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Abstract 15 

African Animal Trypanosomiasis (AAT) is endemic in at least 37 of the 54 countries in Africa. 16 

It is estimated to cause direct and indirect losses to the livestock production industry in 17 

excess of US$ 4.5 billion per annum. A century of intervention has yielded limited success, 18 

owing largely to the extraordinary complexity of the host-parasite interaction. 19 

Trypanotolerance, which refers to the inherent ability of some African livestock breeds, 20 

notably Djallonke sheep, Ndama cattle and West African Dwarf goats, to withstand a 21 

Trypanosomiasis challenge and still remain productive without recourse to chemotherapy, is 22 
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an economically sustainable option for combatting this disease. Yet trypanotolerance has 1 

not been adequately exploited in the fight against AAT. In this paper, we describe new 2 

insights into the genetic basis of trypanotolerance and discuss the potential of exploring this 3 

phenomenon as an integral part of the solution for AAT, particularly, in the context of 4 

African animal production systems. 5 
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1. Introduction  1 

African Trypanosomiasis is a chronic debilitating disease caused by extracellular flagellate 2 

trypanosome protozoans (Trypanosoma species) and is spread mainly by the infected Tsetse 3 

fly vector (Diptera: Glossinidae) (Bruce, 1915; Brun et al., 2010; Hill et al., 2005; Mony and 4 

Matthews, 2015). The disease affects a wide range of mammalian species including humans 5 

(Jha et al., 2015; Matovu et al., 2001; Mwai et al., 2015; Seck et al., 2010). The three main 6 

trypanosome species endemic to Africa are Trypanosoma vivax (Dutonella) and 7 

Trypanosoma congolense (Nanomonas) that mainly infect livestock, and Trypanosoma 8 

brucei (Trypanozoon) which affects both humans and animals (Bezie, 2014; Kato et al., 2015; 9 

Nakayima et al., 2012). T. brucei has three sub-species of which two, T. b. gambiense, and T. 10 

b. rhodesiense mainly infect humans, whereas the third, T. b. brucei infects only domestic 11 

and wild animals (Munday et al., 2015; Sima et al., 2011; Welburn et al., 2001; Welburn et 12 

al., 2009). The distribution of the trypanosome vector, Tsetse fly (Glossina spp.), correlates 13 

closely with the trypanosome parasites throughout the 10 million km2 prevalence region, 14 

thereby facilitating the entrenchment of the disease (Hill et al., 2005). Trypanosome 15 

parasites usually invade the animal’s lymphatic vessels, the blood circulation, and eventually 16 

the brain causing a wide range of pathologies, most commonly severe anaemia, weight loss, 17 

foetal abortion, and cachexia. It can result in the death of the host if left untreated (Matovu 18 

et al., 2001; Sima et al., 2011; Stijlemans et al., 2015). Other symptoms reported for African 19 

Trypanosomiasis include infertility, sleeping disorders, psychiatric disorders, paralysis, 20 

neuroendocrine dysfunctions and coma (Courtin et al., 2008; Steverding, 2008).   21 

Although acknowledged as a neglected tropical disease for several decades, African Animal 22 

Trypanosomiasis (AAT) remains endemic in 37 of the 54 countries in Africa, affecting and an 23 
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area of approximately 10 million square kilometers of arable land, and reduces the 1 

efficiency of productivity of over 150 million cattle and 260 million sheep and goats (Baker, 2 

1995; Jahnke et al., 1988; Leigh et al., 2015; Nyimba et al., 2015). AAT is a very significant 3 

economic and animal health issue for this sub Saharan region (Habila et al., 2012; 4 

Namangala, 2012; Shaw, 2009). Furthermore, the disease has an extended impact on crop 5 

agriculture, human settlement and welfare, because 7 million square kilometers of the 6 

region’s land is rendered unsuitable for mixed crop-livestock ecosystems (Nigatu et al., 7 

2015; Peregrine, 1994).  AAT is estimated to cause annual losses of more than US$ 4.5 8 

billion dollars through direct and indirect agricultural production costs (Dagnachew and 9 

Bezie, 2015; Leigh et al., 2015; Sanni et al., 2013). It is not surprising, that the 21 countries 10 

where Trypanosomiasis is endemic are included in the world’s 25 poorest countries (Shaw, 11 

