements
regardless of the form of nominal inertia. Hence, we shut down the technology shock in this section and
focus on the effects of the cost-push shock.
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strategy outside of this range as for higher or lower values of the Calvo parameter, there546

is no Rotemberg cost adjustment parameter that can deliver the same relative volatilities547

of output and inflation. We therefore follow the conventional approach throughout the548

rest of the paper.549

6 Conclusion550

In this paper we have contrasted the properties of the Calvo and Rotemberg forms of nom-551

inal inertia which are commonly used in New Keynesian analyses of macroeconomic policy.552

They are often treated as being interchangeable, largely because they generate equivalent553

NKPCs and policy implications when linearized around an efficient zero-inflation steady554

state. However, our nonlinear solution of the discretionary policy problem reveals some555

striking differences across the two models of price stickiness, which have significant im-556

plications for the importance of nonlinearities in New Keynesian policy analyses more557

generally.558

The inflation bias problem is often far greater under Calvo pricing than Rotemberg559

pricing, despite the fact that the costs of inflation are significantly higher under the560

former. The reason for this is that inflation raises the average markup under Calvo561

pricing as firms seek to raise their prices more aggressively whenever they can to avoid562

the erosion of their relative price due to inflation. This increase in average markups563

worsens the inflationary bias problem. In contrast, under Rotemberg pricing firms can564

adjust prices every period, and will moderate their average markups as inflation rises565

as they attempt to delay some of the costs of price adjustment due to the discounting566

inherent in their objective function. These endogenous markup effects, which move in567

opposite directions across Rotemberg and Calvo pricing, are enhanced as the flexible-price568

markup and/or the degree of nominal inertia are increased.569
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A Tables642

Table 1: Parameterization

Parameter Value Definition
β 0.99 Quarterly discount factor
σ 1 Relative risk aversion coefficient
ϕ 1 Inverse Frisch elasticity of labor supply
ε 11 Elasticity of substitution between varieties
θ 0.75 Probability of fixing prices in each quarter
ρa 0.95 AR-coefficient of technology shock
σa 0.01 Standard deviation of technology shock
φ 116 Rotemberg adjustment cost

Table 2: Sensitivity analysis

Parameter Values Nonlinear solution LQ solution
θ σ ϕ ε Calvo Rotemberg Calvo Rotemberg

θ 0.5 1 1 11 1.84 1.93 1.66 1.83
0.75 1 1 11 2.18 1.90 1.65 1.82
0.85 1 1 11 3.01 1.83 1.64 1.80

σ 0.75 0.3 1 11 5.64 2.95 2.54 2.54
0.75 1 1 11 2.18 1.90 1.65 1.82
0.75 5 1 11 0.60 0.64 0.56 0.56

ϕ 0.75 1 0.36 11 4.31 2.83 2.42 2.42
0.75 1 1 11 2.18 1.90 1.65 1.82
0.75 1 4.75 11 0.60 0.64 0.56 0.56

Note: the nonlinear solution and LQ solution contain the annualized inflation rate in percentage solved

by the projection method and the LQ method, respectively. The numbers are rounded up.
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B Figures643
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Figure 1: This figure plots annualized inflation bias (in percent) against the Rotemberg adjustment parameter (φ). For
Calvo, the inflation bias is calculated with respect to θ ranging from 0.5 to 0.75. The corresponding values of φ are
determined such that the LQ approximations of the two models are equivalent.
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Figure 2: This figure contrasts the effect of monopolistic distortion under Calvo pricing and Rotemberg pricing. The
monopolistic distortion is measured by markup at the deterministic steady state with zero inflation rate.
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C Technical Appendix (Not for Publication)

C.1 Summary of Models

C.1.1 Rotemberg Pricing

The equilibrium conditions are given as follows:
Consumption Euler equation:

βRtEt

{(
Ct
Ct+1

)σ (
Pt
Pt+1

)}
= 1

Labor supply: (
Wt

Pt

)
= Nϕ

t C
σ
t

Resource constraint: [
1− φ

2
(Πt − 1)2

]
Yt = Ct

Phillips curve:

(1− ε) + εmct − φΠt (Πt − 1) + φβEt

[(
Ct
Ct+1

)σ
Yt+1

Yt
Πt+1 (Πt+1 − 1)

]
= 0

Technology:
Yt = AtNt

Marginal costs:

mct =
Wt

PtAt
=
Nϕ
t C

σ
t

At
=

(Yt/At)
ϕCσ

t

At
= Yt

ϕCσ
t At

−ϕ−1

We can simplify these equilibrium conditions by eliminating the interest rate and
labour supply from the constraints, so that consumption can be considered as the mone-
tary policy instrument. Specifically,

Resource constraint: [
1− φ

2
(Πt − 1)2

]
Yt = Ct

Phillips curve:

(1− ε) + εYt
ϕCσ

t At
−ϕ−1 − φΠt (Πt − 1) + φβEt

[(
Ct
Ct+1

)σ
Yt+1

Yt
Πt+1 (Πt+1 − 1)

]
= 0

while the objective function is given by

E0

∞∑
t=0

βt
(
C1−σ
t − 1

1− σ
− (Yt/At)

