Arroja et al. Exp & Trans Stroke Med (2016) 8:8
DOI 10.1186/513231-016-0022-1

Experimental & Translational
Stroke Medicine

REVIEW Open Access

Therapeutic potential of the renin

@ CrossMark

angiotensin system in ischaemic stroke

Mariana Moreira Coutinho Arroja, Emma Reid and Christopher McCabe”

Abstract

(Ang-(1-7)), AT, R blockers, AT,R agonists, MasR agonists

The renin angiotensin system (RAS) consists of the systemic hormone system, critically involved in regulation and
homeostasis of normal physiological functions [i.e. blood pressure (BP), blood volume regulation], and an independ-
ent brain RAS, which is involved in the regulation of many functions such as memory, central control of BP and
metabolic functions. In general terms, the RAS consists of two opposing axes; the ‘classical axis’mediated primarily
by Angiotensin Il (Ang Il), and the ‘alternative axis'mediated mainly by Angiotensin-(1-7) (Ang-(1-7)). An imbalance
of these two opposing axes is thought to exist between genders and is thought to contribute to the pathology of
cardiovascular conditions such as hypertension, a stroke co-morbidity. Ischaemic stroke pathophysiology has been
shown to be influenced by components of the RAS with specific RAS receptor antagonists and agonists improving
outcome in experimental models of stroke. Manipulation of the two opposing axes following acute ischaemic stroke
may provide an opportunity for protection of the neurovascular unit, particularly in the presence of pre-existing
co-morbidities where the balance may be shifted. In the present review we will give an overview of the experimental
stroke studies that have investigated pharmacological interventions of the RAS.
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Background

In the UK, stroke is the fourth leading cause of death and
one of the largest contributors towards long-term dis-
ability, affecting approximately 152,000 people every year
(https://www.stroke.org.uk; State of the Nation 2015) [1].
In the past 40 years the number of stroke fatalities has
been decreasing, however, it is estimated that over two-
thirds of stroke survivors require daily medical care and
over half are left disabled [2], resulting in an annual cost
of nearly £4 billion and accounting for approximately
4-6 % of total NHS expenditure [3].

Recombinant tissue plasminogen activator (rt-PA;
Alteplase), is the only thrombolytic treatment cur-
rently available for acute ischaemic stroke (AIS). It acts
by breaking down the clot or thrombus obstructing the
cerebral vessel, thus, re-establishing blood flow. However,
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it has a narrow therapeutic time window of 4.5 h from
stroke onset, resulting in only 2-5 % of ischaemic strokes
being treated globally, and can have detrimental side
effects, including haemorrhage [4]. Recent results from
a number of randomised clinical trials of mechani-
cal thrombectomy have demonstrated efficacy for this
intervention up to 6 h after stroke onset [5]. The positive
results from these trials have reinvigorated the stroke
community and open up new possibilities for adjunctive
protective strategies.

Failure to translate effective therapeutic strategies from
the ‘bench to bedside’ may partly be attributed to the use
of animal models that do not incorporate non-modifiable
risk factors such as gender and many of the stroke co-
morbidities observed in the clinical stroke population,
such as hypertension, diabetes, obesity, etc. For instance,
hypertension is the single most important modifiable risk
factor for stroke, acting as a contributing factor in over
75 % of first time stroke patients [6] with hypertension
during acute stroke is associated with poorer clinical out-
come [7].
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The renin angiotensin system (RAS), a peptide hor-
mone system intrinsically involved in blood pressure reg-
ulation and blood volume homeostasis in the circulation,
has been shown to be present as a local paracrine system
in the brain [8]. The RAS is reported to be involved in
the pathology of AIS and its risk factors [8, 9], therefore,
emerging as a potential therapeutic target. This review
discusses the therapeutic potential of the RAS following
AIS, emphasising the importance of cerebral RAS recep-
tor targeting and its relevance in the presence of known
stroke risk factors.

