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ABSTRACT  

Developing effective therapies for heart failure (HF) is challenging. Despite several clear 

successes in the development and delivery of pharmacotherapies for ambulatory patients 

with HF and reduced ejection fraction (HFrEF), efforts to modulate adverse neurohormonal 

activation beyond the renin-angiotensin-aldosterone system and the sympathetic nervous 

system generally have failed to improve outcomes further and have met with safety 

concerns including low blood pressure or changes in end-organ function. Recently, 

neprilysin inhibition in conjunction with angiotensin receptor blockade has been shown to 

improve outcomes. There is however no therapy approved specifically for HF with preserved 

EF (HFpEF) or for worsening chronic HF resulting in hospitalizations (WCHF; including 

acutely decompensated HF). Many patients with chronic HFrEF have poor outcomes despite 

receiving guideline-recommended therapies. Although preliminary results from some phase 

2 trials have been promising, many subsequent phase 3 trials have been neutral or negative, 

highlighting a disconnect in the translational process between basic science discovery, early 

drug development, and definitive clinical testing in pivotal trials. A major unmet need in the 

field of HF drug development is the ability to identify homogeneous subsets of patients 

whose underlying disease is driven by a specific mechanism that can be targeted using a new 

therapeutic agent. To understand better and address the array of challenges facing current 

HF drug development so that future efforts have a better chance for success, the Food and 

Drug Administration facilitated a meeting on February 17th, 2015, which was attended by 

clinicians, researchers, regulators, and industry representatives. The following discussion 

represents the key messages from this meeting. 
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A PERSISTENT UNMET NEED FOR BETTER TREATMENTS FOR HEART FAILURE 

Morbidity and mortality in ambulatory patients with heart failure and reduced ejection 

fraction (HFrEF) has improved through neurohormonal modulation using renin-angiotensin-

aldosterone system (RAAS) blockade, beta-adrenergic blockade, and recently neprilysin 

inhibition.1, 2 However, substantial unmet needs persist, including worsening chronic HF 

(WCHF) and HF with preserved EF (HFpEF). Furthermore, ambulatory patients with HFrEF 

continue to have poor long-term outcomes.3 HF remains the most common cause of hospital 

admission for people aged >65 years in the United States.4 Over 80% of hospitalized HF 

patients have decompensated chronic HF, now termed WCHF,5 with less than 20% having a 

first-event (de-novo HF), or end-stage HF at admission.4, 5  

While rapid and substantial improvements in signs and symptoms are achieved 

during hospitalization, post-discharge outcomes for patients with WCHF remain poor, with 

≈25% readmission risk within 30-days 6, 7, and ≈30% mortality risk within 1 year of discharge.8 

Over the past two decades, despite advances in evidence-based therapies in ambulatory 

HFrEF; national policy measures to augment implementation of guideline recommendations; 

and the investment of billions of dollars and effort in trials of promising interventions for 

WCHF, there has not been a significant reduction in the post-discharge adverse event rate.8 

Also, no specific therapies have shown benefit in patients with either stable or WCHF with 

HFpEF. Potential reasons include the heterogeneity of the HFpEF syndrome (with poor 

matching of patients/pathophysiologies to appropriate therapies),9, 10 the lack of 

predictability of phase 2 studies, and uncertainties about the proper definition of HFpEF for 

enrollment into trials.11  

Thus the patients in most need for effective therapies remain without options. A 

disconnect thus exists between the promise of basic science, clinical research, and drug 

discovery and development; and the desired improvement in human health. Many causes 

have been cited for the recent negative trials in HF, including the drugs themselves, lack of 

phase 2 data, patient selection protocols, chosen clinical endpoints, and/or trial execution.12, 

13 Any one of these possibilities or their combination may underlie the reason that clinical 

findings observed in phase 2 trials have not been substantiated in phase 3 trials for HF.14 
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REACHING THE LIMIT OF BENEFIT FROM MODULATING THE NEROHORMORNAL 