1+ϕ

1 + ϕ

)
Note that the state variables are productivity (and any other exogenous shock pro-

cesses we choose to add).
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C.1.2 Calvo Pricing

The equilibrium conditions are given below:
Consumption Euler equation:

βRtEt

{(
Ct
Ct+1

)σ (
Pt
Pt+1

)}
= 1

Labor supply: (
Wt

Pt

)
= Nϕ

t C
σ
t

Resource constraint:
Yt = Ct =

AtNt

∆t

Phillips curve:
P ∗t
Pt

=

(
ε

ε− 1

)
Kp
t

F p
t

Inflation:

1 = (1− θ)
(
P ∗t
Pt

)1−ε

+ θ(Πt)
ε−1

Price dispersion:

∆t = (1− θ)
(
P ∗t
Pt

)−ε
+ θ

(
Pt
Pt−1

)ε
∆t−1

= (1− θ)
(
P ∗t
Pt

)−ε
+ θ (Πt)

ε ∆t−1

Marginal costs:

mct =
Wt

PtAt
=
Nϕ
t C

σ
t

At
= (Yt∆t)

ϕCσ
t At

−ϕ−1

Note that the state variables are not just productivity, but also price dispersion.

C.2 Numerical Algorithm

C.2.1 Algorithm for Rotemberg Pricing

In the following, let st denote the state of the economy at time t. There are five functional
equations associated with five endogenous variables {Ct, Yt,Πt, λ1t, λ2t}.

The state is st = at ≡ lnAt, which evolves according to the following motion equation:

at+1 = ρaat + eat

where 0 ≤ ρa < 1 and technology innovation eat is an i.i.d. normal random variable,
which has a zero mean and a finite standard deviation σa.

Let’s define a new function X : R → R5, in order to collect the policy functions of
endogenous variables as follows:

X(st) = (Ct(st), Yt(st),Πt(st), λ1t(st), λ2t(st))
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Given the specification of the function X, the equilibrium conditions can be written more
compactly as,

Γ(st, X(st), Et [Z (X(st+1))]) = 0

where Γ : R1+5+1 → R5 summarizes the full set of dynamic equilibrium relationship, and
Z (X(st+1)) = M(At+1). Then the problem is to find a vector-valued function X that Γ
maps to the zero function. Projection methods, hence, can be used.

Following the notation convention in the literature, we simply use s = (a) to denote the
current state of the economy st = (at), and s′ to represent next period state that evolves
according to the law of motion specified above. The Chebyshev collocation method with
time iteration which we use to solve this nonlinear system can be described as follows:

1. Define the collocation nodes and the space of the approximating functions:

• Choose an order of approximation (i.e., the polynomial degrees) na for the
state space s = (a), then there are Ns = (na + 1) nodes in the state space. Let
S = (S1, S2, ..., SNs) denote the set of collocation nodes.

• Compute the na + 1 roots of the Chebychev polynomial of order na + 1 as

zia = cos

(
(2i− 1)π

2(na + 1)

)
for i = 1, 2, ..., na + 1.

• Compute collocation points

ai =
a+ a

2
+
a− a

2
zia =

a− a
2

(
zia + 1

)
+ a

for i = 1, 2, ..., na + 1, which map [−1, 1] into [a, a]. Note that the collocation
nodes is given by

S = {ai | i = 1, 2, ..., na + 1}

• Formulate the approximating policy functions. Let Ti(z) = cos(i cos−1(z)) de-
note the Chebyshev polynomial of order i, z ∈ [−1, 1], and let ξ denote a linear
function mapping the domain of x ∈ [x, x] into [−1, 1]. In this way, Ti(ξ(x))
are Chebyshev polynomials adapted to x ∈ [x, x] for i = 0, 1, .... Apparently,
ξ(x) = 2 (x− x) / (x− x)−1. Then, the space of the approximating functions,
denoted as Ω, is a matrix of one-dimensional Chebyshev polynomials given by

Ω (S) =


Ω (S1)
Ω (S2)
...
Ω (SNs)

 =


1 T1(ξ (a1)) T2(ξ (a1)) · · · Tna(ξ (a1))
1 T1(ξ (a2)) T2(ξ (a2)) · · · Tna(ξ (a2))
...

...
... · · · ...

1 T1(ξ (ana+1)) T2(ξ (ana+1)) · · · Tna(ξ (ana+1))


Ns×Ns

.

• Then, at each node s ∈ S, policy functions X(s) are approximated by X(s) =
Ω(s)ΘX ,
where

ΘX = [θy, θc, θπ, θλ1 , θλ2 ]

is a Ns × 5 matrix of the approximating coefficients.
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2. Formulate an initial guess for the approximating coefficients, Θ0
X , and specify the

stopping rule εtol, say, 10−6.

3. At each iteration j, we can get an updated Θj
X by implement the following time

iteration step:

• At each collocation node s ∈ S, compute the possible values of future policy
functions X(s′) for k = 1, ..., q. That is,

X(s′) = Ω(s′)Θj−1
X

where q is the number of Gauss-Hermite quadrature nodes. Note that

Ω(s′) = Tja (ξ(a′))

is a q ×Ns matrix, with a′ = ρaa+ zk
√

2σ2
a, ja = 0, ..., na.