Brain RAS: classical and alternative axis

In the circulation, a drop in blood pressure (systemic
hypotension) and/or blood volume results in juxtaglo-
merular cells within the kidneys to release renin (pro-
tease) whereas increased blood pressure (hypertension)
inhibits renin release under normal circumstances.
Circulating angiotensinogen is hydrolysed by renin to
produce Angiotensin I (Ang I), which is then further con-
verted by angiotensin converting enzyme (ACE) to gen-
erate biological active octapeptide, Ang II (Fig. 1). AngII,
a potent vasoconstrictor, acts by stimulating Ang II type 1
and type 2 receptors (AT,R and AT,R) [10]. Ang II exhib-
its a higher affinity to the widely expressed AT;R whereby
it exerts its main physiological effects by constricting
blood vessels, increasing BP, and stimulating aldoster-
one release from adrenal glands, promoting water and
salt reabsorption in the kidneys, thus, raising blood vol-
ume levels [10]. In the last decade, an ‘alternative axis’
has been identified involving the monocarboxypeptidase,
ACE2, the biologically active peptide Ang-(1-7) and its
G-protein coupled receptor, Mas (MasR). Ang-(1-7) is
formed by the direct actions of ACE2 on Ang II or via
ACE2 induced cleavage of Ang I, generating the nine
amino acid peptide Ang-(1-9), which is further con-
verted to Ang (1-7) by ACE or peptidases such as nepri-
lysin (NEP) [8].

All the components of the ‘classical axis’ (angiotensino-
gen, renin, ACE, Ang II) have been identified within
the brain parenchyma (see reviews [8, 11]). In addition,
there is evidence that the ‘alternative axis’ is locally pro-
duced within the brain as ACE2 has been localised in
neurons [12], astrocytes [13] and within the cerebrovas-
culature [14]. Similarly, the receptor subtypes responsi-
ble for mediating the functional effects of RAS peptides
are expressed in neuronal and glial cells throughout the
brain. For example, AT, and AT, receptors have been
shown to be present in dopaminergic neurons, astrocytes
and microglia from both human and primate brain tissue
[15] and MasR shown to be expressed in neurons, astro-
cytes, microglia and cerebral endothelial cells in rodents
(16, 17].
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Involvement in ischaemic stroke

Over-activation of the ACE/Ang II/AT R axis is thought
to contribute to the pathogenesis of AIS through its vaso-
constrictor effects on cerebral vessels as well as its pro-
inflammatory, pro-fibrotic and increased oxidative stress
effects in the parenchyma [8]. For instance, in the brain,
AT,R knockout (KO) mice subjected to permanent mid-
dle cerebral artery occlusion (pMCAO) exhibit a larger
metabolic penumbra volume (cerebral protein synthe-
sis and ATP mismatch) and higher CBF within the core
and penumbra when compared to wild type (WT) mice
whereas mice over-expressing human renin and angio-
tensinogen genes have larger infarcts [18, 19]. Further-
more, Ang II has been shown to enhance the contractile
response in isolated middle cerebral arteries (MCA) fol-
lowing MCAO via the AT R [20], therefore, worsening
cerebral perfusion following ischaemia.

Interestingly, emerging evidence identifies the ‘alterna-
tive axis’ as an endogenous protective system, which acts
to counteract the effects of the ‘classical axis’ by mediat-
ing vasodilation and anti-inflammatory, anti-oxidant and
anti-apoptotic effects via MasR and AT,R activation [21,
22]. Following focal cerebral ischaemia in the rat, AT,Rs
have been shown to be upregulated in the peri-infarct
region of the cortex, and also within the selectively vul-
nerable regions of the cortex and hippocampus following
global cerebral ischaemia [23, 24]. AT,R KO mice exhibit
less ischaemic damage compared to WT control animals
following MCAO [25] suggesting a protective role for
this receptor in the setting of cerebral ischaemia. In sup-
port of a role for this pathway following acute ischaemic
stroke the ACE2/Ang-(1-7)/Mas axis has been shown
to be upregulated. Brain expression (mRNA and protein
levels) of both ACE2 and MasR are upregulated from as
early as 6 h following permanent MCAO in the rat, peak-
ing at 24 h post MCAO. This was associated with an
concomitant increase in both circulating serum and cer-
ebral Ang-(1-7) levels [16]. This increase occurs during
the first critical hours after stroke when ischaemic dam-
age and loss of potentially salvageable penumbra is tak-
ing place, suggesting a potential role for this pathway in
the pathogenesis. Increasing exogenous Ang-(1-7) levels
in the brain by central infusion prior to stroke has been
shown to decrease infarct volume in rats [26], providing
evidence of a protective role for this pathway post-stroke.

