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Accurate measurement of absolute experimental inelastic mean free paths and EELS 

differential cross-sections 

Alan J. Craven, Joanna Bobynko, Bianca Sala and Ian MacLaren  

SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK 

ABSTRACT 

Methods are described for measuring accurate absolute experimental inelastic mean free paths 

and differential cross-sections using DualEELS.  The methods remove the effects of surface 

layers and give the results for the bulk materials.  The materials used are VC0.83, TiC0.98, 

VN0.97 and TiN0.88 but the method should be applicable to a wide range of materials.   The 

data were taken at 200keV using a probe half angle of 29mrad and a collection angle of 

36mrad.  The background can be subtracted from under the ionisation edges, which can then 

be separated from each other.   This is achieved by scaling Hartree-Slater calculated cross-

sections to the edges in the atomic regions well above the threshold.   The average scaling 

factors required are 1.00 for the non-metal K-edges and 1.01 for the metal L-edges (with 

uncertainties of a few per cent).   If preliminary measurements of the chromatic effects in the 

post-specimen lenses are correct, both drop to 0.99.   The inelastic mean free path for TiC0.98 

was measured as 103.6±0.5nm compared to the prediction of 126.9nm based on the widely 

used Iakoubovskii parameterisation. 

 

1. INTRODUCTION 

A previous paper [1] demonstrated a technique to “extract” the electron energy loss 

spectroscopy (EELS) signal from precipitates contained in a thin sample of steel using 

DualEELS.   DualEELS is a system for EELS that allows the low loss and core loss region of 

the spectrum to be recorded at each pixel of a spectrum image (SI) [2, 3].   This provides the 

complete energy range of the spectrum, allowing a more complete analysis of the resulting 

data.   In particular, it provides the zero loss intensity.   This allows: normalisation of the edge 

intensities; Fourier logarithmic deconvolution [4], which gives the single scattering 

distribution; and determination of the local thickness in terms of the inelastic mean free path 

(λ) [5].    
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Once the single scattering distribution has been obtained, the average shape of the 

matrix spectrum can be obtained from a region of the SI not containing a precipitate.   On the 

assumption that the precipitate does not contain one or more major elements of the matrix, 

this matrix spectrum can be scaled and subtracted pixel by pixel from a region containing a 

precipitate in a way that reduces to zero those edge intensities present only in the overlying 

matrix.   In this way, an SI of the precipitate contribution alone is “extracted”. 

In the single scattering distribution resulting from deconvolution, the following 

relationship applies: 

	
	 1. 

where N is the number of atoms per unit area of specimen, Io is the integrated zero loss 

intensity, dI/dE is the spectrum intensity divided by the channel width.   I is dI/dE integrated 

over an appropriate energy window and σ is the partial cross-section obtained by integrating 

the differential cross-section, dσ/dE over the same energy window.   If dσ/dE is known, then 

N can be determined.    

If N is known at each pixel for each type of atom in the precipitate, then: 

• the average composition of the precipitate at each pixel can be determined and hence 

any variations with position; 

• the precipitate thickness at each pixel in the precipitate spectrum image can be 

determined using the low loss provided the inelastic mean free path is known; 

• if the structure of the precipitate is known, the local chemical thickness (i.e. the 

number of atoms per unit area divided by the number of atoms per unit volume) can be 

determined pixel by pixel and compared to the total thickness obtained from the low 

loss region of the spectrum. 

• from the local thickness, the volume of the precipitate can be determined.  

• if the precipitate is viewed along a high symmetry direction and it possesses strong 

crystallographic faceting and symmetry, information on its probable shape can also be 

obtained. 

All of this information is relevant to understanding the processing and properties of 

the material, in this case, a family of high manganese steels for automotive applications [6, 7].   

For such information to be accurate, reliable values of dσ/dE are required and obtaining them 

is the subject of this paper.   In a subsequent paper, the values of dσ/dE obtained here will be 
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combined with the spectra from some precipitates obtained in the previous paper [1] to give 

accurate quantitative data on precipitates. 

Much of the quantitative work performed previously using EELS has used calculated 

differential cross-sections for this purpose.  These are calculated using either the hydrogenic 

or the Hartree-Slater model [8-11].   Such cross-section calculations are based on isolated 

atoms and contain no information on the energy loss near edge structure (ELNES) or the 

extended energy loss fine structure (EXELFS) arising from the neighbouring atoms present in 

a solid.   Nor do they include the white lines that arise when d or f states are close to the Fermi 

level, as in the transition or lanthanide series, although Rez and Rez have proposed a method 

of doing this [12].   An extension to the hydrogenic model seeks to include the effects of 

white lines using an empirical correction [11].    

In addition, as the energy loss range normally accessible to EELS is a few keV, the 

core states that can be used vary with atomic number.   For the light elements, the thresholds 

of the K-edges fall in the accessible energy loss range and the accuracy of these cross-sections 

are usually thought to be within a few percent [11].   Once the K-edges become inaccessible, 

the L2,3 edges are used and the uncertainty in these is thought to be about 15%, at least for low 

collection angles [11].   This uncertainty is compounded by the presence of the white lines.   

When the L2,3 edges become inaccessible, the M4,5 edges are used and the uncertainty is these 

is even greater [11].   Again, white lines are an issue in the lanthanides. 

Such theoretical cross-sections are widely used (for example, they are implemented in 

Digital Micrograph).   Since the shapes of the calculated and experimental cross-sections do 

not match, the signal and the cross-section are integrated over an energy window before 

taking the ratio [11].   In most experiments where quantification has been performed, the 

value of Io in Equation 1 has not been available.   Thus N for each element cannot be obtained.   

However, the ratios of the values of N for the different elements can be determined, and hence 

the percentage of each element present can be calculated.   The uncertainty in the calculated 

cross-sections should be considered to be an unknown systematic error.   Thus if edges of the 

same type are involved e.g. two K edges, the uncertainty may be much lower than the 

uncertainty in the individual cross-sections, since the systematic errors should largely cancel.   

This benefit may not apply if the ratio of a K to L cross-section is involved. 

Another approach is to use standards.   Very good quality relative quantification has 

been achieved using a standards-based k-factor approach [13-23].   For this to work well, one 

of a number of situations is required: 
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• Both the sample and standards are rather thin (for example, the classic criterion 

is t/λ< 0.3 [11]) so that multiple scattering does not affect the integrated post-

edge counts significantly.   One recent study with relevance to our current 

work on (Nb,Ti) carbides showed an excellent example of this approach for the 

quantitative analysis of niobium oxides [22, 24].  

• The sample and standards have similar values of t/λ, provided this is ≤ 1 

• A low loss spectrum from the same area as the core loss spectrum is available 

to allow deconvolution of the multiple scattering.   Without DualEELS, this is 

really only viable for “point” analyses rather than processing data from an SI. 

Whilst it was possible to determine absolute differential cross-sections previously [20, 

25, 26], in practice this was difficult and rarely performed due to the huge intensity difference 

between the bright zero loss peak and the weak core loss edges.   Cross-sections, where 

measured, were usually calculated from the experimentally determined ratio of an intensity 

from the edge of interest to that of another edge with a better known cross-section (e.g. 

Manoubi et al. [17, 27], rather than by direct measurement.  Neither method is particularly 

applicable to EELS mapping using spectrum imaging.    

With DualEELS, it is now possible to obtain experimental differential cross-sections 

from well-characterised bulk material under conditions that can also be used for spectrum 

imaging with a resolution of a few Ångströms.   Kothleitner et al. [26] have demonstrated the 

use of DualEELS for this.   The current paper uses a similar approach, discusses the 

separation of edges, compares the experimental cross-sections to the calculated cross-sections 

in the atomic range and considers the random and systematic errors involved.   Since this 

work is part of a project studying precipitates in high manganese steels, it uses VC, VN, TiC 

and TiN bulk ceramic standards to obtain differential cross-sections for the C K-, N K-, Ti 

L2,3- and V L2,3-edges.   The experimental conditions used are those used in the earlier steel 

study. 

Two key issues have to be addressed in order to obtain accurate differential cross-

sections.   The first is the fact that making thin samples from bulk material can change the 

material and, in particular, can cause a surface layer of significantly different composition to 

that found in the bulk.   The second is that the absolute thickness of the sample must be 

determined accurately. 

The surface layer problem is tackled by taking data over a range of specimen thickness 

and then using a least squares fitting technique to extract the bulk behaviour in a manner 
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similar to that used in earlier work by Mendis and Craven [28].  In this work, this is 

performed by plotting I/I0 against N and determining σ  or dσ/dE from this.  In order to 

calculate N at each point, an absolute value of the thickness must be determined. 