2009), and 32 were considered highly indebted (IAEA, 2002). 12 

Over several decades, the existence and use of just a few therapeutic drugs for AAT; that 13 

have limited efficacy against the parasites, but which are highly toxic to the host, has fueled 14 

the emergence of widespread drug resistance across the region (Delespaux and de Koning, 15 

2007; Delespaux et al., 2008; Matovu et al., 2001). The continued lack of a vaccine for the 16 

disease has also lead to an over-reliance on limited number of drugs (Tsegaye et al., 2015). 17 

Ongoing efforts directed to controlling the Tsetse fly vector across the sub Saharan Africa 18 

region have largely been ineffectual (Goossens et al., 1999; Hendrickx et al., 2004; Holmes, 19 

1997; Torr and Vale, 2015). These factors, coupled with the persistent political instability 20 

and armed conflicts in the region (particularly during the post-colonial independence era) 21 

have ensured that AAT has persisted across the region (Brun et al., 2010; Geerts et al., 22 

2001). 23 
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Certain African livestock breeds such as Djallonke sheep and Taurine cattle, which entered 1 

Africa from the near east around 5000 BC and 7000 BC respectively, have evolved tolerance 2 

to Trypanosomiasis, probably as a result of natural selection (Dolan, 1987; Gautier et al., 3 

2009; ILRI, 2009; Muigai and Hanotte, 2013; Murray et al., 1984; Mwai et al., 2015; 4 

Naessens, 2006). This innate ability of these livestock breeds to survive and remain 5 

productive under trypanosome challenge without resorting to the use of trypanocidal drugs, 6 

is referred to as trypanotolerance. Trypanotolerance has been described as an economical 7 

and sustainable option for combating AAT (Geerts et al., 2009; Goossens et al., 1997; 8 

Murray et al., 1982; Namangala, 2012). If implemented as a control strategy, 9 

trypanotolerance could have a major positive effect on long term food security for the 10 

region (Osaer et al., 1994). In this review, we detail the key challenges remaining after a 11 

century of intervention against AAT, and the new insights on the genetics and mechanisms 12 

of trypanotolerance. Finally, we discuss the potential benefit of harnessing livestock 13 

trypanotolerance in the context of sub Saharan African livestock systems.     14 

 15 

2. A Century of Intervention against AAT 16 

The history of intervention programs against African trypanosomiasis involves the 17 

contributions of parasitologists, zoologists, entomologists, veterinarians and clinicians. 18 

However, with regards to AAT the landmark events are the findings of Bruce and Evans in 19 

the last decade of the 19th century (Cox, 2004). Between 1891 and 1898, Evans identified T. 20 

evansi in equine spp. and Bruce identified T. brucei in cattle (Cox, 2004). In 1909 Bruce also 21 

identified the Tsetse fly as the vector that transmitted trypanosome parasites. These 22 

important findings marked the start of attempts to combat AAT using a variety of measures, 23 
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and the next 100 years was spent trying to eradicate this disease, to no avail (Steverding, 1 

2008). Throughout the 20th century, there have been several attempts to control 2 

Trypanosomiasis by attempting to control the transmitting Tsetse fly vector. These control 3 

methods included; the sterile insect technique, the destruction of fly habitat, the use of 4 

Tsetse traps, the use of insecticide treated livestock, and coordinated mass spraying of 5 

insecticide (Doyle et al., 1984; Hendrickx et al., 2004; Hill et al., 2005; Holmes, 1997; Torr 6 

and Vale, 2015). These interventions have yielded limited positive outcomes against 7 

Trypanosomiasis, but have often been associated with attendant negative environmental 8 

consequences including insecticide pollution of water bodies and deforestation (Goossens 9 

et al., 1999; Hendrickx et al., 2004; Holmes, 1997; Torr and Vale, 2015). Other attempts at 10 

curbing Trypanosomiasis through targeting the parasite via anti-trypanosome drugs have 11 

not yielded the desired results because of the rapid development of resistance to these 12 

trypanocides (Alsford et al., 2013; Kaufmann et al., 1992).  In 2008, 17 sub Saharan countries 13 

reported veterinary trypanocide drug resistance problems, and by early 2015 this number 14 

had risen to 21 countries (Delespaux et al., 2008; Tsegaye et al., 2015). This resistance was 15 

expedited in part by the reliance on predominantly three drugs for treating AAT over 50 16 

years (Delespaux et al., 2008; Geerts et al., 2001; Munday et al., 2015; Peregrine and 17 