The current evidence suggests that there is an imbal-
ance in the RAS following stroke with an enhanced
activation of the ACE/Ang II/AT R pathway and that tar-
geting the counter-regulatory ACE2/Ang-(1-7)/Mas axis
may provide protection. This imbalance in the RAS may
be exacerbated in the presence of known stroke risk fac-
tors such as gender and hypertension and therefore pro-
vide a potential therapeutic target in a subset of patients.
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Fig. 1 Simplified overview of the renin angiotensin system (RAS). Angiotensinogen is cleaved by renin generating Angiotensin | (Ang I) which is
then formed into Angiotensin Il (Ang Il) via the actions of angiotensin converting enzyme (ACE). Ang Il preferentially binds to Angiotensin Il type |
receptor (AT,R) (classical axis’) inducing vasoconstriction, inflammation, oxidative stress, apoptosis and cell proliferation. Ang Il can also activate the
Angiotensin Il type Il (AT,R) and is metabolised by angiotensin converting enzyme 2 (ACE2) to generate Angiotensin-(1-7). Ang-(1-7) activates the
Mas receptor (MasR). Ang-(1-7) can be formed by the actions of ACE or neprilysin (NEP) on Angiotensin-(1-9) or Angiotensin I. AT,R and ACE2/Ang-
(1-7)/MasR form the ‘alternative axis'and its activation is thought to counteract the detrimental effects induced by AT, R by leading to vasodilation,
angiogenesis and preventing inflammation, oxidative stress and apoptosis
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RAS and stroke co-morbidities

Men have a higher incidence of stroke, however, after
the menopause the incidence of stroke in women rap-
idly increases and this is co-incident with the decrease
in female sex hormones [27]. In addition, to sex differ-
ences in stroke incidence, it is also well established in
experimental stroke studies that female animals have less
ischaemic injury than their male counterparts and that
this protection is lost after ovariectomy [28, 29]. Further-
more, cells exhibit sex specific differences in the specific
mechanisms of cell death following cerebral ischaemia
[30] therefore it is not unlikely that sex differences will
exist in the RAS in the brain and elsewhere. It is widely
accepted that the RAS is influenced by sex hormones
with males and females exhibiting differential responses
to stimulation and inhibition of the RAS [31]. Differences

in vascular reactivity to Ang II and receptor expression
have been shown to be influenced by sex hormones, with
testosterone stimulating the ‘classical axis’ and oestro-
gen lowering the AT ;R:AT,R ratio, thereby enhancing
vasodilatation [32-34]. Interestingly, in experimental
animal models, female rats exhibit enhanced activity of
the ACE2/Ang-(1-7)/Mas axis compared to males [31],
showing increased renal Ang-(1-7) levels [35]. These
findings may translate to humans, where normotensive
healthy adult females have been shown to have higher
plasma levels of Ang-(1-7) than their male counterparts
[36]. These combined findings suggest that oestrogen
may confer some degree of protection against stroke in
premenopausal women by promoting increased activa-
tion of the ACE2/Ang-(1-7)/Mas axis and therefore,
the loss of oestrogen associated with menopause may



Arroja et al. Exp & Trans Stroke Med (2016) 8:8

contribute to increased stroke risk through a loss of this
enhanced protective pathway. In terms of brain expres-
sion, AT R expression has been shown to be lowered in
rats treated with oestrogen plus ovariectomy compared
to ovariectomy alone. In contrast, oestrogen treatment
in ovariectomised rats resulted in an increased expres-
sion of the AT,R compared to ovariectomised rats [37].
Similarly, mRNA expression of the AT;R and ACE are
increased in the brains of hypertensive ovariectomised
rats compared to intact females [38].

