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Abstract  

Familial aggregation, coupled with ethnic variation in incidence, suggests that 

inherited susceptibility plays a role in the development of lymphoma, and the search 

for genetic risk factors has highlighted the contribution of the Human Leukocyte 

Antigen (HLA) complex.  In a landmark study published almost fifty years ago, 

Hodgkin lymphoma was the first disease to be associated with HLA variation.  It is 

now clear that EBV-positive and -negative Hodgkin lymphoma are strongly 

associated with specific HLA polymorphisms but these differ by EBV status of the 

tumours.  HLA class I alleles are consistently associated with EBV-positive Hodgkin 

lymphoma while a polymorphism in HLA class II is the strongest predictor of risk of 

EBV-negative Hodgkin lymphoma.  Recent investigations, particularly genome wide 

association studies, have also revealed associations between HLA and common 

types of non-Hodgkin lymphoma.  Follicular lymphoma is strongly associated with 

two distinct haplotypes in HLA class II whereas diffuse large B-cell lymphoma is 

most strongly associated with HLA-B*08.  Although chronic lymphocytic leukaemia is 

associated with variation in HLA class II, the strongest signals in genome wide 

association studies are from non-HLA polymorphisms, suggesting that inherited 

susceptibility is explained by co-inheritance of multiple low risk variants.  

Associations between B-cell derived lymphoma and HLA variation suggest that 

antigen presentation, or lack of, plays an important role in disease pathogenesis but 

the precise mechanisms have yet to be elucidated. 
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Introduction  

Mature B-cell neoplasms account for 90% of all lymphomas globally and are divided 

into Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL) (1).  HL is one of 

the most common lymphomas in the developed world and comprises two entities, 

nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) and classical Hodgkin 

lymphoma (cHL), which account for <5% and >95% of cases, respectively.  The 

NHLs represent a diverse and heterogeneous group of malignancies.  The 2008 

World Health Organization (WHO) classification of lymphomas includes more than 

60 distinct subtypes of NHL with diffuse large B-cell lymphoma (DLBCL), follicular 

lymphoma (FL) and chronic lymphocytic leukaemia (CLL)/small lymphocytic 

lymphoma (SLL) the most common.  

The aetiology of both HL and NHL is still unclear.  However, current evidence 

suggests that environmental exposures, infectious agents, and both 

immunosuppression and immune activation contribute to the development of these 

diseases.  In addition, as described below, there is compelling evidence for inherited 

susceptibility to HL and NHL.  The search for genetic risk factors has highlighted the 

importance of the human leukocyte antigen (HLA) region (2, 3).  A crucial role for 

HLA in disease pathogenesis is further suggested by observations that HLA class I 

and class II expression is frequently down-regulated in tumour tissue (4, 5).  Taken 

together, the data implicate HLA-mediated interactions in the pathogenesis of both 

HL and NHL.  This review aims to summarise the main findings that have emerged 

from HLA association studies and genome-wide association studies (GWAS) of HL 

and the three most common forms of NHL, namely DLBCL, FL and CLL/SLL. 

Evidence for inherited susceptibility in lymphoma 

http://en.wikipedia.org/wiki/Hodgkin_lymphoma
http://en.wikipedia.org/wiki/Non-Hodgkin_lymphoma
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Inherited susceptibility to HL and NHL is supported by several strands of evidence.  

First, the incidence of HL and NHL varies significantly between racial and ethnic 

groups with the Asian population showing one of the lowest incidence rates for both 

diseases (6-8).  Population-based studies in the USA demonstrate that the incidence 

of HL and CLL is consistently low in Asian groups relative to US Whites, suggesting 

some genetic protection against disease, given similar environmental exposures (6, 

8).  Secondly, there is clear evidence of familial aggregation of both HL and NHL.  

Studies of HL indicate a 3-9 fold increased risk of HL in first-degree relatives of index 

cases (9-12).  Furthermore, a study of monozygotic and dizygotic twins 

demonstrated that the co-twin of a monozygotic HL case has a 100-fold increased 

risk of developing the disease (13).  The Swedish Family Cancer database estimated 

the heritability of HL in the white population as 28.4% (14).  Individual case-control 

studies as well as a recent meta-analysis of NHL subtypes also show an increased 

incidence of DLBCL, FL and CLL in patients with a family history of NHL, with CLL 

showing the greatest increase of 8-fold (15-21).  Familial aggregation of CLL cases 

has also been documented in over 100 familial studies (reviewed in 22).  

Collectively, the data support a genetic predisposition to the development of 

lymphoma.  

Human Leukocyte Antigens and Genes 

HLA molecules present pathogen and tumour-derived peptides to T-cells thereby 

initiating the adaptive immune response.  The classical HLA class I molecules, HLA-

A, -B and -C, are heterodimers of a polymorphic α-polypeptide chain and β2-

microglobulin, present endogenous peptides to cytotoxic CD8 positive T-cells 

(CD8+T-cells), and are expressed by almost all somatic cells.  In contrast, the HLA 

class II molecules HLA-DR, -DQ and -DP are heterodimers of α- and β-polypeptide 
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chains, present endocytosed extracellular peptides to helper CD4 positive T-cells 

(CD4+T-cells), and are normally expressed only on antigen presenting cells.      

The highly polymorphic HLA genes are contained within the HLA complex, the 

human equivalent of the major histocompatibility complex, which is located on the 

short arm of chromosome 6 and divided into three regions.  The class I region 

contains genes for the α-chains of HLA-A, B and C and also the three non-classical 

HLAs (HLA-E, -F and –G), which are differentiated by their limited polymorphism and 

restricted tissue expression.  Similarly, the class II region includes genes for HLA-

DR, DQ, and DP as well as HLA-DO and DM, the non-classical class II antigens.  

DQA1 and DQB1 genes encode the α- and β-chains of the HLA-DQ heterodimer 

and, similarly, DPA1 and DPB1 genes encode the respective chains of the DP 

heterodimer.  For DR the situation is more complex as the number of DR genes 

varies between individual MHC regions.  All have a single DRA gene and a DRB1 

gene but some haplotypes have an additional, functional DRB3, DRB4, or DRB5 

gene.  For example, haplotypes containing the DRB1 alleles DRB1*04:01, *07:01 

and *09:01 also have a DRB4 gene.  This results in expression of a second DR 

molecule with α- and β-chains encoded by the DRA and DRB4 genes, respectively 

(23).  Out of a total of 128 class I and 27 class II genes, 42 and 17 encode proteins, 

the majority of which have an established role in immunity.   

The HLA class I and II regions are separated by the class III region.  Although there 

are no HLA genes within this region, it encodes proteins with immune function, such 

as tumour necrosis factor (TNF)-α and -β, heat shock proteins and the complement 

factors C2 and C4.      
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HLA class I and II molecules have similar conformations including a peptide-binding 

groove which contains several pockets.  The pockets accommodate side chains of 

amino acids in the bound peptide and some of these, referred to as anchoring 

pockets, have a critical role in determining peptide-binding specificity (reviewed in 

24).  Polymorphisms in HLA genes lead to amino acid variation within these pockets, 

and this in turn affects peptide binding preferences; however, products of different 

HLA alleles can contain identical anchoring pockets thus enabling grouping of HLA 

alleles into supertypes on the basis of overlapping peptide specificities (25).   

