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Influenza epidemiology differs substantially in tropical and temperate zones, but estimates of seasonal influenza

mortality in developing countries in the tropics are lacking. We aimed to quantify mortality due to seasonal influenza

in Thailand, a tropical middle-income country. Time series of polymerase chain reaction–confirmed influenza infec-

tions between 2005 and 2009 were constructed from a sentinel surveillance network. These were combined with

influenza-like illness data to derive measures of influenza activity and relationships to mortality by using a Bayesian

regression framework. We estimated 6.1 (95% credible interval: 0.5, 12.4) annual deaths per 100,000 population

attributable to influenza A and B, predominantly in those aged ≥60 years, with the largest contribution from influ-

enza A(H1N1) in 3 out of 4 years. For A(H3N2), the relationship between influenza activity and mortality varied over

time. Influenza was associated with increases in deaths classified as resulting from respiratory disease (posterior

probability of positive association, 99.8%), cancer (98.6%), renal disease (98.0%), and liver disease (99.2%). No

association with circulatory disease mortality was found. Seasonal influenza infections are associated with sub-

stantial mortality in Thailand, but evidence for the strong relationship between influenza activity and circulatory dis-

ease mortality reported in temperate countries is lacking.

Bayesian regression; burden; developing country; influenza; middle-income country; mortality; seasonal variation;

tropics

Abbreviation: ICD-10, International Classification of Diseases, Tenth Revision.

The World Health Organization asserts that seasonal influ-
enza results in 250,000–500,000 deaths annually in industri-
alized countries (1). Estimates are lacking from low- and
middle-income countries but might differ substantially be-
cause of reduced health-care resources, differences in influ-
enza transmission dynamics, poorer nutrition, differences in
chronic illnesses, and lower levels of vaccine coverage against
influenza and interacting pathogens, such as Streptococcus
pneumoniae (2, 3). Differences in the pattern of person-to-
person contacts that spread influenza may also lead to differ-
ent patterns of epidemic spread that could potentially affect
influenza-related mortality. Such differences in contact pat-
terns may relate to the degree of urbanization and the demo-
graphic structure of the population. Finally, many developing

countries are in tropical or subtropical zones, where influenza
seasonality and strain diversity can differ substantially from
those of temperate regions (3). Very little is currently known
about mortality due to seasonal influenza in the tropics with
the exception of one very highly developed and fully urban-
ized population, Singapore (4, 5).
Although routine influenza vaccination programs have pre-

viously been limited to higher-income settings, there is in-
creasing interest in expanding such programs in developing
countries. Estimating influenza-related mortality in such set-
tings is essential for quantifying the likely impact of such
vaccination programs (1). However, a major challenge in es-
timating seasonal influenza mortality is that symptoms are
nonspecific, and few patients are tested for active influenza
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infection. It is also evident that, for most deaths where influ-
enza is likely to have played a causal role, no mention of in-
fluenza is given as the cause of death (2, 4–7).

To overcome these limitations, approaches have been
developed to estimate influenza-related mortality by using
routine surveillance data (2, 4–12). Most aim to separate mor-
tality time series into a predictable component of temporal
variation (annual periodicity and long-term trends) and,
added to this, a variable component. Mortality associated
with influenza is expected to be largely explained by the latter.
A seminal approach, the Serfling model (9), used a sine wave
to model the regular seasonal component of variation and a
polynomial in time to account for long-term trends. Mortality
exceeding this baselinemodel in “epidemicmonths” is termed
“excessmortality.”Much of this excess, it is argued, is caused
by influenza.

Because of several limitations of this model (likely to be
particularly severe in tropical and subtropical settings), recent
work uses more flexible functional forms (splines) for mod-
eling underlying seasonality and regression models to relate
mortality to influenza activity (2, 4, 6, 12).We adopt a similar
approach to estimate mortality due to seasonal influenza in
Thailand, adjusting for nonlinear associations of mortality
with meteorological data. We extend previous approaches by
allowing for year-on-year variation in the relationship be-
tween subtype-specific influenza activity and mortality.