To determine the local thickness from the value of t/λ obtained from the low loss 

spectrum, an accurate value of λ is required.   A measurement of λ is carried out for TiC and 

the values for the other standards are obtained from it by using this to scale the 

parameterisation of experimental data by Iakoubovskii et al [29]. 

Taking a similar approach to Kothleitner et al. [26], a needle-shaped specimen of TiC 

is used.   However, rather than look at a cross-section of the needle after the data are acquired 

to verify that it is circular, here a method is used which makes a direct measurement of the 

needle thickness during the experiment.   A SI is taken at a given tilt and the corresponding 

HAADF image is taken after rotating the needle by 90o around its axis.   Thus a value of t/λ 

from the SI can be matched directly to the thickness of the needle by measuring the width of 

this HAADF image.   Data are also taken over a range of thicknesses so that the effects of any 

surface layer can be removed.    In this way, λ can be determined directly and compared to 

that obtained from the Iakoubovskii parameterisation [29]. 

This parameterisation gives an improved fit to the data originally parameterised by 

Malis et al. [30].   Subsequent analysis by Zhang et al. [30, 31] showed that it performed very 

well for the high convergence and collection angles used in modern aberration corrected 

STEM instruments in general and this work in particular.  It gave discrepancies of less than 

2% with experimentally measured values for MgO.   While we found a significant difference 

between the experimental and Iakoubovskii values for TiC, the parameterisation ought to give 

accurate relative values of the mean free paths for these closely related compounds and so be 

suitable for extrapolating the experimental value for TiC to the other standards. 

 

2. THEORETICAL APPROACH 

a. Deriving an Experimental Cross-Section from a Real Specimen 

Some Ga ion implantation and some damage will always remain on the surfaces of a 

lamella or needle made using a focused ion beam (FIB) even after “polishing” with low 

energy ions.   When the sample is removed from the FIB, it is likely that some oxidation of 

this surface layer will also occur.   While the nature of the surface layer may vary with depth, 

it will eventually end, leaving the original bulk material.   Due to its method of formation, this 
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layer will be essentially homogeneous across the surface of the lamella.   Thus, provided that 

there is bulk material between the two surface layers on the sample, an increase in thickness 

will result in an increase of signal from the bulk but not from the surfaces.   If the surface 

layers remain approximately normal to the electron beam, their contributions to the signal will 

be independent of position and so relatively easy to remove. 

 

 

Fig 1   Schematic of a FIB Lamella 

 

Figure 1 shows a schematic of such a sample where the total thickness of the top and 

bottom surface layers is tS, which is taken as constant.   The bulk material has a thickness tB 

that varies with position.   The corresponding inelastic mean free paths are λS and λB 

respectively.   After deconvolution, the spectrum is a single scattering distribution and so the 

contributions from the surface layers and the bulk layer are additive.   The number of atoms 

per unit area, N, is given by the number of atoms per volume, n, multiplied by the thickness, t.   

Hence the single scattering distribution can be written as 

1
𝐼!
𝑑𝐼
𝑑𝐸 =
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𝑑𝜎!"
𝑑𝐸  

	
	 2. 

where each sum is over both all components (atomic species) and all the electron states in 

those components, the first sum being for the bulk and the second for the surface layers.   As 

long as the surface layers are homogeneous over the surface, the atoms need not be 

homogeneously distributed within its depth for the equation to be valid. 

The left hand side of this equation can be measured experimentally and the values of nBi are 

known from the composition and structure of the bulk standard.  The bulk thickness and the 

parameters for the surface layer are not known.   However, the value of t/λ for the sample is 

available from the low loss and this can be expressed as 
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Since tS is assumed to be constant, dtB=λB d(t/λ), allowing the slope of a plot of 

(1/I0)(dI/dE) versus t/λ to be written as  

𝜆! 𝑛!"
!

𝑑𝜎!"
𝑑𝐸  

	
	 4. 

Thus by recording data over a range of thicknesses, processing to give a single 

scattering distribution and then taking the slope of the above plot using a least squares fit, the 

quantity in Equation 4 can be found at each energy in the spectrum from each pixel in the SI. 

This is true for both the low-loss and the core-loss regions of the spectra.    

Here it is the core loss region that is of interest and, in particular, the two ionisation 

edges from a binary compound MXx sitting on an approximately power law background from 

electrons in less tightly bound states.   If the slope given in Equation 4 is normalised by λBnM, 

where nM is the number of M atoms per unit volume, Equation 4 can be written as 

𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 + 𝑥
𝑑𝜎!
𝑑𝐸 +

𝑑𝜎!
𝑑𝐸  

	
	 5. 

where all the terms from the excitation of lower lying states are grouped into the 

“Background”.   Equation 5 gives the absolute experimental cross-sections for the two 

elements of interest in the original bulk material with the artefacts introduced by the surface 

layers removed. 

Removing the background from the two cross-section terms and then separating these 

two terms with sufficient accuracy are significant problems and this is discussed in detail 

below.    As part of the process, Hartree-Slater (HS) atomic cross-sections are used.   These 

are calculated using the routines in Digital Micrograph [8, 10].   A chemical shift is applied so 

that each calculated cross-section starts at the experimental edge threshold.  The shifts are C -

2.0eV, N -4.0eV, Ti +0.5eV and V +0.5eV.   While the HS cross-sections do not account for 

the ELNES and EXELFS, these effects become small at energies well above the threshold so 

that the experimental and HS shapes should converge in this region [8]. 
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Thus, after removing the background under the non-metal cross-section, the non-metal 

HS cross-section can be scaled to the experimental cross-section in a region immediately in 

front of the metal threshold.   This provides both a method of extrapolating the non-metal 

cross-section beyond the metal threshold and a suitable background under the metal cross-

section so that it can be extracted.   Once the metal cross-section is extracted, the metal HS 

cross-section can be scaled to it.   The scaling factor for the metal gives a direct measure of 

the agreement between the experimental and the HS cross-sections.   For the non-metal the 

extracted cross-section and the scaling factor must be corrected to full stoichiometry by 

dividing them by the value of x. 

With the four standards investigated, two experimental cross-sections are obtained for 

each of the four elements allowing a consistency check.   With the cross-sections for the four 

elements, a good approximation to the cross-section of any ternary or quaternary compound 

of the elements can also be found. 

b. Determining an experimental value for λB  

The method of determining an experimental value of λB was outlined above and 

involves the use of an SI recorded at one needle orientation and an HAADF image recorded 

after the needle has been rotated by 90o about its axis.   This approach allows a needle with an 

“elliptical” cross-section to be used (since manufacturing a perfectly circular cross section 

needle at dimensions < 100 nm is very difficult).   From the SI, a t/λ map is obtained and a 

profile of t/λ is taken along the axial direction.  At each axial point, the profile contains the 

maximum value of t/λ.    From the corresponding HAADF image at 90o, a profile of the 

needle thickness, t, along the axis is obtained.  

In principle, overlying one profile over the other and taking the ratio should give a 

profile with constant value equal to λ.    In practice, a number of issues have to be addressed.   

The needle, like any sample prepared in the FIB and subsequently exposed to atmosphere, has 

a surface layer that is different from the bulk material of interest.   Fortunately, the HAADF 

images show that the thickness of the surface layers and their projected thickness along the 

needle are constant to a good approximation.   The pixel size in the SI used to measure t/λ is 

larger than that used for the HAADF image used to measure t and the data are recorded at 

different specimen rotations.   Thus there is uncertainty in the alignment of axial positions of 
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the t/λ and t profiles and the positions of the sampling points along the axis in the two profiles 

do not coincide. 

If the plots of t and t/λ increased linearly with axial position, the solution would be 

straightforward.   Taking the slopes of the plots would remove any offset in the axial origins, 

the effects of any constant surface effects and deal with the differences in sampling point 

positions.   The ratio of the slopes would then give λΒ. 

In practice, the profiles vary approximately as the square root of the axial position – 

i.e. the needle is somewhat blunted towards the tip, as is often observed when manufacturing 

tips, e.g. for atom probe tomography.   This makes it difficult to take account of the origin 

shift and surface layers using plots against axial position.   For the data obtained here, the 

most stable results are obtained by plotting of t2 against (t/λ)2 and taking the slope tips with 

other shapes may require other approaches.   Here, the values of t are interpolated onto the 

sampling points of t/λ using a quartic fit to a plot of t2 versus axial position.   As will be seen 

below, good straight lines are obtained and the slope is relatively insensitive to the offset of 

the axial positions.   In fact, the error in the fitted gradient can be minimised by varying this 

offset.   Since such a plot is a straight line and, assuming a single surface layer of constant 

thickness, the relationship between of t and t/λ can be expressed as a straight line of slope, m, 

and intercept, c. 