ABNORMALITIES 

Neurohormonal agents such as RAAS blockers and beta-blockers undoubtedly have 

myocardial effects but their effects on the peripheral circulation are substantial. The 

majority of the current therapeutic armamentarium for HFrEF, including angiotensin 

converting enzyme-inhibitors, angiotensin receptor blockers, beta-blockers, hydralazine, 

nitrates, mineralocortoicoid receptor blockers, and neprilysin inhibitors all have blood 

pressure lowering effects that are often additive in an individual patient. While neprilysin 

inhibition with LCZ696 (valsartan/sacubitril) was recently shown to improve outcome in 

stable outpatients with HF symptoms beyond that achieved by the standard of care,1 all 

trials to date of treatments for patients with WCHF have been negative, which suggests that 

neurohormonally-focused strategies may have reached a point of diminishing return (Table 

1). In addition, further reducing blood pressure in HFrEF with therapies that cause 

vasodilation may increase the risk of myocardial injury and hypoperfusion of critical organ 

systems such as kidney, gut, and brain, with the potential for a J-shaped benefit curve. In 

HFpEF, modulation of the peripheral circulation is still an important possible therapeutic 

target; however, neurohormonal modulation with RAAS blockade or beta-blockade has 

failed to show major benefits in HFpEF. Thus, the heart remains a central target in HFpEF 

that has been understudied from a clinical trial standpoint. 

 

CARDIAC RESERVE IN HEART FAILURE VERSUS OTHER END-ORGAN FAILURE 

Unlike patients with kidney or liver failure where residual "tissue capital" is minimal at the 

point of organ failure and death, most patients with HF even at the point of death have 

abundance of cardiac reserve.15 Over two-thirds of the myocardial segments in patients with 

HFrEF have either no scar or scar limited to the subendocardium with <50% transmural 

involvement, revealing that these patient have amply viable myocardium and hence the 

potential to improve. Even patients with dilated hearts can show significant improvement 

with therapies such as beta-blockers.2 The majority of these treatment responders do not 
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have end-stage HF based on their blood pressure, renal function, biomarker profile, and 

rapid response to diuretics. Thus, in HFrEF, the potential for myocardial recovery is possible 

for many patients.  

These observations, when coupled with the recent failures of interventions targeting 

extra-cardiac manifestations of HF16, 17 generate the hypothesis that the heart should be the 

main therapeutic target for future HF drug developmental efforts. Thus, the potential to re-

engage residual capital in the heart to improve left ventricular function appears to represent 

a significant opportunity for eventual success in HF.  

 

THE HEART IS THE MAIN THERAPEUTIC TARGET 

Although it appears logical to focus on the heart as the main target of drug development for 

HF, this has not been the case historically. Industry representatives noted that internal HF 

research and development has now shifted to the heart itself, rather than following the 

approach of unloading the heart. Accordingly, the potential for development of 

pharmacotherapeutics targeting myocardial hibernation, energetics, cardiomyofiber isoform 

switching, and excessive apoptosis, among others, were cited as targets for which 

therapeutic strategies are being pursued by industry drug discovery and development. 

However, in order to fix the heart through appropriate intervention at one or more of these 

putative targets, we need to understand the specific defects that are present, and not 

merely identify that some uncharacterized defect must exist given that there is reduced 

function. Unfortunately, as a field we lag in understanding the development, evolution, and 

course of major cardiac abnormalities yielding pump dysfuction. These include abnormalities 

in the cardiomyocyte (e.g., signaling pathways, myofibrillar function, mitochondrial 

energetics, and calcium handling), in the interstitium, in the microcirculation, and in the 

varied interaction of these components (e.g. the effect of fibrosis on the microcirculation 

and vice versa). Abnormalities in the heart represent the proximal causes of HF, but much 

research to date has focused on the secondary effects of HF (e.g. neurohormonal activation, 

arrhythmias, congestion, hemodynamics, and renal function).  
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 The goal of direct cardiac modulation should be to slow and halt degradation of 

cardiac function, and then to reverse its clinical course back towards normal. It is important 

