Azevedo, C. M. G. et al. (2016) Non-acidic free fatty acid receptor 4 agonists with antidiabetic activity. Journal of Medicinal Chemistry, 59(19), pp. 8868-8878. (doi:10.1021/acs.jmedchem.6b00685)

This is the author's final accepted version.
There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.
http://eprints.gla.ac.uk/123532/

Deposited on: 30 August 2016

A Non-A cidic Free Fatty A cid Receptor 4 A gonist

 with A ntidiabetic A ctivityCarlos M. G. Azevedo ${ }^{\dagger}$, Kenneth Watterson ${ }^{\ddagger}$, Ed T. Wargent ${ }^{\uparrow}$, Steffen V. F. Hansen ${ }^{\dagger}$, Brian D. Hudson ${ }^{\ddagger}$, Malgorzata A. K•pczyDska ${ }^{\varsigma}$, Julia Dunlop ${ }^{\ddagger}$, Bharat Shimpukade ${ }^{\dagger}$, Elisabeth Christiansen ${ }^{\dagger}$, Graeme Milligan ${ }^{\ddagger}$, Claire J. Stocker ${ }^{\S}$, and Trond UIven ${ }^{\dagger}$ *
${ }^{\dagger}$ Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M , Denmark. ${ }^{\ddagger}$ Institute of M olecular, Cell and Systems Biology, College of M edical, V eterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K. ${ }^{\text {s }}$ Buckingham Institute for Translational M edicine, University of Buckingham, Hunter Street, Buckingham M K 18 1EG, U.K.

ABSTRACT. The free fatty acid receptor 4 (FFA4 or GPR120) has appeared as an interesting potential target for the treatment of metabolic disorders. At present, most FFA 4 ligands are carboxylic acids that are assumed to mimic the endogenous long-chain fatty acid agonists. Here, we report preliminary structure-activity relationship studies of a previously disclosed non-acidic sulfonamide FFA4 agonist. Mutagenesis studies indicate that the compounds are orthosteric agonists despite the absence of a carboxylate function. The preferred compounds showed full agonist activity on FFA 4 and complete selectivity over FFA 1, although a significant fraction of these non-carboxylic acids also showed partial antagonistic activity on FFA1. Studies in normal and diet-induced obese (DIO) mice with the preferred compound $\mathbf{3 4}$ showed improved glucose tolerance after oral dosing in an oral glucose tolerance test. Chronic dosing of $\mathbf{3 4}$ in DIO mice resulted in significantly increased insulin sensitivity and a moderate but significant reduction in bodyweight, effects that were also present in mice lacking FFA1 but absent in mice lacking FFA 4.

INTRODUCTION

The free fatty acid receptor 4 (FFA 4, also known as GPR120) has in recent years appeared as a new potential target for the treatment of metabolic diseases. ${ }^{1-7}$ The receptor was proposed as a possible antidiabetic and antiobesity target for the first time in 2005 when it was reported to be expressed in the intestinal tract and activated by dietary free fatty acids to stimulate incretin secretion, ${ }^{8}$ although this property of the receptor remains controversial. ${ }^{9}$ FFA 4 was subsequently found to also be expressed in macrophages, liver and adipose tissue, and to mediate antiinflammatory and insulin sensitizing effects. ${ }^{10}$ The report that mice lacking FFA4 develop obesity, insulin intolerance and fatty liver when fed a high-fat diet and that a human population with a dysfunctional FFA 4 variant has an increased risk of obesity supported a significant role of the receptor in metabolic diseases. ${ }^{11}$ Further support for this was recently provided by the finding that the selective FFA4 agonist Cpd A (Chart 1) increased insulin sensitivity and reduced inflammation and hepatic steatosis in mice fed a high-fat diet. ${ }^{12} \mathrm{M}$ oreover, FFA 4 is implicated in regulation of glucagon, ghrelin and somatostatin release (or secretion), representing likely contributing mechanisms of the observed metabolic phenotype. ${ }^{13-16}$

Chart 1. Representative FFA 4 agonists

A though unsaturated and, in particular, omega-3 fatty acids were highlighted in the initial publications, ${ }^{8,10}$ it has become clear that FFA4 is activated by long-chain fatty acids with a profile that overlaps extensively with those that activate the more established antidiabetic target
free fatty acid receptor 1 (FFA 1/GPR 40). ${ }^{17}$ In 2012, we disclosed TUG-891 (1, Chart 1) as the first potent and selective FFA4 agonist, optimized from a series of FFA1 agonists originally derived from fatty acids. ${ }^{18,19}$ However, the significantly higher potency of $\mathbf{1}$ at the murine (m) FFA1 resulted in a selectivity of 70 -fold in a β-arrestin-2-based assay and of only 3 -fold in a calcium assay for mFFA 4 over mFFA1, essentially rendering the compound a dual agonist in mice, at least with respect to signals and functions mediated by the induced elevation of Ca^{2+20}

In 2008, a patent from B anyu disclosed a series of non-acidic benzosultams as FFA 4 agonists structurally distinct from other known FFA 4 agonists. ${ }^{21}$ The structures were also markedly different from known FFA 1 ligands and appeared to represent an opportunity to access FFA 4 agonists with complete selectivity over FFA 1. M ore recently, Sparks and co-workers reported a series of sulfonamide FFA 4 agonists with GSK 1237647A (2, Chart 1) as the preferred compound with $\mathrm{pEC}_{50}=6.3$ and a lack of activity on FFA 1 . However, this compound was also described as unsuitable for in vivo studies due to poor solubility. ${ }^{22}$ Herein, we report structure-activity relationship studies around these compound series, leading to the identification of a full FFA 4 agonist with complete selectivity over FFA 1. We further demonstrate activity in vivo and report beneficial results on glucose regulation, insulin sensitivity and bodyweight of the selected compound in DIO mice.

SY NTHESIS

The initial compounds were synthesized by nucleophilic aromatic substitution at 1,3-difluoro-5-nitrobenzene, reduction of $\mathbf{3 a - c}$ to anilines $\mathbf{4 a} \mathbf{- c}$, formation of the sulfonamides $\mathbf{5 a} \mathbf{- c}$, reduction (6a-c) and cyclization to provide sultams 7-9, essentially following the synthetic strategy described in Banyu's patent (Scheme 1). ${ }^{21}$ A niline 4a was also substrate for the synthesis of
phthalimide $\mathbf{1 2}$ and for the acyclic sulfonamides $\mathbf{1 3}$ and $\mathbf{1 4}$. A cyclic sulfonamides, including 15-
19, were synthesized similarly from the corresponding sulfonyl chlorides and anilines.
Scheme 1. Synthesis of compounds using a previously described route ${ }^{\text {a,21 }}$

${ }^{\mathrm{a}}$ Reagents and conditions: (a) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 100{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}(30-68 \%)$. (b) $\mathrm{Y}=0$: $\mathrm{NH}_{4} \mathrm{HCO}_{2}$, $\mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, 9{ }^{\circ} \mathrm{C}(\mu v), 10 \mathrm{~min}$ (quant.); $Y=\mathrm{CH}_{2} \mathrm{O}: \mathrm{SnCl}_{2}, \mathrm{MeCN} / \mathrm{EtOH}$ (1:1), refl., $1 \mathrm{~h}(86 \%)$. (c) Pyridine, rt, $16 \mathrm{~h}(50-96 \%)$. (d) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 0.5-2 \mathrm{~h}(48-95 \%)$; e) $\mathrm{PBr}_{3}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 0.5 \mathrm{~h} ; \mathrm{Na}_{2} \mathrm{CO}_{3}$ (sat. aq.), $1 \mathrm{~h}\left(44-83 \%\right.$). (f) phtalic anhydride, acetic acid, $100{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}(68 \%)$; (g) M el, $\mathrm{NaH}, \mathrm{DM}$ F, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1 \mathrm{~h}(65-78 \%)$.

Since this synthetic route to the sultam is cumbersome and unsuitable for variations in the eastern part of the structure, a more straightforward coupling procedure was developed. Thus, the benzosultam intermediate 20, obtained from saccharin, was subject to copper(I)-catalyzed crosscoupling with 4-iodophenol followed by Ullmann coupling to give 22, with 1-bromo-3phenoxybenzene to give 23, and with 3-bromo-5-fluorophenol to give the central intermediate $\mathbf{2 5}$ (Scheme 2). Further UlImann condensation of $\mathbf{2 5}$ with aryl bromides or iodides provided the target compounds (26-34). The monocyclic $\mathbf{2 4}$ was synthesized from 3-phenoxyaniline and 3chloropropanesulfonyl chloride (Scheme 3). A nalogues with the central fluoro substituent removed (36) or replaced by chloro (38) were synthesized by nucleophilic aromatic substitution of 2-fluoropyridine with the respective halophenols followed by copper(I)-catalyzed crosscoupling with $\mathbf{2 0}$ (Scheme 4).

Scheme 2. Synthesis of N-arylbenzosultams from saccharin ${ }^{\text {a }}$

${ }^{\mathrm{a}}$ Reagents and conditions: a) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 16 \mathrm{~h}(78 \%)$. (b) 4-Iodophenol or 3-bromo-5-fluorophenol, Cul, DM EDA, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{M} \mathrm{CCN}, 70^{\circ} \mathrm{C}, 16 \mathrm{~h}(65-96 \%$). (c) A ryl halide (Br or I), picolinic acid, CuI, $\mathrm{K}_{3} \mathrm{PO}_{4}$, DM SO, $90^{\circ} \mathrm{C}(12-83 \%)$, 24 h .

Scheme 3. Synthesis of sultam $\mathbf{2 4}^{\text {a }}$

${ }^{\text {a }}$ Reagents and conditions: a) 3-Chloropropanesulfonyl chloride, pyridine, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 16 \mathrm{~h} . \mathrm{b}\right)$ $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DM} \mathrm{F}, 50^{\circ} \mathrm{C}, 16 \mathrm{~h}$ (72% over two steps).

Scheme 4. Synthesis of non-fluorinated analogues ${ }^{a}$

${ }^{\text {a }}$ Reagents and conditions: (a) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 140{ }^{\circ} \mathrm{C}(\mu v), 4-5 \frac{1}{2} \mathrm{~h}(62-65 \%)$. b) 20, Cul, DMEDA, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}, 7{ }^{\circ} \mathrm{C}$, $16 \mathrm{~h}(61-88 \%)$.