 𝑡! + 𝑡! ! = 𝑚 !
!!
+ !!

!!

!
+  𝑐 6. 

Differentiating this with respect to t and re-arranging gives 

 𝜆!! = 𝑚 1+ !!
!!!!!

!!
!!
− 1  7. 

Both of the terms in round brackets will turn out to be much less than unity and so λΒ 

can be written as 

 𝜆! = 𝑚 1+ !
!

!!
!!!!!

!!
!!
− 1  8. 

 

3. EXPERIMENTAL METHODS 

a. Materials and Sample Preparation 
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Solid, polycrystalline ceramic specimens of TiC, TiN, VC and VN were chosen as the 

standards and used to determine the absolute differential cross-sections.   These materials are 

all based on the rocksalt structure.   The VN standard specimen was provided by Prof. Dr. W 

Lengauer of the TU Wien and its stoichiometry is VN0.97 [32].   The TiC, TiN and VC were 

provided as bulk materials by Dr C Chatfield at Sandvik Coromant.   Two of these have 

measured stoichiometries – TiC0.98 and TiN0.88.   The VCx was designated as having a high 

carbon content but no value of x was provided.   Examination of selected area diffraction 

patterns showed ordering in good agreement with that found by Venables et al.[33] showing 

that it is in the V6C5 phase field of the phase diagram reported by Billingham et al. [34]. This 

phase diagram shows that x could lie in the range 0.76 to 0.85 if the material had been 

allowed to equilibrate at ~600°C before cooling.   The minimum value of x increases 

approximately linearly with equilibration temperature until at ~1230°C the value of 0.83 for 

the compound is reached.   It is likely that the equilibration was above 600oC and so the 

composition range is probably narrower.   Below, a value of 0.83 is used. 

All the standards were prepared for microscopy as standard FIB lamellae using a 

procedure similar to that used for the steel specimens [1].   The lamellae were cut from 

arbitrary directions in the polycrystalline materials and so have arbitrary orientations.  

Additionally, a TiC sample was prepared as a needle-shaped specimen by FIB using a 

procedure more normally applied to 3DAP specimen preparation [35].  

 

b. Contamination minimisation 

Since carbon is a key element in the precipitates of interest, it is essential to avoid 

carbon growth on the lamella and needle specimens during the acquisition time necessary to 

acquire high quality data.   While the Dual-Beam FIB has oil-free pumping, the FIB 

preparation involves deposition of platinum using an organometallic precursor.   To ensure 

that any residual precursor is removed along with any other adventitiously acquired 

hydrocarbon, all specimens are baked at 100°C either overnight or at least for several hours in 

a Gatan PIPS system, which also has an oil-free vacuum system.   The high vacuum of the 

PIPS also prevents further oxidation of the specimen surfaces, something that is always a 

possibility if plasma cleaning with an Ar-O gas mixture is used e.g. when using a Fischione 

Plasma Cleaner.   However, this plasma cleaner is used to clean the specimen holders for at 

least 3 minutes prior to using them.   On removal from the PIPS, the specimen is immediately 
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loaded into the holder and inserted into the microscope.   After this treatment, negligible 

carbon growth is normally observed and only data acquired under these conditions is retained. 

The FIB lamellae are mounted in a JEOL double tilt holder (EM-01040RSTHB) and 

the TiC needle specimen is mounted in a JEOL high tilt tomography holder (EM-21310). 

 

c. Equipment and parameters 

All spectral data are recorded using a JEOL ARM200F operated at 200 kV and 

equipped with both a cold field emission gun as the electron source and a probe corrector.   A 

Gatan GIF Quantum ER energy filter with fast DualEELS is used for the recording of the SIs.   

All SIs are recorded using the Digital Micrograph (2.x) software, with the scans under the 

control of Digiscan-2 hardware. For all SIs recorded in this work, a convergence half-angle of 

29 mrad is used.   The spot size is ~1 Å and the condenser settings are chosen to give a probe 

current in the range 180 to 400 pA.   For EELS, the camera length is chosen so that the 2.5 

mm aperture of the Quantum gives a collection half-angle of 36 mrad, resulting in high 

collection efficiency.   A dispersion of 0.5 eV per channel is used.    

d. SI acquisition conditions 

A key requirement in choosing the acquisition conditions for recording the DualEELS 

SIs is that the two spectra can be spliced accurately.   Because of the high intensity zero loss 

peak, the maximum integration time for the low-loss data set is kept short so that it remains in 

the linear region of the CCD response, and consequently the low-loss signal at the splice point 

is relatively low.   Thus it is essential to maximise its signal-to-noise ratio and minimise any 

spurious contributions to it e.g. from stray scattering reaching the detector.   The former can 

be improved by using multiple (5-10) integrations at each pixel and by keeping the splice 

point energy low.   The stray scattering can be minimised by making sure that the zero loss 

peak is fully in the beam trap when recording the high loss signal.   Nevertheless, the section 

of the CCD used for the low-loss signal continues to integrate the residual stray scattering 

during the longer high-loss integration time.   Thus, keeping the ratio of the high-loss to low-

low integration times (the time ratio) low minimises the contribution of the stray scattering to 

the low-loss signal.   For this work, a time ratio of ~25 and a splice point of ~100eV proved to 

be optimum.   This choice of splice point determines both the energy offset required for the 

high-loss spectrum and the integration time to keep the signal in the linear region of the CCD.   

Typically, there are 10 integrations per spectrum, each with an integration time of 200 µsec 
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for the low-loss and 5 msec for the high-loss taking 52 msec per pixel.   With the readout 

overheads, this gives a recording time of 125 msec per pixel in the SI. 

With these experimental conditions, the standard splice routine in DigitalMicrograph 

can be used with a 20 channel overlap to splice the low-loss and high-loss spectra.      Ideally, 

the ratio between the high-loss and low-loss intensities in the splice region, the splice ratio, 

should equal the time ratio.   However, this is not the case and the higher the time ratio the 

bigger the discrepancy.  To confirm that the time ratio is the correct scaling factor, the same 

region of the spectrum was recorded in both the low loss and high loss channels for a range of 

time ratios.  This shows that the signal ratios follow the time ratios to better than 1% and 

confirms that there is a residual contribution to the low loss signal which increase linearly 

with the high loss integration time.   It is the latter that causes the splice ratio to be 6-10% 

lower than the time ratio in this work.   However, the splice ratio is used to get a smooth join 

of the two regions for the purpose of deconvolution and the resulting signal is corrected in a 

subsequent stage of the processing. 

To produce high quality data for the determination of cross-sections, SIs are recorded 

from areas containing a range of sample thickness.   As discussed below, a range of values of 

t/λ from ~0.2 to ~0.8 proves to be ideal but the SIs are typically recorded with a larger 

thickness range and suitable sub-areas extracted at a later stage.  

For the TiC lamella, SIs are recorded at several specimen orientations to verify that the 

large probe and collection angles to determine the conditions under which  channelling effects 

modify the experimental cross-sections significantly.     The orientations are: 

• On a <110> pole (which would be expected to show the strongest channelling 

effects, as it has pure columns of Ti and C which have the closest spacing for 

any direction in this crystal structure): 

• ~1o off this pole along a <110> Kikuchi line 

• ~10o off this pole along a <110> Kikuchi line and in a two beam condition  

• With an additional tilt of 3o perpendicular to this Kikuchi band and hence away 

from any strong Bragg condition. 

For the TiC needle-shaped specimen, a SI and corresponding HAADF image of the tip 

are recorded at each orientation in a tilt series from -65° to +75° in 5° intervals.   At each tilt, 

an HAADF survey image is recorded and a region at the end of the tip is selected for the SI.  
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The aim is to make this the same region at all tilts.  Low loss and core loss SIs are recorded 

using DualEELS and the survey image is re-recorded to verify that specimen drift has not 

distorted the SI.  The pixel size in the SI is 4.0 nm which is  ~5 times that in the HAADF 

image (0.7nnm).      At the larger positive tilts later in the series, the HAADF images show the 

onset of the growth of a thin carbon layer on the tip.   As the scattering from amorphous 

carbon in the HAADF image is much less than that from Ti, the thresholding process 

described below excludes it from the measurement of t.   However, it would be a more 

significant effect on the measurement of t/λ.   Thus only 11 SI/HAADF pairs, covering the 

range from -65°/+25° to -15°/+ 75°, are used in the analysis.   The spectra in the corresponding 

core loss SIs verify that there is no change in the shape of the C K-edge due to amorphous 

carbon and hence that the t/λ used is valid.   The STEM magnification used for the data 

collection is calibrated in the directions perpendicular and parallel to the rod axis using a 

MAG*I*CAL specimen[36], confirming that it is accurate to better than 1%. 