to realize that, barring beta-blockers and cardiac resynchronization, which alter secondary 

and primary HF abnormalities, other therapies such as RAAS modulation do not reverse 

cardiac function back to normal, though their population-level benefit in slowing or halting 

degradation of function cannot be minimized. Nevertheless, patients with persistently 

abnormal cardiac function need restoration therapies. Here, it is important to distinguish 

between transient and long-term restoration. Inotropes historically improve cardiac output 

acutely but cause myocyte damage and predispose to arrhythmias that precludes chronic 

use.18 New strategies should aim beyond a transient improvement in pump function and 

attempt to improve micro and macroscopic abnormalities, including those in interstitium, 

cardiomyocytes, cardiac microcirculation, and in metabolic pathways. In other words, they 

should aim to reverse the deleterious organ remodeling that has occurred at multiple levels.  

Currently, reverse remodeling in HFrEF is defined as improved EF or ventricular 

volumes; however, neither offers a direct assessment of myocardial function, and both are 

affected by preload and afterload.19 Furthermore, neither is applicable to HFpEF. To better 

create and evaluate effective, restorative HF therapies targeting the heart itself, reverse 

remodeling needs to be redefined as “a long-lasting improvement in myocardial function, 

with a concomitant recovery in structural (ventricular and atrial, fibrosis, vascular), electrical 

(conduction, arrhythmias), signaling pathways, and/or metabolic components.” An 

empirically testable early confirmation of efficacy would be evidence that improvements in 

function (systolic and/or diastolic) that lasts substantially longer than drug exposure. Thus, 

reverse remodeling encompasses both gross remodeling and remodeling on the cellular level. 

A simple, empirically testable consequence of this approach and early confirmation of its 

efficacy would be demonstrable improvements in function that last beyond drug exposure. 

These changes may include not only classic HF endpoints of mechanical function but also 

electrical and even metabolic function. Table 2 lists categories of cardiac-focused targets for 

HF therapies that greatly expand the traditional notions of reverse remodeling. Successful 

improvement in these markers will be most easily observed by their application to 
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etiologically homogeneous HF populations, for which an early assessment of response is 

key.  

 

THE NEED FOR DETAILED EARLY EVALUATION OF EFFECTS ON CARDIAC FUNCTION 

When considering the potential efficacy of a tested therapeutic, it is important not only to 

select homogeneous HF populations, but also to use technologies that provide metrics of 

early response to treatment. In this way one can obtain mechanistic insight if a positive 

signal is seen in a distinct pathway. An example would be the history of coronary disease 

drug development, in which assessment of drug impact on atherosclerotic plaque by 

intravascular ultrasound allowed early indications of disease-modifying effects of therapies. 

For HF, whether an intervention targets calcium signaling, microcirculation, mitochondria, or 

regeneration, analogous and relevant evaluation should include cardiac structure, function, 

perfusion, viability, fibrosis, and energetics. Although infrequently performed in HF trials,20 

the importance of understanding the cardiac substrate for better targeting of therapies 

cannot be overstated.9, 21 This is not to say that systemic pathways that contribute to disease 

progression, e.g. inflammation, should not be assessed. The focus, however, should be on 

whether such a systemic mechanism can modify pathways of disease and whether 

modulation of such mechanisms can improve the metrics of specific cardiac pathways. 

Proper use of animal models and appropriate decision-making based on their results 

are important considerations, as animal testing and other preclinical studies will continue to 

play an important role in the development of new HF therapies. Given the modest record of 

HF drug development over the last two decades, no aspect of the discovery process should 

remain unexamined. Some improvements to past practices may be advisable. Often animal 

HF models are too simplistic, e.g. tachycardia-pacing model of systolic HF is unlikely to have 

the same level of microvascular or energetics dysfunction as a genetic metabolic disorder 

model leading to ventricular dysfunction. Hence, a generic model may not allow assessment 

of specific mechanistic aspects of the target pathway, and future models should be tailored 

to the question at hand. Although several animal models of HF exist,22 more are needed, and 

in particular there remains a pressing need for better animal models of HFpEF.  
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With the caveat that there may be differences between the animal species and 

humans, it may be useful to conduct animal testing with standard-of-care therapies as 

background. This may require weeks of background treatment before initiation of the test 

drug to ensure that observed changes are driven by the intervention rather than initiation of 

background therapy. Thus will have cost and time consequences. Additionally, it is unclear 

which and how many background therapies should be included in animal studies.  

