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Abstract

Major topics of great interest in neuroscience involve understanding the

brain function in stimuli coding, perceptive discrimination, and movement

control through neuronal activities. Many researchers are designing biophys-

ical and psychological experiments to study the activities of neurons in the

presence of various stimuli. People have also been trying to link the neural re-

sponses to human perceptual and behavioral level. In addition, mathematical

models and neural networks have been developed to investigate how neurons

respond and communicate with each other.

In this thesis, my aim is to understand how the central nervous system per-

forms discrimination tasks and achieves precise control of movement, using

noisy neural signals. I have studied, both through experimental and modelling

approaches, how neurons respond to external stimuli. I worked in three as-

pects in details. The first is the neuronal coding mechanism of input stimuli

with different temporal frequencies. Intracellular recordings of single neu-

rons were performed with patch-clamp techniques to study the neural activ-

ities in rats somatosensory corticesin vitro, and the simplest possible neu-
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ral model—integrate-and-fire model—was used to simulate the observations.

The results obtained from the simulation were very consistent with that in the

experiments. Another focus of this work is the link between the psychophys-

ical response and its simultaneous neural discharges. I derived that under a

widely accepted psychophysical law (Weber’s law), the neural activities were

less variable than a Poisson process (which is often used to describe the neu-

ron spiking process). My work shows how psychophysical behaviour reflects

intrinsic neural activities quantitatively. Finally, the focus is on the control

of movements by neural signals. A generalized approach to solve optimal

movement control problems is proposed in my work, where pulses are used

as neural signals to achieve a precise control. The simulation results clearly

illustrate the advantage of this generalized control.

In this thesis, I have raised novel, insightful yet simple approaches to study

and explain the underlying mechanism behind the complexity of neural sys-

tem, from three examples on sensory discrimination and neural movement

control.
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Chapter 1

Introduction

The brain is capable of discriminating an enormous variety of events in a

noisy environment and can precisely control movements that respond to ex-

ternal stimuli. All of these are accomplished by the brain using neurons (the

main signalling units of the nerve system that process and transmit informa-

tion by electrochemical pulses) and the connections among them. This dis-

cussion seeks to address these issues from three aspects: how the brain codes

external stimuli in terms of individual neuron activities, how the variability

of neural responses reflects the nature (such as intensity or frequency) of the

stimuli, and how noisy neural signals control our movement accurately.

1
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1.1 Review

1.1.1 Neurons are the brain’s main signalling units

Neurons are cells specializing in the integration and propagation of electri-

cal events. They form the fundamental units of information processing within

the brain. All neurons are similar and share the same basic architecture, which

includes the cell body (soma), the dendrites (for receiving signals), the axon

(for emitting signals), and the presynaptic terminals (where the neuron trans-

mits signals from one cell to another).

Neurons use action potentials as the primary way for information ex-

change and communication with each other as well as with muscles and other

end organs (Williams and Herrup, 1988; Djurisic et al., 2004; Drachman,

2005). Action potentials are rapid, transient electrical impulses by which

the neurons in the brain transmit information. Action potentials usually have

amplitudes of 100 mV and a duration of approximately 1 ms. The neural sig-

nals (action potentials) are highly stereotyped throughout the nervous system

(Adrian, 1932) although they are initiated by a great variety of events in the

environment that impinge on our bodies—from light to mechanical contact,

from odorants to pressure waves. Moreover, the information conveyed by an

action potential is determined not by the form of the signal, but by the pathway

along which the signal travels in the brain. Many researchers argue that two

features of the conducting signal convey information: the number of action

potentials (spikefrequency) and the time intervals between them (interspike
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intervals [ISIs]).

1.1.2 Current approaches to studying neurons

Experimental techniques

Understanding basic electrophysiology is fundamental to appreciating the

functions of neurons, neural systems, and the brain. The methods and tech-

niques used in animal studies for understanding the electrical functioning of

neurons in the central nervous system have been developed over many years.

These methods differ fundamentally in the level of analysis, from subcellular

levels (patch-clamping single-ion channels) to behavioural approaches (neu-

ronal recordings in awake primates) (Bear et al., 1996; Kandel et al., 2000).

Using different recording techniques (Bear et al., 1996; Kandel et al.,

2000; Dayan and Abbott, 2001), electrophysiological recordings can be di-

vided into intracellular recordings (voltage-clamp, current-clamp, and patch-

clamp technique) and extracellular recordings (single-unit recording and local

field potentials).