Mamman, 1993). Facilitating the development of resistance and cross resistance of 18 

trypanosomes to these drugs is the fact that these drugs have similar chemical compositions 19 

(Peregrine, 1994). Furthermore, these few AAT drugs have high host toxicity, and limited 20 

efficacy (Matovu et al., 2001; Peregrine and Mamman, 1993; Steverding, 2015). Other 21 

factors contributing towards drug resistance include the high degree of re-infection rates 22 

among treated livestock, and significant levels of misuse of trypanocide by farmers as a 23 

consequence of the deregulation and privatization of veterinary services (Geerts et al., 24 
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2001). In 2008, a report indicated that, out of an estimated 35 million doses of veterinary 1 

trypanocide drugs administered, diminazene aceturate, isomethamidium chloride and 2 

ethidium bromide accounted for 33%, 40% and 26% respectively (Delespaux et al., 2008). 3 

Peregrine and Mamman (1993) reviewed the causes and mechanisms for parasite resistance 4 

development for each of the drugs used against AAT. Drug resistance continues to interfere 5 

with effective therapeutic management of AAT, and is reported to be responsible for many 6 

widespread outbreaks of Trypanosomiasis, in different parts of the region, that did not 7 

respond to standard chemotherapeutic regimens (Holmes, 1997; Mamoudou et al., 2008).   8 

The hope of developing an effective vaccine based on the surface glycoprotein antigens of 9 

trypanosomes remains elusive due to the complexity of the parasite’s antigenic repertoire 10 

(Hill et al., 2005; McCulloch et al., 1997). Horn (2014), Manna et al. (2014) and Taylor and 11 

Rudenko (2006) have provided comprehensive reviews on the mechanisms of trypanosome 12 

antigenic variation. Although significant understanding of the structure and mechanism of 13 

this antigenic variation of trypanosome parasites has occurred over the past 40 years, to 14 

date no vaccine is available (Manna et al., 2014; McCulloch and Field, 2015; Mony and 15 

Matthews, 2015). These factors are the main reasons why most research efforts aimed at 16 

developing a vaccine for trypanosomiasis have since shifted from variable surface (VSG) 17 

antigen towards the identification of other, invariant, structural components of the parasite 18 

(Alsford et al., 2013; Taylor, 1998; Tsegaye et al., 2015).  19 

Towards the late 1990s, the recognition of the systematic failure of existing 20 

Trypanosomiasis control methods led African scientists to set up a regionally coordinated 21 

initiative to tackle the disease (Maudlin, 2006). In 2000, the Pan-Africa Tsetse and 22 

Trypanosomiasis Eradication Campaign (PATTEC), was endorsed at the 37th African Union 23 
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summit in Togo (Kabayo, 2002). Central to that new initiative was a “Money Map” of the 1 

region that shows the anticipated benefit of eradication of trypanosomiasis in US$ per Km2 2 

over 20 years to illustrate the magnitude of economic loss caused by the disease (Shaw, 3 

2009). PATTEC received support from multinational agencies including the World Health 4 

Organisation, the Food and Agriculture Organisation and the International Atomic Energy 5 

Agency. Unprecedented support in the fight against Trypanosomiasis also came from a long 6 

list of non-governmental organisations and pharmaceutical companies including the Bill and 7 

Melinda Gates Foundation, Bayer, Bristol-Mayers Squibb, and Aventis Pharma (WHO, 2002). 8 

PATTEC, although stipulating a holistic and integrated approach to combatting 9 

trypanosomiasis, was criticized for overly focusing on Tsetse fly eradication at the expense 10 

of other methods such as the use of trypanotolerant breeds (IAEA, 2002). Furthermore, the 11 

tsetse fly control module used in the program was criticized as unsuitable and unrealistic for 12 

application in the 10 million square kilometer affected area of sub Saharan Africa, although 13 

it was used successfully in the isolated and small region of Zanzibar (IAEA, 2002; Kabayo, 14 