 

4. ANALYSIS OF THE DATA, RESULTS AND DISCUSSION 

a. Measuring the inelastic mean free path for TiC and extrapolating the 

result to the other standards 

Figure 2.  a) a map of t/λ from the TiC0.98 tip; b) the HAADF image after rotating 900 about 
the tip axis: c) the HAADF image after thresholding; d) plots of maximum values t/λ in each 
vertical line of the image and the corresponding values of t from the HAADF image versus 
axial position (i.e. the horizontal direction, from left to right); e) a plot of t2 against (t/λ)2 
together with a linear fit and the corresponding deviations. 
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Figure 2a shows the t/λ map from the 1st of the 11 SIs analysed and Figure 2b shows the 

corresponding HAADF image after the 900 rotation.   This is taken from the region of the SI 

selected on the survey image at this new tilt.  Thus a small difference in alignment is to be 

expected. 

A small piece of debris can be seen in each.   A script is used to identify the maximum value 

of t/λ in each vertical profile of the map and this is plotted as a function of axial position in 

Figure 2d.   The presence of the piece of debris does not perturb the t/λ profile from this 

particular map as it is at the edge of tip.   Thus the increased t/λ due to its presence never 

exceeds the value on the axis.   However, as the tip is rotated about its axis to record 

subsequent SIs, the presence of the debris will eventually perturb the profile.  When this 

happens, the positions where the perturbation occurs are excluded from the subsequent 

analysis. 

The actual thickness of the needle at each axial position is given by vertical height of the 

needle in the HAADF image of Figure 2b.   Since there is a big change in the signal level 

between the needle and the vacuum or any small amount of carbon contamination, the pixels 

where the needle is present can be identified by applying a threshold and setting the pixel to 

zero below the threshold and unity above the threshold, as seen in Figure 2c.   A script was 

used to generate the thickness profile by summing the values in each vertical column of the 

thresholded image, scaling them by the pixel size and plotting them against the axial position.   

The t profile from Figure 2b is shown in Figure 2d after a shift of the origin determined by the 

subsequent processing.   Here, the presence of the debris does perturb the profile because it 

goes outside the tip profile.   Those positions where its effect is present are excluded from 

subsequent analysis.   As the needle is rotated, the projection of the debris will eventually lie 

within the profile of the tip and so will no longer perturb the t profile. 

t and t/λ follow each other closely in the centre section of Figure 2d and these points are used 

in the analysis.   From the vertical scales, the mean free path is close to 100nm.   Points very 

close to the tip are excluded because there is no bulk material present.   Points where the 

graph of t becomes higher than that of t/λ in Figure 2c are also excluded.   The reason for this 

deviation is not clear.   EELS has always had an issue with values of t/λ in this region [37, 

38].   It could also be an issue in the thresholding process used to measure t.   As the diameter 

of the needle increases, the projected thickness of weakly scattering material at the edge 
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increases.   Eventually the signal from this material will exceed the threshold and so becomes 

included in a measurement of the thickness. 

As described in Section 2b, a quartic fit is used to interpolate the positions of the values of t 

onto the positions of values of t/λ.    Figure 2e shows a plot of t2 vs (t/λ)2 together with a least 

squares linear fit and the corresponding deviations.   The error in the fit has been minimised 

by adjusting the origin of the axial position of the t profile relative to that of the t/λ profile.   

Of the 11 pairs of data processed, the typical shift was 7 HAADF pixels, which corresponds 

to 1.4 SI pixels.   The maximum shift was 20 HAADF pixels, corresponding to 3.5 SI pixels.   

Given that the regions of the SIs have to be set-up at each tilt, the small values of these 

positioning errors are an indication of the excellent reproducibility possible. 

Ignoring the small correction term in Equation 7, the mean free path is given by square root of 

the gradient of the plot of t2 vs (t/λ)2.   The error on each of the 11 values from the fits is 

<0.25%.   However, the standard deviation of the 11 values is 1.6% indicating that other 

sources of random error are present (possibly some slight orientation effects, as discussed in 

section 4c with reference to figure 5).   Thus all values are treated as having equal weight 

giving  a value of λB for TiC0.98 of 103.6±0.5 nm.   

Turning to the small correction factor in equation 8, since it is t2 that is plotted, the slope of 

the graph will be dominated by the higher values of t and so an appropriate value to use in the 

first correction term is 100nm.   The total value of tS can be measured from the HAADF 

images and is ~9nm.   The Iakoubovskii parameterisation can be used to compare the 

predicted value of the mean free path for TiC0.98 of 127nm with those of oxides of titanium of 

which the surface layer might be composed.    Anatase has the largest value of 132nm with 

the others being much closer to that of TiC0.98.   Thus the magnitude of the correction term in 

Equation 8 is ~0.002.  Given that this is only an estimate and would result in a change below 

the standard error, no correction is made. 

Table 1 gives the values of relevant parameters for each of the standards along with the mean 

free paths.   The lattice parameters are obtained using Vegard’s Law to interpolate the data 

given by Goldschmidt [39] to the value corresponding to the composition of the standard.  

The values of nM and the density, ρ, are based on this lattice parameter and the composition.   

ρ is to be used to find λB using the Iakoubovskii parameterisation [29].   The resulting values 

are not sensitive to the exact stoichiometries. 
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 TiC0.98 VC0.83 TiN0.88 VN0.97 

Lattice parameter a (nm) 0.4328 0.4156 0.4239 0.4131 

Metal atoms/ volume nM (atoms/nm3) 49.37 55.73 52.51 56.74 

Density ρ  (g/cm3) 4.889 5.636 5.249 6.079 

Iakoubovskii mean free path λB (nm) 126.9 122.6 124.7 120.3 

Malis mean free path λB (nm) 97.7 95.7 96.5 96.4 

“Experimental” mean free path λB (nm)	 103.5±0.5 99.7±0.5

* 

101.7±0.5

* 

98.1±0.5

* 

Table 1: Parameters for the standards, mean free paths predicted by Iakoubovskii et al.[29], 

Malis et al.[30] and the experimental mean free paths obtained by extrapolating the 

experiment value for TiC0.98 using the ratios of the Iakoubovskii predictions.  (* indicate 

extrapolated values). 

 

The experimental value of λB for TiC0.98 is significantly less than that predicted by the 

Iakoubovskii parameterisation [29] and is actually closer to that of the original Malis 

parameterisation[30].  However, the Iakoubovskii formula is used for extrapolation because of 

its use of density in the parameterisation.   This gives a better fit to the same wide range of 

experimental data used by Malis et al.[30] in the original parameterisation.  The mean free 

path for standard MX is obtained by assuming that (λMX/λTiC)expt = (λMX/λTiC)Iakoubovskii. 

 

b. Obtaining spliced and deconvoluted datasets 

The recorded SIs are processed using the procedure described in previous paper [1].   In short, 

both spectra are aligned in energy using the zero loss peak, any x-ray spikes are removed, 

channels containing no useful information are removed at either end of the spectra, and 

principal component analysis (PCA) is used for noise reduction using the plug-in for Digital 

Micrograph developed by Lucas et al. [40].   The difference between the SI before and after 

PCA is examined to detect any signs of bias or missing components.   In the previous paper, 
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“bleed through” of intensity from the core-loss spectrum into the low-loss spectrum was a 

significant issue.   However, following modifications to the QUANTUM system and using the 

improved acquisition conditions described above, it is much less significant.   Thus the 

correction process used to correct for the “bleed through” and the smoothing of the low-loss 

prior to splicing are no longer required.    Finally the spectra are spliced and then Fourier log 

deconvolved. 

From a t/λ map of the whole SI, one or more suitable sub-regions are selected in which the 

values of t/λ lie in the range 0.2 to 0.8.   Equivalent sub-regions are extracted from the spliced 

SI and the deconvoluted SI.   For use in later stages of the processing, maps of the splice ratio, 

S, are extracted from the former and maps of Io is extracted from the latter.   For the sub-

regions used the average splice ratio was 6 -10% less than the time ratio whereas in the earlier 

work it could be ~30% because the time ratio was larger and the stray scattering less 

controlled. 