To enable an efficient immune response, HLA molecules must bind a peptide and 

the T-cell repertoire must include clones that recognise the HLA-peptide 

combination.  Absence of either may render an individual susceptible to a given 

disease.  

HLA association studies: caveats and pitfalls 

The analysis of HLA associations with disease is challenging and a number of 

factors need to be taken into consideration.  First, study design and sample size are 

critical but for reasons of practicality are seldom ideal.  In case-control studies, 

spurious results can arise from poor matching between cases and controls, 

diagnostic misclassification and disease heterogeneity, biased case selection, and 

retrospective ascertainment of cases leading to survival bias.  Population 

stratification, resulting from admixture of populations with different ancestry, is a 

particular problem in genetic association studies.  Family-based designs aim to avoid 

the potential confounding effects of population stratification by using parents or 

unaffected siblings as controls for the index case.  However, family-based studies 

are often limited by size.  Small studies frequently report strong associations that 
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disappear or become weak when sample size increases.  Sample size is also crucial 

in case-control studies.  To have 80% power to detect a significant association 

(p<0.05) with an allele with a carrier frequency of 0.10 with an odds ratio of 2 

requires >300 cases; following correction for multiple testing of e.g. 50 alleles, this 

number increases to >600.  Thus, most published studies of HLA associations are 

under-powered to detect small effects sizes and associations with rare alleles.  The 

necessary larger-sized studies are usually limited by cost and sample availability.   

Secondly, it is often assumed that the genotyped locus confers 

susceptibility/protection from disease development.  However, the genotyped locus 

may not be causal but rather may be in linkage disequilibrium (LD) with the causal 

variant.  This is a particular challenge in HLA association studies as there is 

extensive LD within the HLA complex and many alleles are inherited in a block.  

Thus, unadjusted analyses frequently show associations with multiple alleles on the 

same haplotype; this is less of problem with DP genes as there is a recombination 

hotspot between DQ and DP.    R2 and D’ values are used to describe the extent of 

LD between two genetic variants.  R2 is a measure of correlation, and high values 

(>0.8) occur when two alleles are present at equal frequency and inherited together; 

an r2 of 1 indicates that only two of the four possible haplotypes are present.  For 

tagging studies, where one marker is used to tag or substitute for another, r2 is the 

important measure; however, in population genetics D’, a measure of recombination 

events between two markers which is not dependent on allele frequency, is generally 

more informative.  A high D’ value indicates that the rarer allele is always inherited 

with the other allele or, in the case of single nucleotide polymorphisms (SNPs), with 

one of the alleles; r-squared is usually lower since most of the time the commoner 

allele is present without the rarer allele.   
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Most HLA association studies describe the frequency of a particular allele (or 

genotype or phenotype) according to case-control status, with unadjusted statistical 

analyses, i.e. not adjusted for the effects of other alleles.  In order to identify potential 

causal alleles, various statistical methods have been used to adjust for effects of LD; 

although generally more informative, this can complicate comparisons between 

studies. 

Thirdly, the methodology used to type HLA alleles has changed dramatically over the 

past 40 years.  Traditionally HLA antigens were defined using serological 

techniques. Whilst serology performed adequately for typing families, it was 

unsatisfactory for typing unrelated donors particularly once the extent of HLA 

polymorphism became known.  The availability of nucleotide sequence data for HLA 

genes allowed the rapid development of PCR-based typing methods.  These can be 

grouped into two categories: (i) those which generate a product containing internal 

polymorphisms, which are then identified using a second technique, e.g. PCR-

sequence specific oligonucleotide probing, PCR-restriction fragment length 

polymorphism; (ii) those in which the polymorphism is identified as part of the PCR 

process, e.g. PCR-sequence specific primer.  These techniques have proven reliable, 

robust and accurate and are currently the most widely used methods.  In recent 

research investigations, HLA alleles have also been imputed from SNPs identified in 

GWAS; as more data are becoming available, this method is becoming increasingly 

reliable.  Ultimately, sequencing is required to unequivocally identify specific alleles.  

Changes in typing methodology coupled with an improved understanding of the HLA 

complex have led to changes in HLA nomenclature, which can complicate 

comparisons across studies.  Serotypes, defined by serological typing, are largely 

separated into class I and II groups and numbered sequentially, e.g. HLA-A1, A2 etc.  
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Broad specificities are sometimes further divided into ‘split specificities’.  With the 

introduction of molecular typing the naming system was altered and allele 

designations now include up to four fields separated by colons.  The first field 

contains an asterisk to denote molecular typing and defines the allele of the gene, 

which often but not always corresponds to the serotype; the second field defines the 

subtype of the allele.  Early HLA association studies generally reported only the first 

field of the descriptor with more recent, higher resolution studies reporting the first 

two fields.  In describing reported HLA associations we have attempted to adhere to 

the nomenclature used in the individual studies.  

Hodgkin lymphoma 

A distinguishing feature of HL, shared by both NLPHL and cHL, is the paucity of 

malignant cells within the tumour mass, which is largely composed of an 

inflammatory infiltrate (26).  Until 2001, HL was classified as a single disease, 

Hodgkin’s disease, with four histological subtypes.  Following the acceptance that 

Hodgkin’s disease is a B-cell derived lymphoma and that lymphocyte predominance 

Hodgkin’s disease has many distinctive features, the disease was renamed HL and 

separated into two main entities, NLPHL and cHL (27).  Based upon the infiltrate 

composition and architecture and the morphology of the Hodgkin and Reed-

Sternberg (HRS) cells, cHL is now further subdivided into four histological subtypes.  

The nodular sclerosis (NSHL) subtype is the most common, accounting for up to 

80% of cases, whilst the mixed cellularity (MCHL) subtype accounts for around 15%.      

In the late 1980s it was recognized that a proportion of cHL cases, in developed 

countries, are associated with the EBV (EBV+cHL) and can be distinguished from 

EBV-negative (EBV-cHL) cases by the presence of the virus within HRS cells (28, 
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29).  EBV association rates differ by cHL subtype, age, gender and geography 

reflecting the complexity of the disease (7, 30, 31).  Many HLA association studies 

were performed before the WHO classification system was introduced and before it 

was appreciated that EBV was aetiologically associated with a subgroup of cases.  

Since most MCHL, but only a minority of NSHL, cases are EBV-positive, MCHL 

histology and EBV-positivity are frequently used as proxies for each other; although 

this can help interpretation, it is important to note that at least half of all EBV+cHL 

cases are of NSHL subtype (our unpublished results).  

Early HLA association studies in Hodgkin lymphoma 

HL was the first disease for which any HLA association was described (32).  Using 

45 sera from multiparous women, Amiel et al (1967) reported an increase in 

frequency of the ‘Payne-Bodmer 4c’ antigen from 23% in healthy controls to 51% in 

HL cases from France.  A similar analysis of Dutch cases failed to confirm these 

results (33).  However, the results were corroborated in 1970 in Australia by Forbes 

et al (1970) who demonstrated an increased frequency of the 4c antigen and further 

showed that this resulted from an increased frequency of W5, one of the two 

specificities recognised by the 4c antibody (34).  Forbes et al (1970) also showed 

that W5 was less common in females with NSHL and more common in females with 

MCHL.  The 4c specificities were subsequently shown to include HLA-B5, B15, B18 

and Bw35 (W5) antigens (35). 