Intracellular recording involves measuring voltage and/or current across

the membrane of a cell, usuallyin vitro. To carry out an intracellular record-

ing, the tip of a fine (sharp) microelectrode must be inserted inside a cell, so

that the membrane potential can be measured. Such a recording is essential for

understanding the mechanisms underlying the generation of action potentials

in neurons. As my PhD studies relied exclusively on intracellular recording
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techniques in experiments, this thesis will focus on this technique.

Neural modelling

Understanding the principles of neural coding are of fundamental impor-

tance if we are to determine how brains work. The problem of how infor-

mation is encoded and transmitted within the nervous system has challenged

neurophysiologists for decades (Dayan and Abbott, 2001; Nicolelis, 2003).

Many attempts to find and describe some general principles for such neural

coding have been made.

In modelling, given a certain stimulus and the corresponding neural ac-

tivity, the central problem is how to find a processing algorithm or coding

principle that can adequately and accurately describe the input-output rela-

tionship between stimulus events and neural responses. This thesis attempts

to explain how neurons code temporal information and how the coded neural

signals are related to the behaviour at the perception level by building simple

but reliable mathematical neural models. It further examines how the neural

signals can precisely control movement using a novel mathematical approach.

1.2 Research topics of interest

1.2.1 Neural coding

The problem of neural coding has stimulated a large amount of research in

neuroscience. The link between the activity of cells in the nervous system and
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sensory perception remains one of the most significant and puzzling problems

in neuroscience. Researchers have combined psychophysical and neurophys-

iological experiments, especially in behaving monkeys (Talbot et al., 1968;

Romo and Salinas, 2003), to provide new insights into how several cortical

areas integrate efforts to solve a discrimination task through neural coding.

Two critical components of the strategy associate neurons with percep-

tually relevant signals, especially within the cerebral cortex. The first is the

formulation of a clearly defined perceptual task at the behavioural level. This

is essential in order to provide an objective and rigorous framework in which

to study perceptual events and the neuronal signals that underlie them. The

second is an emphasis on the signals provided by individual neurons as these

signals represent a fundamental medium of information transfer within the

nervous system. Because of my interest in both components of the neural cod-

ing strategy, this thesis involves studies on single neuron activity in response

to external stimuli as well as the possible link between neural activities and

perceptual responses.

Encoding input temporal frequency in neural activities

A central issue to neuroscience is understanding the mechanism of encod-

ing and decoding of temporal sensory signals in the nervous system. How-

ever, due to the nonlinear input-output relations of neurons and their intrinsic

stochastic properties, a solution to this problem remains elusive. A series

of experiments on frequency discrimination has been conducted on monkeys
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(Talbot et al. 1968; Mountcastle et al. 1969; Recanzone et al. 1992; Romo

et al. 1999; Romo and Salinas 2003; Brody et al. 2003; Luna et al. 2005;

Romo et al. 2006), in which the task for monkeys was to discriminate the

frequencies of two sequential stimuli in the form of both mechanical vibra-

tions applied on the finger tip and electrical currents pulsed applied directly

to the single neurons in somatosensory cortex. Single-cell recordingsin vivo

(Salinas et al. 2000) indicated that a subset of neurons in S1 and S2 areas

do modulate their firing rates with the input frequency and that the output fir-

ing rate may decrease, increase, or remain constant in different areas of the

somatosensory cortex as the input frequency increases.

However, it is unclear if these heterogeneous frequency response func-

tions of neurons in different areas of the cortex are caused by the local neural

network effect and receptor properties or if it is the intrinsic characteristics of

single neurons that are sensitive to the stimulus frequency. Hence, during my

PhD studies, I performed single-neuron recordingsin vitro by injecting arti-

ficial stimulus at various frequencies. It was found that some of the neurons

did modulate their firing rates with the temporal input frequency, showing the

discrimination ability of a single neuron in encoding input information. The

rest of the recorded neurons were not sensitive to various input stimulus fre-

quencies. This observation indicated that single neurons might be capable of

discriminating input temporal frequencies based on their firing rates.

In simulations, many researchers question the ability of the leaky integrate-

and-fire (LIF) model to describe the behaviours of real biophysical neurons
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because of its simplicity. However, others believe LIF is sufficient for simu-

lating and predicting spiking neuron behaviours with a high accuracy (Jolivet

et al., 2004, 2006) and have used LIF in modelling the coding mechanisms at

the single neuron level (Feng, 2001; Koulakov et al, 2002; Feng and Brown,

2004; Miller and Wang, 2006). In this study, the LIF model will be used to

simulate neural responses in the experiments, as it is simple and analytically

tractable, and the results of experiments and modelling are consistent.