2002). The reality is, that despite all these varieties of control measures targeted at AAT, the 15 

disease persists, and is not likely to be completely eradicated soon (Dolan, 1987; Magez and 16 

Radwanska, 2014; Nakayima et al., 2012). Therefore, exploiting additional measures 17 

including natural trypanotolerance of livestock is imperative, particularly for the vast 18 

majority of resource poor smallholder livestock keepers in the region for whom the existing 19 

chemotherapy and vector control programs are neither accessible nor affordable. 20 

 21 

 22 

3. Genetic Basis for Trypanotolerance 23 
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Trypanotolerance, which is the characteristic ability inherent in certain breeds of livestock 1 

to withstand trypanosomiasis, was first reported as early as 1904 and 1913 in West and East 2 

Africa respectively (Dolan, 1987; Murray et al., 1982). A growing number of studies have 3 

corroborated the use of trypanotolerance as the most economically sustainable option for 4 

tackling AAT (Mattioli et al., 2000; Murray et al., 1982; Naessens, 2006). Despite this 5 

endorsement, the extent, the mechanisms and the effects of trypanotolerance has 6 

remained largely unexplored as a control measure for the disease (Dolan, 1987; Kosgey and 7 

Okeyo, 2007).  Research findings from both experimental and natural livestock populations 8 

have confirmed that trypanotolerance is heritable in breeds such as Ndama cattle (Hanotte 9 

et al., 2003; Murray and Black, 1985; Naessens et al., 2002; Namangala, 2012; Trail et al., 10 

1991), Muturu and Baoule cattle (Naessens et al., 2002), Djallonke sheep and the west 11 

African dwarf goat (Geerts et al., 2009; Osaer et al., 1994). For example, in a natural 12 

Trypanosomiasis challenge study on an Ndama cattle population in Gabon, a high 13 

heritability of 0.64 was estimated for the ability to control anaemia as measured by the 14 

average packed red blood cell volume, a characteristic feature of trypanotolerance (Trail et 15 

al., 1991). Different crosses of trypanotolerant and trypanosusceptible breeds in both cattle 16 

and sheep have produced phenotypes with varying intermediate degrees of tolerance to the 17 

disease, indicating a complex and varied genetic control mechanism (Goossens et al., 1997; 18 

Goossens et al., 1998; Goossens et al., 1999; Murray and Trail, 1984). Examples of this are 19 

the crosses that were produced from trypanotolerant Djallonke and trypanosusceptible 20 

Sahelian sheep (Goossens et al., 1999), and from trypanotolerant Ndama and 21 

trypanosusceptible Boran cattle (Hill et al., 2005). Beyond trypanotolerance, the wild Cape 22 

buffalo (Syncerus caffer) is the only ruminant species in the region that is known to have an 23 

absolute resistance to infection from all species of trypanosomes (Namangala, 2012). 24 
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However, the Cape buffalo with an estimated population of only one million, is also a 1 

reservoir for the spread of many other important livestock diseases in the region such as 2 

bovine tuberculosis, brucellosis, anthrax and foot and mouth disease (Michel and Bengis, 3 

2012). 4 

Subsequent genomic investigation using microsatellites (Dayo et al., 2009; Hanotte et al., 5 

2003), and single nucleotide polymorphisms (Gautier et al., 2009) identified quantitative 6 

trait loci (QTL) regions for trypanotolerance in Ndama cattle. These findings provided novel 7 

molecular genetic insights into trypanotolerance, but the QTL regions detected were too 8 

large for downstream applications such as genomic selection for trypanotolerance in the 9 

breed. A follow-up investigation within the identified genomic regions using a denser panel 10 

of microsatellites identified a polymorphic allele in one of the four previously identified 11 

candidate regions which was strongly associated with anaemia control (Dayo et al., 2012).  12 