Subsequent investigations using serological typing methods demonstrated an 

increased frequency of HLA-B5, B8, B18 and HLA-A1 subtypes in HL patients (Table 

1) (36-44).  The strongest association was shown for HLA-A1 with a 6-fold increase 

in risk of developing cHL (42).  Despite the well-documented linkage between HLA-
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A1 and B8 antigens, HLA-B8 did not always show a similar increase (39, 43).  

Kissmeyer-Nielson et al (1975) also demonstrated an increased HLA-A1 and A8 

prevalence in MCHL cases compared to NSHL and NLPHL cases (39), suggesting 

subtype-specific HLA associations.  Larger, case-control studies further corroborated 

the association with HLA-A1 and identified a lower prevalence of HLA-A3 and A11 

alleles in HL cases compared to healthy controls, suggesting a potential protective 

effect (Table 1) (35, 36, 45). 

Concurrent family-based studies provided some support for these findings.  Marshall 

et al (1977) investigated seven cases of HL within one family and found no HLA 

haplotype or allele  associated with HL development, although HLA-B8 was detected 

more often in first-degree relatives of cases (46).  Further studies demonstrated an 

increased prevalence of HLA-B18, B35, and B37 in cases within families (47, 48).  

Using a shared versus non-shared HLA approach for sibling pairs, a greater than 

expected HLA identity between siblings with HL was documented (43); however, 

previously reported allele associations were not detected in this study.  Similar 

haplotype concordance was observed between HL-affected siblings in a study of 16 

families where half the families displayed the HLA-A*01-B*08 haplotype (49).   

Investigation of associations with class II alleles lagged behind those of class I 

alleles due to a lack of appropriate reagents.  The earliest observations arose from 

family studies.  In a study of four siblings with HL, HLA typing revealed that all 

carried the HLA-DR5 antigen (HLA-DR*11 and DR*12 gene products) and two were 

also HLA-A1-positive (50).  With no obvious differences in EBV antibody titres, 

chromosomal abnormalities or exposure histories, it was concluded that genetic 

factors were more important than environmental factors in disease pathogenesis. 
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Interestingly, some of the earlier studies performed at a time with much higher 

mortality from HL also observed a survival advantage in association with particular 

HLA class I types (41, 42, 44, 45, 51).  An increased frequency of HLA-A28 and A8 

was observed in HL patients with greater than 15 years and 5 years survival, 

respectively (41, 44, 45).  Although HLA-A1 was associated with increased disease 

risk, it was also associated with improved survival and treatment response (42).  

Patients positive for HLA-Aw19 (HLA-A29, 30, 31, 32, 33 gene products) and B5 

antigens also had a poorer prognosis (51).   

HLA and HL in the era of molecular typing 

Following the introduction of molecular typing methods, attention shifted to HLA 

class II.  Case-control studies demonstrated an increased frequency of HLA-

DPB1*03:01 in white patients, with a relative risk of 1.95 (p < 0.01) in the largest 

study (Table 2) (52-57).  The HLA-DPB1*04:01 allele was significantly reduced risk 

in Asian patients, while there was a non-significant reduction in DPB1*02:01 in white 

patients (52, 53).  Taylor et al (1999) analysed cases by histological subtype and 

gender and demonstrated an increased relative risk for females carrying HLA-

DPB1*03:01 or DPB1*10:01 alleles and a reduced risk for females with NSHL who 

carried DPB1*02:01 or DPB1*11:01 alleles (58).  In one of the first studies to stratify 

cases by EBV status, the HLA-DPB1*03:01 allele was detected more frequently in 

patients with EBV+cHL, but differences by EBV status were not  statistically 

significant (54).   

Familial studies highlighted the importance of the HLA-DRB1*15:01-DQA1*01:02-

DQB1*06:02 haplotype in relation to HL, in particular NSHL, with transmission of the 

haplotype 73% of the time to an affected offspring but only 44% of the time to an 
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unaffected offspring (59).  Analysis of the individual genes in the haplotype revealed 

the DRB1*15:01 and DQB1*06:02 were associated with risk of cHL overall whilst 

DQA1*01:02 was associated only with NSHL.   

A much more detailed, but as yet incomplete, understanding of HLA associations 

with cHL has come from recent HLA typing studies coupled with analysis of 

microsatellites and SNPs in the HLA region.  Typing of tumour EBV status has also 

revealed that associations with EBV+cHL and EBV-cHL are largely distinct.  A 

landmark study by Diepstra et al (2005) analysed microsatellite markers spanning 

the HLA class I, II and III regions in EBV-stratified HL cases and controls.  Two 

consecutive microsatellite markers in HLA class I were associated with EBV+cHL.  

These markers are in LD with HLA-A*01 and HLA-A*02 alleles and subsequent 

studies provided evidence that HLA-A*01:01 is associated with an increased and 

A*02:01 with a decreased risk of EBV+cHL (60, 61).  The effects of these two alleles 

are independent and result in A*01:01 and A*02:01 homozygotes having an almost 

10-fold difference in odds of developing EBV+cHL (62).  The only GWAS to include 

cases typed by EBV status in the discovery analysis (63), identified independent 

associations between two HLA class I SNPs (rs2734986 and rs6904029) and 

EBV+cHL; the effects of these SNPs could be accounted for by the effects of A*01 

and A*02 alleles (63).  Thus, several lines of evidence suggest associations between 

EBV+cHL and these alleles, at least in white populations (Table 1).  In a study of 

Chinese cHL cases, Huang et al (2012) reported that the frequency of A*02:07, an 

allele more common in the Chinese population than in Whites, was increased in 

patients with EBV+cHL but decreased in patients with EBV-cHL relative to controls 

(64). 
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Subsequent case-control studies have identified further associations specific to 

EBV+cHL.  In unadjusted analyses, Huang et al (2012) detected a significant 

increase in B37, an allele in LD with A1 (65).  Johnson et al (2015) confirmed an 

association with B*37:01, which was significant after adjusting for the effects of other 

HLA alleles, thus demonstrating that this association is independent of A*01:01 (66).  

In addition, Huang et al (2012) reported an increased disease risk in association with 

the rarer DR10 allele.  Although an increased frequency of DR10 was detected by 

Johnson et al (2015), case-control differences were not significant and a larger 

sample size will be required to validate this association.  In allele selection 

regression modelling, Johnson et al (2015) detected additional associations with 

DRB1*15:01 and DPB1*01:01.  Both alleles were associated with a decreased 

disease risk, suggesting that these alleles could have protective effects; interestingly, 

this association between DRB1*15:01 and EBV+cHL is in the opposite direction from 

that described below for EBV-cHL.     

Analyses of associations with EBV-cHL are more difficult to interpret, largely due to 

issues with LD.  Although only a small number of studies have stratified cases by 

EBV status, EBV-cHL cases constitute the majority of cHL cases in industrialised 

countries, are mainly NSHL, and usually occur in the young adult age group.  

