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Abstract

A theory for the spin wave eigenmodes of a Dzyaloshinskii domain wall is presented. These walls

are Neel-type domain walls that can appear in perpendicularly-magnetized ultrathin ferromagnets

in the presence of a sizeable Dzyaloshinskii-Moriya interaction. The mode frequencies for spin

waves propagating parallel and perpendicular to the domain wall are computed using a continuum

approximation. In contrast to Bloch-type walls, it is found that the spin wave potential associated

with Dzyaloshinskii domain walls is not reflectionless, which leads to a finite scattering cross-section

for interactions between spin waves and domain walls. A gap produced by the Dzyaloshinskii

interaction emerges, and consequences for spin wave driven domain wall motion and band structures

arising from periodic wall arrays are discussed.
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I. INTRODUCTION

The Dzyaloshinskii-Moriya interaction (DMI) is an antisymmetric contribution to the

exchange energy that can exist in spin systems that lack inversion symmetry.[1–3] Spin

textures stabilized by DMI are of special interest due to the possibility of new technological

applications.[4–6] For room temperature operation, interface DMI is of particular importance

in terms of thin film structures based on transition metals, compatible with traditional

spintronic devices. It has been shown in perpendicular materials that because of DMI

compensation of the dipole-dipole interaction at the center of a domain wall, a Néel-type

domain wall is favored with important enhancements of domain wall stability and mobility.[7,

8]

Small amplitude fluctuations of the magnetisation about equilibrium– spin waves– in

systems with DMI have been studied experimentally, [9, 10] and theoretically[11, 12] for

interface DMI films. A key feature is nonreciprocity of frequency as a function of propagation

direction for finite wavelength spin waves, which emerges from the chiral symmetry breaking

DMI. In the present work we examine the spin wave dispersion in a film containing a DMI

stabilized Néel wall. We find that spin waves are partially reflected by the domain wall

due to an extra chiral term in the potential associated with the domain wall. Local modes

are found, and we show that DMI drives a hybridisation of traveling spin waves with these

localized states.

The hybridisation produces an energy-split dispersion with a gap magnitude that is pro-

portional to the magnitude of the DMI. We illustrate this effect with a suggestion for a

magnonic crystal produced by a periodic array of domain walls in a nanowire with DMI.

Without DMI the walls are Bloch-type walls which are known to represent reflectionless

potentials for spin waves traveling through them.[13–15] This results in a gapless band

structure. However, with DMI the stable configuration becomes an array of Néel-type walls

with a modified potential for the spin waves. The modified potential is no longer reflection-

less and standing waves appear at the edges of the first Brillouin zone producing gaps in the
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FIG. 1. (Color online) Geometry considered for the Néel-type Dzyaloshinskii domain wall. X0

denotes the position of the wall center along the x axis. Translational invariance is assumed along

the y direction and the magnetization is taken to be uniform across the thickness of the film in the

z direction.

band structure.

This article is organized as follows. In Section II, the model and calculations involving

the static domain wall profile are presented. In Section III, the spin wave eigenmodes of

the Dzyaloshinskii domain wall (DDW) are computed using a variational method in the

continuum approximation. Consequences of these eigenmodes are then explored in Section

IV, where the reflection and transmission coefficients for propagating spin waves through

the domain wall are computed and band gaps in associated with periodic wall arrays are

discussed. Finally, a discussion and some concluding remarks are given in Section V.

II. MODEL AND STATIC WALL PROFILE

An ultrathin ferromagnetic wire is considered in which a domain wall separates two

uniformly-magnetized domains along the x axis, as shown in Figure (1). The uniaxial

anisotropy, Ku, is taken to lie along the z axis, perpendicular to the film plane, while a

transverse anistropy resulting from volume dipolar charges, K⊥, is present along the x axis.

