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Abstract. This paper is concerned with the lower semicontinuity of attractors for semilinear
non-autonomous differential equations in Banach spaces. We require the unperturbed
attractor to be given as the union of unstable manifolds of time-dependent hyperbolic
solutions, generalizing previous results valid only for gradient-like systems in which
the hyperbolic solutions are equilibria. The tools employed are a study of the continuity
of the local unstable manifolds of the hyperbolic solutions and results on the continuity of
the exponential dichotomy of the linearization around each of these solutions.

1. Introduction
Results on the upper semicontinuity of attractors with respect to perturbations (‘no
explosion’) are relatively easy to prove, and are now essentially classical. Results on lower
semicontinuity (‘no collapse’) are much more difficult: generally they involve assumptions
on the structure of the unperturbed attractor, and one then tries to reproduce a similar
structure inside the perturbed attractor. Currently, these lower semicontinuity results are
restricted to the class of autonomous dynamical systems that are gradient or ‘gradient-like’,
i.e. systems for which the global attractor is given by the union of the unstable manifolds
of a finite set of hyperbolic equilibria.

The study of lower semicontinuity of attractors under perturbation, given this gradient
assumption, was set in motion by Hale and Raugel [19], who proved an abstract result and
considered applications to partial differential equations. Their proof of this result relies on
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the continuity of the equilibria and lower semicontinuity of the local unstable manifolds
under perturbation (see also Stuart and Humphries [29], and Kostin [22] and Elliot and
Kostin [16], who use a similar argument based on the continuity of unstable manifolds
but show that this remains applicable in certain systems with non-hyperbolic equilibria
when the unperturbed problem possesses a Lyapunov functional). Several applications
have been considered in [1, 2, 5, 8, 9] (including more complicated situations where even
the continuity of the equilibria is not straightforward), which maintain the hypothesis of a
gradient structure for the limit problem. In all of these papers (with the exception of [16]
and [22]), a key step was to show the uniformity (with respect to the underlying parameter)
of the exponential dichotomy of the linearization around each hyperbolic equilibrium.

One would expect, therefore, that any attempt to consider attractors with more general
structure—and particularly attractors in non-autonomous problems, where equilibria do
not, in general, exist—would have to take into account linearizations around solutions
that are time-dependent, leading to the problem of understanding exponential dichotomies
for non-autonomous linear equations and their robustness under perturbation. We treat
this problem here, and our results in this direction enable us to consider an unperturbed
attractor that is given as the union of the unstable manifolds of a (possibly infinite) number
of hyperbolic time-dependent solutions under regular perturbation.

Given this assumption on the structure of the unperturbed attractor associated to a family
of non-autonomous problems, we use results adapted from Carvalho and Langa [10] on the
continuity of stable and unstable manifolds to show that the attractor behaves continuously
under regular perturbation.

Before we can state our results precisely, we need to introduce some terminology which
will be used throughout the paper. Let B : D(B)⊂ Z → Z be the generator of a strongly
continuous semigroup {eB t

| t ≥ 0} ⊂ L(Z), and consider the semilinear problem on a
Banach space Z ,

ẏ =By + f0(t, y),
y(τ )= y0

(1)

and a regular perturbation of it,

ẏ =By + fη(t, y),
y(τ )= y0.

(2)

If we assume that for η ∈ [0, 1], fη : R× Z → Z is continuous and Lipschitz
continuous in the second variable, uniformly on bounded subsets of Z , then the
problems (1) and (2) are locally well-posed. Assuming that, for each τ ∈ R and y0 ∈ Z ,
the solution t 7→ T (t, τ )y0 of (2) is defined in [τ,∞), we write

Tη(t, τ )y0 = eB t y0 +

∫ t

τ

eB (t−s) fη(s, Tη(s, τ )y0) ds. (3)

The family {Tη(t, τ ) | t ≥ τ } defined in this way is a nonlinear process.
If ξ∗η (·) : R→ Z is a solution to (2), where η ∈ [0, 1], we consider the linearization of

(2) around ξ∗η (·),

ż =Bz + ( fη)z(t, ξ∗η (t))z,
z(τ )= z0 ∈ Z (4)
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and the evolution process {Uη(t, τ ) | t ≥ τ ∈ R} given by

Uη(t, τ )y0 = eB (t−τ)y0 +

∫ t

τ

eB (t−s)( fη)z(s, ξ
∗
η (s))Uη(s, τ )y0 ds. (5)

Definition 1.1. We say that (4) has an exponential dichotomy with exponent ω and constant
M if there exists a family of projections {Qη(t) | t ∈ R} ⊂ L(Z) such that:
(i) Qη(t)Uη(t, s)=Uη(t, s)Qη(s) for all t ≥ s;
(ii) Uη(t, s) : R(Qη(s))→ R(Qη(t)) is an isomorphism, with inverse denoted by

Uη(s, t) : R(Qη(t))→ R(Qη(s)) for t ≥ s;
(iii) for some ω > 0,

‖Uη(t, s)(I − Qη(s))‖ ≤ Me−ω(t−s) for t ≥ s,
‖Uη(t, s)Qη(s)‖ ≤ Meω(t−s) for t ≤ s.