Studies of NSHL and of young adult cHL are therefore likely to reflect associations 

with EBV-cHL (and vice versa).  Taken together, such studies provide compelling 

evidence that DRB1*15:01, DQA1*01:02 and DQB1*06:02, three alleles that are in 

LD, are associated with an increased risk of EBV-cHL (55, 59, 65, 66).  More recent 

studies have shown an association between DRB1*07 and decreased risk of EBV-

cHL (65, 66).  However, as described below, it is not clear whether these alleles are 
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biologically important or whether they are simply tagging another gene(s) or 

regulatory sequence that is critical in disease pathogenesis.  

GWAS have consistently shown that the HLA class II SNP rs6903608, located ~15kb 

centromeric to DRA, is the variant most strongly associated with cHL (Table 3) (63, 

67-70).  The association is specific for EBV-cHL and within this patient subgroup 

there is a significant association with NSHL (63).  Increased disease risk is 

associated with the ‘C’ allele, which is in LD with DRB1*15:01 (r2 = 0.46, D’ = 1), 

DQA1*02:01 and DQB1*06:02 (r2 = 0.37, D’ = 0.91).  In a GWAS of NSHL, Cozen et 

al (2011) identified a 5-variant haplotype, incorporating rs6903608, which was 

superior to rs6903608 alone at predicting disease status (68).  The haplotype 

containing the alleles associated with decreased disease risk, including the T variant 

at rs6903608, was associated with a 60% decreased risk of NSHL; all individuals 

carrying this haplotype were positive for DRB1*07:01.  Although the above results 

suggested that rs6903608, and other class II SNPs, were simply tagging class II 

alleles, this is not borne out by logistic regression modelling.      

Moutsianas et al (2011) imputed classical HLA alleles from SNP data in a study 

which largely included young adult cHL cases.  In unconditional logistic regression 

analysis, DRB1*15:01 and DQB1*06:02 were associated with an increased and 

DRB1*07:01, DQA1*02:01 and DQB1*03:03 with a decreased disease risk, 

consistent with previous studies (71).  Subsequent stepwise logistic regression with 

inclusion of selected SNPs and imputed HLA alleles revealed that most of the class 

II variation could be explained by the SNP rs6903608.  The DPB1 SNP rs2281389 

and DQA1*02:01 allele contributed independent additional signals.  DPB1 alleles 

were not imputed in this study and it was suggested that rs2281389 could be tagging 

the DPB1*03:01 allele, previously associated with increased disease risk.  Since 
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DQA1*02:01 is in almost complete LD with DRB1*07:01 it was not possible to 

reliably determine which allele was contributing the additional signal.  Johnson et al 

(2015) used a Bayesian variable selection method to analyse typed HLA alleles and 

three SNPs, including rs6903608, in a study with stratification of cases by EBV 

status (66).  In the analysis of EBV-cHL without inclusion of the SNPs, DQB1*06:02 

and DRB1*07:01 were associated an increased and decreased disease risk, 

respectively; however, following inclusion of the SNPs in the model, rs6903608 was 

the variant most strongly associated with disease risk.  DQB1*03:01, DRB1*03:01 

and B*15:01 contributed independent smaller effects (66).  Taken together, these 

data suggest that rs6903608 is tagging a gene or regulatory sequence that is 

strongly associated with risk of EBV-cHL.  The most consistent associations with 

DRB1, DQA1 and DQB1 alleles described above are likely to result from LD with this 

variant.     

HLA associations with cHL as a whole largely reflect associations with EBV-stratified 

subgroups (65, 66).  Urayama et al (2012) identified two HLA SNPs that were 

independently associated with ‘total cHL’ with no heterogeneity of effect by EBV 

status – the class I SNP rs2248462 at the MICB gene and the class II SNP 

rs2395185 at HLA-DRA (63).  These SNPs were included in the variable selection 

modelling described by Johnson et al (2015), but neither was selected in the 

resultant models suggesting that their effects are explained by HLA alleles. 

Biological implications of HLA Associations with EBV+cHL 

The biological basis for the relationship between HLA alleles and disease risk is 

unknown.  However, in the case of EBV+cHL, this is premised on the ability of HLA 

class I alleles to present EBV antigens to CD8+T-cells and to induce an effective 
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cytotoxic response.  Interestingly, no EBV-specific T-cell responses restricted by the 

EBV+cHL risk allele HLA-A*01 have been identified to date (72).  This suggests that 

HLA-A*01 is unable to elicit a cytotoxic response to effectively control EBV-infected 

B-cells, or HRS cells, although it can efficiently present peptides from other viruses 

(e.g. CMV and Influenza A (73)).  On the other hand, HLA-A*02:01 alleles effectively 

present a number of EBV-derived peptides (74), suggesting that HLA-A*02-positive 

individuals may control EBV infection more effectively.  

Given the breadth of EBV-specific responses (74), it is surprising that the lack of a 

single allele has such a large effect upon risk of EBV+cHL, perhaps suggesting that 

the critical responses are directed against a small number of antigens, such as the 

EBV latency II antigens expressed by HRS cells.  An alternative hypothesis is that 

HLA-A*01 educes inhibitory effects that influence responses restricted through other 

HLA alleles.  The elevated risk of disease seen in HLA-A*01:01/A*02:01 

heterozygotes compared to HLA-A*02:01 homozygotes (62) provides some support 

for the latter model.   

Similarly, the biological mechanism underlying HLA class II allele associations may 

be due to differing capacities in antigen presentation to CD4+T-cells.  CD4+T-cells 

are primarily known for their helper roles; however, a cytotoxic role and the ability to 

be poly-functional, i.e. simultaneously produce multiple cytokines and effect cytotoxic 

function, have also been demonstrated, particularly in response to viral infection (75-

77).  The specificity, breadth, poly-functional capacity and timing of the CD4+T-cell 

response may all be important for disease development.  Indeed, decreased EBNA-1 

specific CD4+T-cell responses have previously been documented for EBV+cHL 

cases (78).  Variation in HLA alleles might therefore result in modulation of CD8+T-

cell activation and the recruitment and functionality of the CD4+T-cell population.  It 
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is possible that different peptide-HLA combinations modulate the composition of the 

cHL associated infiltrate leading to the observed heterogeneity of cHL, survival of 

HRS cells and prevention of tumour suppression.   

HLA Associations with Non-Hodgkin Lymphoma 

NHL encompasses a heterogeneous group of cancers, 85–90% of which arise from 

B-cells.  It is the sixth most common cancer in the U.S. and the fifth most common in 

the UK.  Together, DLBCL and FL, account for approximately 60% of all NHL cases.  

CLL/SLL is the third most common accounting for around 12% of cases (79).  

Although immune suppression and autoimmune disorders have been identified as 

risk factors for NHL, host characteristics also clearly play a role in this disease and 

its various subtypes (80).     

Similar to cHL, HLA is implicated in NHL susceptibility with early studies showing 

down-regulation of the expression of HLA class II antigens (81).  Several small 

studies have reported links between HLA class II alleles and NHL with conflicting 

results that may be attributable to small sample size, the combined analysis of 

various NHL subtypes, and/or analysis of different ethnic groups (82-84).  In 

contrast, recent analyses of individual subtypes provide more consistent results. 