Perception of stimulus intensity on neuronal level

The capacity of the sensory system to extract information about the mag-

nitude of the stimulus is important for sensory discrimination. However, the

transformation between sensory cortical neuronal signals and the perceptual

responses remains unclear, although many researchers have intensively stud-

ied the link between the neuronal activity and psychophysical judgment of

sensory processing (Shadlen and Newsome, 1994; Sawamura et al., 2002).

People believe that the quantitative features of sensory stimuli measured in

psychophysical studies are signalled by the firing rate of the activated popula-

tion of sensory neurons while the details of neural activity encode the intensity

and time course of the sensory experience.

One of the widely accepted psychophysical laws is Weber’s law, by which

psychophysicists Weber and Fechner quantified the intensity of sensations in

the form of mathematical laws that allowed them to predict the relationship

between stimulus magnitude and sensory discrimination. This phenomenon
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has been observed in a wide range of moderately intense stimuli experiments

in sensory perception (in terms of weights, pure tones, light intensities, sizes,

distances, numbers, etc.), but it still lacks a link between this psychophysical

property and neuronal activity. This thesis worked out a possible link between

this psychophysical law and its corresponding neural discharge process.

1.2.2 Motor control

In contrast to sensory systems, which transform physical energy into neu-

ral signals, motor systems produce movement by translating neural signals

into a contractile force in muscles. Motor control of human movement has

been a subject of investigation for several decades. In a broad sense, the mo-

tor control problem can be stated as the generation of the muscle activations

that best fit the purpose of a movement, given the proprioceptive and external

world information available through the body’s sensors (Campos and Dalado,

2009).

Despite the complexity of motor control problems, the nerve system shows

amazing regularities when generating movement. Early research has focused

directly on the kinematic regularities1, developing theories expressed in terms

of the kinematic variables. Dynamic variables2 were subsequently used to find

a unifying principle that fits a broader range of movements. A major break-

through in understanding the nature of human motor control was introduced

1Kinematicsis a branch of classical mechanics that describe the motion of objects without
considering the causes leading to the motion.

2Dynamicsis the study of the relationship between the motion of objects and its causes.
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by Harris and Wolpert (1998), who suggested that noise in control signals

within the sensorimotor loop was a determining factor in overall motor be-

haviour. In their papers, the concept of movement planning was regarded as

an integration of kinematic and dynamic concepts. They suggested that move-

ment planning relied on the minimization of the final position variation. This

approach used an optimization procedure, taking the end-point variance as

the quantity to minimize. Harris and Wolpert (1998) pointed out the fact that

muscle commands were corrupted by noise and the noise increased linearly

with the amplitude of the command signals (Schmidt et al., 1979; Meyer et

al., 1988; Jones et al, 2002; Hamilton et al., 2004).

The current work generalized the signal-noise relation and proposed a new

method in achieving a precise control in the presence of noisy neural signals

based on the model proposed by Harris and Wolpert (1998).

1.3 Original work

1.3.1 Frequency discrimination and its underlying mecha-

nisms

Extracellular recordings of single neurons in primary and secondary so-

matosensory cortices of monkeysin vivohave shown that their firing rate can

increase, decrease, or remain constant in different cells, as the external stim-

ulus frequency increases. I observed similar intrinsic firing patterns (increas-
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ing, decreasing or constant) in rat somatosensory cortex in vitro, when stim-

ulated with oscillatory input using conductance injection (dynamic clamp).

The underlying mechanism of this observation is not obvious, and presents a

challenge for mathematical modelling.

I proposed a simple principle for describing this phenomenon using a

leaky integrate-and-fire model with sinusoidal input, an intrinsic oscillation

and Poisson noise. Additional enhancement of the gain of encoding can be

achieved by local network connections amongst diverse intrinsic response pat-

terns. I demonstrated this principle using higher-order comparison neurons to

illustrate the necessity of these opposite (increasing and decreasing) output

firing patterns.

This work sheds light on the possible cellular and network mechanisms

underlying these opposing neuronal responses, which serve to enhance signal

detection.

1.3.2 Weber’s law and neural discharge process

Weber’s law is one of the basic laws in psychophysics, but the link be-

tween this psychophysical behavior and the neuronal response has not yet

been established.