• Now calculate the expectation terms E [Z (X(s′))] at each node s. Let ωk
denote the weights for the quadrature, then

E [M(s′)] ≈ 1√
π

q∑
k=1

ωk

(
Ĉ(s′; θc)

)−σ
Ŷ (s′; θy)Π̂(s′; θπ)

(
Π̂(s′; θπ)− 1

)
≡ Ψ (s′, q)

The hat symbol indicates the corresponding approximate policy functions, so
Ĉ is the approximate policy for consumption, for example.

• At each collocation node s, solve for X(s) such that

Γ
(
s,X(s), E

[
Ẑ (X(s′))

])
= 0

The Matlab equation solver csolve.m written by Christopher A. Sims is em-
ployed to solve the resulted system of nonlinear equations. With X(s) at hand,
we can get the corresponding coefficient

Θ̂j
X =

(
Ω (S)T Ω (S)

)−1

Ω (S)T X(s)

• Update the approximating coefficients, Θj
X = ηΘ̂j

X + (1− η) Θj−1
X , where 0 ≤

η ≤ 1 is some dampening parameter used for improving convergence.

4. Check the stopping rules. If
∥∥Θj

X −Θj−1
X

∥∥ < εtol, then stop, else update the ap-
proximation coefficients and go back to step 3.

When implementing the above algorithm, we start from lower order Chebyshev poly-
nomials and some reasonable initial guess. Then, we increase the order of approximation
and take as starting value the solution from the previous lower order approximation. This
informal homotopy continuation idea ensures us to find a solution.
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C.2.2 Algorithm for Calvo Pricing

Now the state space is st = (∆t−1, At), where price dispersion ∆t−1 is endogenous and
technology At is exogenous and respectively, with the following law of motion:

∆t = (1− θ)
(

1− θΠt
ε−1

1− θ

) −ε
1−ε

+ θΠε
t∆t−1

at = ρaat−1 + eat

There are 6 endogenous variables and 5 Lagrangian multipliers, hence 11 functional e-
quations. Similar to Rotemberg pricing, we can rewrite this nonlinear system a more
compact form,

Γ (st, X(st), Et [Z (X(st+1))] , Et [Z∆ (X(st+1))]) = 0

where Γ : R2+11+3+3 → R11 summarizing the equilibrium relationship,

X(st) = (Ct(st), Nt(st),Πt(st),K
p
t (st), F

p
t (st),∆t(st), λ1t(st), λ2t(st), λ3t(st), λ4t(st), λ5t(st))

collecting the policy functions we need to solve, with X : R2 → R11, and

Z (X(st+1)) =

 Z1 (X(st+1))
Z2 (X(st+1))
Z3 (X(st+1))

 =

 M(∆t, at+1)
L(∆t, at+1)
(Πt+1)ε λ4t+1


and

Z∆ (X(st+1)) =


∂Z1(X(st+1))

∂∆t
∂Z2(X(st+1))

∂∆t
∂Z3(X(st+1))

∂∆t

 =


∂M(∆t,at+1)

∂∆t
∂L(∆t,at+1)

∂∆t
∂[(Πt+1)ελ4t+1]

∂∆t


=

 ε (Πt+1)ε−1Kp
t+1

∂Πt+1

∂∆t
+ (Πt+1)ε

∂Kp
t+1

∂∆t

(ε− 1) (Πt+1)ε−2 F p
t+1

∂Πt+1

∂∆t
+ (Πt+1)ε−1 ∂F pt+1

∂∆t

ε (Πt+1)ε−1 λ4t+1
∂Πt+1

∂∆t
+ (Πt+1)ε ∂λ4t+1

∂∆t


Note we are assuming Et [Z∆ (X(st+1))] = ∂Et [Z (X(st+1))] /∆t, which is normally valid
using the Interchange of Integration and Differentiation Theorem.

Again, let s = (∆, a) to denote the current state of the economy st = (∆t−1, at), and
s′ to represent next period state that evolves according to the law of motion specified
above. The Chebyshev collocation method with time iteration for solving the nonlinear
system can be described as follows:

1. Define the collocation nodes and the space of the approximating functions:

• Choose an order of approximation n∆ and na for each dimension of the state
space s = (∆, a), then there are Ns = (n∆ + 1) × (na + 1) nodes in the state
space. Let S = (S1, S2, ..., SNs) denote the set of collocation nodes.

• Compute the n∆ + 1 and na + 1 roots of the Chebychev polynomial of order
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n∆ + 1 and na + 1 as

zi∆ = cos

(
(2i− 1)π

2(n∆ + 1)

)
, for i = 1, 2, ..., n∆ + 1.

zia = cos

(
(2i− 1)π

2(na + 1)

)
, for i = 1, 2, ..., na + 1.