Diffuse Large B-Cell Lymphoma  

DLBCL itself encompasses a biologically and clinically diverse set of diseases.  

Although the WHO classification system defines more than a dozen subtypes, the 

majority of cases are classified as DLBCL, not otherwise specified (NOS).  Gene 

expression profiling has divided DLBCL-NOS into germinal-centre B-cell like (GCB) 

and activated peripheral B-cell like (ABC) with 15% of cases remaining unclassifiable 
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(85).  These groups have different molecular aberrations and clinical outcomes and 

may have different aetiologies.   

Candidate gene studies and GWAS have identified associations between risk of 

DLBCL and immune-regulatory genes (86).  A large, collaborative study from the 

International Lymphoma Epidemiology Consortium provided evidence that the TNF 

promoter polymorphism (TNF G-308A), which is thought to increase TNF-α 

expression resulting in inflammation, is strongly associated with DLBCL in white 

populations (87).  This SNP is located within the HLA class III region, between the 

class I gene HLA-B and the class II gene HLA-DR.  The common 8.1 ancestral 

haplotype includes the TNF-308A allele (HLA-A1-B8-TNF-308A-DR3-DQ2) 

suggesting that TNF associations may be confounded by linkage with HLA alleles.  

However, Abdou et al (2010) demonstrated that the TNF-A allele was associated 

with increased risk of DLBCL even in the absence of the 8.1 haplotype (88).  Their 

results also suggested that the B*08 allele was independently associated with 

disease risk.  In a recent GWAS meta-analysis, including 3,857 cases and 7,666 

controls of European ancestry, 19 SNPs reached genome-wide significance and 134 

were suggestive of significance (89).  Of these 153 SNPs, 123 mapped to the HLA 

region.  The strongest HLA signal was at rs2523607, located near HLA-B (Table 4).  

Following imputation of classical HLA alleles, only the HLA-B*08 allele and 

rs2523607 variant achieved genome-wide significance (p < 5 x 10-8).  These two 

markers are in LD (r2 = 0.91) and after adjustment for the effect of HLA-B*08, the 

association at rs2523607 was attenuated; consistent with earlier observations, these 

data suggest that HLA-B*08 is the HLA allele most strongly associated with DLBCL.  

Smaller GWAS identified weak associations with the class I SNP rs6457327 and 

class II SNP rs10484561, two SNPs that are strongly associated with FL (see below) 
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(90, 91) and the association at rs10484561 was corroborated in the above GWAS 

meta-analysis (p = 1.5 x 10-4).  Two genotyping  studies of DLBCL patients from 

China and Western Siberia reported evidence of an association at rs2647012, a 

further SNP associated with FL (91-93)  Smaller HLA typing studies have 

documented associations with: DRB1*01 and B*51 (risk) and DRB1*15 and C*03 

(protection) in European populations (94); and B*51, DRB1*09 and DQB1*03 and 

the B*51-DRB1*09-DQB1*03 haplotype (risk) in Korean patients (82).   

Additionally, HLA class I and class II alleles have been associated with clinical 

outcome.  Initial reports suggested that HLA-DR2 (DRB1*15 and *16) negative 

patients had a poorer progression free survival (PFS) and overall survival (OS) (95).  

Later studies demonstrated associations between B*18, B*44, Cw*07 and DRB1*04 

and shorter PFS and OS (94, 96).  HLA-B*18 and B*44 share overlapping peptide 

binding specificity and form part of the B44 supertype.  When all alleles comprising 

this supertype (B*18, B*37, B*40, B*41, B*44, B*45, B*50) were analysed as a 

group, the supertype also showed poorer PFS and OS (94).  

Follicular Lymphoma  

FL is the second most common subtype of NHL, comprising up to 30% of all NHL 

cases worldwide.  Although FL has a relatively long median survival, 8–10 years, 

more than 20% of FLs transform to an aggressive lymphoma with a poor clinical 

outcome.  A defining feature of FL is the presence of the t(14:18) translocation, 

which results in dysregulation of bcl-2 expression.  Akin to cHL and DLBCL, a 

hereditary component is proposed based upon ethnic variation (rarer in Asian 

populations) and an increased risk of FL in first-degree relatives (16, 17).   
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The first GWAS to include samples from FL patients identified an association with 

SNPs within the HLA class I region.  Disease risk was associated with rs6457327 

and neighboring SNPs in a 26 kb block of sequence that overlaps the STG gene 

(C6orf15) and is near psoriasis susceptibility region 1 (PSORS1) (90).  This region is 

close to HLA-C and a later analysis showed that the ‘A’ allele at rs6457327 is 

associated with C*07:01 and B*07:02 (D’ = 0.93 and 1.0, respectively); however, 

there is no evidence that these alleles account for the effect of the SNP.  

Subsequent studies confirmed association with rs6457327 (97, 98); in addition, the 

risk allele ‘A’ and associated genotypes ‘AA’ and ‘AC’ were associated with an 

increased risk of, and, shorter time to, transformation as well as inferior OS (91, 97, 

98).   

In a follow-up GWAS, Conde et al (2010) reported further associations in a region 

including the HLA-DR and HLA-DQ genes (Table 4) (99).  The SNPs with the most 

significant p-values were rs10484561 and rs7755224, two SNPs in complete LD 

telomeric to the HLA-DQB1 gene.  Imputation of surrounding SNPs revealed a 

further four associated SNPs in a 100 kb region of LD including HLA-DQB1 and 

HLA-DQA1, although rs10484561 remained the strongest signal.  One of these four 

SNPs, rs6457614, is a tag SNP for HLA-DQB1*05:01, and follow up analyses 

revealed an association between FL and the extended haplotype DRB1*01:01-

DQA1*01:01-DQB1*05:01 (OR = 2.07).  Subsequent HLA typing studies confirmed 

associations with DQB1*05:01 and DRB1*01:01, as well as an inverse association 

with DQB1*06 (96; 97).  A further GWAS with a larger number of cases in the 

discovery analysis corroborated earlier findings and demonstrated more associations 

(91, 100).  The strongest signal was at rs2647012, and this was independent of the 

association at rs10484561 located 960 base pairs in a centromeric direction.  
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Subsequent fine-mapping, haplotype and coalescence analyses suggested that 

these two SNPs are associated with two distinct haplotypes that have opposite 

effects on risk of FL (91).  HLA typing of class I and II alleles by next generation 

sequencing identified a decreased FL risk in association with DRB1*15 and 

DQB1*06 alleles and showed that carriers of the DRB1*15:01-DQA1*02:01-

DQB1*06:02 haplotype were all positive for the ‘A’ allele at rs2647012 (but not vice 

versa) (101).  This study also extended HLA analyses to DPB1 alleles and identified 

a protective effect of DPB1*03:01.  A GWAS meta-analysis identified a further SNP 

association at rs311722, located downstream of the DPB1 genes, which was 

explained by the DPB1*03:01 association.  The current model of FL therefore 

suggests that the class I SNP rs6457327, the haplotypes HLA-DRB1*01:01-

DQA1*01:01-DQB1*05:01 and DRB1*15:01-DQA1*02:01-DQB1*06:02, and 

DPB1*03:01 are all independently associated with risk of FL.   