I carried out an analysis on the spike train statistics when Weber’s law

holds, and found that the efferent spike train of a single neuron is less vari-

able than a Poisson process. For population neurons, Weber’s law is satisfied

only when the population size is small (less than 10 neurons). However, if
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the population neurons share a weak correlation in their discharges and indi-

vidual neuronal spike train is more regular than a Poisson process, Weber’s

law is true without any restriction on the population size. Biased competition

attractor network also demonstrates that the coefficient of variation of inter-

spike interval in the winning pool should be less than one for the validity of

Weber’s law.

Our work links Weber’s law with neural firing property quantitatively,

shedding light on the relation between psychophysical behavior and neuronal

responses.

1.3.3 Precise movement control

In a noisy system such as the nervous system, movements can be precisely

controlled as experimentally demonstrated. However, the existing theory of

motor control fails to provide viable solutions.

This work used a generalized approach to the nonconvex optimization

problems with the Young measure theory and demonstrated that a precise

moment control is possible even with stochastic control signals. Two numer-

ical simulations were presented, with a clear demonstration of significant im-

provement of movement precisions. This generalized approach paves a new

way for solving optimization problems when a precise control is needed.
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1.4 Summary

The major contributions of this PhD study are the investigation of the neu-

ral coding to distinguish the temporal frequencies of the stimulus, the deriva-

tion of the link between psychophysical perception and neural activity on dis-

crimination of stimuli intensity, and the proposal of a constructive approach

to precisely control the movement through neural signalling.

Chapter 2 presents a detailed description of the experiment. Chapters 3,

4 and 5 provide the main results from the past few years of my PhD study.

Stimuli frequency coding mechanisms are examined in Chapter 3, using both

experiment and modelling approaches. Chapter 4 studies the link between the

psychophysical response and neural discharge process, while Chapter 5 stud-

ies the effect of neural signal noise, where a novel approach was applied in

precise movement control. The conclusion and further research are discussed

in the last chapter.



Chapter 2

A Brief Description to the

Experiment

Experiments on the study of temporal frequency decoding ability of single

neuronsin vitro had been carried out at Dr. Hugh P. C. Robinson’s lab at

the Department of Physiology, Development and Neuroscience, University of

Cambridge, UK. In this chapter, I would like to give a brief description on

the experimental techniques, materials, and procedures that I learned in Dr.

Robinson’s lab during the past few years.

2.1 Experimental techniques

The techniques commonly used in neuroscience on the study of single-cell

behaviourin vitro involve patch clamp (Sakmann and Neher, 1995) and dy-

namic clamp (Sharp et al., 1993). Dynamic clamp is also called conductance

13
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injection technique (Robinson and Kawai, 1993).

The patch-clamp and dynamic-clamp techniques have been intelligently

combined by Dr. Hugh P. C. Robinson to carry out intracellular recordings on

rat cortical brain slices. The experiment main devices include a Multiclamp

700B (Molecular Devices, Union City, CA), a conductance injection ampli-

fier (SM-1) with software running on a DSP analog board (SM-2, Cambridge

Conductance, Cambridge, UK), micromanipulators for positioning the patch

pipette, an infrared microscope, and a customer software written in Matlab

(MathWorks, Natick, MA) to design artificial stimulus and store data of neu-

ronal response.

2.1.1 Patch-clamp technique

Patch-clamp technique was firstly developed by Erwin Neher and Bert

Sakmann. They used this technique to demonstrate single channels in a bi-

ological membrane (Neher and Sakmann, 1976). Nowadays, patch clamp is

an extremely powerful and versatile method for studying electrophysiological

properties of biological membranes.

The patch-clamp technique refers to both voltage clamp and current clamp

of measures using patch-clamp type micropipettes. This electrophysiological

method allows one to monitor the changes in membrane potential in response

to current flowing cross ion channels (current clamp), or to manipulate the

voltage of the whole cell to a command value to study the current flowing

across membrane (voltage clamp).
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In my experiments, I used the tight-seal whole-cell configuration to record

from the soma of cortical neurons in brain slices of rat, and modify their

internal environment by injecting various stimuli using patch-clamp pipette.

2.1.2 Dynamic-clamp technique

Though the dynamic clamp is a relative new technique developed in the

recent 15 years (Robinson and Kawai, 1993; Sharp et al., 1993), it has be-

come a widely used tool to study the neural system at the cellular and circuit

levels around the world. The dynamic clamp uses computer simulation to in-

troduce artificial conductance (that is why it is called conductance injection

technique as well) into biological neurons. The term ’dynamic clamp’ refers

to a variety of hardware and software implementations. The dynamic clamp

can effectively alter the conductance of a neuron by using the measured mem-

brane potential to control the amount of current injected into a neuron. The

reversal potentials set in the conduction injection amplifierEAMPA, ENMDA

andEGABA were set to be0, 0, and−70 mV, respectively in my experiments.