RESULTSAND DISCUSSION

The compounds were screened on human FFA4 in a β-arrestin- 2 recruitment assay and compounds of particular interest were further tested in a Ca^{2+} mobilization assay and on human FFA $1 .{ }^{18}$ The sultam 7, disclosed as an FFA 4 agonist with pEC_{50} of 6.74 in the Banyu patent, ${ }^{21}$ showed somewhat lower activity in our assays with a pEC_{50} of 6.36 in the β-arrestin- 2 assay and 6.52 in the calcium assay (Table 1). Notably, the compound did not show any activity on FFA 1 at concentrations up to $100 \mu \mathrm{M}$. (possibly move the following sentence to here as this compound is also noted in the Legend to Table 1 as well as in Supplemental) The FFA 1 agonist $\mathbf{1 0}^{23}$ was found to also act as a full FFA 4 agonist, ${ }^{18}$ and has been used as a reference compound (see the Supporting Information).

Table 1. Initial exploration of the pyridine ring of 7.

[^0]relative to $100 \mu \mathrm{M} \mathbf{1 0}^{\mathrm{C}}$ (ested in the FFA1 Ca^{2+} assay as agonists and antagonists. I max denotes \% reduction of the response of $300 \mathrm{nM} \mathbf{1 0}$. All compounds were inactive as FFA 1 agonists. ${ }^{d} \mathrm{~N}$ ot tested.

Studies with 7 on FFA 4 mutants directed at the orthosteric binding site revealed that the activity depends critically on $\operatorname{Arg} 99^{2.64}$, the residue identified as the key anchoring point for the carboxylate group of free fatty acids and orthosteric ligands such as $1 .{ }^{24}$ This observation was initially surprising in light of the distinctly different structure and the lack of any acidic group. Compound $\mathbf{7}$ was also affected by other mutations that impact the activity of $\mathbf{1}$ and α-linolenic acid, strongly suggesting that 7 also binds to the orthosteric site (Table S1). ${ }^{24}$ Thus, mutations that eliminate or significantly reduce the activity of α-linolenic acid and $\mathbf{1}$ (W 104A, F115 ${ }^{3.29} \mathrm{~A}$, $W 207^{5.38} \mathrm{~A}, \mathrm{~F} 211^{5.42} \mathrm{~A}, \mathrm{~W} 277^{6.48} \mathrm{~A}$ and $\mathrm{F} 304^{7.36} \mathrm{~A}$ eliminate activity of both, $\mathrm{F} 88^{2.53} \mathrm{~A}, ~ 1284^{5.66} \mathrm{~A}$, $\mathrm{F} 303^{7.35} \mathrm{H}$ and $\mathrm{T} 310^{7.42} \mathrm{~A}$ significantly reduce activity of both α-linolenic acid and $\mathbf{1}, \mathrm{T} 119^{3.33} \mathrm{~A}$, $1126^{3.40} \mathrm{~A}, \mathrm{~N} 215^{5.46} \mathrm{~A}, \mathrm{I} 280^{6.51} \mathrm{~A}, \mathrm{I} 281^{6.52} \mathrm{~F}$ only reduce the activity of $\mathbf{1}$, see Table S 1) also affect the activity of 7 in a similar manner. Exceptions were $\mathrm{W} 100^{2.65} \mathrm{~A}$ and $\mathrm{L} 114^{3.28} \mathrm{~A}$, which affected $\mathbf{1}$ but not 7, as well as $\mathrm{V} 212^{5.43} \mathrm{~A}$, and $\mathrm{F} 311^{7.43} \mathrm{~A}$, which each significantly decreased potency of 7, while only producing smaller non-significant decreases in the potency of $\mathbf{1}$. Computational modeling indicated favored alternative docking poses in the orthosteric site of FFA 4 with $\mathbf{7}$ directly interacting with Arg992.64 by hydrogen bonds either to the sultam oxygen atoms or to the pyridyl nitrogen. To investigate the most likely orientation, the phenyl analogue 8, lacking the pyridyl interaction possibility, was synthesized and found more potent on FFA4 than 7, indicating the sulfonamide as the $\operatorname{Arg} 99^{2.64}$ interaction point (Figure 1). (A nd if this is moved to above Table 1 can be removed from here) The FFA 1 agonist $\mathbf{1 0}^{23}$ was found to also act as a full FFA 4 agonist, ${ }^{18}$ and has been used as a reference compound (see the Supporting Information).

Figure 1. Docking pose for $\mathbf{7}$ in FFA4. Residues where mutation significantly affects the functional activity of $\mathbf{7}$ have been displayed.

To probe the importance of the sulfonamide, phthalimide 12, also exemplified in the Banyu patent but without activity data, ${ }^{21}$ was produced and found to have 10 -fold lower activity than 7 and low partial efficacy, indicating that the sulfonamide is important for agonist activity but that replacement by other hydrogen bond acceptors is possible. The acyclic sulfonamide 13, containing a weakly acidic group (calculated $\left.\mathrm{pK}_{\mathrm{a}} 7.7\right)^{25}$ exhibited further reduced activity. Interestingly, N -methylation to give the non-acidic ring-opened analogue $\mathbf{1 4}$ resulted in complete loss of activity, possibly reflecting that planarity between the aromatic ring and the S-N bond is a requirement.

Table 2. Lead structures and western part variations.
Code
${ }^{2}$ BRET-based β-arrestin recruitment based FFA 4 assay. Efficacy $\left(\mathrm{E}_{\text {max }}\right)$ is relative to $\mathbf{1 0}$. ${ }^{\mathrm{b}} \mathrm{Ca}^{2+}$ FFA4 assay. Efficacy ($\mathrm{E}_{\text {max }}$) is relative to $\mathbf{1 0}$. ${ }^{\text {'T }}$ ested in the FFA1 Ca^{2+} assay as agonists and antagonists. All compounds were inactive as FFA1 agonists. I ${ }_{\text {max }}$ denotes \% reduction of the response of $300 \mathrm{nM} 10 .{ }^{\mathrm{d}}$ Not tested. ${ }^{\mathrm{e}} \mathrm{N}$ o response up to $100 \mu \mathrm{M}$. 'T ested as antagonist in the FFA $1 \mathrm{Ca}^{2+}$ mobilization assay with 20 nM TUG-770 (11). ${ }^{26}$

Related to $\mathbf{1 3}$, the sulfonamide DC260126 (15) has been described as an FFA 1 antagonist and was, somewhat surprisingly, reported to improve insulin sensitivity and β-cell function in rats and db/db mice. ${ }^{27,28}$ We confirmed its FFA 1 antagonist activity $\left(\mathrm{plC}_{50}=5.09\right)$ but found that the compound also acts as an FFA 4 agonist in the β-arrestin- 2 recruitment assay although it was devoid of activity in the Ca^{2+} assay (Table 2), and thus represents a relatively low-potency, but completely β-arrestin-biased, FFA4 agonist. Since FFA4 is proposed to mediate antiinflammatory effects via the β-arrestin pathway, it cannot be excluded that the tendency to insulin sensitization observed with this compound is mediated by FFA 4.

Replacement of the butyl of $\mathbf{1 5}$ by phenoxy (16) gave a compound with similar FFA1 antagonist and FFA 4 agonist properties. N-methylation of the potentially acidic sulfonamide (17) led to loss of FFA 4 activity but preserved FFA 1 antagonism. The related sulfonamide $\mathbf{2}$ (Chart 1) was recently reported as a selective FFA4 agonist. ${ }^{22}$ We confirmed a pEC_{50} of 6.31 in the β -arrestin-2 assay. Replacement of the para-fluoro of $\mathbf{1 6}$ with methoxy (18) akin to $\mathbf{2}$ resulted in complete loss of activity, as did para-phenoxyphenyl sultam 22, whereas the moderate FFA 1antagonistic activity was maintained with a para-methyl substituent (19). Interestingly, removing the meta-fluoro of the phenyl analogue $\mathbf{8}$ resulted in a compound (23) with preserved potency in both the β-arrestin- 2 and calcium assay on FFA 4 as well as preserved partial antagonist activity on FFA 1. In contrast, removing the benzene ring fused to the sultam (24) resulted in a compound devoid of activity on both FFA 4 and FFA 1, indicating a critical role of this ring.

Explorations of the western part of the structure indicated that the benzosultam system was favored. Turning attention back to the eastern site, the eastern phenyl ring of $\mathbf{8}$ was scanned with the non-polar methyl substituent $(\mathbf{2 6}, \mathbf{2 7}, \mathbf{2 8})$ and the polar cyano $(\mathbf{2 9 - 3 1})$ and meta-cyanomethyl (32) substituents, in all cases these resulted in decreased potency with para-substituents being somewhat better tolerated (Table 3).

Table 3. Exploration of the central and eastern parts.
Code

| $\mathbf{3 4}$ | Cl | $6.91 \pm 0.04(98)$ | $6.63 \pm 0.13(130)$ | <4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 6}$ | Cl | $5.81 \pm 0.11(102)$ | $5.99 \pm 0.19(93)$ | <4 |
| $\mathbf{3 8}$ | $6.86 \pm 0.10(113)$ | $7.41 \pm 0.18(78)$ | $<4^{\mathrm{f}}$ | |

${ }^{\text {a }}$ BRET-based β-arrestin-2 recruitment based FFA 4 assay. Efficacy ($\mathrm{E}_{\text {max }}$) is relative to $100 \mu \mathrm{M}$ 10. ${ }^{\text {b }} \mathrm{Ca}^{2+}$ FFA 4 assay. Efficacy ($\mathrm{E}_{\text {max }}$) is relative to $100 \mu \mathrm{M}$ 10. ${ }^{\text {² }}$ Tested in the FFA $1 \mathrm{Ca}^{2+}$ assay as agonists and antagonists. All compounds were inactive as FFA1 agonists. I max denotes \% reduction of the response of $300 \mathrm{nM} \mathbf{1 0}$. ${ }^{\mathrm{d}} \mathrm{No}$ response up to $100 \mu \mathrm{M}$. ${ }^{\mathrm{e}} \mathrm{N}$ ot tested. 'Tested as antagonist in the FFA1 Ca ${ }^{2+}$ mobilization assay with 20 nM TUG-770 (11). ${ }^{26}$

Further investigation of 8 revealed antagonistic activity on FFA1, but without the ability to completely block the agonist response (i.e. "partial antagonism", Table 1). A similar effect was seen with all substituted analogues exhibiting noticeable agonistic activity ($\mathrm{EC}_{50}<10 \mu \mathrm{M}$) on FFA 4. These results are surprising because they indicate that this compound series also has the ability to interact with and modulate FFA1 despite its structural dissimilarity from other FFA1 agonists and the absence of an acidic functional group. However, the inability of the compounds to completely block activity of $\mathbf{1 0}$ suggests non-competitive binding and allosteric interaction with FFA 1.