So far no trypanotolerance study has focused on a next generation whole genome 13 

sequencing approach for the detection of putative loci for trypanotolerance. The 14 

identification of trypanotolerance loci will pave the way for the widespread application of 15 

genomic selection (Hayes and Goddard, 2010).  Recently, it has been shown that whole 16 

genome sequencing of pools of individuals provides a higher resolving power for 17 

identification of candidate regions or genes of adaptive selection signatures than the use of 18 

microsatellites (Bergland et al., 2014; Kofler et al., 2015). For example a re-sequenced 19 

pooled whole genome of samples of 50 to 100 Drosophila melanogaster precisely revealed 20 

seasonally associated polymorphisms in the flies (Bergland et al., 2014).  Since 21 

trypanosomes have co-evolved with the trypanotolerant breeds over several millennia 22 

(Murray and Black, 1985; Mwai et al., 2015), it is expected that signatures of selection for 23 
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resistance will exist in their genomes. Consequently, a whole genome sequencing approach 1 

may be a suitable way to identify trypanotolerance QTLs.  2 

 3 

4. Mechanism of trypanosome infection and trypanotolerance 4 

The hallmark of trypanosomiasis pathology is the remarkable ability of trypanosome 5 

parasites to elucidate responses from virtually every component of the host innate and 6 

acquired immune response system (Magez and Radwanska, 2014; Mansfield et al., 2014; 7 

Naessens et al., 2002). Trypanosomes are extracellular parasites with more than 1,000 8 

different VSG genes and pseudogenes, of which only one is transcribed at any one time. 9 

These numerous VSG genes and pseudogenes allow a trypanosome to produce successive 10 

waves of up to 107 different VSG antigens sequentially, and this provides a mechanism that 11 

allows sub populations of the parasite to evade the humoral adaptive immunity of the host 12 

(Cnops et al., 2015; Donelson, 2003; Manna et al., 2014; Mansfield et al., 2014; Taylor and 13 

Rudenko, 2006).  This classical immune escape mechanism makes a trypanosome infection 14 

difficult to stop once established (Donelson, 2003; Taylor and Rudenko, 2006). Matthews et 15 

al. (2015) provided a comprehensive review on the within-host dynamics that facilitate 16 

trypanosome infection including a novel quorum sensing mechanism.  Earlier reports have 17 

suggested that adaptive immunity in the form of VSG-specific B- and T- lymphocytes was 18 

mainly responsible for trypanotolerance in resistant breeds (Taylor, 1998). However, more 19 

recent evidence points at the host’s innate immunity in the form of activated macrophages 20 

as key to trypanotolerance (Liu et al., 2015; Mansfield et al., 2014). Recently it has been 21 

shown that the adaptive immune response to trypanosome infection is short-lived and is 22 

effective only against a sub-population of the possible VSG types (Cnops et al., 2015; Magez 23 

and Radwanska, 2014). The report also indicates that no effective immunological memory is 24 
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developed in the host during trypanosome infection, and hence the successive waves of 1 

infection destroy the host’s B cell compartment, leading to the failure of adaptive immunity 2 

(Magez and Radwanska, 2014). The failure of the host adaptive immunity is identified 3 

haematologically by dramatically increased levels of parasitaemia and anaemia, which is 4 

progressively followed by several of the pathological symptoms previously mentioned in this 5 

review and potentially the death of the host, if left untreated (Goossens et al., 1998). 6 

However, trypanotolerant breeds exhibit a capacity to control this characteristic anaemia 7 

and parasitaemia that accompany the trypanosome infection (Goossens et al., 1998; Murray 8 

et al., 1982; Murray et al., 1984). This capacity to control anaemia is crucial for 9 

trypanotolerance, and permits the host to remain productive under disease challenge 10 

(Naessens, 2006; Naessens et al., 2002; Trail et al., 1990; Trail et al., 1991). Generally, 11 

trypanotolerant livestock thrive better with low to medium intensity challenge than with 12 

high intensity parasite challenge (Holmes, 1997). In parts of west and central Africa, where 13 

the trypanosome challenge is very high, Diminazene chemotherapy has been used to help 14 

trypanotolerant breeds maintain desirable levels of production (Peregrine and Mamman, 15 

1993). The high levels of the disease challenge in these parts of Africa excludes the farming 16 

of trypanosusceptible breeds, given the huge cost of trypanocides that would be required 17 

(Peregrine and Mamman, 1993).  18 

Similar to resistance to other parasitic infections of ruminants, trypanotolerance has also 19 

been found to be enhanced in hosts with a high plane of nutrition and vice versa (Coop and 20 