In addition, an interfacial Dzyaloshinskii-Moriya interaction D is also considered, with a

form consistent with a multilayered system with a heavy-metal subtrate.[7, 16] The form
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of this interaction can be written in terms of the Lifshitz invariants Lkij = mi
∂mj

∂xk
−mj

∂mi

∂xk

as D (Lxzx + Lyzy). The magnetization orientation, represented by the unit vector m, is

parametrized using spherical coordinates as m = (sin θ cosφ, sin θ sinφ, cos θ), where θ =

θ(r, t) and φ = φ(r, t). The total magnetic energy of this system is given by the functional

U [θ(r), φ(r)],

U =

∫
dV

[
A
(
(∇θ)2 + sin2 θ (∇φ)2)

+
(
Ku +K⊥ cos2 φ

)
sin2 θ

+D

(
∂θ

∂x
cosφ+

∂θ

∂y
sinφ

+
1

2
sin 2θ

(
∂φ

∂y
cosφ− ∂φ

∂x
sinφ

))]
, (1)

where A is the exchange constant. The static profile of the domain wall is determined by

the solution to the Euler-Lagrange equations associated with the functional in Equation (1),

which are obtained by setting the first-order functional derivatives to zero. By neglecting

variations in the y direction and assuming the solution φ(x) = φ0, the nonlinear differential

equations satisfied by the static wall profile (θ0, φ0) are given by

δU

δθ
= 0⇒ A

∂2θ0

∂x2
− 1

2

(
Ku +K⊥ cos2(φ0)

)
sin(2θ0) = 0, (2)

δU

δφ
= 0⇒ sin(φ0) sin2(θ0)

(
K⊥ cos(φ0) +D

∂θ0

∂x

)
= 0. (3)

Note that the second equation above is satisfied by the φ0 ansatz for finite values of the

DMI, D 6= 0, only if the domain wall assumes a pure Néel profile (φ0 = 0, π). By assuming

a Néel wall state, the solution for θ0(x) to be written as

θ0(x) = 2 tan−1

[
exp

(
±x−X0

λ

)]
, (4)

where λ =
√
A/(Ku +K⊥) is the domain wall width parameter and X0 denotes the wall

center. The solution with the positive sign in the argument of the exponential function gives

the configuration illustrated in Figure (1). With this solution, the total domain wall energy

(1) can be evaluated to be

σw ≡ U [θ0, φ0] = 4
√
A (Ku +K⊥)∓ πD, (5)
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where the negative sign corresponds to the solution φ0 = π and the positive sign to φ0 =

0, which indicates that left-handed Néel walls are preferred energetically for D > Dc =

4λK⊥/π > 0.

III. SPIN WAVE HAMILTONIAN

The magnetic energy functional can be expanded up to second order in small fluctuations

(δθ, δφ) around the stable configuration (θ0, φ0) to obtain the spin wave Hamiltonian,[14, 17]

δH =
K⊥
κ

∫
dx δθ VP (x) δθ + δφ [VP (x)−∆(x)− κ] δφ. (6)

The energy of the fluctuations is described by the operators VP (x) = [−λ2∂2
x + 1 −

2 sech2(x/λ)], ∆(x) = (Dκ/λK⊥) sech(x/λ) and κ = K⊥/(Ku + K⊥). The Schrödinger

type operator, VP (x), has been widely studied and is used to describe spin waves in a Bloch

type domain wall.[13, 18] Solutions to these operator include a single bound state,

ξloc(x) =
1√
2λ

sech(x/λ), (7)

with zero corresponding energy, and continuum-traveling states,

ξk(x) =
1
√
ωk
eikx[tanh(x/λ)− ikλ], (8)

with eigenenergy given by ωk = 1 + k2λ2. The above states form a complete orthonormal

set, ∫
dV ξ∗kξloc = 0,∫
dV ξ∗kξm = δk,m.

(9)

From Equation (6) it can be deduced that κ introduces a constant ellipticity in the precession

of the fluctuations, and DMI introduces a spatially dependent one through the ∆(x) term

so that it is not trivial to find a basis that diagonalizes the spin wave Hamiltonian. We

propose a linear superposition of the local and traveling modes,

χ(x) = δφ(x) + iδθ(x) = iclocξloc(x) +
∑
k

dkξk(x), (10)
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to calculate the spin wave energy. After the space integrals are computed, we find

δH = −c2
loc

(
πD

4λ
+K⊥

)
+
∑
k

[
A′kd

∗
kdk +B′k(d

∗
kd
∗
−k + dkd−k

+Ckcloc(dk + d∗k)] +
∑
km

Ukm d
∗
kdm + Vkm(dkdm + d∗kd

∗
m), (11)

where the coefficients are given by

A′k = ωk(Ku +K⊥)− K⊥
2
,

B′k =
K⊥
4
,

Ck =

∫
dV ξloc∆(x) ξk,

Ukm =

∫
dV ξ∗k∆(x) ξm,

Vkm =

∫
dV (ξk∆(x)ξm + ξ∗k∆(x)ξ∗m).