 

c. Extracting the absolute experimental cross-sections 

The value of the cross-section at each value of the energy loss (i.e. the quantity given 

by Equation 5) is found by using a least squares fit to take the gradient of a plot of 

[(1/(I0)xy) (I(E)xy /ΔE) (Sxy/T)] versus [nM λB (t/λ)xy].   λB is the “experimental” mean free path 

and nM is the number of metal atoms per unit volume from Table 1.   Ixy(E) is the intensity of 

the spectra in the spatial pixel xy at energy E, and the plot is performed for all xy values in the 

spectrum image.    Sxy, (I0)xy and (t/λ)xy are the corresponding values in the maps of the splice 

ratio, the zero loss intensity and the relative thickness, as discussed in the previous section.   

ΔE is the energy width of the channels in the spectrum.   T is the time ratio.    Thus the factor 

(Sxy/T) replaces the splice ratio used to splice the spectra with the time ratio in order to give 

the correct scaling between the core-loss and low-loss intensities.    

To carry out the fits, a script was written in Digital Micrograph.   This script generates 

a spreadsheet of values of the points, fit values and deviations for each energy loss in the 

spectrum.   Plots of the differential cross-section and the corresponding errors from the least 

squares fits as a function of energy are also generated.   It should be noted that an 8-byte word 

length in Digital Micrograph is required to give sufficient accuracy in the least squares fitting 

routine.   With this word length and the sizes of the SI sub-regions used (less than 2000 
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pixels), the values of the fit parameters match those from the linear regression routines in 

Microsoft EXCEL.   The onset of rounding errors in the least squares fit will set a limit to the 

maximum number of pixels that a sub-region can contain. 

To demonstrate the effectiveness of the procedure in removing the contributions from surface 

layers, Figure 3a compares the TiN0.88 cross-section with spectra summed in 5 x 5 pixel 

regions in the thickest and thinnest region of the SI.   The data have been scaled to match in 

the window over the N K-edge.   This was an early specimen with significant surface 

oxidation.   Thus, in addition to the N K-edge, the Ti2,3-edges and the Ti L1-edge, there is a 

clear O K-edge in the spectra but not in the cross-section.   The Ti signal is also relatively 

larger in the two spectra.   If the scaled cross-section is subtracted from a spectrum, the result 

should be the spectrum from the surface layer.   This surface signal should be the same in 

absolute terms in both the thin and thick regions if the assumptions made about it are true. 

Figure 3b shows the surface layer spectra from the thin and thick regions on an absolute scale. 

This confirms that they are almost identical so that the assumptions are valid and 

demonstrates the effectiveness of the approach in extracting the bulk signal from the SI. 

 

Figure 3.   a) Comparison of the extracted cross-section of TiN0.88 with spectra summed in 

5x5 pixel regions in the thinnest and thickest regions of the SI.   The data have been scaled to 

match in the window shown.   In addition to the N K-, Ti L2,3- and Ti L1- edges, the spectra 

from the SI show a significant O K-edge but this is absent in the cross-section.   b) The 

surface contributions, on an absolute scale, obtained by scaling and subtracting the cross-

section from the spectra. 

To demonstrate the quality of the least squares fits, Figure 4 shows plots of 

[(1/(I0)xy) (I(E)xy /ΔE) (Sxy/T)] versus [nM λB (t/λ)xy] from a TiC0.98 lamella.   The energy of the 

data in Figure 4a is the energy of the Ti L3-peak, where there is a high intensity, while the 

energy of the data in Figure 4b is just before the Ti L2,3-edge where there is a low intensity in 
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the spectrum.   Hence the vertical scales are an order of magnitude different.   It is clear from 

the deviation plots that the data are well fitted by straight lines.   In general, this is true 

provided that 0.2<t/λ<0.8.   It is assumed that, at lower thicknesses, surface effects play too 

large a role to allow the straight line fit to continue.   As noted above, issues with values of t/λ 

> 1 have been known for a long time [37, 38].   At these higher thicknesses, there may also be 

issues with the Fourier-log deconvolution process or with inelastic scattering modifying the 

image contrast after energy loss relative to that in the elastic image (Io), which is used to 

normalise the data.    

 

Figure 4.   Plots of [(1/(I0)xy) (I(E)xy /ΔE) (Sxy/T)] versus [nM λB (t/λ)xy] for two values 

of energy in a TiC data-set:, a) at the energy of the Ti L3-peak, where the signal is high, and b) 

an energy immediately before the Ti L2,3-edge, where the signal is low.    Note that the 

vertical scale in b) has been increased by an order of magnitude relative to that in a).  In both 

cases, the actual data points are plotted in blue circles, the fit as a straight line and the 

residuals in green circles. 

To investigate the effects of diffraction conditions and channelling on the cross-

sections when using large probe and collection angles, cross-sections were measured on a 

TiC0.98 lamella at the four diffraction conditions described in Section 2d.    Figure 5a 

compares these cross-sections.   The datasets used for these cross-sections were taken before 

the optimum acquisition conditions were determined and so there are minor differences in the 

background shape at the left hand edge due to issues with the splicing but, overall, the 

agreement is excellent.   Thus it appeared that channelling has little effect on the cross-

sections and the final data was taken from the randomly oriented lamella without recording 

diffraction patterns to determine the precise diffraction conditions. 
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However, in responding to points raised by the referees, a more critical comparison is 

made in Figure 5b.   The two cross-sections recorded far from the <110> pole and 

significantly off the <110> two beam-condition are the least affected by channelling effects 

and their mean is used as a baseline.   The percentage deviations of the cross-sections from 

this baseline are shown as a function of energy loss in Figure 5b.   The percentage deviations 

of these two cross-sections must be equal and opposite and will show no significant variation 

with energy loss, as seen in Figure 5b.   These also indicate the level of deviation that just 

comes from noise in the datasets (about 1%).  The percentage deviation of the cross-section 

recorded at the <110> 2-beam condition is slightly large but also shows no significant 

variation with energy loss, suggesting no significant channelling effects are present at such 

orientations.    

However, the two cross-sections recorded in the vicinity of the <110> pole show 

significant variations with energy loss including a noticeable step across the Ti L2,3-edge.   

This suggests that small but significant channelling effects may be present in such 

orientations.   Thus a more detailed investigation of this will be made in the future.    

Given that the lamella orientations are random, it is unlikely that most orientations 

used in the data are close to low index poles.   As such it is unlikely that channelling effects 

make a significant modification to the results presented here, although deviations up to about 

5% due to channelling effects cannot be completely ruled out. 

 

	Figure 5    a) Comparison of 5 cross-sections extracted from a TiC0.98 lamella each recorded 

at a different tilt.   b) Percentage deviations of the cross-sections from the mean of two 

datasets recorded 3o off the 2-beam condition 
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Having established the optimum conditions for acquisition, the data were re-taken.   

The numbers of sub-regions analysed is 10, 8, 6 and 6 for VC0.83, TiC0.98, VN0.97 and TiN0.88 

respectively.   The sub-regions contained between 600 and 1800 spatial pixels.  The fractional 

standard errors in the slopes, i.e. the fractional standard error in the differential cross-section 

at the particular energy, was in the range from 0.1% to 0.4% over the majority of the energy 

range, being largest where the cross-section is lowest.   There were peaks up to ~1% in the 

region of sharp features.  The exception was one TiN0.88 dataset where the fractional errors 

were 0.7-1.0%.   Such low values are obtained because there are large numbers of spatial 

pixels in the SI sub-region from which the data is taken.   Some plots show slight deviations 

from linearity giving systematic errors of 1-2% and such systematic errors, if present, will 

tend to dominate. 

For each standard, the cross-sections were averaged and the fractional standard errors 

calculated at each energy.   These were in the range 0.7% to 1.0%, with the higher values at 

the lower cross-sections and peaks above this near sharp features.   These fractional errors are 

above the values on the individual cross-section measurements.   Thus, as with the values of λ 

above, there are additional random errors in the measurements. 

 

Figure 6   Comparison of the cross-sections extracted from the four standards.  a) the whole 
energy range with a logarithmic intensity scale;  b) in the region of the edges with a linear 
intensity scale.   Also shown in b) are the HS M cross-sections for Ti and V.   c) The valence 
electron partial cross-section plotted against the number of valence electrons.  This is obtained 
by taking the difference between the experimental background cross-section and the relevant 
metal M cross-section and integrating the result from 251eV to 276eV. 

Figure 6a compares the average cross-sections extracted from the 4 standards over the 

energy range from 0 to 750eV with a logarithmic intensity scale.   N.B. because the 
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conversion from scaling by the splice ratio to scaling by the time ratio was applied over the 

whole energy range, the low-loss section is too low by 6% – 9% in this plot.   The plot shows 

the excellent consistency of the extracted cross-sections over the whole energy range.    