To determine whether specific coding variants within HLA genes contribute to the 

above associations identified by GWAS and HLA allele typing, Foo et al (2013) 

imputed SNPs, classical HLA alleles and coding variants across the HLA region 

(102).  They identified a hexa-allelic amino acid polymorphism at position 13 of the 

HLA-DR beta chain that showed a stronger association with FL than any other 

variant or SNP that was tested.  From a possible six amino acids, two were classified 

as high risk (Tyr and Phe), two as low risk (Ser and Arg), and two as moderate risk 

(His and Gly).  There was a 4.2-fold difference in risk between subjects carrying two 

alleles encoding high-risk amino acids and those carrying two alleles encoding low-

risk amino acids.  Further analysis revealed that the risk allele ‘C’ from rs10484561 

tags haplotypes carrying the allele encoding the high risk Phe, whilst the protective 

allele ‘T’ from rs2647012 tags haplotypes carrying the allele encoding the low risk 
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Ser  residue.  The data suggest that the DRB1 polymorphism at position 13 is the 

primary driver of the above DR and DQ associations, thus advocating a HLA-DR 

antigen-driven mechanism in the pathogenesis of FL. 

HLA alleles have also been investigated in relation to outcome.  HLA-A*01 and the 

ancestral 8.1 haplotype (A*01-B*08-DR*03) have been associated with poorer OS 

and HLA-Bw4 and DRB1*13 with improved OS (96).   

Chronic Lymphocytic Leukaemia /Small Lymphocytic Lymphoma  

CLL is an indolent malignancy resulting from the accumulation of slowly proliferating 

CD5-positive neoplastic B-cells, which accounts for about a quarter of all leukaemias 

in Western countries.  Small lymphocytic lymphoma has the same 

immunophenotype and is essentially the same disease but the malignant cells are in 

the lymph nodes and spleen rather than the blood.  Around half of all CLLs have 

evidence of somatic hypermutation in their immunoglobulin heavy chain variable 

region genes (IGHVs), and IGHV mutation status is used to divide CLLs into two 

subgroups.  Cases with mutated IGHV have a much better clinical outcome.   

Early case-control and family-based HLA typing studies did not identify consistent 

associations with HLA alleles, most probably because of small case numbers.  

However, later studies provide support for some of the earlier findings, and the work 

of Dorak et al (1996) focused attention on DRB4 and associated haplotypes (103).  

Machulla et al (2001) compared the frequency of HLA class I and II alleles in 101 

cases and 157 controls using molecular and serological typing methods (104).  PCR-

based typing revealed a striking increase in DRB4*01:03 alleles among cases (RR = 

2.74, p = 0.0025); higher frequencies of DRB1*04:01, DQB1*03:02 and DPB1*03:01 

and a lower frequency of DQB1*02:02 alleles were also detected.  None of these 
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differences remained significant after correction for multiple testing.  The haplotype 

DRB1*04:01-DRB4*01:03 was also increased and CLL-specific LD was observed 

between these alleles.  The association with DQB1*03:02 was thought to result from 

LD with DRB1*04:01-DRB4*01:03 on the ancestral haplotype HLA-Cw3-B62-DR4-

DQ8, which is frequent in white populations.  There was no evidence of LD between 

DPB1*03:01 and the other risk alleles.  

In by far the largest study to date, Gragert et al (2014) compared HLA genotypes 

from 3491 US white, 397 African-American and 90 Hispanic CLL patients with 

50,000 controls from each of these populations (105).  Cases were ascertained 

through the National Bone Marrow Program and this is likely to have resulted in a 

bias towards patients with more severe disease and younger age.  A large number of 

allele and haplotype associations were identified, some of which had been previously 

reported.  In Whites, 12 alleles were decreased and 16 increased in frequency with 

DQB1*05:04 (OR = 5.62) and DRB1*04:03 (OR = 0.67) having the highest and 

lowest ORs, respectively; despite the size of the study, effect sizes of many of the 

associations were modest with upper or lower bounds of the 95% confidence 

intervals close to one.  The DRB4*01:01 allele and haplotype DRB4*01:01-

DRB1*07:01-DQB1*03:03 were strongly associated with increased disease risk in all 

study populations, i.e. Whites, African Americans and Hispanics.  Both DRB4*01:01 

and this extended haplotype are much rarer in African Americans than whites (allele 

frequency 18.2% versus 29.7%, haplotype frequency 0.3% versus 3.4%), and it is 

therefore possible that this contributes to the lower incidence of CLL in African 

Americans.  C*04:01, an allele found at relatively high frequency in African 

Americans, was associated with decreased disease risk but only in the African 

American population.  Associations were confirmed with A*02:01 (OR = 1.2), which 
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had been identified following imputation of HLA alleles in a GWAS (106), and with 

the haplotype A*02:01-B*15:01-DRB1*04:01 (OR = 1.41).  A further haplotype 

association with A*01:01-C*07:01-B*08:01-DRB1*03:01-DQB1*02:01 was also 

confirmed at higher resolution (OR = 0.83).  In addition, homozygosity at all three 

class I alleles was shown to significantly increase risk of CLL (105).  DPB1 

associations were not investigated.   

GWAS have identified few associations between HLA SNPs and CLL.  Di Bernardo 

et al (2013) reported an association with the HLA class I SNP rs6904029, which is 

also associated with EBV+cHL, and this led to the identification of the association 

with A*02:01 described above (Table 4) (106).  Following analysis of familial CLL 

cases included in a larger GWAS, Slager et al (2011) identified association with five 

SNPs in a region of HLA class II that includes the DQA1 and DRB5 genes (Figure 1).  

Following conditional analyses of the five SNPs, only rs674313 retained significance 

thus suggesting that these SNPs are tagging the same locus (107).  Imputation of 

HLA alleles in this region was not performed.  In contrast to the findings for cHL and 

FL described above, the strongest signals in GWAS were from non-HLA SNPs.  At 

least 30 common risk variants have been identified thus far, with several in proximity 

to genes involved in apoptosis or telomere function (108, 109).  These data are 

consistent with the idea that co-inheritance of multiple low risk variants is likely to 

explain the heritability in CLL/SLL. 

Summary and Conclusions  

Recent GWAS and HLA typing studies provide consistent and reliable evidence 

linking specific HLA polymorphisms with subtypes of human lymphoma.  Clustering 

of SNPs associated with cHL, FL and CLL within the HLA class II region is perhaps 
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one of the most striking observations to emerge from these studies.  However, 

associations within this region, which encompasses the HLA-DRA, DRB1 and DQB1 

genes, are distinct for each of the three diseases (Figure 1).  Stratification of cHL 

cases by EBV status further demonstrates that the association with the DRA SNP 

rs6903608 is particular to EBV-cHL.  In contrast, EBV+cHL is strongly associated 

with the class I allele HLA-A1*01, an allele first linked to HL over forty years ago.  