(6)

Definition 1.2. A global solution ξ∗η (·) : R→ Z of (2), η ∈ [0, 1], is said to be hyperbolic
if the process {Uη(t, τ ) | t ≥ τ ∈ R} associated to (4) has an exponential dichotomy in the
sense of Definition 1.1.

A hyperbolic global solution is the natural generalization to the non-autonomous
framework of a hyperbolic equilibrium. Indeed, in Carvalho and Langa [10] it is shown that
if we perturb an autonomous equation by the addition of a non-autonomous nonlinear term,
then each hyperbolic equilibrium becomes a hyperbolic global solution which behaves
continuously with respect to the perturbation. On the other hand, globally asymptotically
stable solutions are also examples of this kind of hyperbolicity (see, for instance, the papers
by Rodríguez-Bernal and Vidal [28] and Langa et al [24]).

One of the most useful tools for describing the asymptotic dynamics of non-autonomous
differential equations is the pullback attractor. This concept was introduced by Chepyzhov
and Vishik (see [14], for example), who termed the sets Aη(t) ‘kernel sections’; the term
‘pullback attractor’ appeared in a paper by Kloeden and Schmalfuss [21] as well; see also
Crauel et al [12].

Definition 1.3. A family {Aη(t) | t ∈ R} of subsets of Z attracts a bounded set B ⊂ Z
under {Tη(t, τ ) | t ≥ τ ∈ R} in the pullback sense if

lim
τ→−∞

dist(Tη(t, τ )B, Aη(t))= 0 for all t ∈ R.

A family of compact sets {Aη(t)⊂ Z | t ∈ R} is a pullback attractor for {Tη(t, τ ) | t ≥
τ ∈ R} if it is invariant, i.e. Tη(t, τ )A(τ )= A(t) for all t ≥ τ , and attracts all bounded
subsets of Z under {Tη(t, τ ) | t ≥ τ ∈ R} in the pullback sense.

In this paper we assume that {Tη(t, τ ) | t ≥ τ } has a pullback attractor {Aη(t) | t ≥ 0}
for each η ≥ 0, and that (1) has a collection of hyperbolic global solutions ξ∗i (·), i ∈ N,
such that A0(t) is the closure of the union of their unstable manifolds W u(ξ∗i ),

A0(t)=
∞⋃
j=1

W u(ξ∗j (·))(t). (7)

Since a hyperbolic global solution is the non-autonomous generalization of a hyperbolic
equilibrium, the assumption that the pullback attractor has this structure is very natural;
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however, none of the previous results in the literature suffice to prove lower semicontinuity
for this kind of attractor (although the papers by Carvalho and Langa [10], Carvalho
et al [11] and Langa et al [23] contain results for non-autonomous perturbations of
autonomous gradient systems). Furthermore, it is known (see [11]) that it is precisely
attractors of this form that arise for small non-autonomous perturbations of gradient
systems.

For the regular perturbation of the nonlinearity, we assume that

lim
η→0

sup
t∈R

sup
z∈B(0,r)

{‖ fη(t, z)− f0(t, z)‖Z + ‖( fη)z(t, z)− ( f0)z(t, z)‖L(Z)} = 0 (8)

for all r > 0, where ( fη)z(t, z) ∈ L(Z) denotes the derivative of fη with respect to the
variable z at the point (t, z).

Under assumption (8), it is easy to see that for each T > 0 and compact subset K of Z ,

sup
t∈[0,T ]

sup
τ∈R

sup
z∈K
‖Tη(t, τ )z − T0(t, τ )z‖Z

η→0
−→ 0. (9)

For a bounded global hyperbolic solution ξ∗i,0(·) of (1) (i.e. a solution for which
{U0(t, τ ) | t ≥ τ ∈ R} has an exponential dichotomy), we prove that given ε > 0, there
exists η0 such that for all η ≤ η0 there is a unique global solution ξ∗i,η(·) of (2) with

sup
t∈R
‖ξ∗i,η(t)− ξ

∗

i,0(t)‖Z ≤ ε.

It follows from (8) that for each T > 0,

sup
τ∈R

sup
t∈[0,T ]

‖Uη(t + τ, τ )−U0(t + τ, τ )‖L(Z)

η→0
−→ 0. (10)

It also follows from Henry’s monograph [20, Theorem 7.6.10] that for η0 sufficiently
small, {Uη(t, τ ) | t ≥ τ ∈ R} has an exponential dichotomy and, consequently, that ξ∗i,η(·)
is hyperbolic for all η.