We use data collected prospectively by the national influenza
surveillance system in Thailand. This combines epidemio-
logic and virological data and was set up by the Thai National
Institute of Health at the Ministry of Public Health in 2004 in
collaboration with the US Centers for Disease Control and
Prevention (13).

METHODS

Data sources

Weekly deaths in Thailand for 2005–2009 were obtained
from the Ministry of Public Health and included both all-
cause mortality and mortality with codes from the Interna-
tional Classification of Diseases, Tenth Revision (ICD-10),
for respiratory disease (J00–J99), circulatory disease (I00–
I99), cancer (C00–C97), diabetes (E10–E14), renal disease
(N00–N07, N17–N19, N25–N27), and liver disease (K70,
K73, K74). These have previously been reported to be asso-
ciated with influenza. We also included 2 control categories
that have not been reported to be associated with influenza:
septicemia (A40, A41) and unintentional injuries (V01–
X59, Y85, Y86) (2).

Influenza data consisted of reports of weekly numbers of
patients seeking medical attention with influenza-like illness
throughout Thailand and weekly laboratory-confirmed influ-
enza cases from April 2005 to March 2009. These dates were
chosen because the influenza surveillance system was not
fully operational until 2005 and, following March 2009, health
care–seeking behavior for influenza-like illness changed in
response to pandemic influenza (13). Visual inspection indi-
cated anomalies in the data in weeks 52, 53, and 1 of each
year, and these were excluded from the analysis. Laboratory
confirmation data included the number of weekly tests from

patients with influenza-like illness and the number positive
for influenza A(H3N2), A(H1N1), and B (13). Three meteo-
rological measurements were used: maximum temperature,
relative humidity, and rainfall. These were averaged over
daily readings from Bangkok obtained from the Thai Meteo-
rological Department. Six out of over 3,000 observations
were missing or represented coding errors and were replaced
with the last observation carried forward.

Statistical analysis

We defined an influenza activity measure, Bj,t, as the prod-
uct of the proportion of laboratory tests positive for influenza
type j in week t and the number of patients with influenza-like
illness in week t. This is similar to a previously described in-
cidence proxy (2). The number of patients with influenza-like
illness due to noninfluenza causes may vary over time, as
may the probability that laboratory confirmation for influenza
is sought in a patient with influenza-like illness. The activity
measure, Bj,t, will not be affected by such variation and will
be proportional to the number of true cases with influenza
type j in week t, provided that the probability that a patient
with an influenza type j infection seeks medical attention
for influenza-like illness and test sensitivity do not vary with
time (refer to the Web Appendix, available at http://aje.
oxfordjournals.org/).

We estimated mortality due to influenza using regression
models that expressed weekly deaths as the sum of a regular
seasonal component of variation, a long-term trend, a contri-
bution from each of the influenza types, a component related
to meteorological conditions, and an error term. We used
separate models for all-cause deaths, deaths in 3 different
age groups (≤17, 18–59, ≥60 years), and deaths for specific
groupings of ICD-10 codes. Seasonal variation was accounted
for by using periodic penalized B-splines (P-splines) (14, 15).

Models considered were of the form

Dt ¼ St þ Lt þ
X

j¼1: : :3
βj × ð f × Bj;t�1 þ ð1� f Þ

× Bj;t�2Þ þWt þ εt;
ð1Þ

where Dt represents deaths in week t, St corresponds to the
week t contribution from the periodic seasonal term, Lt cor-
responds to the week t contribution from the long-term trend
term, the βj terms estimate the contribution to mortality from
the 3 influenza types,Wt corresponds to theweek t adjustment
for other covariates, and εt is the residual. We followed pre-
vious work in assuming that deaths caused by influenza will
lag influenza cases by 1–2 weeks; the f term represents the
proportional contribution to deaths of influenza cases 1 week
previously (2).