Hypertension is the single most important modifi-
able risk factor for the development of stroke, clinical
outcome is poorer in patients with hypertension dur-
ing acute stroke and in experimental animal models of
stroke, ischaemic damage is significantly increased in
hypertensive animals [39, 40]. Dysregulation of the RAS
has been implicated in the development of hypertension,
where hyperactivity of Ang II and other RAS compo-
nents lead to enhanced oxidative stress and inflamma-
tion. Preclinical models of genetic hypertension have
demonstrated increased AT;R expression in the vascu-
lature of spontaneously hypertensive rats (SHR) com-
pared to age-matched normotensive controls [41]. In
addition to hyperactivity of the ‘classical axis, dampen-
ing of the protective counter-regulatory axis is also evi-
dent, where hypertensive rat strains exhibit decreased
ACE2 mRNA and protein expression compared to nor-
motensive controls [42]. Chronic treatment of diabetic
SHR rats with either an AT;R blocker (olmesartan) or
ACE inhibitor (enalapril) reverses the microcirculatory
changes that occur in pial vessels (functional and struc-
tural rarefaction) of the brain resulting in an improved
cerebral perfusion and reduced cerebral oxidative stress
[43]. Candesartan treatment in salt loaded SHRSP rats
was shown to increase endothelial cell progenitor (EPC)
colony number and reduce oxidative stress levels in mon-
onuclear cells. This study suggests that ARB treatment
may also act to improve endothelial cell function and
angiogenesis in the presence of hypertension [44]. These
results demonstrate the influence of the ACE/Ang II/
AT1R pathway on remodelling of the cerebral microvas-
culature and suggest that overactivation of this pathway
may contribute to the pathology.

Therefore, manipulation of the RAS towards the pro-
tective ACE2/Ang-(1-7)/MasR pathway in the presence
of co-morbidities may shift the balance to prevent the
exacerbation of ischaemic damage following AIS.

Therapeutic targeting of the RAS following stroke

AT, R blockers

Angiotensin type 1 receptor blockers (ARBs or “sartans”)
have been widely used as a successful and established
therapy for the treatment of clinical hypertension [45].
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As a result, this class of drug has been assessed for pos-
sible neuroprotective effects in a number of experimental
stroke studies (Table 1) [46—56]. Central administration
of irbesartan (ARB) prior to transient middle cerebral
artery occlusion (tMCAQ) has been shown to improve
neurological outcome with no effect on blood pressure,
however one limitation was the lack of any measure of
infarct volume [43]. Follow up studies demonstrated
that administration of ARB’s prior to MCAO could in
fact reduce infarct volume and this was associated with a
reduction in the number of activated microglia and mac-
rophages (ED-1 staining) as well as a reduction in mark-
ers of apoptosis (TUNEL, PARP P85 staining and caspase
3) [47, 56].

The cerebral vasodilatory potential of ARB’s have
been extensively investigated and studies have exam-
ined its effects on isolated cerebral vessels as well as
the cerebral blood flow (CBF) response in vivo. Can-
desartan in particular, has shown the potential to
increase cerebral perfusion following MCAO in both
normotensive as well as hypertensive rats (SHR). In
normotensive rats, administration of Candesartan
as an i.v bolus (2 h prior to MCAQ) was reported to
increase CBF in the ipsilateral hemisphere both at
baseline and during MCAO [57]. In SHRs, chronic
candesartan infusion for 28 days prior to MCAO
reduced infarct volume and this was associated with
an improved CBF compared to vehicle treated rats,
particularly in the cortical areas at the periphery of the
infarct. In addition, isolated vessels taken at the end
of the chronic treatment protocol demonstrated an
increased MCA diameter and reduced media thickness
suggesting chronic changes to cerebral vessels result-
ing in reduced hypertension induced remodelling and
enhanced collateral flow [55]. Similarly, Nishimura and
colleagues demonstrated that chronic pre-treatment
with Candesartan improved cerebrovascular autoregu-
lation and decreased infarct size, an outcome associ-
ated with reduced AT R binding in the MCA with Ang
II autoradiography [54].