Several alleles are associated with multiple lymphoma subtypes.  Associations with 

DPB1*03:01 and DRB1*15:01 are described for FL and cHL; however, associations 

with FL are in the opposite direction from those reported for total cHL and EBV-cHL 

although the DRB1*15:01 association is in the same direction to that recently 

reported for EBV+cHL.  Likewise, the HLA-A*02:01 allele is associated with 

increased risk of CLL but reduced risk of cHL.  In contrast, the class II SNPs 

rs10484561 and rs2647012 are associated with increased risk of both FL and 

DLBCL, albeit with less significance for DLBCL, possibly implying that the DLBCL 

association is confined to a subset of DLBCLs with features more closely related to 

FL.  Although the evidence for specific HLA associations with lymphoma subtypes is 

compelling, understanding the biology underlying these complex associations awaits 

further study.   
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Figure Legends 

Figure 1.  Location of lymphoma-associated SNPs on chromosome 6 
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Schematic of chromosome 6 showing relative positions of SNPs associated with risk of 
classical Hodgkin lymphoma (cHL, blue), diffuse large B cell lymphoma (DLBCL, grey), 
follicular lymphoma (FL, red) and chronic lymphocytic leukaemia (CLL, purple).  SNPs 
associated with more than one disease are highlighted in green (FL and DLBCL) and brown 
(CLL and cHL). 
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Table 1.  HLA class I associations with HL 

Study 
Ethnicity or 

Country 
Study 
Design 

Study Subjects 
Typing 

Method 

 
Main Findings 

HL subgroup association HLA Allele 
Direction of 

risk 

Falk et al (1971) Canada 
Case-

control 
122 cases 
122 controls 

Serological HL 

A*01 Increased 

B*05 Increased 

B*08 Increased 

A*03 Decreased 

Falk et al (1974) Canada 
Case-

control 
115 cases 
200 controls 

Serological 

HL (<1 year post diagnosis) A*03 Decreased 

HL (<1 year post diagnosis) A*11 Decreased 

HL (>5 years post diagnosis) B*08 Increased 

Svejgaard et al (1975)Ϯ Various 
Meta-

analysis of 
17 studies 

1500 cases 
5400 controls 

Serological HL 

A*01 Increased 

A*09 Increased 

A*10 Increased 

A*11 Decreased 

B*05 Increased 

B*07 Decreased 

B*08 Increased 

B*10 Decreased 

B*18 Increased 
Kissmeyer-Nielson et al 
(1975) 

Denmark 
Case-

control 
201 cases 
562 controls 

Serological HL (MCHL, males >30 years) 
A*01 Increased 

B*08 Increased 

Bjorkman et al (1975) Sweden 
Case-

control 
65 cases 
100 controls 

Serological 
HL (>40 years) B*08 Increased 

HL (<40 years) B*12 Increased 
Hansen et al (1977) United States Case- 137 cases Serological HL A*01 Increased 



control 855 controls A*33 Decreased 

Marshall et al (1977) Canada 
Family-
based 

7 cases 
1277 relatives 

Serological HL B*18 Increased 

Hornmark-Stenstam et al 
(1978) 

Sweden 
Case-

control 

10 long term 
survivors 
30 new cases 
1263 controls 

Serological 

HL (long term survivors) A*28 Increased 

HL, NSHL B*18 Increased 

Greene et al (1979) United States 
Family-
based 

411 unrelated cases 
629 controls 
13 families with 21 
cases 

Serological HL 

B*35 Increased 

B*37 Increased 

Osoba et al (1980) Canada Case series 79 cases Serological 
HL (>40 years,  advanced disease, 
LDHL, MCHL) 

Aw19 
(A*29,30,3
1,32,33,34) 

Increased  

Conte et al (1983) Italy 
Family-
based 

4 cases  
15 relatives 

Serological NSHL B*18 Increased 

Hafez et al (1985) Africa 
Case-

control 
52 cases 
234 controls 

Serological HL A*01 Increased 

Niens et al (2007) Netherlands 
Case-

control 
101 cases 
59 controls 

Molecular EBV+cHL 
A*01 Increased 

A*02 Decreased 

Hjalgrim et al (2010) 
Scandinavia 

Northern United 
Kingdom 

Case series 
278 EBV+cases 
656 EBV-cases 

Molecular EBV+cHL 
A*01 Increased 

A*02 
Decreased 

Huang et al (2012) Netherlands 
Case-

control 
338 cases 
7754 controls 

Molecular 
Serological 

EBV+cHL  

A*01 Increased 

A*02 Decreased 

B*37 Increased 

cHL B*05 Increased 

Huang et al (2012) China 
Case-

control 
161 cases Molecular EBV+cHL A*02:07 Increased 
119 controls  EBV-cHL A*02:07 Decreased  

Johnson et al (2015)* 
Northern United 

Kingdom 
Case-

control  
503 cases 
347 controls 

Molecular 
EBV+cHL 

A*01 Increased 

B*37 Increased 

EBV-cHL B*15 Increased 



HLA class I associations by study for HL or HL subgroup. HL, Hodgkin lymphoma; cHL, classical Hodgkin lymphoma; EBV, Epstein-Barr virus; NSHL, nodular 

sclerosis Hodgkin lymphoma; MCHL, mixed cellularity Hodgkin lymphoma; LDHL, lymphocyte depleted Hodgkin lymphoma 

Results highlighted in bold are significant, p<0.05 
Ϯ includes subjects from Falk et al (1971) and Falk et al (1974)  

*adjusted for effects of class II alleles; these cases were also included in Hjalgrim et al (2010) and Niens et al (2007) 

 

 

  



Table 2.  HLA class II associations with HL 

Study 
Ethnicity or 

Country Study Design 
Study Subjects 

 
Typing 

Method 

 
Main Findings 

HL subgroup 
association HLA Allele Direction of risk 

Robertson et al (1987) 
United 
States 

Family-based 
1 family 
4 cases 

Serological HL 
DR5 (DR*11, 
DR*12) 

Increased 

Bodmer et al (1989) 
United 
Kingdom 

Case-control 
86 cases 
91 controls 

Molecular HL 
DPw2 
(DPB1*02:01) 