Regression models were developed by using a 2-stage ap-
proach where we first performed an exploratory analysis to
select the best models and then estimated mortality using the
selected model. In an initial exploratory stage, we compared
12 different generalized additive models, accounting for sea-
sonal variation using P-splines, comparing approaches using
low-order polynomials and P-splines for modeling the long-
term trends, and comparing Gaussian models with Poisson
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models (with an identity link function). We used the Akaike
Information Criterion to assess model fit (16). This showed
that Gaussian models where long-term trends were modeled
by either a P-spline or a quadratic function of the week num-
ber gave similar fits (Web Table 1). We used the latter as-
sumption in the second stage, in which we implemented
models within a Bayesian framework and estimated parameters
using a Markov chain Monte Carlo approach, because it gave
greatly improvedmixing of theMarkov chain (Web Figure 1).
This enabled us to estimate the type-specific delay, f, from
reported influenza to death, account for temporal autocorrela-
tion between observations by using a second-order random-

walk prior, and consider 3 different assumptions about how
the coefficients in the regression model relating influenza ac-
tivity to mortality varied by year. For cause-specific mortal-
ity, we report the posterior probability of positive association
with influenza (i.e., the posterior probability that influenza-
associated mortality is greater than zero). We considered 3
different approaches to adjusting for meteorological variables
(no adjustment; adjustment assuming linear relationships;
and a semiparametric regression approach with P-splines to
allow for nonlinear relationships between meteorological
covariates and mortality). Finally, when we found evidence
of heteroskedasticity, we extended the best-fitting model by
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Figure 1. Time series of observed influenza-like illness (ILI) and influenza activitymeasures (B1,B2,B3) in Thailand, 2005–2009. Influenza activity
measures represent the product of influenza-like illness and the percentage of tested isolates positive for a given type in each week. Broken lines
show the proportion of tested isolates positive for influenza (A) and positive for specific influenza types (B–D).
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allowing the variance to follow a first-order autoregressive
conditional heteroskedastic process (17).

Mortality in weeks excluded from the model fitting was es-
timated by linear interpolation based on estimated mortality in
weeks before and after excluded data. The assumed population
size of each age group in each year was derived from census
data (http://web.nso.go.th/en/census/poph/cen_poph.htm) and
World Bank population estimates (http://databank.worldbank.
org/). Full-model details are given in the Web Appendix.

Analysis was performed using R, version 2.13.0 (R Founda-
tion for Statistical Computing, Vienna, Austria), with the pack-
agemgcv for initial model exploration and WinBUGS, version
1.4 (freeware), for the Bayesian analysis (18–20).

RESULTS

Although influenza Bwas endemic throughout the entire pe-
riod, there were extended periods when 1 of the 2 influenza A

subtypes was absent (Figure 1). No clear seasonal pattern was
evident for any influenza type. All-causemortality data, in con-
trast, showed a clear seasonal pattern, with peaks close to the
end of each calendar year (Figure 2). This seasonal variation
was not apparent in those aged <60 years. Combined mortality
with classifications previously associatedwith influenzawas el-
evated close to the end of each calendar year, reflecting annual
peaks inmortality from circulatory and respiratory disease (Fig-
ure 3). Therewas also an increasing trend inmortality attributed
to influenza-related causes, reflecting increasing mortality from
cancer, diabetes, and renal disease. The 2 control causes ofmor-
tality also showed seasonal patterns: Septicemia deaths showed
troughs close to the end of each calendar year but peaks shortly
after the Thai New Year (April 13–15), and unintentional in-
jury deaths showed large peaks during the Thai New Year.