In contrast to the phenoxy compounds, the pyridines 7, 33, 13, $\mathbf{1 4}$ did not show any sign of agonistic or antagonistic activity on FFA 1. These structures were therefore explored further by altering the attachment point at the pyridine. Thus, the 4-pyridyl (33) derivative resulted in a 3fold reduced potency, whereas the 2-pyridyl (34) gratifyingly showed a 3.5 -fold increased potency to achieve an EC_{50} of 128 nM .

Finally, the importance of the meta-fluoro substituent at the central ring of $\mathbf{3 4}$ was assessed.
Removal of the fluoro substituent in $\mathbf{3 6}$ resulted in a 10 -fold reduced potency and indicated that,
contrary to $\mathbf{8}$, the meta-fluoro contributes to the potency of $\mathbf{3 4}$. In contrast, substitution of fluoro by chloro in 38 led to preserved activity in the β-arrestin- 2 recruitment assay and an EC_{50} of 40 nM in the Ca^{2+} assay, a 6-fold increase in potency relative to 34, albeit with reduced efficacy.

Overall, $\mathbf{3 4}$ and $\mathbf{3 8}$ stood out at the most potent FFA 4 agonists in both the β-arrestin- 2 and the Ca^{2+} assays with essentially equal activity in the former. Although $\mathbf{3 8}$ appeared more potent in the Ca^{2+} assay, the compound showed only partial agonist activity, whereas 34 was a full agonist in both assays as well as less lipophilic ($\Delta \mathrm{Clog} \mathrm{P} \sim 0.5$). Compound 34 showed no activity at the other free fatty acid receptors FFA 1, FFA 2 or FFA 3 at up to $30 \mu \mathrm{M}$ concentration, indicating >300-fold selectivity. Experimental $\log D_{7.4}$ measurements showed identical lipophilicity for 34 and 7 (3.17 and 3.12, respectively). Solubility studies for compounds 7, $\mathbf{3 4}$ and 38 in PBS indicated progressively lower solubility with 38 being virtually insoluble (11, 1.3 and $0.1 \mu \mathrm{M}$, respectively), however, the solubility of the two latter in FaSSIF (what is this?) gave a somewhat better picture for $\mathbf{3 4}$ ($14 \mu \mathrm{M}$ for 34 and $0.9 \mu \mathrm{M}$ for 38). Thus, 34 was selected for in vivo studies. The low solubility of the compound did not cause any problems in relation to these. Prior to the mouse studies, the activity and specificity of $\mathbf{3 4}$ and the two other most potent and selective agonists, $\mathbf{7}$ and 38, on the murine receptor orthologues were investigated. Completely preserved activity was confirmed for all three compounds in the Gq-dependent calcium mobilization assay on mFFA $4\left(\mathrm{pEC}_{50}=7.08 \pm 0.05,6.83 \pm 0.08\right.$ and 7.14 ± 0.08 for $\mathbf{7}, \mathbf{3 4}$ and $\mathbf{3 8}$, respectively $)$, with no activity detected up to $100 \mu \mathrm{M}$ concentration on mFFA 1. Further, 34 was also tested in the β-arrestin assay, confirming full agonistic activity with $\mathrm{pEC} 50=6.32 \pm 0.06$, again with no sign of any activity on mFFA 1 . Compound $\mathbf{3 4}$ al so failed to induce a response when tested on the FFA 4 R $99^{2.64} \mathrm{Q}$ mutant, supporting the notion that this compound binds as indicated for $\mathbf{7}$ in Figure 1.

FFA 4 has been reported to mediate free fatty acid promoted incretin release and to improve glucose tolerance, ${ }^{8,12}$ and mice lacking FFA 4 show impaired glucose homeostasis, an effect believed to involve improper regulation of glucagon secretion. ${ }^{14}$ Thus, the effect of 34 as well as 7 in a glucose tolerance test was investigated by oral dosing prior to an oral glucose challenge. This resulted in significant lowering of plasma glucose levels for both compounds compared to vehicle (Figure 2).

Figure 2. FFA4 agonists 34 and $\mathbf{7}$ lower plasma glucose concentrations compared to vehicle after oral dosing at $10 \mathrm{mg} / \mathrm{kg} 15 \mathrm{~min}$ before oral glucose challenge ($\mathrm{n}=6$ mice per group, * $\mathrm{p}=<0.5 ; * * \mathrm{p}=<0.01$, two-way A N OV A with Bonferoni post hoc test).

FFA 4 has attracted high interest as a potential antidiabetic target in particular because of results indicating that the receptor mediates insulin sensitization, anti-inflammatory effects, protection of pancreatic islets, and that it may even counteract obesity. ${ }^{3-6,10,11,29}$ However, each of these is difficult to assess satisfactorily in acute treatment studies. To evaluate the effects of $\mathbf{3 4}$ on some of these, a chronic treatment study in DIO mice was performed with daily dosing of 10 $\mathrm{mg} / \mathrm{kg} 34$ over a three week period. Mice lacking FFA 4 were included to assess and confirm receptor specific activity of the ligand. The wild-type mice were littermates of the FFA $4(-/-)$ animals. A s observed in normal mice, a glucose challenge 15 min after dosing in DIO mice on the first day significantly reduced plasma glucose levels in 34-treated wild-type mice compared
to vehicle-treated wild-type mice, whereas 34 had no effect on glucose levels in the FFA $4(-/-)$ animals (Figure 3). The effect was significant in the wild-type animals also when calculated relative to $t=-30 \min$ or $t=0$ (see the Supporting Information). This confirms that the effect of 34 on glucose excursion when dosed 15 minutes before the challenge is mediated by FFA 4. Studies to investigate the mechanism of this effect are in progress.

Figure 3. A cute oral glucose tolerance test on day 0 ($n=9$ mice per group; * $p=<0.05,{ }^{* *} p=<0.01$, ${ }^{* * *} \mathrm{p}<0.005$, two-way A NOV A with B onferroni post hoc test) performed on DIO mice. (M aybe this is a test but apart from the scale bar for the time axis I can't see differecnes between the upper and lower versions of these Figures apart from a change in the measured statistical significance?)

A fter treatment over 21 days, the fasting insulin levels of the $\mathbf{3 4}$ treated wild-type (unclear if this is DIO or not animals) mice was significantly reduced compared to vehicle treated mice, whereas no difference was observed between the FFA 4(-/-) groups (Figure 4, top). These results indicate that $\mathbf{3 4}$ promotes insulin sensitization in mice through activation of FFA4. An oral glucose tolerance test on day 21 (Figure 4, bottom) showed an even more robust effect than on day 0 , presumably an effect of increased insulin sensitization.

Figure 4. Fasting insulin levels after chronic dosing with 34 for 21 days (top) and oral glucose tolerance test at day 21 (bottom) ($\mathrm{n}=9, * * \mathrm{p}=<0.01, * * * * \mathrm{p}=<0.001$, one-way ANOV A with Dunnett's post hoc test).

Previous studies have linked FFA4 to obesity by demonstrating a correlation between expression and obesity and have indicated an increased risk of obesity with p.R270H FFA 4 variant in European populations or with deletion of the receptor in mouse, ${ }^{5,11}$ although a recent study failed to find a similar association in a Danish population. ${ }^{30}$ No significant effect was observed on either food or water intake over the course of the treatment for 21 days in either the wild-type or FFA 4(-/-) animals, although a weak tendency towards reduced food intake for the 34 treated wild-type group was observed (see the Supporting Information). Treatment with 34
did, however, result in a reduction in bodyweight in the wild-type mice of 3-4 grams (7-9\%) towards the end of the study, whereas no effect, or even a weak trend towards weight gain, was observed in the FFA 4(-/-) animals (Figure 5). These results support the notion that FFA 4 may represent a potential anti-obesity target, an effect that would be an important add-on to regulation of glucose homeostasis in an antidiabetic drug.
wild-type

FFA4(-/-)

Figure 5. Bodyweight change in DIO wild-type and FFA 4(-/-) mice over 21 days of once daily dosing (10 mg/kg, po) with 34 ($\mathrm{n}=9$ mice per group, $* \mathrm{p}=<0.5$; ***p=<0.001; two-way ANOV A with B onferroni post hoc test).

CONCLUSION

M ost currently known FFA 4 agonists are carboxylic acids assumed to mimic the endogenous free fatty acid agonists. M ost of these also exhibit some degree of activity on FFA 1. In the search for highly selective FFA 4 agonists, we investigated a non-acidic benzosultam ligand known from the patent literature and conducted a preliminary structure-activity relationship study around this scaffold. Interestingly, mutagenesis studies indicated that these compounds also bind to the same site as α-linolenic acid and $\mathbf{1}$ and also require carboxylate interaction partner Arg99 ${ }^{2.64}$ for activity despite the absence of a carboxylate. Given the limited overall homology between FFA 1
and FFA 4, even though they are both activated by overlapping sets of medium- and longer-chain free fatty acids, it was surprising that a sub-series of these compounds also interacted with FFA 1 to produce partial blockade of this receptor. Compound 34, a full FFA4 agonist showed comparable potency in both Ca^{2+} - and β-arrestin-2-based assays with complete selectivity over FFA 1 and other free fatty acid receptors. Its distinctly different structure from the carboxylic acid FFA 4 agonists currently used as tool compounds makes 34 a suitable orthogonal tool in combination with these for further studies of the function of FFA4. The compound was investigated in vivo and was found to lower plasma glucose levels after an oral glucose challenge when dosed orally 15 minutes prior to the challenge, an effect that was confirmed to be mediated by FFA 4 as this was not observed in animals lacking FFA 4. Furthermore, $\mathbf{3 4}$ robustly increased insulin sensitivity after chronic dosing in DIO mice and led to moderately reduced bodyweight over the course of the study, despite no significant effects on food or water intake. Altogether, $\mathbf{3 4}$ is a non-acidic full agonist of FFA 4 with complete selectivity over FFA 1 that shows antidiabetic and anti-obesity effects after chronic oral dosing in DIO mice, corroborating FFA 4 as a promising new antidiabetic target.