Kyriazakis, 1999; Coop and Kyriazakis, 2001; Cunningham-Rundles et al., 2005; Van Houtert 21 

and Sykes, 1996). Conversely, the presence of inter-current parasitic infection in the host 22 

reduces trypanotolerance, as does physiological stress factors such as gestation (Coop and 23 

Kyriazakis, 1999; Murray et al., 1982; Murray et al., 1984). The deleterious effect of mixed 24 
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infections of trypanosome and other parasites, particularly gastrointestinal helminths, in 1 

trypanotolerant breeds have been very well documented (Goossens et al., 1997; Goossens 2 

et al., 1999; Kaufmann et al., 1992; Okaiyeto et al., 2010). In Djallonke sheep, mixed 3 

infection is generally characterised haematologically by a fall in packed cell volume, high 4 

levels of eosinophils, immunosuppression, weight loss and mortality, if left untreated 5 

(Goossens et al., 1999; Okaiyeto et al., 2010). A similar observation was also made in Ndama 6 

cattle (Kaufmann et al., 1992). In an experimental infection of Djallonke sheep, more severe 7 

acute symptoms were observed when infection with trypanosomes was followed by 8 

concurrent Haemonchus infection. Conversely a more chronic form of the disease was 9 

observed when the sequence of infection was reversed (Goossens et al., 1997; Kaufmann et 10 

al., 1992). This observation suggests that trypanosome infection has an immunosuppressive 11 

effect on the Djallonke sheep, and renders it more susceptible to subsequent infection by 12 

Haemonchus. In another study, abrogation of immunity to Heligosomoides polygyrus in 13 

previously immunized mice was attributed to the immunosuppressive effect of a concurrent 14 

trypanosomes infection (Fakae et al., 1997).  15 

Recent studies suggest that the associated immunosuppression is due to the extensive 16 

apoptosis of the splenic B cell compartment of the host during trypanosome infection 17 

(Cnops et al., 2015; Magez and Radwanska, 2014; Radwanska et al., 2008). The mixed 18 

infection phenomenon presents an obstacle to exploring trypanotolerance in most livestock 19 

production systems in sub Saharan Africa (Alvarez et al., 2012).  However, trypanotolerant 20 

livestock are often resistant to other important livestock diseases such as helminthiasis, 21 

anaplasmosis, babesiosis and heartwater (Murray et al., 1982; Murray et al., 1984; Tano et 22 

al., 2003). Attempts to achieve genetic introgression of trypanotolerance through 23 

indiscriminate crossbreeding with trypanosusceptible breeds is common in livestock 24 
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production systems in many parts of sub Saharan Africa, but leads to the diluting of the trait 1 

(Alvarez et al., 2012; Bradley et al., 1994; Geerts et al., 2009; Kosgey and Okeyo, 2007).  2 

Morris (2007) reports that a considerable number of trypanotolerant Ndama and western 3 

African short horn cattle have already been introduced into 19 countries within the central 4 

African region in response to the disease challenge. A recent microsatellite and SNP marker 5 

analysis within trypanosomiasis candidate regions of trypanotolerant and 6 

trypanosusceptible cattle confirmed significant levels of admixture of the two breeds 7 

(Smetko et al., 2015). Most of these indigenous African livestock breeds are now 8 

endangered due to indiscriminate crossbreeding and breed replacement, and there is a high 9 

risk of their adaptive traits being lost forever (Mwai et al., 2015). This excessive genetic 10 

introgression will pose a major challenge for the sustainable use of the trypanotolerant trait 11 

for the control AAT if deliberate programmes for the preservation and development of 12 

trypanotolerant breeds are not put in place.  13 

 14 

5. Trypanotolerance in the context of Africa livestock production 15 

The existing AAT control and eradication programs have not, and might never, reach the 16 

level of effective implementation required to rid the region of this complex disease. The 17 

main livestock systems in sub Saharan African are small holder pastoral, agro pastoral, 18 

mixed crop–livestock and peri-urban livestock systems (Kosgey and Okeyo, 2007; Tano et al., 19 