In the models relating influenza activity to all-cause mor-
tality, background seasonal mortality (not explained by influ-
enza) peaked near the start of the calendar year and was at a
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Figure 2. Observed and expected deaths by age group in Thailand, 2005–2009. The figure shows recorded weekly deaths in those aged ≤17
years (open circles), 18–59 years (squares), ≥60 years (triangles), all ages (diamonds), and the expected number of deaths predicted by the full
model (red lines) and expected number of deaths excluding those due to influenza (black lines). Shaded areas indicate excess deaths attributed to
influenza (pink if positive, blue if negative). Vertical dashed lines indicate the first week of the calendar year, and vertical dotted lines mark the Thai
New Year (April 13–15).
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minimum at about week 30 (Web Figure 2). Adjustment for
meteorological data substantially improved model fit (Web
Table 2). This showed that, superimposed on the regular sea-
sonal variation, all-cause mortality decreased at high levels of
relative humidity and increased at high temperatures (Web
Figure 3). There was no evidence of any association with
rainfall. Allowing for year-to-year variation in the association
between influenza activity and mortality also improved
model fit. The best model overall accounted for both a non-
linear association between meteorological data and mortali-
ty and for year-to-year variation in the association between
influenza activity and mortality. We report results for this

model allowing for time-dependent variance below. Results
obtained by using alternative models are shown in Web
Tables 3–9.
The overall posterior mean of 6.1 deaths per 100,000 pop-

ulation per year corresponds to approximately 4,000 annual
deaths due to influenza in Thailand (Table 1).
There was considerable variation between the 4 years in

both total mortality due to influenza A and the relative impor-
tance of H1N1 and H3N2 (Table 2).
H1N1 was associated with only a small increase in mortality

in 2005–2006whenH1N1activitywas lowbutwith 2–4 deaths
per 100,000 population over the next 3 years. Annual mortality

Combined Flu−Related Causes

Apr 2005 Jan 2007 Jan 2009

2,400

2,600

2,800

3,000

3,200

600

650

700

750

800

850

Circulatory

Apr 2005 Jan 2007 Jan 2009

200

300

400

500

600

700

Respiratory

Apr 2005 Jan 2007 Jan 2009

Apr 2005 Jan 2007 Jan 2009 Apr 2005 Jan 2007 Jan 2009 Apr 2005 Jan 2007 Jan 2009

Apr 2005 Jan 2007 Jan 2009 Apr 2005 Jan 2007

Date

Jan 2009 Apr 2005 Jan 2007 Jan 2009

Cancer

N
o.

 o
f D

ea
th

s

900

1,000

1,100

1,200

120

140

160

180

Diabetes

180

200

220

240

260

280

300

Renal Disease

60

80

100

120

140

Liver Disease

300

400

500

600

Control 1

300

400

500

600

700

Control 2

Figure 3. Observed and expected deaths attributed to causes commonly associated with influenza and 2 control causes in Thailand, 2005–2009.
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calendar year, and vertical dotted lines mark the Thai New Year (April 13–15). Apr, April; Jan, January.
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associated with H3N2 was even more variable: In 2005–2006,
despite evidence of a large H3N2 epidemic, there was no asso-
ciation with increased mortality, while annual associated mor-
tality subsequently ranged between 0 and 4 deaths per 100,000.

Alternative models gave broadly similar results, although
constant-variance models consistently found no evidence
that influenza B made any contribution to mortality (Web Ta-
bles 3–9). Models that accounted for annual variation in the
association between influenza activity and mortality all esti-
mated a larger number of deaths attributed to influenza A than
models that did not. In all cases, adjusting for this annual var-
iation led to improved model fit. There was evidence that the
relationship between influenza activity and mortality varied
over the 4 years for A(H3N2) but not for A(H1N1) (Web Fig-
ure 4). In particular, each unit of activity with A(H3N2) in
2006–2007 was associated with a far greater mortality risk
than in the other 3 years (Web Table 10). There was no strong
correlation between total annual deaths attributed to the 3 dif-
ferent influenza types and at most weak correlation between
their year-specific regression coefficients (Web Figure 5).

Almost all influenza-related deaths were estimated to occur
in those aged ≥60 years, with an estimated 68 influenza-
related deaths annually per 100,000 people in this age group—
about 2%of the age group’s total mortality rate (Table 1). There
was also evidence of an association between influenza A and
increased mortality in those aged 18–59 years, with about 3
deaths per 100,000 population per year or 0.3% of the total
mortality rate. In those aged <18 years, we estimated less than
1 death per 100,000 per year due to influenza, 0.1% of the
total mortality rate. In these age group–specific analyses,

influenza B was estimated to account for 40% of the influ-
enza-related mortality in those ≥60 years. There was no evi-
dence of mortality associated with influenza B in other age
groups.