Decreased 

Tonks et al (1992) 
White 

Case-control 
741 cases 
686 controls 

Molecular HL 

DPB1*02:01 Decreased 

DPB1*03:01 Increased 

DPB1*04:01 Decreased 

Asian DPB1*04:01 Decreased 

Oza et al (1994)Ϯ 
White 

Case-control 
741 cases 
686 controls 

Molecular HL 
DPB1*03:01 Increased 

Asian DPB1*04:01 Decreased 

Klitz et al (1994) 
White 
United 
States 

Case-control 
196 cases 
306 controls 

Molecular NSHL 

DRB1*15:01 Increased 

DQB1*06:02 Increased 

DRB1*11:04 Increased 

DQB1*03:03 Decreased 

DPB1*03:01 Increased 

DPB1*13:01 Increased 

DPB1*11:01 Decreased 

Taylor et al (1996) 
White  
United 
Kingdom 

Case-control 
118 cases 
92 controls 

Molecular HL DPB1*03:01 Increased 

Taylor et al (1999)~ 
White  
United 
Kingdom 

Case-control 
147 cases 
183 controls 

Molecular HL 

DPB1*03:01 Increased  

DPB1*02:01 Decreased 

DPB1*10:01 Increased 

DPB1*1101 Decreased 

Alexander et al (2001) 
United 
Kingdom 

Case series 
19 EBV+cases 
84 EBV-cases 

Molecular EBV+cHL DPB1*03:01 Increased 



Harty et al (2002) 
United 
States 

Family-based 
13 families 
28 cases 
69 unaffected 

Molecular 
HL 

DRB1*15:01 Increased 

DQB1*06:02 Increased 

NSHL DQA1*01:02 Increased 

Huang et al (2012) Netherlands Case-control 
338 cases 
7754 controls 

Molecular 
Serological 

cHL DR7 Decreased‡ 

EBV-cHL 
DR5 Increased 

DR2 Increased‡ 

EBV+cHL DR10 Increased‡ 

Johnson et al (2015)* 
Northern  
United 
Kingdom 

Case-control  
503 cases 
347 controls 

Molecular 

EBV-cHL 
DRB1*03:01 Increased 

DQB1*03:03 Increased 

EBV+cHL 
DRB1*15:01 Decreased 

DPB1*01:01 Decreased 

HLA class II associations by study for HL or HL subtype. HL, Hodgkin lymphoma; cHL, classical Hodgkin lymphoma; EBV, Epstein-Barr virus; NSHL, nodular 

sclerosis Hodgkin lymphoma  

Results highlighted in bold are significant, p<0.05, ‡ p<0.001 
Ϯ includes subjects from Tonks et al (1992) 

~ includes subjects from Taylor et al (1996) 

*adjusted for effects of other HLA alleles and selected SNPs 

  



Table 3.  HLA associations with HL identified in GWAS 

 

 

 

 

 

 

 

 

 

 

 

cHL, classical Hodgkin lymphoma;  EBV, Epstein-Barr virus;  NSHL, nodular sclerosis Hodgkin lymphoma 
Ϯ replication group includes a subset of subjects from Urayama et al (2012)  
§ includes the subjects from Enciso-Mora et al (2011) 

*significant in independent replication 
# significant in technical replication 
α significant association with EBV-cHL in replication set 

Variants rs9268542 and rs9268528 are in LD (r2 = 1), and there is some degree of LD between these variants and rs2395185 (r2 = 0.38).  SNPs identified by 

Urayama et al (2012) were independently associated with cHL.  

 

Study Country 
Study Subjects 

in Discovery 
Set 

Significant Findings 
Candidate 

Gene 
Subgroup 

association SNP 
Minor 
Allele 

Odds 
Ratio p-value 

Enciso-Mora et al (2011) Ϯ 
United 

Kingdom 
589 cases 

5199 controls 
cHL rs6903608*α C 1.81 8.12 x10-23 HLA-DRA 

Cozen et al (2012) 

United 
States 

European 
origin 

393 cases 
3315 controls 

NSHL rs2858870* G 0.4 1.69 x10-8 HLA-DRA 

NSHL rs6903608* C 1.6 3.52 x10-10 HLA-DRA 

NSHL rs9268542 G 1.6 5.35 x10-10 HLA-DRA 

NSHL rs9268528 G 1.6 1.19 x10-9 HLA-DRA 

NSHL rs204999 G 0.5 1.44 x10-9 PRRT1 

Urayama et al (2012) 
Various 

European 
1200 cases 

6417 controls 

cHL rs2248462*# A 0.61 1.3 x10-13 MICB 

cHL rs2395185*# T 0.56 8.3 x10-23 HLA-DRA 

EBV+cHL rs2734986# C 2.45 1.2 x10-15 HLA-A 

EBV+cHL rs6904029# A 0.46 5.5 x10-10 HcG9/HLA-A 

EBV-cHL rs6903608# C 1.71 3.2 x10-27 HLA-DRA 

Frampton et al (2013) Ϯ§ 
United 

Kingdom 
Germany 

1465 cases 
6417 controls 

cHL rs6903608 C 1.62 5.36 x10-27 HLA-DRA 

cHL rs2395185 T 0.66 4.44 x10-16 HLA-DRA 



Table 4.  HLA associations with DLBCL, FL and CLL identified in GWAS 

Lymphoma 
type 

 
Study Country 

Study Subjects 
in Discovery 

Set 
SNP 

Minor 

allele 
Odds 
Ratio 

p-value Candidate Gene/Haplotype 

DLBCL 

Skibola et al (2009) 

United 
States 

European 
origin 

380 cases 
1412 controls 

rs6457327 A 0.79 2.7 x 10-2 C6orf15 (STG)/ PSORS1 

Smedby et al (2011) Denmark 
379 cases 

791 controls 
rs10484561 C 1.36 1 x 10-7 HLA-DQB1 

Cerhan et al (2014) European 
2661 cases 

6221 controls 
rs2523607 A 1.45 7.1 x 10-10 HLA-B*08:01 

FL 

Skibola et al (2009) 

United 
States 

European 
origin 

278 cases 
1412 controls 

rs6457327 A 0.55 1.1 x 10-5 C6orf15 (STG)/ PSORS1 

Conde et al (2010) 
 

United 
States 

213 cases 
750 controls 

rs10484561 G 1.81 5.88 x 10-5 
HLA-DQB1  

rs7755224 G 1.8 2.6 x 10-5 

rs6457614 G 1.75 7.06 x 10-5 HLA-DQB1*05:01 

rs4947332 T - - HLA-DRB1*01:01 

rs1794265 T - - HLA-DQA1*01:01 

Smedby et al (2011) 

United 
States, 

Canada, 
Denmark, 
Australia 

1592 cases 
5220 controls 

rs2647012 T 0.6 1 x 10-7 
DRB1*15:01-DQA1*01:02-
DQB1*06:02 

Skibola et al (2012)* 
Denmark, 

United 
States 

592 cases 
1541 controls 

rs3117222 A 0.66 1.45 x 10-7 HLA-DPB1*03:01 

CLL Slager et al (2011) 
United 
States 

407 cases 
296 controls 

rs615672 C 1.95 6.42 x 10-5 
HLA-DRB5 

rs674313 T 2.4 1.12 x 10-6 



SNP associations arranged by lymphoma type.  DLBCL, diffuse large B-cell lymphoma;  FL, follicular lymphoma;  CLL, chronic lymphocytic leukaemia. 

*meta-analysis includes Conde et al (2010) and Smedby et al (2011) 

 

 

rs502771 C 1.93 1.07 x 10-4 

rs9272219 T 2.32 1.65 x 10-6 
HLA-DQA1 

rs9272535 A 2.33 1.33 x 10-6 

Di Bernardo et al 
(2013) 

United 
Kingdom 

502 cases 
2697 controls 

rs6904029 A 1.32 1.38 x10-4 HcG9/HLA-A 
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Figure 1. Position of lymphoma-associated SNPs on chromosome 6 

HLA-DRB1 
3500                         3000                            2500                            2000                           1500                             1000                             500                                  0 Kbp  

cHL CLL FL DLBCL FL and DLBCL cHL and CLL 

rs2281389
 