• Compute collocation points ai as

ai =
a+ a

2
+
a− a

2
zia =

a− a
2

(
zia + 1

)
+ a

for i = 1, 2, ..., na + 1, which map [−1, 1] into [a, a]. Similarly, compute collo-
cation points ∆i as

∆i =
∆ + ∆

2
+

∆−∆

2
zi∆ =

∆−∆

2

(
zi∆ + 1

)
+ ∆

for i = 1, 2, ..., n∆ + 1, which map [−1, 1] into [∆,∆]. Note that

S = {(∆i, aj) | i = 1, 2, ..., n∆ + 1, j = 1, 2, ..., na + 1}

that is, the tensor grids, with S1 = (∆1, a1), S2 = (∆1, a2), ..., SNs =
(∆n∆+1, ana+1).
• The space of the approximating functions, denoted as Ω, is a matrix of two-

dimensional Chebyshev polynomials. More specifically,

Ω (S) =



Ω (S1)

Ω (S2)
...
Ω (Sna+1)
...
Ω (SNs )



=



1 T0(ξ(∆1)T1(ξ (a1)) T0(ξ(∆1)T2(ξ (a1)) · · · Tnb (ξ(∆1)Tna (ξ (a1))

1 T0(ξ(∆1)T1(ξ (a2)) T0(ξ(∆1)T2(ξ (a2)) · · · Tnb (ξ(∆1)Tna (ξ (a2))
...

...
... · · ·

...
1 T0(ξ(∆1)T1(ξ (ana+1)) T0(ξ(∆1)T2(ξ (ana+1)) · · · T0(ξ(∆1)Tna (ξ (ana+1))
...

...
... · · ·

...
1 T0(ξ(∆n∆+1)T1(ξ (ana+1)) T0(ξ(∆n∆+1)T2(ξ (ana+1)) · · · T0(ξ(∆n∆+1)Tna (ξ (ana+1))


Ns×Ns

where ξ(x) = 2 (x− x) / (x− x)−1 maps the domain of x ∈ [x, x] into [−1, 1].

• Then, at each node s ∈ S, policy functions X(s) are approximated by X(s) =
Ω(s)ΘX ,
where

ΘX = [θc, θn, θπ, θk, θf , θ∆, θλ1 , θλ2 , θλ3 , θλ4 , θλ5 ]

is a Ns × 13 matrix of the collocation coefficients.

2. Formulate an initial guess for the approximating coefficients, Θ0
X , and specify the

stopping rule εtol, say, 10−6.
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3. At each iteration j, we can get an updated Θj
X by implement the following time

iteration step:

• At each collocation node s ∈ S, compute the possible values of future policy
functions X(s′) for k = 1, ..., q. That is,

X(s′) = Ω(s′)Θj−1
X

where q is the number of Gauss-Hermite quadrature nodes. Note that

Ω(s′) = Tj∆(ξ(∆′))Tja (ξ(a′))

is a q×Ns matrix, with ∆′ = ∆̂(s; θ∆), a′ = ρaa+zk
√

2σ2
a, j∆ = 0, ..., n∆, and

ja = 0, ..., na. The hat symbol indicates the corresponding approximate policy
functions, so ∆̂ is the approximate policy for price dispersion, for example.
Similarly, the two auxiliary functions can be calculated as follows:

M(s′) ≈
(

Π̂(s′; θπ)
)ε
K̂(s′; θk)

and,

L(s′) ≈
(

Π̂(s′; θπ)
)ε−1

F̂ (s′; θf ).

• Now calculate the expectation terms E [Z (X(s′))] at each node s. Let ωk
denote the weights for the quadrature, then

E [M(s′)] ≈ 1√
π

q∑
k=1

ωk

(
Π̂(s′; θπ)

)ε
K̂(s′; θk) ≡M (s′, q)

E [L(s′)] ≈ 1√
π

q∑
k=1

ωk

(
Π̂(s′; θπ)

)ε−1

F̂ (s′; θf ) ≡ L (s′, q)

and

Et [(Πt+1)ε λ6t+1] ≈ 1√
π

q∑
k=1

ωk

(
Π̂(s′; θπ)

)ε−1

λ̂4(s′; θλ6) ≡ Λ (s′, q) .

Hence,

E [Z (X(s′))] ≈ E
[
Ẑ (X(s′))

]
=

 Ψ (s′, q)
L (s′, q)
Λ (s′, q)


• Next calculate the partial derivatives under expectation E [Z∆ (X(s′))]. Note

that we only need to compute ∂Πt+1/∂∆t, ∂Kp
t+1/∂∆t and ∂F p

t+1/∂∆t, which
are given as follows:

∂Πt+1

∂∆t

≈
n∆∑
j∆=0

na∑
ja=0

2θπ,j∆ja
∆−∆

T ′j∆(ξ(∆i))Tja (ξ(aj)) ≡ Π̂∆ (s′)
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∂Kp
t+1

∂∆t

≈
n∆∑
j∆=0

na∑
ja=0

2θk,j∆ja
∆−∆

T ′j∆(ξ(∆t))Tja (ξ(at+1)) ≡ K̂∆ (s′)

∂F p
t+1

∂∆t

≈
n∆∑
j∆=0

na∑
ja=0

2θf,j∆ja
∆−∆

T ′j∆(ξ(∆t))Tja (ξ(at+1)) ≡ F̂∆ (s′)

Hence, we can approximate the two partial derivatives under expectation

∂E [M(s′)]

∂∆
≈ 1√

π

q∑
k=1

ωk

[
ε
(

Π̂(s′; θπ)
)ε−1

K̂(s′; θk)Π̂∆ (s′) +
(

Π̂(s′; θπ)
)ε
K̂∆ (s′)

]
≡ M̂∆ (s′, q) ,

∂E [L(s′)]

∂∆
≈ 1√

π

q∑
k=1

ωk

[
(ε− 1)

(
Π̂(s′; θπ)

)ε−2
F̂ (s′; θf )Π̂∆ (s′) +

(
Π̂(s′; θπ)

)ε−1
F̂∆ (s′)

]
≡ L̂∆ (s′, q) .