Analysis of cause-specific mortality found evidence that
influenza was associated with deaths attributed to respiratory
disease (probability of positive association, 99.8%, based on
adjusted model), cancer (98.6%), diabetes (99.3%), renal dis-
ease (98.0%), and liver disease (99.2%). The highest mortal-
ity attributed to influenza (1.6 per 100,000 per year) was seen
in respiratory disease deaths; about 4% of deaths in this cate-
gory were attributed to influenza (Table 3). Again, these deaths
were mostly in those aged ≥60 years, and in each year apart
from 2005–2006, influenza A was estimated to play a domi-
nant role (Table 4). For the 2 control causes of death, we found
little evidence of any association with influenza (Table 3;
Figure 3). Posterior probabilities for a positive association be-
tween influenza and excess mortality were 87.2% for control
1 and 56.5% for control 2 (all prior probabilities were 50%).

Despite the strong seasonal pattern seen in deaths attributed
to circulatory causes (Figure 3), the model estimated that
influenza made little or no contribution to mortality in this
category (probability of positive association, 46.9%). Un-
planned analysis of deaths attributed to ischemic heart disease
and cerebrovascular disease (subgroups of circulatory disease)
(Web Figure 6) showed a similar lack of association between
influenza and mortality (Web Table 11). There was, however,
some evidence that influenza Awas associated with increased
mortality for these categories, while influenza B offered pro-
tection, with the net influenza association close to zero.

Table 1. EstimatedNumberof Influenza-RelatedDeaths per 100,000Population, byAgeGroup, Thailand, 2005–2009a

Age Group,
years

Influenza
A(H1N1)

Influenza
A(H3N2)

Influenza B
Total

Influenza A
Total Influenza

A and B

Mean 95% CrI Mean 95% CrI Mean 95% CrI Mean 95% CrI Mean 95% CrI

All ages 2.6 0.8, 5.1 1.6 −1.7, 5.4 1.9 −3.5, 6.9 4.2 −0.2, 9.2 6.1 0.5, 12.4

≤17 0.0 −0.8, 0.8 0.6 −0.4, 1.6 −0.4 −2.0, 1.3 0.6 −0.8, 2.1 0.1 −0.4, 0.6

18–59 1.4 0.3, 2.7 1.4 −0.4, 3.1 −1.7 −4.0, 0.6 3.0 0.5, 5.6 1.1 −1.7, 4.0

≥60 28.1 11.1, 45.9 13.0 −7.5, 34.5 26.9 −7.7, 62.2 41.0 13.7, 69.2 68.0 27.2, 108.1

Abbreviation: CrI, credible interval.
a Estimates were obtained by using the model adjusting for meteorological data and allowing for annual variation in

the association between type-specific influenza activity measures and mortality using a random-effects model.

Table 2. Estimated Number of Influenza-Related Deaths per 100,000 Population, by Year, Thailand, 2005–2009a

Year

Influenza
A(H1N1)

Influenza
A(H3N2)

Influenza B
Total

Influenza A
Total Influenza

A and B

Mean 95% CrI Mean 95% CrI Mean 95% CrI Mean 95% CrI Mean 95% CrI

2005–2006 0.4 −0.1, 0.9 −0.5 −6.1, 5.1 3.3 −2.1, 10.6 −0.1 −5.7, 5.6 3.1 −4.6, 11.9

2006–2007 4.1 0.9, 7.5 3.6 −0.9, 13.2 1.2 −2.9, 6.7 7.7 1.6, 17.8 9.0 2.2, 20.1

2007–2008 2.2 −0.2, 5.8 −0.4 −6.9, 5.6 1.5 −7.2, 8.6 1.8 −5.3, 8.7 3.2 −6.5, 12.3