Other reported effects of AT;R blockade include pro-
angiogenic/neurogenic effects. For example, Candesar-
tan pre-treatment (at a dose with no BP effect) reduced
infarct volume and increased mRNA expression of brain
derived neurotrophic factor (BDNF) and its associated
receptor (tropomyosin receptor kinase B; TrkB) 48 h after
tMCAO [46]. Similarly, in SHR rats candesartan treat-
ment following MCAO was shown to increase BDNF
protein levels [58], suggesting, a potential involvement in
neuronal cell regeneration. Despite indications of neuro-
protection with blockade of the AT R, not all experimen-
tal studies attenuated infarct evolution independently of
BP lowering effects (Table 1).
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AT,R agonism

It has been proposed that the neuroprotective mecha-
nisms induced by ARB’s may partly involve increased
Ang II binding to the AT, receptor [59]. Consequently,
selective AT,R agonists have been developed and investi-
gated in models of experimental stroke (Table 2) [60-67].
In normotensive rats, central and systemic administra-
tion of compound 21 (C21), a selective non-peptide
and orally active AT,R agonist, prior to and post ET-1
induced MCAO, reduces infarct size and improves neu-
rological deficit. This protective effect was attributed to a
decrease in inflammatory markers, inducible nitric oxide
synthase (iNOS) and C-C motif chemokine receptor
type 2 (CCR2) mRNA expression in the cerebral cortex
following tMCAO, an effect blocked by the AT,R selec-
tive antagonist PD123319 [62].

In conscious SHR rats, the AT,R agonist, CGP42112,
attenuates lesion progression and improves motor func-
tion following tMCAOQO. These effects were independ-
ent of BP alterations and possibly due to enhanced
AT,R receptor level expression, increased microglial
activation and reduced superoxide production within
the peri-infarct region [63, 64]. These findings are sup-
ported by in vitro data in primary cortical neurons where
CGP42112 administration was shown to attenuate cell
death following oxygen glucose depravation (OGD) [66].
Similarly, C21, was shown to dose dependently reduce
infarct volume in SHR when administered centrally for
5 days prior to endothelin 1 (ET-1) induced MCAO. This
was associated with an increase in microglia activation
within the infarct core and peri-infarct, however, when
administered 6 h post-stroke the protective effect was
still observed but there was no enhancement of micro-
glial activation [65].

Apart from an anti-inflammatory role, C21 has also
been shown to promote angiogenesis. In primary corti-
cal neurones, C21 treatment 24 h post OGD challenge,
enhances vascular endothelial growth factor (VEGF) via
mechanistic targeting of rapamycin (mTOR) pathway
activation [68]. Similarly, in in vivo models, 28 day C21
treatment in mice subjected to either transient or perma-
nent MCAO resulted in increased angiogenesis via VEGF
upregulation and effect which the authors hypothesise is
through an AT,R mediated activation of the P13K-Akt-
mTOR pathway [61]. Additionally, in ex vivo studies, vas-
odilation and increased perfusion seems to be dependent
on the animal model used. Using wire myography, C21
treatment in isolated basilar arteries causes cerebral ves-
sel relaxation, promoting vasodilation [59], an outcome
supported by in vivo studies where mice subjected to
pMCAO with C21 pre-treatment had an improved CBF
in the ischaemic hemisphere at days 1 and 3 following
pMCAO. This was associated with a decreased infarct
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size, and attenuated blood brain barrier (BBB) break-
down as measured by Evans blue extravasation [67]. On
the contrary, in mice subjected to tMCAO, C21 did not
induce any acute changes in CBF when administered fol-
lowing reperfusion [68].

In contrast to the protective effects of C21 discussed
above, a recent study showed that C21 did not affect
infarct volume in mice 4 days following tMCAQO; how-
ever, it did improve neurological score and mortal-
ity rates. Interestingly, the neurological improvement
observed was associated with an increase in anti-apop-
totic and regenerative molecules BDNF, TrkB and growth
associated protein 43 (GAP-43) in peri-infarct regions
when compared to vehicle [68].