With the help of modern computer technology, dynamic clamp is used in

my experiment with good performance to measure the membrane response

voltage at the presence of artificially designed conductance stimuli.
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2.2 Experimental materials

The experimental materials section includes the experiment setups, solu-

tions, pipettes, and cell tissues.

2.2.1 The experiment setups

The setups in the experiment during recording includes (Fig. 2.1, picture

taken at the lab):

Vibration isolation table and Faraday cage

The vibration isolation table can reduce the vibrations beyond a few Hertz,

which is sufficient for the purpose of patch clamping because mechanical sta-

bility is crucial for patch clamp stable recording.

Faraday cage is surrounding the patch-clamp setup, and its main function

is to shield the sensitive patch-clamp preamplifier from electrical noise.

Infrared microscope

The infrared microscope is used for cell visualization, and it is placed on

the vibration isolation table within the Faraday cage. The usefulness of the

infrared microscope is at the observation of the cell during measurement, and

even more importantly, is at the approach to the cell by the patch pipette for

seal formation which requires a good optical visualization.



Faraday cage Infrared microscope

A B

Vibration isolation table Micromanipulator 

DC
Multiclamp 700B Temperature meter Pressure meter

Fig. 2.1 Experimental setups. The panels illustrate the major instruments used in
my experiment, but there are some apparatus not shown here. (A) vibration
isolation table with Faraday cage, infrared microscope, (B) controller units for
manipulator, (C) Patch clamp amplifier, and (D) temperature and pressure meters.
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Micromanipulator

This manipulation device can precisely control the movement of the patch

pipette and hold the amplifier probe for positioning the attached patch pipette

in the sub-micrometer range. The position of the pipette needs to be free of

drift after seal formation to maintain stable recording.

Stimulus generator and patch clamp amplifier

Multiclamp 700B together with Matlab software can design the stimuli

and apply a steady command current or voltage to the soma through the

pipette electrode under the whole-cell recording.

Data recording device

Computer is used as the data recording device to store the time-varying

membrane potential values at different designed current or conductance stim-

uli.

Thermal machine and temperature meter

During the whole-cell recording, the temperature of the cell bath solution

is kept at biophysical temperature between 32-34◦C. The temperature of the

bath solution is maintained by the thermal machine and monitored by the

temperature meter.
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Pressure meter

Pressure meter indicate the positive pressure (usually generated by mouth)

applied to the patch pipette interior environment to make sure the pipette in-

tracellular solution will not be contaminated when the pipette tip dips into the

bath solution.

Perfusion device

The bath solution around the cell in the recording device is maintained

fresh throughout the experiment with oxygenated bath solution fusing in from

one side of the recording device and being pumped out from the other side,

such that the tissue slice is kept at good status as long as possible.

2.2.2 Solutions

Bath solution refers to the solutions applied to the extracellular surfaces

of the membrane, where the cells are place in. Pipette solution is the solution

contact with the internal cytoplasmic surface of the membrane which is held

in the pipette tip surrounding the electrode. Composition of the bath solution

and the pipette solution used in the experiments with brain slice neurons are

given in Table 2.1. The pipette solution is filtered before transferred into the

pipette tips, because contamination of the pipette tip can prevent formation of

seal.
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Table 2.1: Ingredients of solutions.
Bath solution (mM) Pipette solution (mM)

NaCl 125 -
KCl 2.5 30

CaCl2 2 -
NaHCO3 25 -
Glucose 25 -

phosphocreatine - 10
NaH2PO4 1.25 -

K-gluconate - 105
Buffer pH 7.4, oxygenated with 10 HEPES, 4 ATP and 0.3 GTP,

95%O2 and 5% CO2 pH 7.35 with KOH

2.2.3 Fabrication of pipette

The following equipment and materials are used for the fabrication of the

patch pipettes.

Pipette puller

This device pulls the glass capillary tubes through a metal filament and

uses gravitation to pull the glass apart as the center of the capillary starts to

melt the glass.

Pipette capillary

The pipette capillary is a thin-walled glass capillary containing an internal

glass filament that aids the filling of the pipette with electrolyte solution.