Figure 6b makes the comparison in the region of the core edges of interest.    In the region 

prior to the C K-edge threshold, the backgrounds have structure that is reproducible and is 

likely to be due to EXELFS resulting from metal M shell excitations.   The background from 

TiC0.98 has the lowest intensity while that from VN0.97 has the highest with those from TiN0.88 

and VC0.83 being intermediate and similar.   This is to be expected as the background will 

depend on the number of less tightly bound electrons and this number changes in the same 

way as the background intensities.   8 of these electrons are in the M2,3 and M1 shells of the 

metals and their HS cross-sections, as calculated by Digital Micrograph, are also shown in 

Figure 6b.   The rest are valence electrons.   Fully stoichiometric C, N, Ti, V should contribute 

4, 5, 4, 5 valence electrons respectively.   If sub-stoichiometric, those from C and N are scaled 

by the value of x in MXx.   The difference between the experimental background cross-

sections and the corresponding HS M cross-sections should be the cross-section for the 

valence electrons.   In Figure 6c this difference, integrated from 252eV to 276 eV, is plotted 

against the number of valence electrons in the standard.  To a good approximation, this is a 

straight line.   This would be expected as the excitation of valence electrons to such a high 

energies tends to a single electron excitation process as opposed to the collective excitation 

process at lower energy losses.   The behaviour of the backgrounds gives confidence that the 

extraction of the cross-sections has not been perturbed by the residual stray scattering as had 

been the case before the optimum acquisition conditions were established. 

 

d. Fitting Backgrounds and Hartree-Slater atomic cross-sections 

To make use of the cross-sections for the individual elements, the background must be 

removed and the edges separated.   This is always challenging when there are perturbations to 

the backgrounds e.g. from extended energy loss fine structure (EXELFS).   Consequently, 

using the standard approach of fitting AE-r in a window in front of the non-metal edge gives 

an extrapolated background that is sensitive to the position and width of the fitting window, 

and thus leads to inconsistent results.   To try to overcome this, an extended version of 

constrained background fitting method proposed by Steele et al. [41] was tried.   Here the 

experimental cross-section is modelled as the sum of a power law background, a scaled HS 
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non-metal cross-section and a scaled HS metal cross-section.   Three fitting windows are 

chosen, one prior to the non-metal edge, one prior to the metal edge and one well above the 

metal edge.   The square deviations in three windows are summed and this sum is minimised 

by varying the power law parameters and the two scaling factors.   The investigations showed 

that this approach worked.   However, there are no well-defined criteria for choosing the three 

fitting windows and the results are sensitive to this choice, sometimes significantly so. 

Thus another approach is adopted.   The overall shape of the backgrounds in the four 

standards is very similar.   The deviations of the background from a power law fit are least in 

the Ti containing standards and the background in TiN0.88 reaches to the highest energy loss 

before encountering a non-metal edge.   Fitting a power law background in a 20eV window 

prior to the N K-edge and using it to extrapolate the experimental TiN0.88 background 

provides an “experimental background shape” that can be used with all four standards, if 

suitably scaled.   Here a scaling window 20eV wide in front of the non-metal edge is used.   

The average cross-sections and the scaled backgrounds are shown in Figure 7.   Also shown 

are the HS cross-sections added to the scaled background.   Those for the non-metals are 

scaled by the stoichiometry, x but those for the metals are unscaled.   The deviation of the 

experimental cross-section from the sum of the background and the two HS cross-sections is 

also shown. 
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Figure 7 Comparison of the average experimental cross-sections, the scaled 

“experimental” background and the HS cross-sections.  a) VC0.83; b) TiC0.98; c) VN0.97; d) 

TiN0.88.   For a), b) and c) the experimental background shape described in the text has been 

scaled to match in a 20eV window before the non-metal edge.   In each case, the HS non-

metal cross-section is scaled by x, the stoichiometry but the metal HS cross-section is 

unscaled. 

The “experimental background shape” fits very well.   The deviations up to ~280eV 

are similar in VC0.83, TiC0.98 and VN0.97.   (There are no deviations in this region for TiN0.88 

since this was the source of the background shape.)   Between 280eV and 390eV, the 

deviations in VN0.97 are very small, giving some support to the use of this “experimental 

background shape”.   The noticeable deviations at lower energies are likely to be the 

differences in the EXELFS from the strong M edges of the metals at about 40-50 eV.   The 

shape of the EXELFS are controlled by both the threshold energies of these edges and the 

lattice parameters and so will differ in the four standards. 

The deviations in the region before the metal edges and well above them are also 

small.   The exception is before the Ti edge in TiN0.88 where the two edges are close together.  

Thus the experimental and HS cross-sections are in good absolute agreement in the “atomic 

region” well above threshold.   However, these low deviations only occur from above ~100eV 

above the threshold in these compounds, which is much higher than figures quoted previously 

e.g. by Ahn and Rez [42] who compared experimental and calculated cross-sections by 

“normalising them some 10eV above threshold where the intensity can be solely attributed to 

continuum transitions”.	 	 	 	The agreement obtained in the current work also confirms both 

stoichiometries of the standards and the accuracy of the experimental mean free paths used in 

the extraction of the cross-sections. 

At this point, it is worth noting that the deviations from the HS shapes caused by the 

ELNES are positive for the non-metals and negative for the metals.   In these compounds, the 

hybridisation of the metal and non-metal orbitals increases the non-metal p-DOS, resulting in 

the sharp peaks close to the thresholds of the non-metal edges e.g. Paxton et al. [43].   

Looking at the partial DOS presented in Figure 3 of that work, the metal d-DOS drops below 

the non-metal p-DOS for losses a few eV above the Fermi level and continues to be so up to 

beyond the 13.5 eV limit of that figure.    If this behaviour continues to higher energy losses, 

it may explain the behaviour observed in the current paper.   Unfortunately, at such high 
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energies above the Fermi level, density functional calculations become less accurate and so 

this has not been pursued. 

It is now possible to extract the cross-sections for the individual edges, correct those 

for the non-metals to values corresponding to full stoichiometry and to compare the pairs of 

cross-sections obtained.   This comparison is made in Figure 8.   For the non-metals, the 

region at higher energy loss is not shown as this is the region where the cross-sections are 

extrapolated using the appropriated HS cross-section.   Overall, the agreement is very good.   

For the non-metals in Figures 8a and b, the ELNES is similar in shape and intensity as 

expected from these essentially isostructural compounds but the energies of the features differ 

because the lattice parameters differ.    

In Figure 8a, the shape of the carbon K-edge from thin amorphous carbon is shown for 

comparison.   This has not been calculated as a cross-section but is simply presented as the 

background subtracted, single scattering intensity scaled to the HS cross-section in the region 

from 350 to 500 eV.   The shape is in good agreement with the HS cross-section above 

~300eV.   Below this, the shape peaks above the HS cross-section in a manner that is similar 

to the other cross-sections.   Amorphous carbon is a light, monatomic material where the 

ELNES and EXELFS are much less pronounced and where there can be no channelling 

effects.  Thus the excess intensity of the shape over the HS cross-section after the threshold 

cannot be caused by such effects   The edge shape is taken from spectral without the spectral 

data being taken through the cross-section extraction process.   Thus the excess intensity is 

not caused by this process.   The presence of this excess intensity in the case of amorphous 

carbon provides strong support for the observation of a significant excess experimental cross-

section over a significant energy range after the non-metal threshold.     

For the metals in Figure 8c and d, the ELNES is less strong and the agreement 

between the pairs of cross-sections is even better.   All converge well to the corresponding HS 

cross-section at well above the threshold but, as noted above, are below the HS cross-section 

in the region after the threshold. 

If the experimental N K-edge cross-section from TiN0.88 is spliced to the HS cross-

section immediately in front of the Ti L-edge, there is a sharp step as seen in the thin green 

line in Figure 8b.   This is because there is a large dip from the ELNES at this point.   A better 

approximation to the true shape can be obtained if a section from the N edge cross-section 

from VN0.97 is inserted with a small energy shift so that it gives a smooth splice.   This has 
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been done in the corrected spectrum discussed below and is shown as the thick green line in 

Figure 8b. 

	

Figure 8 Cross-sections for the individual edges compared to the HS cross-sections.   

The non-metal cross-sections have been corrected to full stoichiometry and the higher energy 
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losses are not shown as this is the region extrapolated using the HS cross-section.   a)  The C 

K-edge.  For comparison, the background subtracted intensity from a thin, amorphous carbon 

film is shown after scaling to the HS cross-section in the 350 -500 eV range.  b) The N K-

edge cross-section.   c) The Ti L-cross-section.   d) The V L-cross-section.   Also shown are 

the effects of small changes to the fits and these changes are discussed in the text. 