2008–2009 4.1 0.7, 8.4 3.7 −1.6, 9.4 1.4 −9.0, 8.8 7.8 1.1, 15.5 9.2 −2.3, 19.3

Abbreviation: CrI, credible interval.
a Estimates were obtained by using the model adjusting for meteorological data and allowing for annual variation in

the association between type-specific influenza activity measures and mortality using a random-effects model.
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DISCUSSION

On average, 6 people in every 100,000 were estimated to
die each year in Thailand as a result of seasonal influenza,

representing 4,000 deaths per year. There was no evidence
of a net influenza contribution to circulatory disease deaths.
Strengths of our study include high-quality surveillance

data, analytical methods that build on important recent

Table 3. Cause-Specific Mortalitya Attributable to Influenza for Major ICD-10 Groupings, Thailand, 2005–2009b

Recorded Cause
of Death

Mean Annual
Mortality per

100,000 Population

Mortality per
100,000 Due to

Influenza

Cause-Related
Deaths Attributed
to Influenza, %

fAc fBc

Mean 95% CrI Mean 95% CrI Mean 95% CrI Mean 95% CrI

Circulatory 51.5 0.0 −0.8, 0.8 −0.1 −1.6, 1.5 0.43 0.07, 0.85 0.51 0.16, 0.87

Respiratory 36.8 1.6 0.5, 2.5 4.1 1.4, 7.0 0.49 0.20, 0.80 0.34 0.01, 0.92

Cancer 77.7 0.8 0.0, 1.7 1.2 0.0, 2.2 0.54 0.04, 0.98 0.37 0.01, 0.93

Diabetes 11.0 0.4 0.1, 0.7 3.8 1.1, 6.6 0.44 0.03, 0.94 0.49 0.03, 0.96

Renal disease 17.6 0.4 0.0, 0.8 2.3 0.1, 4.5 0.51 0.05, 0.96 0.46 0.03, 0.96

Liver disease 7.4 0.3 0.1, 0.6 4.4 0.9, 7.7 0.51 0.03, 0.97 0.86 0.46, 1.00

Above causes combined 202.5 3.7 1.4, 6.0 1.8 0.7, 3.0 0.48 0.08, 0.89 0.48 0.02, 0.97

Control 1: septicemia 34.6 0.2 −0.4, 0.8 0.7 −1.2, 2.6 0.58 0.14, 0.96 0.48 0.03, 0.97

Control 2: unintentional injuries 29.3 0.0 −0.8, 0.8 0.2 −2.7, 3.0 0.58 0.06, 0.98 0.52 0.03, 0.97

Abbreviations: CrI, credible interval; ICD-10, International Classification of Diseases, Tenth Revision.
a
“Mortality” was defined as number of deaths.

b Estimates were obtained by using the model adjusting for meteorological data and allowing for annual variation in the association between

type-specific influenza activity measures and mortality using a random-effects model.
c Refer to equation 1.

Table 4. Estimated Number of Influenza-Related Deaths Classified as Due to Respiratory Causes per 100,000

Population, by Year and Age Group, Thailand, 2005–2009a

Age Group and Year
Influenza A(H1N1) Influenza A(H3N2) Influenza B Total Influenza A and B