That is,

E [Z∆ (X(s′))] ≈ E
[
Ẑ∆ (X(s′))

]
=

[
M̂∆ (s′, q)

L̂∆ (s′, q)

]
• At each collocation node s, solve for X(s) such that

Γ
(
s,X(s), E

[
Ẑ (X(s′))

]
, E
[
Ẑ∆ (X(s′))

])
= 0

The Matlab equation solver csolve.m written by Christopher A. Sims is em-
ployed to solve the resulted system of nonlinear equations. With X(s) at hand,
we can get the corresponding coefficient

Θ̂j
X =

(
Ω (S)T Ω (S)

)−1

Ω (S)T X(s)

• Update the approximating coefficients, Θj
X = ηΘ̂j

X + (1− η) Θj−1
X , where 0 ≤

η ≤ 1 is some dampening parameter used for improving convergence.

4. Check the stopping rules. If
∥∥Θj

X −Θj−1
X

∥∥ < εtol, then stop, else update the ap-
proximation coefficients and go back to step 3.

When implementing the above algorithm, we start from lower order Chebyshev poly-
nomials and some reasonable initial guess. Then, we increase the order of approximation
and take as starting value the solution from the previous lower order approximation. This
informal homotopy continuation idea ensures us to find a solution.

C.3 Welfare Comparison

In order to compare the social welfare under Calvo and Rotemberg pricing in a fully
nonlinear model, we first describe the second-order approximation to welfare. Then
we transform the welfare as the fraction of the consumption path under the Ramsey
allocation that must be given up in order to equalize welfare under the Ramsey policy
and discretionary policy.
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C.3.1 The Quadratic Approximation to Welfare

Individual utility in period t is

Ut ≡ U(Ct, Nt) =
C1−σ
t − 1

1− σ
− N1+ϕ

t

1 + ϕ

Let X̂t ≡ log
(
Xt/X

)
denote the log-deviation of variable Xt from its steady state X. In

addition, let X̃t = Xt−X denote the linear deviation of Xt around its steady state value.
Then using a second-order Taylor approximation,

Xt −X
X

=
X̃t

X
= X̂t +

1

2
X̂2
t + o(2) (32)

where o(2) represents terms that are of order higher than 2 in the bound on the amplitude
of the relevant shocks. We will repeatedly use (32) to derive a second-order approximation
to the social welfare.

Now consider the second-order approximation to per period utility,

Ut = U + C
1−σ
[
Ĉt +

1− σ
2

Ĉ2
t

]
−N1+ϕ

[
N̂t +

1 + ϕ

2
N̂2
t

]
+ o(2)

where

U =
C

1−σ − 1

1− σ
− N

1+ϕ

1 + ϕ

Rotemberg Pricing The second-order approximation to market clearing condition,
Ct =

[
1− φ

2
(Πt − 1)2]Yt, is

Ĉt +
1

2
Ĉ2
t = Ŷt +

1

2
Ŷ 2
t −

φ

2
Π̂2
t + o(2)

such that,

Ut = U − (σ + ϕ)C
1−σ

2

[
(xt − x∗)2 +

φ

ϕ+ σ
Π̂2
t

]

+ C
1−σ

 Φ2

2(ϕ+σ)
− (1−σ)(1−Φ)−(1+ϕ)

1+ϕ
Ŷ f
t

+ (1−σ)(σ+ϕ)
2(1+ϕ)

(
Ŷ f
t

)2

+ o(2) (33)

where Ŷ f
t = log

(
Y f
t /Y

f
)
denote the log-deviation of output from its steady state under

flexible price, xt ≡ Ŷt−Ŷ f
t is the output gap, x∗ ≡ lnY −lnY

f
= − ln (1− Φ) / (σ + ϕ) ≈

Φ/ (σ + ϕ) is a measure of the distortion created by the presence of monopolistic compe-

tition alone, t.i.p. are terms independent of policy, and terms like Φ
(
Ŷ f
t

)2

and ΦŶtŶ
f
t

are omitted13. In addition, the fact that N1+ϕ
= (1− ε−1)C

1−σ ≡ (1− Φ)C
1−σ, and

Ât = (ϕ+ σ) / (1 + ϕ) Ŷ f
t is used in deriving (33).