MasR agonism

Evidence suggests that AT,R interacts with other RAS
mediators and its effects may be partly mediated by an
interaction with the Mas receptor, which is activated by
Ang-(1-7) [69]. Recently, the interaction between ACE2/
Ang-(1-7)/MasR in AIS has been studied and shown
to be protective in several animal models (Table 3) [17,
26, 70-73]. Mecca and colleagues were one of the first
groups to identify the potential neuroprotective effects
of this peptide and its receptor. They demonstrated that
central administration of Ang-(1-7) for 7 days prior to
ET-1 induced MCAQO, reduced infarct volume via MasR
activation and decreased cortical iNOS mRNA expres-
sion [26]. Further evidence now proposes that Ang-(1-
7) might have direct anti-inflammatory properties and
specifically target microglia. In primary microglial cell
cultures under basal conditions, MasR activation modu-
lates inflammatory marker expression by attenuating
pro-inflammatory genes [74]. Following tMCAO injury,
Ang-(1-7) treatment not only reduces iNOS mRNA and
protein levels in ipsilateral cerebral cortex but attenuates
chemokine C-X-C motif ligand 12 (CXCL12) levels at 6 h
post tMCAO and interleukin (IL)-1f, IL-6 and cluster
differentiation 11b (CD11b) at 24 h [17]. These findings
are further supported by pMCAO studies, where Ang-
(1-7) decreased nuclear factor kappa B (NFkB) phospho-
rylation and cyclooxygenase-2 (COX-2) protein levels in
peri-infarct regions when compared to vehicle [71].

The vasodilatory properties of Ang-(1-7) in cerebral
vessels are conflicting. In canine MCA and piglet pial
arterioles, Ang-(1-7) induces vasodilation in intact ves-
sels only at very high concentrations [75, 76]. However,
Durand and colleagues demonstrated that in normo-
tensive isolated rat MCA’s, Ang-(1-7) dose dependently
induced a vasodilator response which was blocked by
Mas and AT, receptor antagonists [77]. Ang-(1-7)
mediated vasodilatation may vary depending on ani-
mal species. Nevertheless, in rodents, it is possible that
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Ang-(1-7) might induce vasodilation in cerebral vessels
due to increases in NO and/or bradykinin (BK) release.
Central administration of Ang-(1-7) in a rat transient
MCAO model has been shown to enhance nitric oxide
(NO) release between 3 and 72 h after transient MCAQO
when compared to vehicle treated rats and this was asso-
ciated with an increased mRNA and protein expression
of endothelial nitric oxide synthase (eNOS) in ischaemic
brain tissue at these acute time points following MCAO.
In addition, concentration levels of BK and its receptors
were shown to be upregulated in ischaemic cortex fol-
lowing Ang-(1-7) treatment between 6 and 48 h post
tMCAO [70, 78].

Similarly, 4-week chronic Ang-(1-7) infusion prior to
MCAO was shown to increase protein levels of eNOS
and NO concentration in the ischaemic hemisphere
whereas iNOS and neuronal (nNOS) expression were
unchanged. Interestingly, brain VEGF protein levels were
also elevated, an outcome associated with an increase in
angiogenic markers (CD31 and EdU). Following pMCAO,
Ang-(1-7) reduced infarct volume and improved CBF an
effect specific to the MasR, suggesting that Ang-(1-7)
activates Mas/eNOS signalling pathways, improving
angiogenesis and cerebral perfusion [72]. Still, the impact
of Ang-(1-7) on CBF is under debate as Mecca et al. [26]
reported that central infusion of Ang-(1-7) for 7 days
prior to ET-1 induced MCAO did not affect CBF when
measured during MCAO.

Targeting the MasR with Ang-(1-7) is showing promis-
ing results in experimental stroke models however, Ang-
(1-7) has a 20 s half life in the bloodstream and is unlikely
to cross the BBB therefore necessitating specific receptor
agonists to be developed with improved pharmacokinetic
profiles [79]. As a result, in order to see an effect follow-
ing AIS, it has had to be administered centrally, a route of
administration which is not clinically feasible. At present,
Mas agonist, AVE0991 has been developed, however,
following tMCAO in mice, i.p AVE0991 post-treatment
failed to induce similar neuroprotective as observed in
Ang-(1-7) treated studies [73].