Definition 1.4. The unstable manifold of a hyperbolic solution ξ∗η to (2) is the set

W u
η (ξ
∗
η ) =

{
(τ, ζ ) ∈ R× Z | there is a backward solution z(t, τ, ζ ) of (2)

satisfying z(τ, τ, ζ )= ζ and such that lim
t→−∞

‖z(t, τ, ζ )− ξ∗η (t)‖ = 0
}
.

The section of the unstable manifold at time τ is denoted by

W u
η (ξ
∗
η )(τ )= {z | (τ, z) ∈W u

η (ξ
∗
η )}.

Under assumption (8), we shall prove in §2 that for each ξ∗0 there is a δ > 0 and an
ηδ > 0 such that if

Vδ(ξ
∗

0 )= {(τ, z) ∈ R× Z : ‖ξ∗0 (τ )− z‖Z < δ, τ ∈ R}

and
W u,δ
η (ξ∗η ) :=W u

η (ξ
∗
η ) ∩ Vδ(ξ

∗
η ),
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then
distH(W u,δ

η (ξ∗η ), W u,δ
0 (ξ∗0 ))→ 0 as η→ 0,

where distH is the symmetric Hausdorff distance defined by

distH(B, C)=max(dist(B, C), dist(C, B)).

As a consequence, we are able to prove in §3 that if (1) has an attractor A0(t) that
is the closure of the union of the unstable manifolds of a (possibly infinite) number of
global hyperbolic solutions, and if the equations (2) have global attractors Aη(t) such that⋃

t∈R
⋃

0≤η≤η0
Aη(t) is compact, then the family {Aη(t) | 0≤ η ≤ η0} is upper and lower

semicontinuous at η = 0 uniformly in t ∈ R.
We emphasize that we do not require the attractor to be the union of a finite number

of these unstable manifolds; but finding conditions under which the number of hyperbolic
global solutions would be finite is an interesting open problem (see §4). Whether such
a structure (or an appropriate generalization) can be expected to be in any way typical is
unclear: the recent paper by Berger and Siegmund [4] indicates the potential complexity
of attractors in non-autonomous systems.

Finally, we note that while there is a strong connection between lower semicontinuity
results and knowledge of the structure of the unperturbed attractor, here we are not able to
characterize the whole attractor of the perturbed problem.

2. Existence and continuity of hyperbolic solutions and associated unstable manifolds
In this section we show that global hyperbolic solutions and their unstable manifolds
behave continuously with respect to regular perturbations by following, step by step, a
procedure similar to that used by Carvalho and Langa in [10], which treated regular non-
autonomous perturbations of manifolds associated with hyperbolic equilibria.

We start by proving that near a global hyperbolic solution ξ∗0 (·) : R→ Z of (1) there is
a unique global hyperbolic solution of (2).

If y(t) is a solution to (1) and z(t)= y(t)− ξ∗0 (t), then z satisfies

ż =A0(t)z + h0(t, z),
z(τ )= z0,

(11)

where A0(t)=B+ f ′0(t, ξ
∗

0 (t)) and

h0(t, z)= f0(t, ξ
∗

0 (t)+ z)− f0(t, ξ
∗

0 (t))− f ′0(t, ξ
∗

0 (t))z,

with f ′0(t, x) denoting the derivative with respect to the second variable. Then A0(t)
generates a linear evolution process {U0(t, τ ) | t ≥ τ ∈ R}. Moreover, 0 is an equilibrium
solution for (11) and h0(t, 0)= 0, (h0)z(t, 0)= 0 ∈ L(Z).

THEOREM 2.1. Let ξ∗0 (·) be a bounded hyperbolic solution for (1) and assume that (8)
holds. Then there exists an η0 > 0 such that for each 0< η < η0, there is a unique bounded
solution ξ∗η (·) : R→ Z of (2) that satisfies

lim
η→0

sup
t∈R
‖ξ∗η (t)− ξ

∗

0 (t)‖Z = 0.

Furthermore, ξ∗η (·) : R→ Z is hyperbolic for all η sufficiently small.
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Proof. The proof of this result is completely analogous to the proof of [10, Theorem 2.1],
and we include its main steps here for completeness only. Denote by y(t)≡ y(t, τ ; y0) the
solution of the initial value problem (2). Then, if we define φ(t)= y(t)− ξ∗0 (t), we have

φ(t)=U0(t, τ )φ(τ)+
∫ t

τ

U0(t, s)gη(s, (φ(s))) ds, (12)

where gη(t, φ)= fη(t, φ + ξ∗0 (t))− f0(t, ξ∗0 (t))− f ′0(t, ξ
∗

0 (t))φ. Hence, if we project by
Q0(t) and I − Q0(t) and take limits as τ →+∞ and τ →−∞, respectively, we get

Q0(t)φ(t)=
∫ t

∞

U0(t, s)Q0(s)gη(s, (φ(s))) ds

and

(I − Q0(t))φ(t)=
∫ t

−∞

U0(t, s)(I − Q0(s))gη(s, (φ(s))) ds.