Hence,
13When Φ = 1/ε is so small that the product of Φ with a second-order term can be ignored as negligible.
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WR ≡ E0

∞∑
t=0

βtUt =
U

1− β
− (σ + ϕ)C

1−σ

2
E0

∞∑
t=0

βt
[
(xt − x∗)2 +

φ

σ + ϕ
Π̂2
t

]

+

[
Φ2C

1−σ

2 (ϕ+ σ) (1− β)
− (1− σ) (1 + ϕ)C

1−σ
σ2
a

2 (ϕ+ σ) (1− β) (1− ρa)

]
+ o(2)

=
U

1− β
− ΩRE0

∞∑
t=0

βt
[
λR (xt − x∗)2 + Π̂2

t

]
(34)

+

[
Φ2C

1−σ

2 (ϕ+ σ) (1− β)
− (1− σ) (1 + ϕ)C

1−σ
σ2
a

2 (ϕ+ σ) (1− β) (1− ρa)

]
+ o(2)

where

ΩR ≡
φC

1−σ

2

λR ≡
σ + ϕ

φ

Note that we derive the LQ welfare function explicitly retaining the relevant t.i.p in order
to make a legitimate comparison with the social welfare obtained from the fully nonlinear
model.

In order to calculate the inflation bias under LQ method, we write down the log-
linearized IS equation and NKPC below. The IS curve is,

xt = Etxt+1 −
1

σ

(
R̂t − EtΠ̂t+1

)
+

1 + ϕ

ϕ+ σ
(ρa − 1) Ât

and the NKPC is,

Π̂t = βEtΠ̂t+1 +
(ε− 1) (ϕ+ σ)

φ
xt

Calvo Pricing The second-order approximation to market clearing condition is

Ĉt +
1

2
Ĉ2
t = Ŷt +

1

2
Ŷ 2
t + o(2)

and it can be shown (see Woodford, 2003, chap 6) that,

N̂t =
(
Ŷt − Ât

)
+
ε

2
varj

(
P̂t(j)

)
+ o(2)

Hence, similar to the Rotemberg case,

Ut = U − (ϕ+ σ)C
1−σ

2

[
(xt − x∗)2 +

ε

ϕ+ σ
varj

(
P̂t(j)

)]

+C
1−σ
[

Φ2

2 (ϕ+ σ)
− (1− σ) (1− Φ)− (1 + ϕ)

(1 + ϕ)
Ŷ f
t +

(1− σ) (σ + ϕ)

2 (1 + ϕ)

(
Ŷ f
t

)2
]

+ o(2)
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The next step is to relate price dispersion ∆t ≡ varj

(
P̂t(j)

)
to the average inflation rate

across all firms. Walsh (2003, p.554) shows that

∆t ≈ θ∆t−1 +

(
θ

1− θ

)
π2
t

which implies
∞∑
t=0

βt∆t =
θ

(1− θ) (1− θβ)

∞∑
t=0

βtπ
2
t

Therefore,

WC =
U

1− β
− ΩCE0

∞∑
t=0

βt
[
λC (xt − x∗)2 + π2

t

]
+

[
Φ2C

1−σ

2 (ϕ+ σ) (1− β)
− (1− σ) (1 + ϕ)C

1−σ
σ2
a

2 (ϕ+ σ) (1− β) (1− ρa)
\

]
+ o(2)

where

ΩC ≡
(σ + ϕ)C

1−σ

2

ε

κ

λC ≡ κ/ε

κ ≡ (1− θ) (1− θβ) (σ + ϕ)

θ

The log-linearized IS equation and NKPC are given, respectively, as follows:

xt = Etxt+1 −
1

σ

(
R̂t − EtΠ̂t+1

)
+

1 + ϕ

ϕ+ σ
(ρa − 1) Ât

Π̂t = βEtΠ̂t+1 + κxt

Note that when
φ =

(ε− 1) θ

(1− θ) (1− θβ)

the NKPC under both Rotemberg pricing and Calvo pricing are the same. Also note
that λR =

(
ε
ε−1

)
λC , and ΩR =

(
ε−1
ε

)
ΩC . The inflation weights λR and λC differ only

marginally, since ε usually takes values between 7 and 10 in the applied literature.

C.3.2 Inflation Bias Under LQ Method

We can rewrite the above LQ model as follows, using πt = Πt− 1 ≈ ln (Πt)− ln
(
Π
)

= Π̂t

and it = Rt − 1 ≈ ln (Rt)− ln
(
R
)

= R̂t:

max
{xt,πt}

−ΩjE0

∞∑
t=0

βt
[
λj (xt − x∗)2 + π2

t

]
subject to

πt = βEtπt+1 + κxt (35)

xt = Etxt+1 −
1

σ
(it − Etπt+1) +

1 + ϕ

ϕ+ σ
(ρa − 1) Ât
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where j = R,C. Woodford (2003, p.471) shows that the equilibrium inflation under
optimal discretion is

πt =
λj

λj + κ2
(βEtπt+1 + κx∗)

hence the steady state π under rational expectation satisfies

π =
λj

λj + κ2
(βπ + κx∗)

that is,

π =
λjκ

(1− β)λj + κ2
x∗ =

λjκ

(1− β)λj + κ2

Φ

(σ + ϕ)

with j = R,C. π is the so-called inflation bias, relative to the targeted zero rate of
inflation which is optimal under perfect commitment.