EXPERIMENTAL SECTION

Synthesis

Commercial starting materials and solvents were used without further purification. THF was freshly distilled from sodium/benzophenone. Water was filtered and demineralized (M illi-Q). TLC was performed on TLC Silica gel 60 F254 plates and visualized at 254 nm and/or by staining with phosphomolybdic acid, vanillin, or KMnO_{4} stains. Petroleum ether (PE) refers to alkanes with bp 60-80 ${ }^{\circ} \mathrm{C}$. Microwave reactions were performed in a Biotage Initiator ${ }^{+}$
microwave reactor. Purification by flash chromatography was carried out using silica gel 60 ($0.040-0.063 \mathrm{~mm}, \mathrm{Merck}$). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at 400,101 , and 376 MHz respectively on Bruker A vance III 400 at 300 K . High-resolution mass spectra (HRMS) were obtained on a Bruker micrOTOF-Q II (ESI). Purity was determined by HPLC and confirmed by inspection of NMR spectra (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ NMR). HPLC analysis was performed using a Dionex 120 C 18 or a Gemini C18 column ($5 \mu \mathrm{~m}, 4.6 \times 150 \mathrm{~mm}$); flow: $1 \mathrm{~mL} / \mathrm{min} ; 10 \%$ MeCN in water ($0-1 \mathrm{~min}$), 10-100\% M eCN in water ($1-10 \mathrm{~min}$), $100 \% \mathrm{M} \mathrm{eCN}(11-15 \mathrm{~min})$, with both solvents containing 0.05% TFA or $0.1 \% \mathrm{HCOOH}$ as modifier; UV detection at 254 nm . All test compounds were of e95\% purity unless otherwise stated.

2-(4-H ydroxyphenyl)-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (21). To 20 ($250 \mathrm{mg}, 1.48$ $\mathrm{mmol})$, $\mathrm{Cul}(42 \mathrm{mg}, 0.22 \mathrm{mmol})$, 4-iodophenol ($390 \mathrm{mg}, 1.77 \mathrm{mmol}$) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(615$ $\mathrm{mg}, 4.45 \mathrm{mmol}$) under argon were added dry and freshly degassed acetonitrile (5 mL) and DMEDA ($80 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$). The reaction mixture was heated at $70{ }^{\circ} \mathrm{C}$ for 16 h . The reaction was then quenched with aqueous $\mathrm{HCl}(2 \mathrm{~N}, 10 \mathrm{~mL})$ and the aqueous phase was extracted with EtOAc (3x). The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product was purified by flash chromatography (EtOAc/PE, 1:1) and the product obtained recrystallized from EtOA c/PE (1:1) to give $\mathbf{2 1}$ as a yellow solid ($232 \mathrm{mg}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR (400 M Hz , acetone- d_{6}): $8.51(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{t}, \mathrm{J}=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz , acetone-d d_{6}): $156.8,136.4,134.5,133.7,130.2,129.5,125.94,125.93,121.8,116.9,51.9$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 284.0352$, found 284.0347. $\mathrm{HPLC} \mathrm{t}_{\mathrm{R}}=9.4 \mathrm{~min}, 99.6 \%$.

2-(4-Phenoxyphenyl)-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (22). To $\mathbf{2 1}$ ($75 \mathrm{mg}, 0.29$ mmol), 4-iodobenzene ($48 \mu \mathrm{~L}, 0.43 \mathrm{mmol}$), copper iodide ($11 \mathrm{mg}, 0.06 \mathrm{mmol}$), picolinic acid
($14.8 \mathrm{mg}, 0.12 \mathrm{mmol}$) and $\mathrm{K}_{3} \mathrm{PO}_{4}(123 \mathrm{mg}, 0.58 \mathrm{mmol})$ under argon was added dry DM SO (0.5 mL) and the reaction mixture was heated at $90{ }^{\circ} \mathrm{C}$ for 24 h . The temperature was then allowed to reach rt and the reaction mixture was partitioned between water and EtOAc. The aqueous phase extracted with EtOAc (2x) and the combined organic phases were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product was purified by flash chromatography (EtOA c/PE, 3:7) and recrystallized from EtOA c/PE (2:1) to give $\mathbf{2 2}$ as light yellow solid (80 mg , $83 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right): 7.88(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (td, J $\left.=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.59$ $(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ $(d, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} N \mathrm{NR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 157.1$, $155.2,135.0,133.0,132.5,131.6,129.9,129.5,124.4,123.5,123.5,121.6,120.0,118.9,50.8$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 360.0665$, found 360.0653 . $\mathrm{HPLC} \mathrm{t}_{\mathrm{R}}=12.3$ $\min , 99.7 \%$.

2-(3-Phenoxyphenyl)-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (23). The title compound was obtained as described for $\mathbf{2 1}$ using $\mathbf{2 0}$ ($100 \mathrm{mg}, 0.59 \mathrm{mmol}$) and 3-bromodiphenylether (129 $\mu \mathrm{L}, 0.71 \mathrm{mmol}$) as starting materials. The crude product was purified by flash chromatography (EtOA c/PE, 3:7) and the product recrystallized from EtOA c/PE (2:1) to give $\mathbf{2 3}$ as a white solid (175 mg, 88\%). ${ }^{1} \mathrm{H}$ NMR(400 M Hz, CDCl $\left.)_{3}\right): 7.86(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{dd}, \mathrm{J}=8.2,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.78(\mathrm{dd}, \mathrm{J}=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 M Hz, CDCl_{3}): 158.5, 156.7, 138.5, 135.0, 133.2, 131.9, 130.7, 129.9, 129.5, 124.5, 123.7, 121.6, 119.2, 114.3, 113.5, 109.4, 49.5. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NNaO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+} 360.0665$, found $360.0655 . \mathrm{HPLC} \mathrm{t}_{\mathrm{R}}=12.3 \mathrm{~min},>99.9 \%$.

2-(3-Phenoxyphenyl)isothiazolidine 1,1-dioxide (24). Step 1: To a solution of 3phenoxyaniline ($501 \mathrm{mg}, 2.71 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added pyridine ($0.57 \mathrm{~mL}, 7.02$ mmol) and 3-chloropropanesulfonyl chloride ($0.4 \mathrm{~mL}, 3.24 \mathrm{mmol}$) at room temperature. The reaction was stirred for 16 h , then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed successively with 1 N HCl (aq) and sat. NaHCO_{3} (sat. aq.), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give 3-chloro-N-(3-phenoxyphenyl)propane-1-sulfonamide as a crude yellow oil that was used directly in the next step. Step 2: To a solution of 3-chloro-N-(3-phenoxyphenyl)propane-1-sulfonamide in DM F (15 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(963 \mathrm{mg}, 6.97 \mathrm{mmol})$ and stirred at $50^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was cooled to room temperature, diluted with water and extracted three times with EtOAc (3x). The combined organic phases were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude was purified by flash chromatography (EtOA c:PE, 1:1) to give $\mathbf{2 4}$ as a pale yellow oil which solidified to an off-white solid after a week under high vacuum (596 mg , 72% over two steps): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{\prime} 7.37-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.00(\mathrm{~m}, 4 \mathrm{H})$, $6.88(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, \mathrm{J}=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.52(\mathrm{p}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR(100 M Hz, CDCl 3$)^{\prime}$ 158.2, 156.9, 139.3, 130.5, 129.9, 123.7, 119.2, 114.3, 113.9, 109.7, 48.5, 46.8, 18.8; HRMS (ESI) m/z: calculated $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NNaO}_{3} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right]=312.0665$, found 312.0663. $\mathrm{HPLC}: \mathrm{t}_{\mathrm{R}}=11.62 \mathrm{~min}, 99.5 \%$.

2-(3-Fluoro-5-hydroxyphenyl)-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (25). The title compound was obtained as described for 21 using 20 ($500 \mathrm{mg}, 3 \mathrm{mmol}$) and 3-bromo-5fluorophenol ($677 \mathrm{mg}, 3.55 \mathrm{mmol}$) as starting materials. The crude product was purified by flash chromatography (EtOA c/PE, 1:1) to give the desired compound 25 as a white solid (793 mg , 96\%). ${ }^{1} \mathrm{H}$ NM R (400 M Hz, DM SO-d d_{6} : 10.23 (broad $\left.\mathrm{s}, 1 \mathrm{H}\right), 8.00(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{dt}, \mathrm{J}$ $=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.67(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dt}, \mathrm{J}=11.1,2.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.39(\mathrm{dt}, \mathrm{J}=10.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{M} \mathrm{Hz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $163.4(\mathrm{~d}, \mathrm{~J}=$ $240.6 \mathrm{~Hz}), 159.6(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}), 139.2(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}), 133.9,133.7,132.2,129.6,125.2$, 121.0, $101.0(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}), 98.0(\mathrm{~d}, \mathrm{~J}=23.8 \mathrm{~Hz}), 95.9(\mathrm{~d}, \mathrm{~J}=26.8 \mathrm{~Hz}) .49 .0$. HRM S (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{FNNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 302.0258$, found 302.0256. $\mathrm{HPLC} \mathrm{t}_{\mathrm{R}}=10.3 \mathrm{~min}, 99.2 \%$. The spectra is in accordance with the literature. ${ }^{21}$

2-(3-Fluoro-5-(0-tolyloxy)phenyl)-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (26). The title compound was obtained as described for 22 using 25 ($70 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 2 bromotoluene ($45 \mu \mathrm{~L}, 0.38 \mathrm{mmol}$) as starting materials. The crude product was purified by flash chromatography (EtOA c/PE, 1:4) and recrystallized from EtOA c/PE (3:1) to give $\mathbf{2 6}$ as a white solid (23 mg, 25\%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.86(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, \mathrm{J}=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dt}, \mathrm{J}=10.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ $(\mathrm{s}, 1 \mathrm{H}), 6.29(\mathrm{dt}, \mathrm{J}=10.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $164.1(\mathrm{~d}, \mathrm{~J}=245.6 \mathrm{~Hz}), 160.3(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}), 153.1,139.3(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}), 134.8,133.4$, $131.8,131.5,130.4,129.6,127.5,125.2,124.5,121.6,120.6,102.5(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}), 99.6(\mathrm{~d}, \mathrm{~J}=$ $25.5 \mathrm{~Hz}), 99.5(\mathrm{~d}, \mathrm{~J}=26.9 \mathrm{~Hz}), 49.3$, 16.1. $\mathrm{HRMS}(\mathrm{ESI})$ calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{FNNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$ 392.0727, found 392.0715. HPLC $\mathrm{t}_{\mathrm{R}}=12.2 \mathrm{~min}, 99.2 \%$.