(12)

The A′k and B′k terms denote elliptical spin precession as a result of the transverse anisotropy

and correspond to the usual terms found in the Bloch wall case.[17, 19] The Ck, Ukm and

Vkm terms are proportional to the strength of D and depend on k because these terms result

from the spatial dependent ellipticity. Ck represents the coupling between the local and the

traveling modes, it is small compared to the other terms so it will not be considered. Ukm

and Vkm are scattering terms that describe the transition from a state with momentum ~k

to another state with ~m. If we focus on the maximum scattering strength then the specific

form of the coefficients, Ukm ∼ sech(k−m) and Vkm ∼ sech(k+m), allows us to approximate

Ukm and Vkm by delta functions δkm, δk−m respectively. We can then approximate δH as

δH = −c2
loc

(
πD

4λ
+K⊥

)
+
∑
k

Akd
∗
kdk +Bk(d

∗
kd
∗
−k + dkd−k). (13)

The first term on the right hand side of Equation (13) can be related to the domain wall

mass by p2/(2mN) ∼ c2
loc(

πD
4λ

+ K⊥), where mN = 1/[2(πD
4λ

+ K⊥)] is the Néel-type domain

wall mass. [20, 21]. The mass in a Bloch-type wall is mB = 1/(2K⊥) so mN < mB which

agrees with a higher mobility in DDWs.[6] The rest of the coefficients are

Ak = ωk(Ku +K⊥)− K⊥
2
− πD

4λ

(1 + 2k2λ2)

ωk
,

Bk =
K⊥
4

+
πD

8λ

(1 + 2k2λ2)

ωk
.

(14)
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This Hamiltonian can be diagonalized by means of a Bogoliubov transformation, ck = u+
k dk−

u−k d
∗
k, u

±
k =

√
(Ak ± ~Ωk)/2~Ωk, to obtain

δH = −c2
loc

(
πD

4λ
+K⊥

)
+
∑
k

~Ωkc
∗
kck, (15)

where the frequency Ωk is given by

Ωk =
(Ku +K⊥)a3

~

√
ωk

(
ωk − κ−

πD

2λ(Ku +K⊥)

(1 + 2k2λ2)

(1 + k2λ2)

)
, (16)

where a ∼ 0.3 nm is the lattice constant. It is now possible to explicitly write the spin waves

eigenmodes in terms of the amplitudes ck, c
∗
−k and the local and traveling modes

χ(x) = iclocξloc(x) +
∑
k

(cku
+
k + c∗−ku

−
k )ξk(x) (17)

IV. BAND STRUCTURE IN PERIODIC WALL ARRAYS

The scattering potential for spin waves in a Bloch (D = 0) domain wall is represented by

VP (x) which is reflectionless but leads to a a phase shift when spin waves propagate through

it. [15, 22] VP (x) corresponds to a specific case of the so called modified Pöschl-Teller

Hamiltonian,[23] [
−α2∂2

x − l(l − 1) sech2(x/α)
]
ψ = ε ψ. (18)

The parameter l describes the depth of the potential well, α has units of distance and ε

is a dimensionless energy. For a Bloch-type wall, l = 2 and α = λ. The transmission

and reflection coefficients related to the wave propagation across this potential have been

calculated for this Hamiltonian as a function of the depth

|R|2 =
1

1 + p2
; |T |2 =

p2

1 + p2
, (19)

with p = sinh(πkα)/ sin(πl).[24] From this result it can be seen by inspection that for l ε N,

|R|2 is zero. For the Dzyaloshinskii domain walls, the Hamiltonian is[
−λ2∂2

x − 2 sech2(x/λ)− D sech(x/λ)

λ(Ku +K⊥)

]
χ(x) = Eχ(x), (20)
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where the dimensionless energy is E = ~Ωk

(Ku+K⊥)a3
+ κ − 1. The D term modifies the depth

of the potential but not its form. It possible then to relate the parameter l with D,

l =
1

2

[
1 +

√
1 + 4

(
2 +

D

λ(Ku +K⊥)

)]
. (21)

Two transmission coefficients were calculated as a function of the wave vector k using Equa-

tion (21) for different values of D and are shown in Figure (2) along with numerical sim-

ulations to verify our theory. The numerical calculations were performed within a micro-

magnetic model. The calculations were done with the code mumax3.[25] The standard code

includes the interface DMI term but was modified to include at the same time the in-plane

and out-of-plane anisotropies. The parameters used were A = 16 pJ/m K⊥ = 18 kJ/m3,