Note that λR ≥ λC and

dπ

dλj
=

Φ

σ + ϕ

κ3

[(1− β)λj + κ2]2
> 0

which imply that πR ≥ πC . That is, the inflation bias problem using the LQ approxima-
tion is always worsen under the Rotemberg pricing than that under the Calvo pricing.

C.3.3 Relative Welfare Cost

The welfare under discretion from the LQ method is calculated as follows. Unless stated
otherwise, the superscript d denotes the discretion case, and subscripts R and C represent
the Rotemberg and Calvo pricing, respectively. From (35), x = (1− β) π/κ, then using
the log-linearized model we can solve for steady state values for deviations Ĉt and N̂t,
denoted as Ĉ and N̂ , respectively. It is straightforward to show that Ĉ = N̂ = Ŷ = x.
Finally, the steady state values for levels Ct and Nt, are

C
d

j = C
r
eĈ ≈ C

r
(

1 + Ĉ
)

= C
r

(1 + x)

N
d

j = N
r
eN̂ ≈ N

r
(

1 + N̂
)

= N
r

(1 + x)

where j = R,C, and

C
r

= N
r

=

(
ε− 1

ε

)1/(σ+ϕ)

are the Ramsey steady states around which we log-linearize the model. Therefore,

Wj =
1

1− β


(
C
d

j

)1−σ
− 1

1− σ
−

(
N
d

j

)1+ϕ

1 + ϕ

− Ωj

1− β

[
λj

(
(1− β) π

κ
− Φ

(ϕ+ σ)

)2

+ π2

]

+

(
C
d

j

)1−σ

2 (ϕ+ σ) (1− β)

[
Φ2 − (1− σ) (1 + ϕ)σ2

a

(1− ρa)

]
where j = R,C.
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For the fully nonlinear method, the welfare under discretion is calculated by adding
corresponding policy functions into optimal policy problem and then approximated by
the Chebyshev collocation method. That is,

W d
R,t = W d

R (At) =
C1−σ
t − 1

1− σ
− (Yt/At)

1+ϕ

1 + ϕ
+ βEt

[
W d
R(At+1)

]
W d
C,t = W d

C (∆t−1, At) =
C1−σ
t − 1

1− σ
− (∆tYt/At)

1+ϕ

1 + ϕ
+ βEt

[
W d
C(∆t, At+1)

]
and the steady state welfare, denoted as W d

R and W d
C for ease of notation, can be corre-

spondingly found.
Note that WR, W d

R and WC , W d
C which represent the conditional expectation of life-

time utility, are absolute welfare measures under Rotemberg pricing and Calvo pricing,
respectively. However, the utility function is ordinal, so a welfare measure based on the
value function is not very revealing. Hence, we calculate the relative welfare cost in terms
of the consumption equivalent units under the Ramsey allocation. Specifically, we want
to find ξ such that

E0

∞∑
t=0

βtU(Cd
t , N

d
t ) = E0

∞∑
t=0

βtU((1− ξ)Cr
t , N

r
t )

where the r superscript denotes the Ramsey allocation (under full commitment), and
the d superscript stands for the allocation under discretion. Given the utility function
adopted, the expression for ξ in percentage terms is

ξ =
{

1− exp
[
(1− β)

(
W d −W r

)]}
× 100 (36)

where

W d ≡ E0

∞∑
t=0

βt

(
lnCd

t −
(
Nd
t

)1+ϕ

1 + ϕ

)
represents the unconditional expectation of lifetime utility in the economy under discre-
tion, and

W r ≡ E0

∞∑
t=0

βt

(
lnCr

t −
(N r

t )1+ϕ

1 + ϕ

)
=

1

1− β

[
lnC

r −
(
N
r)1+ϕ

1 + ϕ

]

is the unconditional expectation of lifetime utility associated with the economy under full
commitment. Recall that σ = 1 is the benchmark case in our paper.

Hence, under the Rotemberg case,

ξR =

{
{1− exp [(1− β) (WR −W r)]} × 100 , using LQ method{

1− exp
[
(1− β)

(
W d
R −W r

)]}
× 100 , using projection method

and under the Calvo case,

ξC =

{
{1− exp [(1− β) (WC −W r)]} × 100 , using LQ method{

1− exp
[
(1− β)

(
W d
C −W r

)]}
× 100 , using projection method
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C.4 The Model With Time-Varying Tax Rate

To indirectly introduce cost push shock, we consider the revenue tax τpt which is assumed
to follow the following autoregressive process,

ln (1− τpt) = (1− ρτp) ln (1− τp) + ρτp ln (1− τpt−1)− eτt

eτt
i.i.d∼ N

(
0, σ2

τ

)
With revenue tax τpt, the expected discounted sum of nominal profits under Rotem-

berg pricing is given by

Et

∞∑
s=0

Qt,t+s

[
(1− τpt)Pt(j)Yt(j)−mctYt(j)Pt −

φ

2

(
Pt(j)

Pt−1(j)
− 1

)2

YtPt

]

and under Calvo it can be written as

Et

∞∑
s=0

θsQt,t+s [(1− τpt)Pt(j)Yt+s(j)−mct+sYt+s(j)Pt+s]

Based on the derivation of the benchmark model, it is quite straightforward to write
down the complete system of non-linear equations describing the discretionary equilibri-
um. We will use Chebyshev collocation with time iteration method to solve the models
with time-varying tax for optimal policy functions.