A

B

Fig. 2.2 Brain dissection tools and brain slice incubator. (A) The tools of 
dissection prepared according to the order they are used. (B) Brain slices in 
incubators being oxygenated and incubated at the physiological temperatureincubators being oxygenated and incubated at the physiological temperature 
for recording.
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2.2.4 Cell tissue

The method we used for brain slice is the ’blow and seal’ technique (Stuart

et al., 1993). The detailed procedure to prepare for the brain slice tissue and

perform the whole-cell recording is presented in the next section.

2.3 Experimental procedure

The following procedure is presented by the time order of carrying out

experiments.

2.3.1 Preparation for bath solution and pH value adjust-

ment

The constituent of the bath solution (extracellular solution) is listed in Ta-

ble 2.1. The chemicals (NaCl 7.305 g, KCl 0.186 g, NaHCO3 2.1 g, NaH2PO4

0.15 g and glucose 4.5 g) stored in a cool dry place were measured by an elec-

tric scale, and the stock solutions (CaCl2 2 ml, MgCl2 1 ml and Glycine 100

µl) kept in a refrigerator were measured by the marked pipette with different

volumes. To prepare the bath solution, all components were mixed up with

distilled water up to 1 L with the solution being stirred by a magnetic stirring

bar inside the measure beaker all the time.

The pH value was adjusted to 7.4 by gassing the solution with 95% O2

and 5% CO2 at medium speed of the gas flow for at least 30 minutes, making
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the bath solution mimic the natural extracellular environment of the cell.

2.3.2 Brain dissection and incubation

Preparation for dissection

While the bath solution is being oxygenated for pH adjustment, the tools

for the dissection were prepared simultaneously. In accordance with United

Kingdom Home Office guidelines for Schedule 1 killing, the surgeon equip-

ments for killing a rat include a screw driver (for neck dislocation), a big

scissors (for decapitation), a smaller scissors (for cutting off the head skin),

a special designed scissors (for cutting of the skull), a nipper (for peeling off

the skull and exposing the brain), a small specula (for getting the brain out of

the skull), a blade (for cutting off the unwanted brain tissue) and a super glue

(for fixation of the brain left-hemisphere for dissection). Also, a platform for

holding the brain slice with the gauze placed at the bottom is prepared be-

forehand, and the platform is placed inside the bath solution in a medium size

beaker with oxygen perfusing at lower flow to prevent killing the cells at high

speed of gas flow (Fig. 2.2).

Then, a postnatal days 7-21 Wistar rat is decapitated (killed according to

United Kingdom Home Office guidelines). The left-hemisphere of brain is

kept for experiment. Rest of the brain and body are disposed for recycle.

This procedure takes no longer than 1.5 minutes, usually completed within 1

minute. The brain left-hemisphere is immediately submerged in ice-cold oxy-
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genated bath solution. Cooling of the tissue is particularly important, mini-

mizing the damages from anoxia and improves the texture of the tissue for

slicing.

Dissection

The surface of the left-hemisphere is glued to the stage of the slicer. The

slicing chamber is then immediately filled with ice-cold bath solution. 300

µm thick sagittal brain slices were obtained with healthy cells near the sur-

face using vibrating tissue slicer. The first slice is discarded before slices of a

uniform thickness are obtained. The slicing procedure is monitored continu-

ously, by sucking off the contaminant glutamate released from the brain while

slicing and refilled with clean ice-cold bath solution.

Incubation of slices

Each slice is immediately placed in a holding chamber containing oxy-

genated bath solution at room temperature for at least 30 min before record-

ing. The condition of the tissue is optimal over the first 3 or 4 hours, however,

stable recordings can still be obtained 10-12 hours after slicing.

2.3.3 Pipette preparation

The capillary is place in the centre of the pulling machine vertically and it

is a two-step pull mechanism: the first pull (adjust to mark 70 degree) soften

the glass and pulls it a short distance to thin the capillary 200-400µm at
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the narrowest point over 7-10 mm region (central symmetrical breaks), after

which the 2nd pull (adjust to mark 50 degree) with lower heat separates the

capillary, yielding two pipettes with large-diameter tips. The pipette tips are

typically of 5-10 MΩ of resistance. The pipette tips need to be used within

5-8 hours after being made.

2.3.4 Pipette solution

Pipette solutions (intracellular solution) are frozen in smaller stocks and

thawed before experiment. Supplements (ATP + GTP solution) are added

from frozen stocks to the pipette-filling solution as needed shortly before the

experiment. The pipette solution is filtered with a syringe filter and then back

filled to the pipette tips with a long tip cartridge. The bubbles in the pipette

tips can be removed by tapping the side of the pipette. The pipette tip is

partially filled, just far enough to make reasonable contact with the electrode

wire.