Mean 95% CrI Mean 95% CrI Mean 95% CrI Mean 95% CrI

Age ≥60 years

All years 4.1 1.3, 7.0 5.7 2.4, 9.0 1.8 −2.2, 6.2 11.6 6.1, 17.0

2005–2006 0.2 −1.8, 1.6 −1.8 −6.6, 3.4 2.8 −2.2, 8.3 1.1 −5.5, 8.4

2006–2007 2.3 −1.9, 6.5 8.9 4.6, 13.4 0.1 −6.8, 3.8 11.3 3.8, 18.1

2007–2008 7.0 0.9, 15.4 5.7 −1.1, 12.9 1.6 −5.6, 8.4 14.3 5.8, 23.0

2008–2009 6.2 2.0, 10.0 9.5 3.6, 15.1 2.8 −3.1, 9.3 18.4 9.7, 27.0

Age 18–59 years

All years 0.3 0.0, 0.6 0.2 −0.2, 0.6 0.2 −0.3, 0.6 0.6 0.0, 1.2

2005–2006 0.1 0.0, 0.3 −0.5 −1.1, 0.1 0.1 −0.6, 0.6 −0.4 −1.2, 0.4

2006–2007 0.2 −0.3, 0.6 0.3 0.0, 0.7 −0.1 −1.0, 0.3 0.4 −0.5, 1.2

2007–2008 0.4 −0.1, 1.1 0.3 −0.4, 1.1 0.3 −0.5, 1.0 1.0 0.1, 1.9

2008–2009 0.6 0.0, 1.3 0.6 0.0, 1.3 0.4 −0.3, 1.4 1.5 0.5, 2.6

Age ≤17 years

All years −0.1 −0.3, 0.2 −0.1 −0.4, 0.3 −0.2 −0.7, 0.2 −0.3 −0.9, 0.2

2005–2006 0.0 −0.1, 0.1 0.0 −0.5, 0.5 −0.5 −1.1, 0.0 −0.5 −1.2, 0.16

2006–2007 −0.2 −0.6, 0.2 0.0 −0.3, 0.2 −0.2 −0.8, 0.3 −0.4 −1.1, 0.3

2007–2008 0.0 −0.5, 0.4 −0.1 −0.7, 0.4 −0.7 −1.3, 0 −0.9 −1.6, −0.2

2008–2009 0.0 −0.4, 0.5 0.0 −0.5, 0.5 0.4 −0.5, 1.4 0.4 −0.5, 1.4

Abbreviation: CrI, credible interval.
a Estimates were obtained using the model adjusting for meteorological data allowing for annual variation in the

association between type-specific influenza activity measures and mortality using a random-effects model.
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methodological developments, and thorough sensitivity anal-
yses (2, 12, 13). The credibility of our findings is strengthened
by the lack of association between influenza and mortality in
the 2 control groups. Although results were generally stable
under different model assumptions, estimates of mortality
associated with influenza Bwere close to zero in constant var-
iance models. This might reflect difficulty in identifying con-
tributions to mortality for a pathogen that circulates year
round, as is the case for influenza B in Thailand (Figure 1).

Limitations include those of any observational study. Asso-
ciations between influenza activity and mortality do not neces-
sarily imply a simple chain of causation from infection to death.
Additional limitations include the lack of spatial data and infor-
mation on pathogens other than influenza. Also, because of
changes in health care–seeking behavior for influenza-like ill-
ness following the 2009 pandemic, it was not possible to esti-
mate mortality associated with the pandemic using the same
approach. Accounting for these factors represents an important
area for future research. In particular, it will be instructive to see
if latitudinal variations in influenza-associated mortality re-
ported elsewhere are also evident in Thailand (21).

Thailand is a developing middle-income tropical country
with a predominantly rural population and a nominal per cap-
ita gross domestic product close to theworld median (22, 23).
There is no routine vaccination against S. pneumoniae and, in
2008, influenza vaccine sales amounted to only 1.6 per 100
people (24). No national estimates of total mortality caused
by seasonal influenza A and B infections are available from
any other developing country in the tropics. Our findings may
therefore provide an important basis for generalization about
the probable burden of seasonal influenza mortality outside
high-income countries. Generalizations should, however, be
made with caution. In South Africa (which has subtropical
and temperate climate zones), influenza has been estimated
via a Serfling-type model to cause 340 annual deaths per
100,000 population in those aged over 65 years, 5 times the
corresponding rate in the elderly population in Thailand (10).
Reasons for this large difference are not clear and need fur-
ther investigation, but interactions with other pathogens may
be one contributory factor (25).

The only previous comparable estimates in a tropical climate
zone are from Singapore, a small, completely urbanized, and
very high-income country. Using 2004–2006 data, influenza
was estimated to account for a mean of 8.3 annual deaths per
100,000 population (5). Also in the tropics, a study in Bangla-
desh in 2009 (combining seasonal and pandemic influenza) es-
timated influenza-related mortality to be 11 per 100,000 (26).
However, only deaths with influenza-like illness were consid-
ered, and influenza-like illness was ascertained retrospectively
by interviewing household members the following year.