The effect of ARBs in clinical trials

In clinical trials, the effectiveness of ARB treatment in
preventing vascular events and mortality following AIS
is under debate. The LIFE trial compared losartan (AT;R
antagonist) and atenolol (selective p1 receptor blocker)
treatment for preventing cerebral ischaemic events
in patients with a clinical history of hypertension and
left ventricular hypertrophy. After a follow up time of
4.8 years, the authors demonstrated that the use of losar-
tan was associated with a decrease in the frequency of
stroke [80]. Moreover the ACCESS trial was designed to
assess the efficacy of a modest blood pressure reduction
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acutely after stroke (day 1 post stroke for 7 days) with
patients receiving either candesartan cilexetil (AT,R
antagonist) or placebo treatment. Although the trial
was stopped early it did demonstrate a reduced number
of vascular events and decreased mortality in the can-
desartan treatment group [81]. In following years, the
MOSES study investigated the effects of eprosartan or
nitrendipine (calcium channel blocker) in hypertensive
patients who had a cerebrovascular event within the last
24 months prior to recruitment. After 2.5 years follow up,
it was identified that eprosartan group showed signifi-
cantly less cases of cardiovascular and cerebrovascular
events [82]. Furthermore, telmisartan, as an alternative
therapy for cardiovascular disease patients who are intol-
erant to ACE inhibitors, was shown to induce a modest
reduction in stroke incidence [83].

Despite the benefits of AT;R antagonism observed,
other studies showed contradictory effects. For instance,
a study assessing whether blood pressure lowering with
telmisartan treatment in ischaemic stroke patients
affected the risk of recurrent cerebral events concluded
after a 2.5 year follow up that telmisartan did not affect
the risk of recurrent stroke nor other cardiovascular
events [84]. More recently, the SCAST clinical trial inves-
tigated whether blood pressure lowering with candesar-
tan in acute stroke patients is beneficial. After 6 months
follow up, no beneficial effect of blood pressure lowering
with candesartan was observed with no difference in the
occurrence of vascular events. Plus, for functional out-
come there was a less favourable modified Rankin score
in the candesartan group albeit this was not statistically
significant [85]. The results from clinical trials to date
have primarily investigated the influence of modulation
of the RAS in terms of stroke incidence or blood pressure
lowering strategies following stroke however, the effect of
RAS modulation acutely after ischaemic stroke in terms
of outcome (i.e. penumbral salvage, lesion volume) has
yet to be fully investigated.

Conclusions

The RAS is currently a therapeutic target for the treat-
ment of AIS. Pathological activation of the ‘classical
axis’ contributes towards ischaemic injury develop-
ment and the ‘alternative axis’ is thought to counteract
these effects leading to protection. Interestingly, the
pathology of stroke co-morbidities such as hyperten-
sion and gender are all influenced by RAS dysfunction,
where there is an increased/overactive ACE/Ang II/
AT,R pathway. Consequently, targeting the RAS could
act as a preventive line of therapy for the develop-
ment of stroke and attenuate injury following stroke by
diminishing brain RAS imbalances or providing direct
neuroprotection.
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Several preclinical studies have identified the potential
neuroprotective effect of AT,R blockers, AT,R and MasR
agonists. ARBs have been extensively studied in the con-
text of experimental stroke due to its current clinical use
in hypertension management. Although there were indi-
cations of a level of neuroprotection induced by ARBs,
its clinical potential has been set aside due to clinical tri-
als that showed that ARBs may induce harmful effects in
ischaemic stroke patients. On the other hand, AT,R and
MasR agonism are showing promising effects in preclini-
cal stroke models; however, further studies have to be
conducted to identify the actual mechanisms induced
following stroke, addressing several limitations associ-
ated to preclinical stroke.

Further understanding of the role of the RAS follow-
ing ischaemic stroke, in particular the role of the ACE2/
Ang-(1-7)/Mas pathway and development of improved
pharmacological drugs targeting the central RAS compo-
nents are needed before any successful translation would
be possible.
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