2-(3-Fluoro-5-(m-tolyloxy)phenyl)-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (27). The title compound was obtained as described for $\mathbf{2 2}$ using $\mathbf{2 5}$ ($70 \mathrm{mg}, \mathbf{0 . 2 5 \mathrm { mmol }) \text { and 3-iodotoluene }}$ (48 $\mu \mathrm{L}, 0.38 \mathrm{mmol}$) as starting materials. The crude product was purified by flash chromatography (EtOA c/PE, 3:7) and recrystallized from EtOA c/PE (3:1) to give $\mathbf{2 7}$ as a white solid (33 mg, 36\%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.86(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.94(\mathrm{~m}$,
$2 \mathrm{H}), 6.90-6.82(\mathrm{~m}, 3 \mathrm{H}), 6.42(\mathrm{dt}, \mathrm{J}=9.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}$): $164.0(\mathrm{~d}, \mathrm{~J}=245.8 \mathrm{~Hz}), 160.0(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}), 155.7,140.3,139.3(\mathrm{~d}, \mathrm{~J}=13.1$ $\mathrm{Hz}), 134.8,133.4,131.5,129.7,129.6,125.3,124.5,121.6,120.4,116.8,103.8(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz})$, 101.0 (d, J = 25.1 Hz), 100.0 (d, J = 26.9 Hz), 49.3, 21.4. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{FNNaO}_{3} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$392.0727, found 392.0716. $\mathrm{HPLC} \mathrm{t}_{\mathrm{R}}=13.1 \mathrm{~min}, 99.4 \%$.

2-(3-Fluoro-5-(p-tolyloxy)phenyl)-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (28). The title compound was obtained as described for $\mathbf{2 2}$ using $\mathbf{2 5}(70 \mathrm{mg}, 0.25 \mathrm{mmol})$ and 4 -iodotoluene $(82 \mathrm{mg}, 0.38 \mathrm{mmol})$ as starting materials. The crude product was purified by flash chromatography (EtOA c/PE, 3:7) and recrystallized from EtOA c/PE (3:1) to give $\mathbf{2 8}$ as a white solid ($24 \mathrm{mg}, 26 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}$): 7.87 (d, J $=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.68 (td, J $=7.7,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-6.92$ $(\mathrm{m}, 3 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{dt}, \mathrm{J}=9.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 M Hz, CDCl $)^{2}: 164.0(\mathrm{~d}, \mathrm{~J}=245.7 \mathrm{~Hz}$), $160.4(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}), 153.2,139.3(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz})$, 134.8, 134.2, 133.4, 131.5, 130.5, 129.6, 124.5, 121.6, 119.9, 103.4 (d, J = 3.0 Hz), 100.7 ($\mathrm{d}, \mathrm{J}=$ 25.3 Hz), $99.9(\mathrm{~d}, \mathrm{~J}=27.0 \mathrm{~Hz}), 49.3,20.8$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{FNNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$ 392.0727, found 392.0714. HPLC $\mathrm{t}_{\mathrm{R}}=13.1 \mathrm{~min}, 99.7 \%$.

2-(3-(1,1-Dioxidobenzo[d]isothiazol-2(3H)-yl)-5-fluorophenoxy)benzonitrile (29). The title compound was obtained as described for 22 using 25 ($79 \mathrm{mg}, 0.28 \mathrm{mmol}$) and 2 bromobenzonitrile ($40 \mathrm{mg}, 0.22 \mathrm{mmol}$) as starting materials. The crude product was purified by flash chromatography (EtOAc/PE, 1:4) and the title compound 29 was recrystallized from EtOA c/PE (3:1) as a white solid ($10 \mathrm{mg}, 12 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.88(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.73-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{td}, \mathrm{J}=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dt}, \mathrm{J}=10.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$
$(\mathrm{s}, 1 \mathrm{H}), 6.55(\mathrm{dt}, \mathrm{J}=9.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right): 164.0(\mathrm{~d}, \mathrm{~J}=$ $247.8 \mathrm{~Hz}), 158.2,157.3(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}), 139.9(\mathrm{~d}, \mathrm{~J}=12.7 \mathrm{~Hz}), 134.6,134.5,134.1,133.6$, $131.2,129.8,124.5,124.1,121.6,118.2,115.5,104.8(d, J=3.2 \mathrm{~Hz}), 104.7,102.4(\mathrm{~d}, \mathrm{~J}=25.3$ $\mathrm{Hz}), 101.8(\mathrm{~d}, \mathrm{~J}=26.6 \mathrm{~Hz}) .49 .3 . \mathrm{HRMS}(\mathrm{ESI})$ calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 403.0523$, found 403.0528. HPLC $t_{R}=11.9 \mathrm{~min}, 99.5 \%$.

3-(3-(1,1-Dioxidobenzo[d]isothiazol-2(3H)-yl)-5-fluorophenoxy)benzonitrile (30). The title compound was obtained as described for $\mathbf{2 2}$ using $\mathbf{2 5}$ ($58 \mathrm{mg}, 0.21 \mathrm{mmol}$) and 3 -iodobenzonitrile ($40 \mathrm{mg}, 0.17 \mathrm{mmol}$) as starting materials. The crude product was purified by flash chromatography (EtOA c/PE, 3:7) and recrystallized from EtOA c/PE (3:1) to give 30 as a white solid (20 mg, 30\%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.88(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.62(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{dt}, \mathrm{J}=10.2,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{dt}, \mathrm{J}=9.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right)$: $164.1(\mathrm{~d}, \mathrm{~J}=247.5 \mathrm{~Hz}), 158.0(\mathrm{~d}, \mathrm{~J}=12.7 \mathrm{~Hz}), 156.7,139.9(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}), 134.6,133.6$, $131.2,131.0,129.8,127.7,124.5,123.6,122.2,121.6,118.0,114.0,104.5(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}), 101.9$ $(d, J=25.0 \mathrm{~Hz}), 101.2(\mathrm{~d}, \mathrm{~J}=26.9 \mathrm{~Hz}), 49.2 . \mathrm{HRMS}(\mathrm{ESI})$ calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$ 403.0523, found 403.0523. $\mathrm{HPLC} \mathrm{t}_{\mathrm{R}}=12.2 \mathrm{~min}, 98.6 \%$.

4-(3-(1,1-Dioxidobenzo[d]isothiazol-2(3H)-yl)-5-fluorophenoxy)benzonitrile (31). The title compound was obtained as described for 22 using 25 ($74 \mathrm{mg}, 0.26 \mathrm{mmol}$) and 4 bromobenzonitrile ($40 \mathrm{mg}, 0.22 \mathrm{mmol}$) as starting materials. The crude product was purified by flash chromatography (EtOA c/PE, 1:3) and recrystallized from EtOA c/PE (3:1) to give 31 as a white solid ($37 \mathrm{mg}, 45 \%$). ${ }^{1} \mathrm{H} \mathrm{NM} \mathrm{R}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right): 7.88(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, \mathrm{J}=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{dt}, \mathrm{J}=10.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{dt}, \mathrm{J}=9.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}$,
$2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $164.1(\mathrm{~d}, \mathrm{~J}=248.0 \mathrm{~Hz}), 160.2,157.2(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}), 140.0$ (d, J = 12.8 Hz), 134.6, 134.4, 133.6, 131.2, 129.8, 124.5, 121.7, 118.8, 118.5, 107.2, 105.1 (d, J $=3.1 \mathrm{~Hz}$), $102.8(\mathrm{~d}, \mathrm{~J}=24.8 \mathrm{~Hz}), 101.6(\mathrm{~d}, \mathrm{~J}=26.7 \mathrm{~Hz}), 49.2$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 403.0523$, found 403.0503. $\mathrm{HPLC} \mathrm{t}_{\mathrm{R}}=12.2 \mathrm{~min}, 99.2 \%$.

2-(3-(3-(1,1-Dioxidobenzo[d]isothiazol-2(3H)-yl)-5-fluorophenoxy)phenyl)acetonitrile

(32). The title compound was obtained as described for $\mathbf{2 2}$ using $\mathbf{2 5}$ ($70 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 3 bromophenylacetonitrile ($40 \mathrm{mg}, 0.38 \mathrm{mmol}$) as starting materials. The crude product was purified by flash chromatography (EtOA C/PE, 3:7) and the title compound $\mathbf{3 2}$ was recrystallized from EtOA C/PE (3:1) as an orange solid ($20 \mathrm{mg}, 20 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.86(\mathrm{~d}, \mathrm{~J}=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{td}, \mathrm{J}=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ $(\mathrm{td}, \mathrm{J}=1.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{dt}, \mathrm{J}=10.2,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{dt}, \mathrm{J}=9.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): 164.0(\mathrm{~d}, \mathrm{~J}=246.6), 159.0(\mathrm{~d}, \mathrm{~J}=12.8), 156.6,139.5(\mathrm{~d}, \mathrm{~J}=13.2), 134.7,133.5,132.1$, $131.4,130.8,129.7,124.5,123.7,121.6,119.1,117.5,104.0(d, \mathrm{~J}=3.1), 101.5(\mathrm{~d}, \mathrm{~J}=25.0)$, 100.6 (d, J = 26.8), 49.3, 23.5. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 417.0680$, found 417.0667. $\mathrm{HPLC} \mathrm{t}_{\mathrm{R}}=12.0 \mathrm{~min}, 99.5 \%$.

2-(3-Fluoro-5-(pyridin-4-yloxy)phenyl)-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (33).

The title compound was obtained as described for $\mathbf{2 2}$ using $\mathbf{2 5}$ ($79 \mathrm{mg}, 0.28 \mathrm{mmol}$) and 4 bromopyridine hydrochloride ($46 \mathrm{mg}, 0.22 \mathrm{mmol}$) as starting materials. The crude product was purified by flash chromatography (EtOA c/PE, 9:1) to provide 33 as a white solid ($34 \mathrm{mg}, 40 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.54(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}$, $1 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right): 164.0(\mathrm{~d}, \mathrm{~J}=248.0), 163.6,156.2(\mathrm{~d}, \mathrm{~J}=12.9), 151.7,139.9(\mathrm{~d}, \mathrm{~J}=12.9), 134.6,133.6$, 131.2, 129.8, 124.6, 1221.6, 112.7, $105.5(\mathrm{~d}, \mathrm{~J}=3.2), 103.4(\mathrm{~d}, \mathrm{~J}=24.5), 102.0(\mathrm{~d}, \mathrm{~J}=26.7)$, 49.3. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 357.0704$, found 357.0717. $\mathrm{HPLC} \mathrm{t}_{\mathrm{R}}=8.6$ $\min , 98.8 \%$.