C.4.1 Rotemberg Pricing

Since we want to focus on the effect of tax rate, then the technology shock can be shut
down by setting At ≡ 1. This, in fact, can simplify numerical computation.

The Lagrangian is

L =
C1−σ
t − 1

1− σ
− Nt

1+ϕ

1 + ϕ
+ βEt [V (τpt+1)] + λ1t

{[
1− φ

2
(Πt − 1)2

]
Nt − Ct

}
+ λ2t

{
(1− ε)(1− τpt) + εCσ

t N
ϕ
t − φΠt (Πt − 1) + φβCσ

t Y
−1
t Et [M(τpt+1)]

}
where λjt (j = 1, 2) are the Lagrange multipliers, and

M(τpt+1) ≡ C−σt+1Nt+1Πt+1 (Πt+1 − 1)

The equilibrium conditions for time-consistent policy are,

C−σt = λ1t − λ2t

{
εσCσ−1

t Nϕ
t + σφβCσ−1

t N−1
t Et [M(τpt+1)]

}
Nt

ϕ = λ1t

[
1− φ

2
(Πt − 1)2

]
+ λ2t

{
εϕNt

ϕ−1Cσ
t

−φβCσ
t N

−2
t Et [M(τpt+1)]

}
λ1tφ (1− Πt)Nt = λ2tφ (2Πt − 1)

Ct =

[
1− φ

2
(Πt − 1)2

]
Nt

0 = (1− ε)(1− τpt) + εCσ
t N

ϕ
t − φΠt (Πt − 1) + φβ

Cσ
t

Nt

Et [M(τpt+1)] .
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C.4.2 Calvo Pricing

Similar to the Rotemberg case, we solve a simpler question by shutting down the tech-
nology shock. Then, there are two state variables, τpt and ∆t−1. The Lagrangian is given
as follow:

L =
C1−σ
t − 1

1− σ
− Nt

1+ϕ

1 + ϕ
+ βEt [V (∆t, τpt+1)]

+ λ1t[Nt/∆t − Ct]

+ λ2t

[
(1− τpt)

Nt

∆tCσ
t

+ θβEt [L(∆t, τpt+1)]− Ft
]

+ λ3t

[
Nϕ+1
t

(1− ε−1)∆t

+ θβEt [M(∆t, τpt+1)]− St
]

+ λ4t

[
(1− θ)

(
1− θΠt

ε−1

1− θ

) ε
ε−1

+ θΠε
t∆t−1 −∆t

]

+ λ5t

[
Ft

(
1− θΠt

ε−1

1− θ

) 1
1−ε

− St

]

where λjt (j = 1, 2, 3, 4, 5) are the Lagrange multipliers, and

L(∆t, τpt+1) ≡ Πε−1
t+1Ft+1

M(∆t, τpt+1) ≡ Πε
t+1St+1

The equilibrium conditions for time-consistent policy are,

Ct = Nt/∆t

Ft = (1− τpt)C1−σ
t + θβEt

[
Πε−1
t+1Ft+1

]
St =

Nϕ+1
t

(1− ε−1)∆t

+ θβEt
[
Πε
t+1St+1

]
∆t = (1− θ)

(
1− θΠt

ε−1

1− θ

) ε
ε−1

+ θΠε
t∆t−1

St = Ft

(
1− θΠt

ε−1

1− θ

) 1
1−ε

0 = 1− λ1tC
σ
t − σ(1− τpt)λ2t

0 = ∆tC
σ
t Nt

ϕ − Cσ
t λ1t − (1− τpt)λ2t −

(ϕ+ 1)Cσ
t N

ϕ
t λ3t

(1− ε−1)

0 = λ2t − λ5t

(
1− θΠt

ε−1

1− θ

) 1
1−ε

0 = λ3t + λ5t
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0 = ε

((
1− θΠt

ε−1

1− θ

) 1
ε−1

−∆t−1Πt

)
λ4t

− 1

1− θ

(
1− θΠt

ε−1

1− θ

) ε
1−ε

λ5tFt

0 =
Ct
∆t

λ1t + (1− τpt)
C1−σ
t

∆t

λ2t +
Nϕ
t Ct

(1− ε−1)∆t

λ3t

+ λ4t − θβλ2tEt [L1(∆t, τpt+1)]− θβλ3tEt [M1(∆t, τpt+1)]− θβEt
[
Πε
t+1λ4t+1

]
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Figure 3: This figure shows the effect of monopolistic distortion under Rotemberg pricing. The monopolistic distortion is
measured by markup at the deterministic steady state with zero inflation rate. The results from LQ and projection method
are compared.
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Figure 4: This figure shows the effect of monopolistic distortion under Calvo pricing. The monopolistic distortion is
measured by markup at the deterministic steady state with zero inflation rate. The results from LQ and projection method
are compared.
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