Consequently, a unique global bounded solution for (12) exists in a small neighborhood of
φ = 0 if and only if

T (φ)(t) =
∫ t

∞

U0(t, s)Q0(s)gη(s, (φ(s))) ds

+

∫ t

−∞

U0(t, s)(I − Q0(s))gη(s, (φ(s))) ds

has a unique fixed point in the set{
φ : R→ Z

∣∣∣∣ sup
t∈R
‖φ(t)‖Z ≤ ε

}
for some ε sufficiently small. The existence of such a fixed point follows from the
hyperbolicity of ξ∗0 : R→ Z via a standard contraction mapping argument.

It follows, in addition, that ξ∗η (·) is uniformly close to ξ∗0 and tends to ξ∗0 as η→ 0.
Now, proceeding as before, we change variables by defining z(t)= y(t)− ξ∗η (t) and

rewrite (2) as
ż = (A0(t)+ Bη(t))z + hη(t, z),

z(τ )= z0,
(13)

where
R 3 t 7→ Bη(t)= f ′η(t, ξ

∗
η (t))− f ′0(t, ξ

∗

0 (t)) ∈ L(Z)

and
hη(t, z)= fη(t, ξ

∗
η (t)+ z)− fη(t, ξ

∗
η (t))− f ′η(t, ξ

∗
η (t))z.

Hence, 0 is an equilibrium for (13), hη(t, 0)= 0 and (hη)z(t, 0)= 0 ∈ L(Z).
The exponential dichotomy for (4) follows from [20, Theorem 7.6.11]. 2

Now we are ready to study the unstable manifold of a hyperbolic solution ξ∗η (·).
We will show that the unstable manifold of ξ∗η is given by a map

R× Z 3 (t, z) 7→Σu
η (t, Qη(t)z) ∈ (I − Qη(t))Z.

http://www.journals.cambridge.org


http://journals.cambridge.org Downloaded: 06 May 2010 IP address: 137.205.202.97

Lower semicontinuity of attractors 1771

The points in the unstable manifold will have the form

(t, Qη(t)z +Σ
u
η (t, Qη(t)z)) ∈ R× Z with (t, z) ∈ R× Z and z small.

Note that the way in which we obtained (13) allows us to concentrate on the existence
of invariant manifolds of global hyperbolic solutions around the zero stationary solution.
Thus, if z is a solution of (13), we write z+(t)= Qη(t)z and z−(t)= z − z+(t); then we
have

ż+ =A+η (t)z+ + H(t, z+, z−),
ż− =A−η (t)z− + G(t, z+, z−),

(14)

where

A+η (t)= (A0(t)+ Bη(t))Qη(t),

A−η (t)= (A0(t)+ Bη(t))(I − Qη(t)),

H(t, z+, z−)= Qη(t)hη(t, z+ + z−)

and
G(t, z+, z−)= (I − Qη(t))hη(t, z+ + z−).

Since at (t, 0, 0) the functions H and G are zero with zero derivatives (with respect to
z+ and z−), from the continuous differentiability of H and G, uniform with respect to t ,
we obtain that given ρ > 0 there exists δ > 0 such that if ‖z‖Z = ‖(z+ + z−)‖Z < δ, then

‖H(t, z+, z−)‖Z ≤ ρ,
‖G(t, z+, z−)‖Z ≤ ρ,

‖H(t, z+, z−)− H(t, z̃+, z̃−)‖Z ≤ ρ(‖z+ − z̃+‖Z + ‖z− − z̃−‖Z ),
‖G(t, z+, z−)− G(t, z̃+, z̃−)‖Z ≤ ρ(‖z+ − z̃+‖Z + ‖z− − z̃−‖Z ).

(15)

Firstly, we can obtain the existence of the unstable manifold under the assumption
that (15) holds for all z = (z+, z−) ∈ Z with some suitably small ρ > 0. Also, supposing
that (15) holds for all z = (z+, z−) ∈ Z , we get continuity of the unstable and stable
manifolds. Finally, we conclude the existence and continuity of local unstable and stable
manifolds for the case where hη satisfies (15) only for ‖z‖Z = ‖z+ + z−‖Z < δ with δ > 0
suitably small.

In order to show existence of the functionΣ∗,uη (τ, ·), we will use the Banach contraction
principle. For this, let us fix D > 0, L > 0, 0< ϑ < 1 and choose ρ > 0 such that

ρM

ω
≤ D,

ρM

ω
(1+ L)≤ ϑ < 1,

ρM2(1+ L)

ω − ρM(1+ L)
≤ L , ρM +

ρ2 M2(1+ L)(1+ M)

2ω − ρM(1+ L)
< ω.