The importance of independent study replication, double-blind randomization, pre-

specification of analysis plans and outcome measures, independent core-lab analysis of 

imaging and other biomarkers, multicenter trials, among others are indisputable in clinical 

research, but these are rarely implemented in animal research. Though initial cost may be 

higher but may results in future cost savings of phase III trials which are negative because 

the tested therapeutic was incompletely validated in animal models. Other questions that 

include: (1) what are the best parameters in animal studies that might predict clinical benefit 

in humans?; (2) what is the magnitude of benefit in animals that is considered exciting and 

supportive of clinical experimentation?; and (3) what biomarkers included in clinical trial 

studies should be given more weight in animal studies? 

 A current handicap in HF drug discovery is our inability to measure improvements in 

human heart function prior to overt clinical events. Novel imaging options using advanced 

echocardiographic or cardiac magnetic resonance (CMR) imaging or other modalities may 

improve such evaluation,19 but will require dedicated protocols, and expertise and centers to 

perform them. In addition, molecular imaging with positron emission tomography (PET) can 

provide insights into pathophysiology, target receptor dynamics, quantitative assessment of 

the target of interest, drug dose and receptor engagement, and perfusion and metabolic 

state of the heart. For example PET can validate a molecular target of interest by showing 

abnormalities in HF patients compared to others and occupancy of the target by a novel 

pharmaceutical, thereby helping in early go/no-go decisions. This approach can used to save 

unnecessary trial enrollment and millions of dollars in drug development. An advantage of 

CMR and 3D over conventional 2D echocardiography is an improvement in reproducibility of 

measurements, leading to a reduction in the sample size needed to demonstrate a signal. 
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CMR has significant promise to improve our understanding of pathophysiology and 

to allow drug development to “return” to the heart as the organ of interest.23 Given its 

multi-faceted nature, CMR may be particularly useful in proof-of-mechanism studies for 

novel HF interventions, since this tool can assess multiple relevant anatomical and functional 

metrics upon which pathophysiological pathways converge. As noted earlier, whether an 

intervention targets calcium signaling, the microcirculation, mitochondrial biogenesis, 

substrate shifts, or myocardial regeneration, imaging biomarkers should include ventricular 

function, cardiac structure, and myocardial perfusion, viability and fibrosis, all of which can 

be measured by CMR.  

 

CLINICAL MODELS 

One of the benefits of research in animals is the homogeneity of the underlying cardiac 

substrate. However, the translation from findings in animals to humans is often problematic. 

One approach that weds the homogeneity of animal studies with the clinical applicability of 

human studies is the development of “clinical model”. Clinical models of HF are groups of 

prototypical patients who have a defined, uniform phenotype, and therefore may reflect a 

more homogeneous mechanistic basis for the development of HF.  While it is acknowledged 

that some heterogeneity will remain, the goal is to minimize heterogeneity so future trials 

can be targeted towards specific types of patients. Patients can be grouped into clinical 

models using a variety of metrics, e.g. non-ischemic cardiomyopathy patients with no 

fibrosis is an example of a clinical model that could be targeted with specific therapies.    