2.3.5 Equipment set up: software + hardware

Placing brain slice

One brain slice is placed into a circular, glass bottomed recording cham-

ber. The slice is held in place with a grid of parallel threads. The chamber

holds a volume of about 1 ml bath solution and during recording is perfuse

with oxygenated bath solution at a flow rate of 1 to 2 ml/min, and the overflow
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is sucked out by a pipe to avoid flooding over the sample.

Ground and heat the bath solution

The ground electrode is intact with the bath solution so that the extra-

cellular solution is zeroed to ground potential and the recorded intracellular

potential is the membrane potential.

The bath solution is heated to mimic the biophysical temperature 32-34◦C.

Software adjustment

The softwares used in the experiment include Multiclamp (for patch clamp

stimuli amplifying and injection control), Capture Infinity (infrared micro-

scope software), and Matlab m-file ginj.m (to design stimulus of interests).

Multiclamp mode is switched to voltage-clamp mode first, measuring the

pipette tip resistance (5 to 10 MΩ) by applying a step voltage (2 mV) written

by Matlab. Before the pipette is inserted into the bath solution, the current

trace should be flat except for very small capacitive transients caused by the

stray capacitance of the pipette. Membrane potential, including stated re-

versal potential for injected conductances, was corrected afterwards for the

pre-nulling of the liquid junction potential (10 mV). Signals were filtered at

6-10 kHz (Bessel), sampled at 20 kHz with 16-bit resolution.
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Visualization of the neurons

Brain slices are viewed with an upright compound microscope using 64

contrast optics. Initially, the slice is illuminated with visible light and the

pipette tip should be adjusted to a position where the image captured by the

infrared camera appears darkest in the center of the infrared image.

2.3.6 Forming a seal

Positive pressure is applied to the recording patch pipette so that the so-

lution pushes the connective tissue away from the pipette tip as it advances

through the slice. The approaching angle of the pipette tip to the target cell

is approximately 15 degree to the horizontal. After touching the targeted cell

membrane, the positive pressure (60-100 Pa) is released and the applied suc-

tion (slight negative pressure) leads to formation of a tight seal (high resis-

tance is in excess of109Ω) onto the cell membrane at the contact area, which

is characterized by the current trace becoming essentially flat. The success

rate for formation of high-GΩ seal can be as high as 100% when recording

are made from large structures such as the soma.

2.3.7 Patch-clamp whole-cell recording

After the forming the ’gigaseal’, the fast capacitance compensation is ad-

justed to cancel the transient caused by the capacitance of the pipette holder

and pipette wall. Pulses of suction are applied to the pipette interior until a
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sudden increase in the size of the capacitive transients is observed. This ad-

ditional current reflects the contribution of the cell membrane to the pipette

input capacitance following the destruction of the patch membrane. An al-

ternative method to break the patch membrane is to apply to the pipette very

short volt pulses (10-500µs) of large amplitude to induce membrane break-

down (’zapping’). Series resistances were in the range of 10-20 MΩ and were

measured and compensated for by the Auto Bridge Balance function of the

Multiclamp 700B. Then, artificial current and conductance stimuli can be ap-

plied to the interior of the cell and the membrane voltage trace is recorded

according.

2.3.8 Stimulus protocol

After whole-cell recording mode is on, sequence of designed stimuli can

be applied to the target neuron. Step current injections from negative value

(-50 or -100 pA) gradually increasing with a fixed step size (50 pA) were

applied usually at the beginning, in order to assess the different feasible range

of current for stimulating each individual neuron. In between each sweep, an

interval normally of 10 times length of the stimulus time was allowed for cell

recovery. A small hyperpolarizing holding current (< 50 pA) can be applied if

necessary to ensure a fixed resting potential (between -65 to -75 mV) between

sweeps.
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2.3.9 Data storage

Data recorded from single neuron membrane potential is stored automat-

ically by the computer in the form of .mat file executed by Matlab, including

the designed stimulus program, the time-variant membrane potential values

and sample frequency.

2.4 Final remarks

The patch-clamp and dynamic-clamp techniques are widely used with a

lot of advantages enabling us to study the neuronal properties, but there are

still artefacts that need to be improved during the experiment. The following

are a few examples that cause the inaccuracy of recordings in my experiment,

and sometimes they even give unreliable recorded data.