(16)

Definition 2.1. Denote by LB(D, L) the complete metric space of all bounded
and globally Lipschitz continuous functions R× Z → Z , (τ, z) 7→Σ(τ, Qη(τ )z)
∈ (I − Qη(τ ))Z , that satisfy

sup
(τ,z)∈R×Z

‖Σ(τ, Qη(τ )z)‖Z ≤ D,

‖Σ(τ, Qη(τ )z)−Σ(τ, Qη(τ )z̃)‖Z ≤ L‖Qη(τ )z − Qη(τ )z̃‖Z

for all (τ, z, z̃) ∈ R× Z × Z, (17)
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where the distance between Σ, Σ̃ ∈ LB(D, L) is defined as

|||Σ(·, ·)− Σ̃(·, ·)||| := sup
(τ,z)∈R×Z

‖Σ(τ, Qη(τ )z)− Σ̃(τ, Qη(τ )z)‖Z .

First of all, we need to prove a result on the continuity of the projections Qη(t)
and Q0(t).

PROPOSITION 2.1. Let Qη(·), Q0(·) be the projections associated to the linear
dichotomies introduced in §2. Then, for any τ ∈ R,

lim
η→0

sup
s≤τ
‖Qη(s)− Q0(s)‖L(Z)→ 0 (18)

and
lim
η→0

sup
s≥τ
‖Qη(s)− Q0(s)‖L(Z)→ 0. (19)

Proof. The proof of this result is completely analogous to the proof of [10, Lemma 5.1],
with the obvious changes needed to cope with the fact that ξ0 need not be a stationary
solution. We include an abridged version of the proof here for completeness. For ζ ∈ Z ,
let R 3 t 7→ zη(t) ∈ Z be the unique solution of

ż = (A0(t)+ Bη(t))z,

z(τ )= Qη(τ )ζ.

Upon writing out the variation-of-constants formula, projecting with (I − Q0(t)), and
noting that this solution is bounded in (−∞, τ ], we obtain

(I − Q0(τ ))Qη(τ )ζ =

∫ τ

−∞

U0(τ, s)(I − Q0(s))Bη(s)z(s) ds for all ζ ∈ Z.

From this it follows that

lim
η→0

sup
s≤τ
‖(I − Q0(s))Qη(s)‖L(Z)→ 0. (20)

Consider ξ ∈ Z , and let R 3 t 7→ x(t) ∈ Z be the unique solution of

ẋ =A0(t)x = (A0(t)+ Bη(t))x − Bη(t)x,

x(τ )= Q0(τ )ξ.

Proceeding in a similar manner, we obtain

(I − Qη(τ ))Q0(τ )ξ =−

∫ τ

−∞

Uη(τ, s)(I − Qη(s))Bη(s)z(s) ds for all ξ ∈ Z.

Consequently,
lim
η→0

sup
s≤τ
‖(I − Qη(s))Q0(s)‖L(Z)→ 0. (21)

The proof of (18) now follows from the identity

Qη(s)− Q0(s)= (I − Q0(s))Qη(s)− Q0(s)(I − Qη(s)). (22)
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To prove (19) we proceed in a similar way. For ζ ∈ Z , let R 3 t 7→ zη(t) ∈ Z be the
unique solution of

ż = (A0(t)+ Bη(t))z,

z(τ )= (I − Qη(τ ))ζ.

By using the variation-of-constants formula, projecting with Q0(t), and noting that zη(t)
is bounded in [τ,∞), we obtain

Q0(τ )(I − Qη(τ ))ζ =

∫ τ

∞

U0(t, s)Q0(s)Bη(s)z(s) ds for all ζ ∈ Z

and hence
lim
η→0

sup
s≥τ
‖Q0(s)(I − Qη(s))‖L(Z)→ 0. (23)

Similarly, for ξ ∈ Z , let R 3 t 7→ x(t) ∈ Z be the unique solution of

ẋ =A0(t)x = (A0(t)+ Bη(t))x − Bη(t)x,

x(τ )= (I − Q0(τ ))ξ.

We then obtain

Qη(τ )(I − Q0(τ ))ξ =−

∫ τ

∞

Uη(τ, s)Qη(s)Bη(s)x(s) ds for all ξ ∈ Z

and
lim
η→0

sup
s≥τ
‖Qη(s)(I − Q0(s))‖L(Z)→ 0. (24)

Thus (19) follows from (22), (23) and (24). 2

With the above results and notation, the existence and continuity of unstable manifolds
is now a consequence of some results of Carvalho and Langa proved in [10].

THEOREM 2.2. (Theorems 3.1 and 3.5 in [10]) Suppose that all the conditions in (16) are
satisfied. Then there exists a function Σ∗,uη (τ, ·) ∈ LB(D, L) such that the unstable
manifold W u

η (0, 0) for (14) is given by

W u
η (0, 0)= {(τ, w) ∈ R× Z | w = (Qη(τ )w, Σ

∗,u
η (τ, Qη(τ )w))}. (25)

If, in addition, [
ρM

ω
+

ρ2 M2(1+ L)

ω(2ω − ρM(1+ L)

]
≤

1
2
,

then for any r > 0,

sup
t≤τ

sup
z∈Z
‖z‖Z≤r

{
‖Qη(t)(z)− Q0(t)(z)‖Z

+ ‖Σ∗,uη (t, Qη(t)(z))−Σ
∗,u
0 (t, Q0(t)(z))‖Z

}
η→0
−→ 0.