Clinical models improve specificity and provide focus on the primary etiology and its 

pathophysiological consequences. This allows mapping of cellular and physiologic pathways 

and the potential for finding unique biomarkers that track when a target and pathway are 

engaged. The concept of testing a specific hypothesis in a small, well-defined cohort with a 

distinct pathophysiology has been termed the “T1 phase” of clinical development.24 During 

subsequent stages in larger cohorts, it will be important to demonstrate correlation 

between proof-of-mechanism target engagement biomarkers and proof-of-principle 

pathway engagement end-points, to understand if this pathway is altered only in the narrow 
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initial cohort, or if it applies to larger more lengthy patient studies involving a more real-

world sampling of patients. Of course, the ultimate validation of this approach is to 

determine whether the altered pathway-specific surrogates predict adverse clinical events. 

An important limitation to the rational generation and testing of therapeutic 

hypotheses in the HF space is the difficulty in prospectively identifying patients whose 

disease is clearly driven by the mechanism of action to be tested. For example, it is not 

obvious how to segment patients into subsets where worsening HF is preferentially driven 

by a myocardial energy deficit, or poor relaxation due to stiffening by excess fibrosis, or 

poor relaxation due to a calcium-handling deficit. The inability to determine in a particular 

patient the primary mechanism underlying HF impairs our ability to test novel hypotheses. It 

is for these reasons that the development of defined clinical HF models is so important. The 

lack of clinical models is a hurdle that should not however inhibit future drug discovery. For 

the time being, if the selection of patients for proof-of-principle trial cannot yet be based on 

prospectively identifying patients in whom a single mechanism of action is responsible for 

driving the HF phenotype, it can still be based on if the target of the drug is embedded in the 

HF phenotype and, if so, whether the drug engages the target in that particular phenotype.  

 

PRACTICAL CONSIDERATIONS FROM INDUSTRY SPONSORS 

There is decreasing interest to fund large trials in HF when insurers are unwilling to pay for 

expensive drugs. The current reimbursement landscape, combined with the difficulty of 

selecting patients based on the identification of a specific mechanism of action responsible 

for the phenotype, represents a growing threat to the resourcing of new drug development. 

HF programs in the industry will continue to face internal pressure if they cannot credibly 

offer precision medicine strategies for management as investment opportunities are 

becoming more prevalent in other therapeutic arenas. HF drug discovery requires ample 

time and money to transition from preclinical to large, outcome-based studies. These 

features make HF drug development less appealing compared with other areas where it is 

easier to target a new medication to a distinct subset of patients who will likely benefit. For 

example, simple serum biomarkers or tissue biopsy results can be used to identify subsets of 
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cancer patients most likely to benefit from a candidate therapy. HF needs to develop 

analogous strategies in order to present better investment cases.  

An additional challenge facing HF drug development is the decreasing appetite to 

fund the large outcomes trials traditionally needed for registration. In contrast, other fields 

such as oncology make drug discovery more palatable by utilizing trial designs with softer 

outcomes measures such as progression-free survival that are still recognized as sufficient 

by regulatory bodies. Approaches to reduce sample sizes for morbidity and mortality trials 

by selecting high-risk patients must be balanced with the consideration that a positive 

response may be less likely in patients with end-stage disease.  

Accelerated approval allows a therapy to be approved in the United States on the 

basis of a surrogate end point thought “reasonably likely” to predict the ultimate clinical 

outcome of interest. Such approval comes with the obligation to verify that actual clinical 

benefit in the post-marketing setting. Perhaps some new therapy’s effects on a novel 

mechanism will sustain the case for being “reasonably likely”, but it will be necessary that 

the confirmatory study be considered feasible in order to use this regulatory pathway. For 

chronic therapy, this may be difficult. 

 

CONCLUSION 

Despite the growing problem, clinical trials have failed to produce positive results in WCHF 

and HFpEF. A variety of small and large animal models have been used to mimic the complex 

human HF phenotype, yet the transition from bench to bedside has borne little fruit, owing 

more to serendipity than to science. Future research, discovery, and development efforts in 