2003; Zougmoré et al., 2015). These systems are characterised by low input, low technology, 20 

and with a considerable level of subsistence production (Jahnke and Jahnke, 1982).  Over 21 

the last century, the sheer complexity and diversity of socio-politico-cultural elements of the 22 

different countries within the sub Saharan African region have constrained the effective 23 
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coordination of many anti-trypanosomiasis programs between member states, and also 1 

with regional and international partners (Black et al., 1985; Ford, 2007; Smith et al., 2015). 2 

The persistence of civil conflicts and wars within the sub Saharan African region has been 3 

directly linked to the re-emergence of the disease in many affected countries (Ford, 2007). 4 

For example; the trypanosomiasis epidemic outbreak of Uganda in the late 1970’s resulted 5 

from political turbulence, and the outbreak in Angola that started in 1975 during the post-6 

independence civil war period. The presence of large populations of wildlife reservoirs of 7 

Trypanosome parasite in some parts of the region has also worked against the total 8 

eradication of the disease (Murray et al., 1982). There is a general lack of capacity for local, 9 

mostly smallholder, livestock farmers to diagnose or treat such a complex disease (Geerts et 10 

al., 2001; Murray et al., 1984). The appropriate use of trypanotolerant breeds would 11 

mitigate the high annual losses incurred by the vast majority of these smallholder livestock 12 

farmers (Tano et al., 2003). Mitigating losses is particularly important because the 13 

improvement of smallholder agricultural productivity in Africa is fundamental to overcoming 14 

the problem of poverty in the region (Babikir et al., 2015).  15 

Breeding livestock for disease resistance is a widely accepted concept in developed 16 

countries (Piedrafita et al., 2010; Raadsma and Fullard, 2006), and has been extensively 17 

studied in breeds such as the Scottish Blackface sheep (Bishop et al., 2002; Stear et al., 18 

1997). There are ongoing extensive and equally successful breeding programs for disease 19 

resistance in Australian Brahman cattle (Frisch et al., 2000), and in sheep in Australia and 20 

New Zealand (Van der Werf, 2007). For example, AUD$ 8 billion in extra earnings was 21 

realized within 30 years of the exploitation of the parasite resistance genes of Brahman 22 

cattle via a landmark cross breeding program within the Northern Australian beef industry 23 

(Frisch et al., 2000; Morris, 2007). Most research and application has involved parasitic 24 
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diseases, but  Bishop and MacKenzie (2003) provide a comprehensive model framework for 1 

the utilization of disease resistance for the control of bacterial and viral infections in 2 

livestock. 3 

However, in the context of sub Saharan Africa livestock production systems, measures 4 

would need to be put in place to preserve the genetic purity of known trypanotolerant 5 

breeds, and to protect those breeds from excessive genetic introgression by 6 

trypanosusceptible breeds (Geerts et al., 2009). To this end, a molecular characterisation of 7 

all trypanotolerant livestock breeds for the purpose of reliable identification, will also 8 

expedite future genetic improvement programs for trypanotolerant breeds. This effort can 9 

take the form of establishment and coordination of regionally or nationally supported 10 

satellite open nucleus breeding stations for pure trypanotolerant breeds across sub Saharan 11 

African region to sustain this intervention. 12 

  13 

6. Conclusion 14 

After a century of intervention against AAT, the disease persists, as does its staggering 15 

impact on the livelihoods of the population in sub Saharan Africa. A diverse range of 16 

interconnected factors has contributed to the entrenchment of the disease. Given the 17 

current perspective, imminent eradication of this disease does not seem a possibility. 18 

Although, advancement in scientific technologies has been accompanied by a greater 19 

understanding of the mechanisms of the disease over this period, the existing control 20 

measures remain largely inadequate. We are of the view that an improved outcome in the 21 

battle against AAT will require a more holistic approach that is dynamic and context-specific 22 

to the different livestock production systems across sub Saharan Africa. Therefore, 23 
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management of the disease including the development of structured programs for the use 1 

of trypanotolerant breeds will be a more realistic and achievable objective.  The exploitation 2 

of naturally trypanotolerant breeds of livestock will not only add an economically 3 

sustainable option to the mix of interventions, but is also compatible with livestock 4 

production systems in the region.  5 
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