It is clear that this approach of using experimentally extracted backgrounds for 

separating the individual cross-sections produces excellent results.    Figure 9 looks at the 

quality of the fits and the implications for quantification using HS cross-sections.   Figure 9a 

considers the fit residuals in more detail.   Figures 9b and c show the ratios of the 

experimental cross-sections to the HS cross-sections for the non-metal and metal cross-

sections respectively.   Figure 9d shows the results for the “X/M” ratios for stoichiometric 

MX compounds that are obtained if the experimental cross-sections are analysed using the HS 

cross-sections.   The results shown in Figure 9 suggest that a minor correction to the 

background fit in some cases would improve the overall consistency in the results.     

Whilst the residuals for TiC0.98 and VN0.97 are close to zero in the atomic regions, 

those for VC0.83 and TiN0.88 have non-zero values.   Figure 9a shows the deviations for VC0.83 

with an expanded vertical scale.   The thin black line shows that the residuals are negative for 

~100eV before the V L-edge and after ~100eV above its threshold and, therefore, that there is 

a small but significant problem in background fitting for VC0.83.   The thick black line is after 

a correction to the background fitting detailed below.    

Another way of judging the quality of the agreement is to look at the ratio of the 

experimental and HS cross-sections.   These are shown for the non-metals in Figure 9b and 

for metals in Figure 9c.   In both cases the ratios are plotted as a function of the energy above 

the edge threshold.   For the non-metals, the plots are terminated at the metal edge.   The thin 

lines are the values before the corrections discussed below are made to the VC0.83 and TiN0.88 

cross-sections and the corresponding thick lines include the correction to the background 

fitting described below.  Naturally, all the lines display the effects of the very strong ELNES 

present on these edges and the degree of overlay of all edges when plotted against energy 

above threshold is striking.  Nevertheless, these plots also show deviations from ideal 

background fitting.  In Figure 9b, the thin black line for the uncorrected C-edge data from 

VC0.83 shows a steady drop at higher losses.   This is not the constant value that would be 

expected if either the stoichiometry or the ideal ratio of experimental and HS cross-sections 
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differed from unity.  In Figure 9c, the thin black line for the uncorrected V L-edge from 

VC0.83 data lies below the lines for TiC0.98 and VN0.97, suggesting problems with the VC0.83 

background fit, as before.  Additionally, the thin green line for the uncorrected TiN0.88 data 

lies above those for TiC0.98 and VN0.97, suggesting that the background fitting problems for 

this standard are in the opposite sense.   Unfortunately, the limited energy range available for 

the thin green line for the uncorrected N K-edge from TiN0.88 in Figure 9b means that it is 

difficult to make any judgement about the quality of background fitting for this edge, although 

based on the poor fitting in Figure 9c, it has to be suspected that there would be a problem 

here too.  

 

Figure 9 a) The VC0.83 residuals shown with an expanded vertical scale.  b) The ratio 

of the experimental non-metal cross-sections, corrected to full stoichiometry, to the 

corresponding HS cross-sections as a function of energy above threshold.   The thin lines are 

data before correction.   c) The ratio of the experimental metal cross-sections to the 

corresponding HS cross-sections as a function of energy above threshold.   The thin lines are 

data before correction.   d) “X/M” versus integration window width, Δ for the stoichiometric 

standards.  The thin lines are data before correction.   Two sets of results are shown.   For the 

lower group of plots, the integration window starts at the threshold and, for the upper group, it 

starts after an offset of 20eV. 
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One way to judge the implications for quantification is to look at the non-metal to 

metal ratio, X/M, obtained using the traditional quantification process.  Here, the sum of the 

experimental cross-section over an energy window, Δ, is divided by the sum of the HS cross-

section over the same window and then the ratio of a value for a non-metal and a metal is 

taken.   The X/M values are shown in Figure 9d as a function of Δ and, again, the thin lines are 

before the corrections.   The maximum value of Δ for each compound is set when the window 

reaches the metal edge threshold.    Two sets of data are shown, one for the integration 

window starting at threshold and one for the window starting 20eV above the threshold.   In 

the former case, the window for the experimental data is extended 10eV below threshold to 

include the signal displaced to lower energy by the finite energy resolution and the point 

spread function of the detector.     

In Figure 9d, the lines obtained with no offset of the integration window group 

together quite well for window widths greater than 20eV, showing good consistency between 

them but with the expected effects of ELNES.    Nevertheless, the thin black line for VC0.83 is 

slightly high.   All increase steadily towards unity but, even after an integration window of 

220eV, the VC0.83 line is still rising and has not reached unity.   If a 20eV offset is used before 

starting integration, the lines give values greater than unity and are spread over a much wider 

range of values.   This offset could be increased to exclude more of the ELNES, as 

recommended by Gatan (instructions in the “Help” file for Digital Micrograph), but this 

would exclude more of the high intensity signal, which is least susceptible to background 

error and would also severely limit the possible window width.   Figure 9d clearly illustrates 

some of the problems of the traditional quantification approach when trying to get accurate 

compositions because of the sensitivity to integration window width and position. 

As the background subtraction is the most problematic area, a simple correction can be 

applied by returning to the constrained background-fitting concept of Steele et al. [31].   Here, 

the value of r in the extrapolated section of the “experimental background shape” is adjusted 

to improve the fits for the VC0.83 and TiN0.88 data.   This results in the thick lines for these 

compounds in Figures 9b, c, d.   In Figure 8a, the corrected line for VC0.83 is shown in blue 

but is scarcely different from the uncorrected line, showing how small the change is.   In 

Figure 8b, the corrected line for TiN0.88 is shown as a thick green line, which can be 

distinguished from the uncorrected thin green line. 
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For VC0.83, the change in r is from 2.81 to 3.05 and this brings the deviations close to 

zero both before and after the V L-edge threshold, as seen in the thick black line in Figure 9a.  

The corrected experimental to HS cross-section ratios from VC0.83, the thick black lines in 

Figures 9b and c, are in much better agreement with those from TiC0.98 and VN0.97.   In Figure 

9d, the X/M values are lowered slightly, improving the agreement for the zero offset case. 

For TiN0.88, the change in r is from 2.81 to 2.41.   While it is difficult to comment on 

the effect on the N cross-section in Figure 9b because of the limited range of energies, the 

thick green line in Figure 9c is brought into line with the other three.   Again, it is difficult to 

comment on the change of X/M in Figure 9d because of the limited energy range.    

The change in r for TiN0.88 is larger and in the opposite sense to that for VC0.83.   There 

is some justification for making the correction for VC0.83 in that it corrects both edges at the 

same time.  There is less justification for making the correction for TiN0.88 because the energy 

range available for the N K-edge does not allow an improvement to be demonstrated for it.   It 

is also not clear why what has been taken as the “experimental background shape” has to be 

corrected.   Nonetheless, the overall consistency between all the results is improved if this 

correction is made. 

Turning to the agreement between the experimental and HS cross sections, the ratios 

for the non-metal cross-sections from TiC0.98 and VC0.83 in Figure 9b tend to unity at higher 

losses.   Making the assumption that the integrated EXELFS averages to zero in the range 

above 100eV from the threshold to the metal threshold, the average ratio of the experimental 

and HS cross-sections can be found.  For the C cross-section from TiC0.98 this is 0.98(0).   For 

the corrected VC0.83 it is 1.00(6).   The energy ranges available for VN0.97 and TiN0.88 do not 

allow sensible averages to be taken.   It is difficult to give errors for the values from TiC0.98 

and VC0.83 owing to the oscillations from the fine structure and the uncertainty in the exact 

composition of the VC0.83.   However, it is likely to be in range 2-3% and so these two values 

may well be in agreement.   Their average is 0.99.    

In the same way, the average for the metal cross-sections in Figure 9c can be 

calculated.    In this case, the window used to calculate the averages starts 120eV above 

threshold to avoid the L1 edges and is taken to the end of the dataset at 750eV.   The ratios for 

Ti in TiC0.98 and TiN0.88 are 1.00(4) and 1.02(0) respectively, giving an average of 1.01.    The 

ratios for V in VC0.83 and VN0.97 are 1.00(2) and 1.00(9) respectively, giving an average of 

1.01.   The overall average for the metals is 1.01.  The uncertainties in these values are hard to 
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specify both because of the EXELFS and, for VC0.83 and TiN0.88, because of the nature of the 

correction.   Nonetheless, there is considerable overall self-consistency and so it is likely to be 

1 or 2%.    