2-(3-Fluoro-5-(pyridin-2-yloxy)phenyl)-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (34).

The title compound was obtained as described for $\mathbf{2 2}$ using $\mathbf{2 5}$ ($75 \mathrm{mg}, 0.27 \mathrm{mmol}$) and 2iodopyridine ($24 \mu \mathrm{~L}, 0.22 \mathrm{mmol}$) as starting materials. The crude product was purified by flash chromatography (EtOA c/PE, 2:3) and the title compound 34 was recrystallized from acetone/PE as a white solid ($36 \mathrm{mg}, 45 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right): 8.23$ (dd, J $=4.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.86 $(\mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dd}, \mathrm{J}=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.69$ $(\mathrm{dt}, \mathrm{J}=9.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $163.7(\mathrm{~d}, \mathrm{~J}=246.3 \mathrm{~Hz}$), 162.7, $156.2(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}), 147.8,139.8,139.2(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}), 134.8,133.4,131.4,129.6$, 124.5, 121.6, 119.4, 112.1, $106.5(d, J=3.2 H z), 104.3(d, J=24.5 H z), 101.8(d, J=26.7 \mathrm{~Hz})$, 49.3. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 357.0704$, found 357.0704. HPLC $\mathrm{t}_{\mathrm{R}}=11.6$ $\min , 98.1 \%$.

2-(3-Iodophenoxy)pyridine (35). A vial was charged with 3-iodophenol (500 mg, 2.27 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(345 \mathrm{mg}, 2.5 \mathrm{mmol})$, dry DMF (2 mL) and 2-fluoropyridine ($196 \mu \mathrm{~L}, 2.27$ $\mathrm{mmol})$. The vial was capped and heated at $140{ }^{\circ} \mathrm{C}$ under microwave irradiation for 6 h . The reaction was partitioned between water and EtOAc, the aqueous phase was extracted with EtOAc $(2 x)$. The combined organic phases were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product was purified by flash chromatography (EtOA c/PE, 1:9) to give 35 as colorless oil that solidified upon standing (416 mg, 62\%). ${ }^{1} \mathrm{H} N \mathrm{NR}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right): 8.20(\mathrm{dd}, \mathrm{J}=4.9$,
$1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{td}, \mathrm{J}=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{dd}, \mathrm{J}$ $=6.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 163.2,154.6,147.8$, 139.6, 133.7, 130.9, 130.3, 120.7, 119.0, 111.8, 94.0. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{\mathrm{g}} \mathrm{INO}[\mathrm{M}+\mathrm{H}]^{+}$ 297.9723, found 297.9716. HPLC $\mathrm{t}_{\mathrm{R}}=12.5 \mathrm{~min}, 99.8 \%$.

2-(3-(Pyridin-2-yloxy)phenyl)-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (36). The title compound was obtained as described for $\mathbf{2 1}$ using $\mathbf{2 0}$ ($75 \mathrm{mg}, 0.44 \mathrm{mmol}$) and $\mathbf{3 5}$ ($158 \mathrm{mg}, 0.53$ mmol) as starting materials. The crude product was purified by flash chromatography (EtOA c/PE, 1:1) and the title compound (36) was recrystallized from EtOA c/PE (1:1) as a white solid (110 mg, 73\%). ${ }^{1} \mathrm{H}$ NMR (400 M Hz, CDCl ${ }_{3}$): $8.21(\mathrm{dd}, \mathrm{J}=5.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{ddd}, \mathrm{J}=8.3,7.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{td}, \mathrm{J}=0.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, \mathrm{J}=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}$, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{ddd}, \mathrm{J}=6.9,5.0,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 163.4, 155.2, 147.8, 139.6, 138.4, 135.0, 133.2, 131.9, 130.6, 129.5, 124.5, 121.5, 118.8, 117.0, 115.0, 111.9, 111.8, 49.5. HRMS (ESI) calcd for HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 339.0798$, found 339.0787. $\mathrm{HPLC} \mathrm{t}_{\mathrm{R}}=11.2 \mathrm{~min}, 99.6 \%$.

2-(3-Bromo-5-chlorophenoxy)pyridine (37). The title compound was obtained as described for 35 using 3-bromo-5-chlorophenol ($100 \mathrm{mg}, 0.48 \mathrm{mmol}$) and 2-fluoropyridine ($41 \mu \mathrm{~L}, 0.48$ $\mathrm{mmol})$ as starting materials. The crude product was purified by flash chromatography (EtOA c/PE, 1:9) to give 37 as colorless oil that crystallized upon standing ($89 \mathrm{mg}, 65 \%$). ${ }^{1} \mathrm{H}$ NM R ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 8.21 (ddd, J $=5.0,2.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.74 (ddd, J $=8.3,7.2,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{ddd}, \mathrm{J}=7.2$, $5.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dt}, \mathrm{J}=8.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 155.2,147.7$,
139.8, 135.5, 127.6, 122.9, 122.7, 120.5, 119.5, 112.1. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{BrCINO}$ $[\mathrm{M}+\mathrm{H}]^{+}$283.9472, found 283.9483. HPLC $\mathrm{t}_{\mathrm{R}}=13.4 \mathrm{~min}, 98.9 \%$.

2-(3-C hloro-5-(pyridin-2-yloxy)phenyl)-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (38),

 The title compound was obtained as described for $\mathbf{2 1}$ using $\mathbf{2 0}$ ($37 \mathrm{mg}, 0.22 \mathrm{mmol}$) and $\mathbf{3 7}$ (75 $\mathrm{mg}, 0.26 \mathrm{mmol}$) as starting materials. The crude product was purified by flash chromatography (EtOA c/PE, 3:7) to provide 38 as a colorless oil that crystallized upon standing ($50 \mathrm{mg}, 61 \%$). ${ }^{1} \mathrm{H}$ NMR (400 M Hz, CDCl $)_{3}$: 8.22 (ddd, J = 5.0, 1.9, $\left.0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.87(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ (ddd, J = 8.3, 7.2, 2.0 Hz, 1H), $7.69(\mathrm{td}, \mathrm{J}=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{ddd}, \mathrm{J}=7.2,5.0,0.9 \mathrm{~Hz}$, 1H), $7.00-6.95(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}$): 162.8, 155.6, 147.8, 139.8, 139.1, 135.9, 134.8, 133.4, 131.5, 129.6, 124.49, 121.6, 119.3, 117.2, 114.5, 112.1, 109.7. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{CINO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 373.0408$, found 374.0406. $\mathrm{HPLC} \mathrm{t}_{\mathrm{R}}=12.1 \mathrm{~min}$, $>99.9 \%$.
Computational modeling

Homology modeling. The sequences of the short isoform of human FFA 4 and the nanobodystabilized ${ }^{2}{ }_{2}$-adrenoceptor (PDB ID 3POG) ${ }^{31}$ were aligned manually. Homology models of FFA 4 were constructed using Modeller 9.14. ${ }^{32}$ The FFA4 homology model was imported into M aestro, ${ }^{33}$ preprocessed using the OPLS-2005 force field, added hydrogen atoms and assigned partial charges. Hydrogen bond assignment was done at $\mathrm{pH}=7.4$ using PROPKA. ${ }^{34}$ Restrained minimization was performed until heavy atoms converged to RMSD $=0.3 \AA$ using the OPLS2005 force field.

Ligand Preparation and Docking. All ligands were converted to three-dimensional structures in M aestro. M acroM odel was used for energy minimization of ligands using the OPLS-2005
force field. ${ }^{35}$ Ligands were prepared using Lig-Prep. ${ }^{36}$ Ionization states were generated using Epik at $\mathrm{pH} 7.0 \pm 1.0$, and low energy ring conformations were restricted to one per ligand. Induced-fit docking studies were performed using the extended sampling protocol as implemented in Schrodinger suite 2015-3.37 Ligand conformational sampling was performed using default settings. Prime was used to refine residues within $5.0 \AA$ of ligand poses. ${ }^{38}$

In vitro assays

2-Arrestin-2 Interaction Assay. Plasmids encoding human or mouse FFA 4 or human or mouse FFA 1 fused at the C-terminal to enhanced yellow fluorescent protein were cotransfected into HEK 293 cells with a plasmid encoding ${ }^{2}$-arrestin 2 fused to Renilla luciferase. Cells were distributed into white 96 -well plates 24 h post-transfection and then maintained in culture for another 24 h prior to their use. For FFA 4, the cells were first washed in Hank's B alanced Salt Solution and then the Renilla luciferase substrate coelenterazine $h(2.5 \mu \mathrm{M})$ for 15 mins . For the final 5 mins of coelentrazine h incubation, the cells were treated with the ligands of interest. For FFA 1, following cell washing, the cells were firstly incubated with ligands for 30 mins. 15 mins prior to the end of the incubation, the cells were treated with coelentrazine $h(2.5 \mu \mathrm{M})$. All incubations were at $37{ }^{\circ} \mathrm{C}$. Luminescence at 535 and 475 nm was then measured using a Pherastar FS plate reader and the ratio of luminescence at $535 / 475 \mathrm{~nm}$ used to calculate the BRET response.

FFA1 C alcium M obilization Assay. 1321N 1 cells stably transfected with human FFA 1 were grown in Dulbecco's modified Eagle's medium supplemented with $10 \%(v / v)$ fetal calf serum, $100 \mathrm{U} / \mathrm{mL}$ penicillin, $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin, and $400 \mu \mathrm{~g} / \mathrm{mL}$ G418. Cells were seeded in 96well black clear-bottom ninety-six-well microplates at a density of 15,000 cells per well. A fter 24 h , the cells were incubated in culture medium containing the Ca^{2+}-sensitive dye Fura2-A M (3
mM) for 45 min . Cells were then washed three times in Hanks' balanced salt solution (HBSS) and then allowed to equilibrate for 15 mins before conducting the assay. Fura2 fluorescent emission was them measured at 510 nm following excitation at both 340 and 380 nm during the course of the experiment using a Flexstation plate reader (M olecular Devices). Ca^{2+} responses were measured as the difference between 340:380 ratios before and after the addition of ligands. For antagonism testing, Ca^{2+} assays were carried out on FIp-In T-REx 293 cell lines, generated to inducibly express FFA1 upon treatment with doxycycline. One day prior to conducting the experiment, cells were seeded at $50000 \mathrm{cells} / \mathrm{well}$ and allowed to adhere for $3-4 \mathrm{~h}$ before the addition of $100 \mathrm{ng} / \mathrm{ml}$ doxycycline to induce receptor expression. The following day, cells were incubated in culture medium containing Fura2-A M (3 mM) for 45 min . Cells were then washed three times and then preincubated for 15 min in Hanks' balanced salt solution (HBSS) supplemented with the appropriate ligands to be tested for antagonism. U pon addition of 300 nM 10, Fura2 fluorescent emission and subsequent Ca^{2+} responses were measured as described above.