HF should have the heart as the principal target for therapy. Although laboratory science will 

continue to play an important role in the development of new therapies, its interpretation 

and use for decision-making must improve. Conduct of early phase translational research 

beginning with identification of well-phenotyped human patients for highly focused clinical 

trials investigating therapeutic mechanisms in human patients is critical for success. The 

advent of sophisticated cardiac imaging offers a novel approach to characterize and define 

the myocardium and interstitium creating phenotypic models of HF for enrollment. This 
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roadmap should help resolve some of the challenges of conducting clinical trials in HF, 

especially WCHF and HFpEF, with the ultimate goal of improving the outcomes of patients 

with HF worldwide. We believe that therapy targeting specific defects in cardiac structure 

and function in patients with WCHF and HFpEF have the best chance of improving the 

outcomes.  
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Table 1. Summary Points  
 

Point 1. Lack of therapies for WCHF and HFpEF continues to be a huge unmet need 

Mortality and morbidity in stable systolic dysfunction has improved by modulating neurohormonal abnormalities, but 

the long-term morbidity and mortality are still high, and we have failed in improving outcomes in WCHF and HFpEF.  

Point 2. Heart should be the focus of heart failure research and drug development 

Etiologies of cardiac origin represent the proximal causes of HF, but often interventions target issues secondary to the 

failing heart. Most patients die with considerable dysfunctional viable myocardium, unlike kidney, liver, or brain failure 

where residual "tissue capital" is minimal at the point of failure. 

Point 3. A potential path for a greater probability of translational success involves an early T1 mechanistic phase 

This is a two-step approach of demonstrating benefit in animal followed by testing of a hypothesis and agent in small 

“mechanistic clinical models" termed T1 trials investigating mechanism-function relationships using imaging and other 

biomarkers. Reverse remodeling should go beyond structural to include functional remodeling, including myocyte 

function effects on contractility, interstitial effects on contractility and relaxation, microcirculation, and metabolic and 

mitochondrial abnormalities. Irrespective of the models and analytical methods used, demonstration that target and 

pathway engagement by a hypothesized therapeutic intervention translates into reversing cardiac/pump functional 

deficit in small, early T1 trials would build scientific, clinical, and regulatory confidence in the intervention under 

investigation, and thus promote advanced investigation in broader populations of heart failure patients. 

Point 4. Advanced imaging may be very useful in proof-of-mechanism studies for novel interventions 

Novel imaging can detect relevant anatomical and functional features upon which many diverse pathophysiological 

pathways converge. Whether a drug targets calcium signaling, microcirculation, mitochondrial function, substrate 

shifts, or myocardial regeneration, clinically relevant biomarkers should include ventricular function, cardiac structure, 

perfusion, viability, and energetics, all of which can be inferred through advanced imaging.  

Point 5. Testing novel therapeutic hypotheses to extend healthy life in heart failure patients must continue  

Identifying homogeneous patients whose disease is clearly or more likely to be driven by the mechanisms of action 

involved in the therapeutic hypotheses to be tested with new agents is challenging but not limiting. Currently it is 

challenging to segment patients into subsets whose worsening state is driven by a particular mechanism. However, 

given the unmet need in WCHF and HFpEF, the testing of novel hypotheses for saving and extending healthy life in 

heart failure patients must continue aggressively. 

WCHF = worsening chronic heart failure; HFpEF = heart failure with preserved ejection 
fraction; RAAS = renin-angiotensin-aldosterone system; SNS = sympathetic nervous system  
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Table 2. Categories of Targets for Cardiac-Focused Heart Failure Therapies 
 

• Tissues 

o Cardiomyocytes 

o Extracellular matrix 

o Coupling of cardiomyocyte to extracellular matrix 

• Circulation 

o Coronary macrocirculation 

o Coronary microcirculation 

o Cardiac lymphatics 

• Whole organ coordination 

o Myocardial scar 

 Focal 

 Diffuse 

o Valvular heart disease 

o Synchrony 

 Electrical 

 Mechanical 

 Atrioventricular, interventricular, intraventricular 

o RV function 

• Metabolism 

o Glucose utilization 

o Mitochondrial function 

o Calcium handling  

• Vascular coupling 

o Venous/arterial interactions 

o Pulmonary/systemic interactions 

o Ventricular-vascular coupling 
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