 

e. Systematic errors 

There are many possible sources of systematic error in the determination of the absolute 

experimental differential cross-sections and the associated inelastic mean free paths.   Here 

they are looked at in the order they are come across when performing the experiments and 

processing the data. 

The TiN0.88, TiC0.98 and VN0.97 standards were supplied with measured stoichiometries 

but no errors were given.   In the work by Lengauer et al. [44], the errors typically quoted 

better 0.1wt% (e.g. Lengauer et al. [44]).   The VC sample was supplied as high carbon but 

without an analysis.   Selected area diffraction analysis showed that it is in the V6C5 phase 

field.   From the phase diagram given by Billingham et al. [34], the minimum possible value 

of x is ~0.77 and the maximum ~0.85.   The former value is only found for very low 

processing temperatures.   The most likely value is 0.83 and the uncertainty is probably ±0.02.   

In addition, there could be some inhomogeneity within the material.   Nonetheless, the results 

from regions separated by microns are in good agreement and there is good consistency 

between the individual measurements and so this is not a significant issue. 

While the magnification, probe angle and collection angle are carefully calibrated, 

these calibrations are based on measurements for electrons with no energy loss.   Chromatic 

effects in the post-specimen optics will make the collection angle a function of energy loss 

and the changes will depend on the camera length chosen [45].   Since the same conditions are 

used for the steels and the standards, such effects will cancel out when quantifying the steel 

data.    However, if significant, they will affect the comparisons of the experimental and 

calculated cross-sections.   Also, if these experimental cross-sections are used to analyse data 

taken on an instrument with different electron optics, they could result in an error.     

Preliminary measurements show that the collection half angle of 36mrad for elastic electrons 

becomes 36.1, 36.4 and 36.9 mrad for energy losses of 250, 500 and 750eV, respectively.   As 

a result, the differential HS cross-section of the C K-edge increases by 0.06, 0.6 and 1.8% for 

these three energies, giving an idea of the absolute error involved from this effect.   Thus the 
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mean ratio of the experimental to the HS cross-section is likely to decrease from ~0.99 to 

~0.98 for the non-metal K-edges and from ~1.01 to ~0.99 for the metal L-edges. 

The gain linearity of the detection system is good and the ratio of the signals in the 

high loss and low loss channels is given accurately by the ratio of the integration times.   

However, stray scattering contributes to the signals so that the splice ratio differs from the 

time ratio.   By keeping the time ratio at typically 25, the difference is less than 10%.   Using 

the splice ratio gives a smooth join and allows Fourier logarithmic deconvolution but requires 

a correction to the high loss region intensity in order to extract the cross-section.   Thus there 

is a perturbation in the region of the splice point.   However, this is sufficiently far from the 

carbon K-edge cross-section for there to be no issue. 

Surface oxidation and amorphous carbon growth are both potential sources of error.   

However, the processing seems to deal very effectively with such layers if they are spatially 

homogeneous but a spatially inhomogeneous layer of the carbon would be a problem.   

Developments in specimen preparation and pre-treatment have significantly reduced the level 

of both effects in the final data for the cross-sections and so this will not introduce any 

significant systematic error. 

Electron channelling effects are assumed to be absent as the specimens are extracted in 

arbitrary directions from random polycrystalline materials.   Should the orientation by chance 

end up close to a low index pole, there could be an effect from channelling.    However, the 

self-consistency over all the edges measured suggest that channelling is not a significant 

effect.   However, it is an area worthy of a more detailed study in the future. 

For the extraction of the cross-sections and the inelastic mean free path, the analysis in 

Section 2 fails for values of t/λ  <~0.2 or >~1.0.   It is assumed that the former limit is due to 

surface effects being dominant.  The latter is assumed to be due to a failure of the Fourier-

logarithmic deconvolution process or to differences arising between the elastic contrast in the 

zero-loss map used to normalise the loss image and the actual contrast in that loss image.   

Any residual effects of this type in the thickness range of 0.2 < t/λ  < 1.0 are assumed to be 

small but no attempt has been made to quantify them apart from noting that the fits to the data 

are good.  

The value of λB is determined directly for TiC0.98 using t and t/λ measured on the same 

sample using methods that exclude the effects of surface layers.   Only the low-loss region of 

the spectrum is used and the growth of carbon contamination is not a major problem.   As 

expected, the region at the tip of the needle must be excluded as it is dominated by the surface 
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layer and there may be no bulk material.   For t/λ > 1.0, the lines of t and t/λ diverge and this 

region is also excluded.   The region used gives very good straight-line plots but sources of 

bias may exist here.  Again, these have not been explored in detail.   The use of the 

Iakoubovskii parameterisation [29] may also be a source of error but the self-consistency of 

the results suggests that this could only be a small effect. 

The biggest sources of systematic error are found when removing the background and 

separating the edges.   The backgrounds in front of the non-metal edges show significant 

departures from a power law due to the EXELFS from the metal M-edges.   The use of an 

“experimental” background shape derived from the TiN0.88 has lowered this error 

considerably.   However, there is no good explanation of why it needs to be adjusted in some 

cases other than it improves the self-consistency of the results as a whole. 

Once the non-metal cross-sections are extrapolated under the metal edges, knowledge 

of their ELNES/EXELFS is lost and so there is a systematic error in both the metal and the 

non-metal cross-sections.   This is particularly significant for TiN0.88, where the N and Ti 

edges are close together.   It can be reduced by using the shape extracted from the VN0.97 to 

make a correction.   However, the metal cross-sections are large at this point and consequently 

the error in them will be small. 

In principle, it would be possible to extend this procedure to a wide range of other 

materials and EELS edges provided that (i) a well-characterised standard can be prepared, (ii) 

a robust background subtraction procedure can be found, (iii) the edges are reasonably well 

separated.   The application of this kind of procedure becomes rather more difficult for very 

low energy EELS edges, as will both suffer from complex backgrounds on the tail of the 

plasmon peak and there will be several edges all overlapping in this region.  Thus, the M2,3 

edges for V or Ti would be extremely difficult to use for quantitative and robust 

quantification.  This “difficult” region extends to at least ~ 200 eV due to EXELFS from low 

lying edges and ongoing work at Glasgow shows that background subtraction on the Nb M4,5 

edge (nominally at 205 eV) on Nb carbides can be difficult.  Nevertheless, for other edges 

lying above this range, we expect this method to be of widespread applicability. 

 

5. CONCLUSIONS 

 

Highly successful methods of measuring the experimental inelastic mean free path and 

the differential cross-section using DualEELS have been demonstrated.   Both methods deal 
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with the effects of surface layers and the method for the mean free path deals with non-ideal 

shape of the needle specimen.   

The inelastic mean free path for TiC0.98 is found to be 103.6±0.5nm compared to 

126.9nm predicted by the Iakoubovskii parameterisation.   However, from the overall self-

consistency of the results, the relative values from the parameterisation appear to be accurate. 

The cross-sections extracted from the experimental data have precisions of ~1%.   

Removing the background and separating out the individual cross-sections is difficult.   The 

most effective method found uses an “experimental” background shape extrapolated with a 

power law, although minor corrections are needed in some case to produce the most self-

consistent results. 

It is found that despite the large convergence and collection angles used in the work, 

channelling can still have a small effect (<5%) on the measured cross sections, so for best 

precision it is desirable to avoid a strong channelling condition. 

Using the known (or inferred) stoichiometry of the standards to correct the non-metal 

cross-sections to full stochiometry is very successful.   These together with the metal cross-

sections provide an accurate method of quantifying binary, ternary and quaternary compounds 

of C, N, Ti and V, avoiding the issues and errors associated with methods based on calculated 

HS cross-section.   They will be used in a subsequent paper to quantify data from precipitates 

in steels extracted by the methods reported in a previous paper [1]. 

The experimental results agree well with the HS cross-sections in the atomic region 

well above threshold.  The average ratio between the experimental and HS cross-sections in 

this region is 0.99 for the non-metal cross-sections or 0.98 if the correction for chromatic 

effects is correct, and 1.01 for the metals or 0.99 if the correction for chromatic effects is 

correct.   It is difficult to give estimates of either their precision or accuracy but both are likely 

to be in the range of a few per cent given the narrow range within which the values for all the 

edges lie.   This agreement is much closer than previously reported where it is typically said 

to be ~5% for the non-metal K-edges and 15% for the metal L-edges.   The explanation for 

the improved agreement is likely to be that the ratio is calculated further above threshold in 

this work, which clearly shows the effects of the ELNES and EXELFS is significant up to at 

least ~100eV beyond the threshold. 
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