From the previous results, we can deduce the existence and continuity of local unstable
manifolds when h, hη satisfy (15) only for ‖z‖Z = ‖z+ + z−‖Z < δ with δ > 0 sufficiently
small.
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THEOREM 2.3. (Theorem 6.1 in [10]) For η ∈ [0, 1], suppose that hη : R× Z → Z is
differentiable and consider the initial value problem

ż =A0(t)z + hη(t, z), z(τ )= z0 ∈ Z. (26)

Assume that h0 : R× Z → Z satisfies h0(t, 0)= 0, (h0)z(t, 0)= 0 ∈ L(Z) and that
ż =A0(t)z has an exponential dichotomy with projections {Q0(t) | t ∈ R}. Suppose also
that

lim
η→0

sup
z∈B(0,r)

‖hη(t, z)− h0(t, z)‖Z + ‖(hη)z(t, z)− (h0)z(t, z)‖L(Z) = 0 (27)

for some r > 0. Then the following properties hold.
(1) For each η sufficiently small, there exists a globally defined solution of (26),

ξ∗η : R→ Z , with limη→0 supt∈R ‖ξ
∗
η (t)‖L(Z) = 0 and such that

ż = (A0(t)+ (hη)z(t, ξ
∗
η (t)))z (28)

has an exponential dichotomy; that is, there is a family of projections {Qη(t) | t ∈ R}
such that the conditions in Definition 1.1 are satisfied and Uη(t, τ ) is the solution
operator associated to (28).

(2) For any T > 0,

lim
η→0

sup
t∈[0,T ]

sup
τ∈R
‖Uη(t + τ, τ )−U0(t + τ, τ )‖L(Z)→ 0.

(3) The family of projections {Qη(t) | t ∈ R} satisfies

lim
η→0

sup
t∈R
‖Qη(t)− Q0(t)‖L(Z) = 0.

(4) There exist an η0 > 0, a neighborhood V of z = 0 in Z (independent of η) that
has ξ∗η (t) ∈ V for all t ∈ R and η ∈ [0, η0] and, for each 0≤ η ≤ η0, a function
(τ, z) 7→Σ∗,uη (τ, Q(τ )z) : R× V → Z such that the local unstable manifold
W u

loc,η(ξ
∗
η )=W u

η (ξ
∗
η ) ∩ V for (26) is given by

W u
loc,η(ξ

∗
η )= {(τ, w) ∈ V | w = Qη(τ )w +Σ

∗,u
η (τ, Q(τ )w)}.

(5) The unstable manifolds behave continuously at η = 0 in the sense that

sup
t≤τ

sup
z∈V
{‖Qη(t)z − Q0(t)z‖Z + ‖Σ

∗,u
η (t, Qη(t)z)−Σ

∗,u
0 (t, Q0(t)z)‖Z }

η→0
−→ 0.

Note that it would be possible to prove a similar result concerning the existence and
stability of local stable manifolds (as in [10]), but we do not need such a result here.

3. Lower semicontinuity of global attractors
Establishing the upper semicontinuity of attractors for autonomous dynamical systems
is a relatively simple matter which depends only on obtaining uniform bounds on the
attractors and proving continuity of the nonlinear semigroups (see the paper by Hale
et al [17] and the books by Hale [18], Robinson [27] or Temam [30] for the autonomous
case; for results derived in a non-autonomous framework, see Caraballo et al [6, 7]). On
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the other hand, results on the lower semicontinuity of attractors are much more difficult.
Such results, in general, rely on reproducing the structures present in the limiting attractor
inside the perturbed attractors. Because of this, a gradient-like structure for the attractors
of the limiting problem has always been taken as the starting point (for autonomous
problems by Hale and Raugel [19], Stuart and Humphries [29] and various other authors
[1, 2, 5, 8, 9]; for non-autonomous perturbations of autonomous systems by Langa et
al [23] and Carvalho et al [11]). The following result, however, requires only that the
limiting attractor be the closure of the union of a (possibly infinite) number of unstable
manifolds of hyperbolic global solutions.

THEOREM 3.1. Consider the family {Tη(t, τ ) | t ≥ τ ∈ R}, η ∈ [0, 1], of nonlinear
processes and assume that (9) is satisfied. Suppose that for each η ∈ [0, 1] the
nonlinear process {Tη(t, τ ) | t ≥ τ } has a global non-autonomous attractor {Aη(t)}t∈R,
that

⋃
t∈R

⋃
η∈[0,η0]

Aη(t) is compact, and that A0(t) is given by the closure of the union
of the unstable manifolds of a collection of global hyperbolic solutions {ξ∗j (·)}

∞

j=1, i.e.