FFA4 C alcium M obilization Assay. Ca^{2+} assays were carried out on FIp-In T-REx 293 cell lines, generated to inducibly express FFA4 upon treatment with doxycycline. As described above, 24 hours prior to conducting the experiment, cells were seeded at 50000 cells/well in black clear-bottom ninety-six-well microplates, allowed to adhere, and then treated with 100 $\mathrm{ng} / \mathrm{ml}$ doxycycline overnight to induce receptor expression. The following day, cells were incubated in culture medium containing Fura2-AM (3 mM) for 45 min , washed three times in HBSS, and then allowed to equilibrate for 15 min . Upon ligand addition, Fura2 fluorescent emission and Ca^{2+} responses were then measured as described above.

Data Analysis. BRET and Ca^{2+} data is presented as the means \pm S.E. of 2-4 independent experiments, with all data analysis and curve fitting carried out using three parameter sigmoidal concentration-response curves generated from the GraphPad Prism software package version 5.0b (GraphPad, San Diego).

Animal studies

M ale wild-type mice were obtained from Charles Rivers (M aidstone, K ent, UK). M ice were received at five weeks of age. FFA 4 (Taconic) knockout mice on a C57BI6 background were maintained in house and were over more than 8 generations crossed to the BI6 background. They were fed on standard laboratory chow (Beekay Feed; B \& K Universal Ltd., Hull, UK) until used, except that for the studies on diet-induced obesity when FFA 4(-/-) mice and wild-type littermates were fed from the age of 6 weeks on a high-fat (63% by energy; Open Source D12492, Research Diets, New Brunswick, NJ, USA) for 5 months. The bodyweights of the genotypes at the onset of dosing (day 0) were $47.1 \pm 3.1 \mathrm{~g}$ for wild-type mice and $46.0 \pm 3.8 \mathrm{~g}$ the FFA $4(-/-)$ mice. Housing and procedures were conducted in accordance with the UK Government Animal (Scientific procedures) Act 1986 and approved by the University of Buckingham Ethical review B oard. A nimals were housed in cages of three on a 12 hour light: dark cycle from 7:00 to 19:00 at $25-26{ }^{\circ} \mathrm{C}$ with ad libitum access to food and water. A nimals were killed $3-4 \mathrm{~h}$ after the onset of the light cycle, by a UK Government A nimal Scientific Act 1986 schedule 1 method.

Oral glucose tolerance. Oral glucose tolerance was measured as described previously. ${ }^{39}$ Briefly, mice were fasted for five h before being dosed with glucose ($3 \mathrm{~g} / \mathrm{kg}$ bodyweight, po). Blood samples (10 $\mu \mathrm{L}$) were taken from the tip of the tail after applying a local anesthetic (Lignocaine ${ }^{\text {TM }}$; Centaur Services, UK), 30 min and immediately before, and 30, 60, 90, 120 and 180 min after dosing the glucose load. Whole blood was mixed with hemolysis reagent and
blood glucose was measured in duplicate using the Sigma Enzymatic (Glucose Oxidase Trinder; ThermoFisher M icrogenics, UK) colorimetric method and a SpectraM ax 250 (M olecular Devices Corporation, Sunnyvale, CA, USA).

Insulin. Plasma insulin levels were measured using a murine insulin ELISA kit (CrystalChem, USA) according to the manufacturer's recommendation. Whole blood was collected into EDTA tubes and spun at $3,000 \mathrm{~g}$ for 5 min at $4^{\circ} \mathrm{C}$ and the plasma stored at $-80^{\circ} \mathrm{C}$ prior to analysis. Plasma samples were assayed in duplicate and the absorbance of both unknowns and standards measured using the Spectromax at 450 nm .

ASSOCIATED CONTENT

Supporting Information. Experimental procedures for synthesis, determination of solubility and computational modeling, activity of α-linolenic acid, $\mathbf{1}$ and $\mathbf{7}$ on FFA 4 receptor mutants, activity of $\mathbf{1 0}$ on hFFA 4. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding A uthor

*Phone: +45 6550 2568. E-mail: ulven@ sdu.dk.

Present Addresses

\dagger If an author's address is different than the one given in the affiliation line, this information may be included here.

Author C ontributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding Sources

The Danish Council for Strategic Research (grant 11-116196) and the U niversity of Southern Denmark for financial support.

Notes

BDH, GM and TU are shareholders of Caldan Therapeutics.

ACKNOWLEDGMENT

We thank Britt Grathwohl,;, Eugenia Sergeev and M aria Due-H ansen for hel pful input and assistance.

ABBREVIATIONS

BRET, bioluminescence resonance energy transfer; DM EDA , N,N'-dimethylethylenediamine; FaSSIF, fasted state simulated intestinal fluid; FFA 1, free fatty acid receptor 1 (GPR 40); FFA 2, free fatty acid receptor 2 (GPR 43); FFA 3, free fatty acid receptor 3 (GPR 41); FFA 4, free fatty acid receptor 4 (GPR120); HBSS, Hanks' balanced salt solution; na, no activity; PE, petroleum ether.

REFERENCES

(1) Offermanns, S. Free fatty acid (FFA) and hydroxy carboxylic acid (HCA) receptors. Annu. Rev. Pharmacol. Toxicol. 2014, 54, 407-434.
(2) M oniri, N. H. Free-fatty acid receptor-4 (GPR 120): cellular and molecular function and its role in metabolic disorders. Biochem. Pharmacol. 2016, doi:10.1016/j.bcp.2016.1001.1021.
(3) Cornall, L. M.; M athai, M. L.; Hryciw, D. H.; McAinch, A. J. GPR 120 agonism as a countermeasure against metabolic diseases. Drug Discov. Today 2014, 19, 670-679.
(4) Hara, T.; K imura, I.; Inoue, D.; Ichimura, A.; Hirasawa, A. Free fatty acid receptors and their role in regulation of energy metabolism. Rev. Physiol., Biochem. Pharmacol. 2013, 164, 77116.
(5) Ulven, T.; Christiansen, E. Dietary Influences on Regulation of the Long-Chain Fatty A cid Receptor FFA 4/GPR 120. Annu. Rev. Nutr. 2015, 35, 239-263.
(6) M illigan, G.; Alvarez-Curto, E.; Watterson, K. R.; Ulven, T.; Hudson, B. D. Characterising pharmacological ligands to study the long chain fatty acid receptors GPR 40/FFA 1 and GPR 120/FFA 4. Br. J. P harmacol. 2015, 172, 3254-3265.
(7) M illigan, G.; Shimpukade, B.; Ulven, T.; Hudson, B. D. Complex Pharmacology of Free Fatty A cid Receptors. Chem. Rev. 2016, doi:10.1021/acs.chemrev.1026b00056.
(8) Hirasawa, A.; T sumaya, K .; A waji, T.; K atsuma, S.; A dachi, T.; Y amada, M .; Sugimoto, Y.; M iyazaki, S.; Tsujimoto, G. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR 120. Nature M ed. 2005, 11, 90-94.
(9) Paulsen, S. J.; Larsen, L. K.; Hansen, G.; Chelur, S.; Larsen, P. J.; V rang, N. Expression of the fatty acid receptor GPR 120 in the gut of diet-induced-obese rats and its role in GLP-1 secretion. PLoS O ne 2014, 9, e88227.
(10) Oh, D. Y.; Talukdar, S.; Bae, E. J.; Imamura, T.; M orinaga, H.; Fan, W. Q.; Li, P. P.; Lu, W. J.; W atkins, S. M .; Olefsky, J. M . GPR 120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010, 142, 687-698.
(11) Ichimura, A.; Hirasawa, A.; Poulain-Godefroy, O.; Bonnefond, A.; Hara, T.; Y engo, L.; Kimura, I.; Leloire, A.; Liu, N.; lida, K .; Choquet, H.; Besnard, P.; Lecoeur, C.; Vivequin, S.; A yukawa, K.; Takeuchi, M.; Ozawa, K.; Tauber, M.; M affeis, C.; M orandi, A.; Buzzetti, R.; Elliott, P.; Pouta, A .; Jarvelin, M .-R.; K orner, A .; K iess, W .; Pigeyre, M .; Caiazzo, R.; V an Hul, W.; Van Gaal, L.; Horber, F.; Balkau, B.; Levy-M archal, C.; Rouskas, K.; K ouvatsi, A.; Hebebrand, J.; Hinney, A.; Scherag, A .; Pattou, F.; M eyre, D.; K oshimizu, T.-a.; W olowczuk, I.; Tsujimoto, G.; Froguel, P. Dysfunction of lipid sensor GPR 120 leads to obesity in both mouse and human. Nature 2012, 483, 350-354.
(12) Oh da, Y .; W alenta, E.; A kiyama, T. E.; Lagakos, W. S.; Lackey, D.; Pessentheiner, A. R.; Sasik, R.; Hah, N.; Chi, T. J.; Cox, J. M.; Powels, M. A.; Di Salvo, J.; Sinz, C.; W atkins, S. M .; Armando, A. M.; Chung, H.; Evans, R. M .; Quehenberger, O.; M cN elis, J.; Bogner-Strauss, J. G.; Olefsky, J. M. A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nature M ed. 2014, 20, 942-947.
(13) Engelstoft, M. S.; Park, W. M .; Sakata, I.; K ristensen, L. V.; Husted, A. S.; OsborneLawrence, S.; Piper, P. K.; Walker, A. K.; Pedersen, M. H.; Nohr, M. K.; Pan, J.; Sinz, C. J.; Carrington, P. E.; A kiyama, T. E.; Jones, R. M.; Tang, C.; A hmed, K.; Offermanns, S.; Egerod, K. L.; Zigman, J. M.; Schwartz, T. W. Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. M ol. M etab. 2013, 2, 376-392.
(14) Suckow, A. T.; Polidori, D.; Y an, W.; Chon, S.; M a, J. Y .; Leonard, J.; Briscoe, C. P. Alteration of the glucagon axis in GPR 120 (FFAR4) knockout mice: a role for GPR 120 in glucagon secretion. J. Biol. C hem. 2014, 289, 15751-15763.
(15) Stone, V. M.; Dhayal, S.; Brocklehurst, K. J.; Lenaghan, C.; Sorhede Winzell, M.; Hammar, M .; Xu, X .; Smith, D. M.; M organ, N. G. GPR120 (FFA R 4) is preferentially expressed in pancreatic delta cells and regulates somatostatin secretion from murine islets of Langerhans. Diabetologia 2014, 57, 1182-1191.
(16) Egerod, K. L.; Engelstoft, M. S.; Lund, M . L.; Grunddal, K . V.; Zhao, M .; B arir-J ensen, D.; N ygaard, E. B.; Petersen, N.; Holst, J. J.; Schwartz, T. W. Transcriptional and Functional Characterization of the G Protein-Coupled Receptor Repertoire of Gastric Somatostatin Cells. Endocrinology 2015, 156, 3909-3923.
(17) Christiansen, E.; W atterson, K. R.; Stocker, C. J.; Sokol, E.; Jenkins, L.; Simon, K.; Grundmann, M.; Petersen, R. K.; Wargent, E. T.; Hudson, B. D.; K ostenis, E.; Ejsing, C. S.; Cawthorne, M. A.; M illigan, G.; Ulven, T. A ctivity of dietary fatty acids on FFA 1 and FFA 4 and characterization of pinolenic acid as a dual FFA 1/FFA 4 agonist with potential effect against metabolic diseases. Br. J. Nutr. 2015, 113, 1677-1688.
(18) Shimpukade, B.; Hudson, B. D.; Hovgaard, C. K.; M illigan, G.; Ulven, T. Discovery of a Potent and Selective GPR 120 A gonist. J. M ed. Chem. 2012, 55, 4511-4515.
(19) Christiansen, E.; Due-Hansen, M . E.; Urban, C.; M erten, N.; Pfleiderer, M .; K arlsen, K . K .; R asmussen, S. S.; Steensgaard, M .; Hamacher, A .; Schmidt, J.; Drewke, C.; Petersen, R . K .; K ristiansen, K.; Ullrich, S.; K ostenis, E.; K assack, M. U.; Ulven, T. Structure-activity study of dihydrocinnamic acids and discovery of the potent FFA 1 (GPR 40) agonist TUG-469. ACS M ed. Chem. Lett. 2010, 1, 345-349.
(20) Hudson, B. D.; Shimpukade, B.; Mackenzie, A. E.; Butcher, A. J.; Pediani, J. D.; Christiansen, E.; Heathcote, H.; Tobin, A. B.; Ulven, T.; Milligan, G. The Pharmacology of