Seasonal influenza mortality has also been estimated in a
number of cities in China with a subtropical climate. In Hong
Kong and Guangzhou (both relatively developed populations
with gross domestic product per capita 7 and 3 times higher than
that of Thailand), estimates were 11.1 and 10.6 per 100,000
population, respectively (4); another study estimated influenza-
associated mortality in 5 subtropical Chinese cities to be 11.3
per 100,000 (27). In the United States, annual influenza-related
mortality was recently estimated to be 11.9 per 100,000 (2).
These results suggest that Thailand experiences a similar or

slightly lower influenza-related mortality than these much
higher income populations. However, influenza-related mor-
tality is highly age dependent and will be strongly affected by
a population’s age distribution. For example, the proportion
of the population aged >60 years in Hong Kong is 19% (http://
www.census2011.gov.hk/en/) but averagedonly11%inThai-
land during 2005–2009. Adjusting for differences in age struc-
ture and calculating expected mortality for a world-standard
age structure give a more informative comparison (28). This
gives point estimates for standardized mortality that are very
similar in Thailand and Hong Kong (8.8 vs. 8.5 per 100,000
population) (4).

Our findings diverged from those of previous studies in the
relative importance of different influenza types. In the United
States, influenzaA(H1N1) has been estimated tomake a small
or negative contribution to mortality, while influenza B ac-
counted for about one-fifth of influenza-related deaths (2).
In Hong Kong, influenza B and A(H1N1) are estimated to ac-
count for about one-third and one-quarter as many deaths as
A(H3N2) (4), while another study estimated that types A and
B made similar contributions to mortality in northern (tem-
perate) Chinese cities, while in southern (subtropical) cities,
type B dominated (27). In contrast, we estimated that A(H1N1)
made the largest contribution to mortality, and that type B
was associatedwith roughly half themortality associatedwith
typeA. Some of these differencesmay reflect chance variation
associated with different virus types over the study periods.
For example, A(H3N2) mortality appears to have declined
following the emergence of the Fujian strain in 2003 (predat-
ing our data) (2).

A striking finding was the lack of association of seasonal
influenza with circulatory disease mortality. This contrasts
with high-income temperate and subtropical settings where
influenza is estimated to make a major contribution to circu-
latory disease hospitalization and death (2, 29, 30). There are
several possible explanations. First, “noisy” influenza data or
inaccurate ICD-10 coding may prevent a true association
from being found. However, although there is clearly poten-
tial for improvement in ICD-10 data from Thailand (as else-
where) (31), the similar seasonal patterns for ischemic heart
disease and cerebrovascular disease (Web Figure 6) and the
associations between influenza and other ICD-10 codes pre-
viously linked with influenza mortality suggest that this
explanation is unlikely. Second, because of differences in hu-
midity, aerosol transmission of influenza may be much lower
in the tropics than in temperature regions (32). There is evi-
dence that droplet or contact-based spread of influenza is less
likely to lead to typical influenza symptoms than is aerosol
transmission, and this could conceivably lead to differences
in cause-specific mortality (33). Third, associations reported
elsewhere between influenza activity and circulatory disease
deaths could be mediated by another factor, such as second-
ary bacterial infections, and such interactions could differ in
tropical and temperate zones (34). Fourth, the greater impor-
tance of acute rather than chronic circulatory disease in Thai-
land might be responsible for the different associations with
influenza. Finally, it is possible that the high incidence and
year-round circulation of influenza B result in more frequent
but milder infections that protect against other more severe
infections through nonspecific immunity. Interestingly, in
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Brazil, the 2009 pandemic was associated with a very large
increase in respiratory mortality but no association with cir-
culatory mortality (35).
In summary, we have shown a substantial but previously hid-

den mortality burden due to influenza in a tropical middle-
income country, less than 2% of which is likely to be accounted
for by hospitalized cases of influenza pneumonia (36).
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