A0(t)=
∞⋃
j=1

W u(ξ∗j (·))(t). (29)

Further, assume that for each j ∈ N:
• given ε > 0, there exists an η j,ε such that for all 0< η < η j,ε there is a global

hyperbolic solution ξ∗j,η(·) of (2) that satisfies

sup
t∈R
‖ξ∗j,η(t)− ξ

∗

j (t)‖Z < ε;

• the local unstable manifold of ξ∗j,η behaves continuously as η→ 0; that is, there
exists a δ j > 0 such that

distH(W
u,δ j
η (ξ∗j,η), W

u,δ j
0 (ξ∗j ))

η→0
−→ 0.

Then the family {Aη(t) | 0≤ η ≤ η0} is upper and lower semicontinuous at η = 0, i.e.

sup
t∈R

distH(Aη(t), A0(t))
η→0
−→ 0. (30)

Proof. First, note that upper semicontinuity is a direct consequence of the continuity of the
nonlinear processes {Tη(t, τ ) | t ≥ τ } and the compactness of

⋃
t∈R

⋃
η∈[0,η0]

Aη(t); for
the standard argument, see the books by Hale [18], Robinson [27] and Temam [30] or the
paper of Caraballo et al [6]. Here we prove that the attractor is also lower semicontinuous.

To prove that dist(A0(t), Aη(t))
η→0
−→ 0, it suffices to show that for each t ∈ R and

x ∈ A0(t) there are sequences ηk→ 0+ and xk ∈ Aηk (t) such that xk→ x .
Given x ∈ A0(t) and ε > 0, there exists xε ∈

⋃
∞

j=1 W u
0 (ξ
∗

j )(t) such that

‖x − xε‖Z <
ε

2
. (31)

Take j ∈ N so that xε ∈W u
0 (ξ
∗

j )(t), and choose τ > 0 such that

T0(t − τ, t)xε ∈W
u,δ j
0 (ξ∗j )(t − τ).
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Choose r > 0 so that

sup
t∈R

sup
‖h‖Z≤r

sup
0≤η≤η0

sup
{
‖Tη(t + τ, t)(z + h)− Tη(t + τ, t)z‖Z : z ∈

⋃
0≤η≤η0

Aη(t)

}
<
ε

4
.

(32)
Let ηε < η0 be such that

sup
0≤η≤ηε

dist(W
u,δ j
0 (ξ∗j ), W

u,δ j
η (ξ∗j,η)) < r (33)

and (by using the convergence of Tη to T0 in (9))

sup
t∈R

sup
{
‖Tη(t + τ, t)z − T0(t + τ, t)z‖Z : z ∈

⋃
0≤η≤ηε

Aη(t)

}
<
ε

4
. (34)

From (33), we choose xε,η ∈W
u,>δ j
η (ξ∗j,η)(t − τ) such that

‖T0(t − τ, t)xε − xε,η‖Z < r

and, from (34) and (32), it follows that if yε,η = Tη(t, t − τ)xε,η, then

Tη(t, t − τ)xε,η ∈W u
η (ξ
∗

j,η)(t)⊂ Aη(t)

and

‖xε − yε,η‖Z = ‖T0(t, t − τ)T0(t − τ, t)xε − Tη(t, t − τ)xε,η‖Z

≤ ‖T0(t, t − τ)T0(t − τ, t)xε − Tη(t, t − τ)T0(t − τ, t)xε‖Z

+ ‖Tη(t, t − τ)T0(t − τ, t)xε − Tη(t, t − τ)xε,η‖Z <
ε

2
.

Using (31), we then obtain yε,η ∈ Aη(t) and ‖x − yε,η‖Z < ε. This concludes the proof. 2

Remarks.
(a) Note that our proof is also valid in an autonomous framework in which the global

attractor is given by the union of a countable number of unstable manifolds of global
solutions. In particular, we cover the case, appearing in Hale and Raugel [19], of
global attractors described by the unstable manifolds of equilibria. However, because
no periodic solution of an autonomous differential equation can be hyperbolic in our
sense, to allow the attractor to contain the unstable manifolds of periodic orbits we
would need results on the continuity of unstable manifolds of normally hyperbolic
global solutions, for which a detailed study of the robustness of trichotomies under
regular perturbations would be also necessary (cf. Bates et al [3] and Pliss and
Sell [25]).