Ku = 0.5 MJ/m3 and λ = 5.55 nm. The system was discretized in cells of 1.5625× 1.5625× 1

nm3. The geometry coincides with the one showed in Figure 1 and the system size was

12800 × 50 × 1 nm3 with periodic boundary condition in y direction. To simplify the

analysis and comparison with the analytical model the calculations were performed without

damping term and demagnetizing field. A domain wall was introduced at the center of the

sample and then the system was excited with a monochromatic point source of 50 mT ap-

plied field, 1950 nm away from the domain wall. The amplitudes were calculated comparing

the average envelope of the spin waves at both sides of the domain wall at the initial stages

of the propagation. As D increases significant reflection is found for larger values of k. This

is a direct result of the scattering terms in Equation (11).

As a result of the DMI, the scattering potential associated with the domain wall produces

reflection in the spin waves propagating through it. As such, the band structure for a lattice

of DDWs presents gaps at the edges of the Brillouin zone because of Bragg reflection, which

is not present for Bloch-type walls for which no reflection occurs. To see this we consider

a periodic array of DDWs and Fourier transform Equation (20) using also Bloch’s theorem

on χ(x) to obtain the central Equation

(
(Ku +K⊥)λ2k2 − E

)
C(k) +

∑
G

UGC(k −G) = 0, (22)
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D=1.3 mJ/m2

D=2.6 mJ/m2

|T
|2

0

0.2

0.4

0.6

0.8

1

k (nm-1)0 0.02 0.08 0.1

FIG. 2. (Color online) Transmission coefficient for D = 1.3 mJ/m2 (red) and D = 2.6 mJ/m2

(black). The solid lines result from using equation (21) and the points are numerical simulations.

where UG are the Fourier coefficients of the potential.[26] The period of the DDW crystal

can be determined with the Kooy-Enz formula that describes the stray field energy for an

arrangement of parallel band domains separated by domain walls of zero width.[27] For a

particular case of D = 2.6 mJ/m2 a minimum film thickness of approximately 2 nm is found

with a period of L = 100 nm. There is a compromise between the film thickness and the

period, since the minimum film thickness and period increase as D decreases.

Equation (22) represents an infinite set of equations connecting the coefficients C(k − G)

for all reciprocal lattice vectors G. These equations are consistent if the determinant of the

coefficients is zero. It is often only necessary to consider the determinant of a few coefficients.

For our calculations an 11× 11 matrix is used to numerically solve the central equation.

The calculated band structure of domain wall crystals is shown in figure 3. Gaps in the

band structure are a consequence of Bragg reflection and a direct result of the DMI. Figure

(4) shows the first gap frequencies as a function of D in k = 0 and k = π/L.

V. DISCUSSION AND CONCLUDING REMARKS

Reflection of spin waves by a domain wall is found when the interface form of DMI is

included. It is a result of the stabilization of a Néel wall as the stable configuration, and
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FIG. 3. (Color online)Band structures of a domain wall crystal. (a) Bloch wall (D = 0).(b) Néel

wall (D = 1.56 mJ/m2).

k=0
k=(π/L) nm-1

Δ 
F 

(G
H

z)

0

0.5

1

1.5

n Dc
0 5 15 20

FIG. 4. (Color online) Frequency gaps ∆F at the Brillouin zone boundary as a function of Dc.

L = 100 nm-1 is the period of the crystal.

of an extra chiral term in the Hamiltonian that changes the Pöschl-Teller potential and

scatters the spin waves. Reflection results in energy gaps in the band structure of a periodic

array of domain similar to the ones found in a magnonic crystal. Our proposed model offers

an alternative method for constructing a magnonic crystal without the need to build the

metamaterial although we recognize the difficulty of stabilizing the domains. Moreover, the

gaps only depend on D so there is only one parameter to control. It is worth noting that

the bulk form of DMI favors a Bloch-type wall configuration and no extra term is found in
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the spin wave energy. This last statement agrees with previous claims that the reflectionless

feature is very robust.[28]

This work was partially supported by the University of Glasgow, EPSRC (EPSRC

EP/M024423/1[29]) , the National Council of Science and Technology of Mexico (CONA-

CyT), and the French National Research Agency (ANR) under contract no. ANR-11-BS10-

003 (NanoSWITI).
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