TUG-891, a Potent and Selective A gonist of the Free Fatty A cid Receptor 4 (FFA 4/GPR120), Demonstrates B oth Potential Opportunity and Possible Challenges to Therapeutic A gonism. Mol. Pharmacol. 2013, 84, 710-725.
(21) A rakawa, K .; Nishimura, T.; Sugimoto, Y .; Takahashi, H.; Shimamura, T. Preparation of heteroaryloxyphenyldihydrobenzisothiazoledioxide derivatives and analogs for use as GPR 120 receptor modulators. W O2010104195A 1.
(22) Sparks, S. M.; Chen, G.; Collins, J. L.; Danger, D.; Dock, S. T.; Jayawickreme, C.; Jenkinson, S.; Laudeman, C.; Leesnitzer, M. A.; Liang, X.; M aloney, P.; M cCoy, D. C.; M oncol, D.; Rash, V.; Rimele, T.; Vulimiri, P.; W ay, J. M .; Ross, S. Identification of diarylsulfonamides as agonists of the free fatty acid receptor 4 (FFA 4/GPR120). Bioorg. M ed. Chem. Lett. 2014, 24, 3100-3103.
(23) Christiansen, E.; Urban, C.; M erten, N.; Liebscher, K .; K arlsen, K. K.; Hamacher, A.; Spinrath, A.; B ond, A. D.; Drewke, C.; Ullrich, S.; K assack, M. U.; K ostenis, E.; Ulven, T. Discovery of potent and selective agonists for the free fatty acid receptor 1 (FFA 1/GPR40), a potential target for the treatment of type II diabetes. J. M ed. C hem. 2008, 51, 7061-7064.
(24) Hudson, B. D.; Shimpukade, B.; Milligan, G.; Ulven, T. The molecular basis of ligand interaction at free fatty acid receptor 4 (FFA 4/GPR120). J. Biol. Chem. 2014, 289, 20345-20358.
(25) Shelley, J. C.; Cholleti, A .; Frye, L. L.; Greenwood, J. R.; Timlin, M . R.; Uchimaya, M . Epik: a software program for pK (a) prediction and protonation state generation for drug-like molecules. J. Comput. Aided M ol. Des. 2007, 21, 681-691.
(26) Christiansen, E.; Hansen, S. V. F.; Urban, C.; Hudson, B. D.; Wargent, E. T.; Grundmann, M.; Jenkins, L.; Zaibi, M .; Stocker, C. J.; Ullrich, S.; K ostenis, E.; K assack, M . U.; M illigan, G.; Cawthorne, M. A.; Ulven, T. Discovery of TUG-770: A Highly Potent Free Fatty Acid Receptor 1 (FFA 1/GPR40) A gonist for Treatment of Type 2 Diabetes. ACS Med. Chem. Lett. 2013, 4, 441-445.
(27) Sun, P.; W ang, T.; Zhou, Y .; Liu, H.; Jiang, H.; Zhu, W .; W ang, H. DC260126: a smallmolecule antagonist of GPR 40 that protects against pancreatic beta-Cells dysfunction in $\mathrm{db} / \mathrm{db}$ mice. PLoS One 2013, 8, e66744.
(28) Zhang, X. D.; Y an, G. R.; Li, Y. M.; Zhu, W. L.; Wang, H. Y. DC260126, a smallmolecule antagonist of GPR 40, improves insulin tolerance but not glucose tolerance in obese Zucker rats. Biomedicine \& Pharmacotherapy 2010, 64, 647-651.
(29) Taneera, J.; Lang, S.; Sharma, A.; Fadista, J.; Zhou, Y.; A hlqvist, E.; Jonsson, A.; Lyssenko, V.; Vikman, P.; Hansson, O.; Parikh, H.; K orsgren, O.; Soni, A .; K rus, U.; Zhang, E.; Jing, X. J.; Esguerra, J. L.; W ollheim, C. B.; Salehi, A .; R osengren, A .; Renstrom, E.; Groop, L. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell M etab. 2012, 16, 122-134.
(30) Vestmar, M. A.; A ndersson, E. A.; Christensen, C. R.; Hauge, M.; Glumer, C.; Linneberg, A.; Witte, D. R.; J orgensen, M. E.; Christensen, C.; B randslund, I.; Lauritzen, T.; Pedersen, O.; Holst, B.; Grarup, N.; Schwartz, T. W.; Hansen, T. Functional and genetic epidemiological characterisation of the FFAR4 (GPR120) p.R270H variant in the Danish population. J. M ed. Genet. 2016.
(31) Rasmussen, S. G. F.; Choi, H.-J.; Fung, J. J.; Pardon, E.; Casarosa, P.; Chae, P. S.; DeV ree, B. T.; Rosenbaum, D. M.; Thian, F. S.; K obilka, T. S.; Schnapp, A.; K onetzki, I.; Sunahara, R. K.; Gellman, S. H.; Pautsch, A.; Steyaert, J.; W eis, W . I.; K obilka, B . K. Structure of a nanobody-stabilized active state of the β_{2} adrenoceptor. Nature 2011, 469, 175-180.
(32) Sali, A.; Blundell, T. L. Comparative Protein Modeling by Satisfaction of Spatial Restraints. J. M ol. Biol. 1993, 234, 779-815.
(33) Kundu, N. G.; K han, M. W.; Mukhopadhyay, R. Heteroannulation through combined palladium catalysed and friedel-crafts reactions strategy: Synthesis of 3-alkylidene isoiodolin-1ones. Tetrahedron 1999, 55, 12361-12376.
(34) Olsson, M.H.; Sondergaard, C. R.; Rostkowski, M .; J ensen, J. H. PROPK A 3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. J Chem Theory Comput 2011, 7, 525-537.
(35) Schrödinger Release 2015-3: M acroM odel, version 10.9, Schrödinger, LLC, New Y ork, NY, 2015.
(36) Schrödinger Release 2015-3: LigPrep, version 3.5, Schrödinger, LLC, New Y ork, NY, 2015.
(37) Kang, S. K.; Ryu, H. C.; Lee, S. W. Ni(acac)(2)-catalyzed cross-coupling and carbonylative cross-coupling of organostannanes with hypervalent iodonium salts. J. Chem. Soc., Perkin Trans. 1 1999, 2661-2663.
(38) Cho, C. S.; Oh, B. H.; Shim, S. C. Synthesis of quinolines by ruthenium-catalyzed heteroannulation of anilines with 3-amino-1-propanol. J. Heterocycl. Chem. 1999, 36, 11751178.
(39) W argent, E. T.; Zaibi, M. S.; O'Dowd, J. F.; Cawthorne, M. A .; W ang, S. J.; A rch, J. R.; Stocker, C. J. Evidence from studies in rodents and in isolated adipocytes that agonists of the chemerin receptor CM K LR 1 may be beneficial in the treatment of type 2 diabetes. Peer」2015, 3, e753.

Insert Table of Contents Graphic and Synopsis Here

[^0]: ${ }^{\text {a }}$ BRET-based β-arrestin recruitment based FFA 4 assay. Efficacy ($\mathrm{E}_{\text {max }}$) is relative to $100 \mu \mathrm{M} \mathbf{1 0}$ (3-(4-(o-tolylethynyl)phenyl)propanoic acid, TUG-424). ${ }^{23}{ }^{\text {b }} \mathrm{Ca}^{2+}$ FFA 4 assay. Efficacy ($\mathrm{E}_{\text {max }}$) is