(b) On the other hand, observe that nowhere do we need the pullback attraction property
of the family {Aη(t)}t∈R; so our results are also applicable to any kind of non-
autonomous family of attractors {Aη(t)}t∈R, described as in the above theorem.
Currently, there is much active research on the relation between pullback, forward
and uniform attraction for non-autonomous dynamical systems (see, for example,
Cheban et al [13], Efendiev et al [15], Rodríguez-Bernal and Vidal-López [28],
Carvalho et al [11] or Langa et al [24]). Our result would cover all of these different
kinds of attraction.
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(c) Finally, it is worth remarking that if we actually have a pullback attractor, then in
place of (8) we could have considered the following weaker hypothesis: there exists
τ ∈ R such that

lim
η→0

sup
t∈(−∞,τ ]

sup
z∈B(0,r)

{‖ fη(t, z)− f0(t, z)‖Z + ‖( fη)z(t, z)− f ′0(t, z)‖L(Z)} = 0

(35)
for all r > 0. This would imply the existence of global solutions close to
ξi (t) that are hyperbolic in (−∞, τ ], and would therefore allow for lower
semicontinuity of a family of pullback attractors that are not bounded as t→+∞
(i.e.

⋃
[T,+∞) Aη(t) is unbounded in Z ). This reinforces the idea that in

non-autonomous differential equations the pullback behaviour determines crucial
properties of the future dynamics of the system.

Although we have been dealing with attractors containing a possibly infinite number
of global hyperbolic solutions, it is of interest to consider situations in which we can
guarantee that the attractor is given as the union of the unstable manifolds of a finite
number of such solutions. Note that this is true in the autonomous case, where only a
finite number of hyperbolic equilibria can exist (see Hale [18]). In this direction, we have
the following lemma.

LEMMA 3.1. Let ξ∗0 (·) be an hyperbolic solution of problem (1). Then ξ∗0 (·) is isolated
(uniformly in t), i.e. there exists an ε > 0 such that there is no other complete trajectory
ξ(t) with

‖ξ(t)− ξ∗0 (t)‖ ≤ ε for all t ∈ R.

Proof. The proof follows closely the argument used for Theorem 2.1 since, if we define
φ(t)= y(t)− ξ∗0 (t), then

φ(t)=U0(t, τ )φ(τ)+
∫ t

τ

U0(t, s)g0(s, (φ(s))) ds

with g0(t, φ)= f0(t, φ + ξ∗0 (t))− f0(t, ξ∗0 (t))− f ′0(t, ξ
∗

0 (t))φ, and

T (φ)(t) =
∫ t

∞

U0(t, s)Q0(s)gη(s, (φ(s))) ds

+

∫ t

−∞

U0(t, s)(I − Q0(s))gη(s, (φ(s))) ds

has a unique fixed point in the set{
φ : R→ Z

∣∣∣∣ sup
t∈R
‖φ(t)‖Z ≤ ε

}
for ε sufficiently small. This follows from the hyperbolicity of ξ∗0 : R→ Z via a
contraction mapping argument. 2

One situation for which we can ensure that there are only a finite number of global
hyperbolic solutions is given in the following theorem.
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THEOREM 3.2. Assume that (1) has a pullback attractor {A0(t) | t ∈ R} that is the union
of the unstable manifolds of its global hyperbolic solutions. Denote by CB(R, {A0(t) | t ∈
R}) the space of continuous and bounded functions R 3 t 7→ ξ(t) ∈ A0(t), and assume that
the set

A := {ξ ∈ CB(R, A0) | ξ is a global hyperbolic solution of (1)}

is a compact subset of CB(R, A0); then A is finite.

Proof. Suppose that ξ∗n : R→ A0, n ∈ N, are a countably infinite number of distinct
hyperbolic solutions. From the compactness of A we may assume that there is a
ξ ∈ CB(R, A0) such that ξ∗n → ξ , i.e. limn→∞ supt∈R ‖ξ

∗
n (t)− ξ(t)‖ = 0. Clearly, ξ is

a global bounded solution of (1). Since a hyperbolic solution is necessarily isolated, we
arrive at a contradiction. 2

4. Final remarks and conclusions
We have proved the lower semicontinuity of attractors that are given as the union of
unstable manifolds of hyperbolic global solutions, by appealing to the recent results of
Carvalho and Langa [10] that guarantee the existence and continuity of hyperbolic global
solutions and their associated unstable manifolds under regular perturbations of non-
autonomous dynamical systems in Banach spaces.

Our results suggest a new set of problems for further study. It should be possible
to establish lower semicontinuity under singular perturbations of dynamical systems,
although results on the robustness of exponential dichotomies would need to be proved
first (see the papers [1, 2, 5, 8, 9] for examples of lower semicontinuity results in singularly
perturbed gradient systems). It would also be very interesting to describe the geometrical
structure of the perturbed attractors; note that the results of Langa et al [23] or Carvalho et
al [11] are not applicable here. Moreover, the applicability of our results in the presence
of normally hyperbolic structures (which, for instance, would allow one to prove lower
semicontinuity of autonomous global attractors including periodic orbits) is currently one
of the most challenging problems in this field (see, for example, Bates et al [3] or Pliss and
Sell [25, 26] for some work this direction). We intend to pursue these lines of inquiry in
the near future.
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