The offsets potential (liquid junction potential)

Liquid junction potentials are variable offset, depending on ionic condi-

tions. Some offsets arise in the external circuit (e.g. in patch pipette, experi-

mental chamber, or at the silver chloride electrode).

Solution contamination

Contaminations of the solution with foreign substances that might affect

ion channels are very difficult to eliminate completely, because containers,
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syringes, tubings, needles or filters may release small amounts of leachable

substances or detergents into the solution.

Electrode coating

The electrode in the pipette holder is silver wires coated with AgCl. This

coating gets scratched during multiple exchanges of pipettes and may also

degrade with time when large currents are passed (effectively dissolving the

AgCl coating as the Cl− ions are released into the saline). Electrodes need

to be regularly chlorided, or shifts in the electrode potential may become so

severe that voltage drifts become noticeable in the course of an experiment,

making the measurements inaccurate.

Brain slices

Neurons in the brain slices are relatively silent compared with the record-

ings in an intact brain, because each neuron receives much less ongoing synap-

tic inputs. Neurons in slices are studied in an environment that is significantly

different from that in which they normally operate.

However, despite all these artifacts, the most advantage of this technique

is that it breaks down barriers between mathematical modelling and exper-

imental electrophysiology by allowing theorists to model ’in the dish’ and

experimentalist to perturb their system in ways that, only a mathematicians
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would imagine. In my experiments, I combine the control and flexibility of

computer simulation with the accuracy and realism of electrophysiological

recording, using computer modelling as an experimental tool. The experimen-

tal results on single cell discrimination ability on stimulus temporal frequency

are presented in the following chapters.



Chapter 3

Temporal Frequency

Discrimination

Cortical neurons in the somatosensory areas show disparate patterns of

tuning to oscillatory input as the frequency of the input increases. A subset

of neurons generates more action potentials at higher stimulus frequencies,

and is relatively less responsive at low frequency. Another type behaves in an

opposite way, decreasing its firing rate with respect to the increasing stimulus

frequency. Other neurons show an essentially constant firing frequency as

input frequency is varied. These patterns are observed in response to either

mechanical vibrations of the skin, or to direct intracellular sinusoidal current

stimulation.

In this chapter, I carried out experiments to test if this phenomenon could

be due to the intrinsic properties of different neurons, or if it requires a more

32
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complicated explanation, for example particular local network interactions,

receptor properties or input connectivity. I found that single neurons in brain

slices were sensitive to the temporal frequency of conductance inputs mim-

icking oscillatory synaptic input, and were able to generate both increasing

and decreasing as well as constant responses with respect to the stimulus fre-

quency, depending on the neuron and on the stimulus amplitude and offset.

I am able to account for these observations using a simple integrate-and-fire

neuronal model and to suggest a possible underlying mechanism. This work

reveals the powerful sensory discrimination capabilities of single neurons and

simple neuron models, and proposes a minimal mechanism of input frequency

encoding in the brain.

3.1 Introduction

In a series of experiments on somatosensory frequency discrimination in

monkeys, responses of single neurons in somatosensory cortex to mechanical

vibrations on the finger tips or direct oscillatory electric current stimulation

were recorded (Romo, Brody et al. 1999; Salinas, Hernandez et al. 2000;

Brody, Hernandez et al. 2003; Romo and Salinas 2003). A subset of neurons

in primary (S1) and secondary (S2) somatosensory cortices showed modula-

tions of their firing rates with the temporal input frequency (F ). Most neurons

in S1 tune with a positive slope to the input frequency, but some neurons in S2

behave in an opposite way, with a high firing rate at low stimulus frequency
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which is reduced at high frequency. It is unclear if these heterogeneous fre-

quency response functions of neurons in different areas of somatosensory cor-

tex are due to local neural network properties, receptor properties or input

connectivity, or to the intrinsic integrative characteristics of single neurons.

To investigate the characteristics of single neurons, I performed whole-cell

patch clamp recordings from the somas of layer 2/3 pyramidal neurons in rat

somatosensory cortexin vitro, (Sakmann and Neher 1995), and stimulated fir-

ing by directly injecting oscillatory artificial synaptic conductance and current

into neurons through the patch-clamp pipette (Robinson and Kawai 1993). I

found that some neurons generated a higher firing rate as stimulus frequency

increased, while others showed a reduced firing rate at high frequency. I also

observed a lot of frequency-insensitive neurons, which fired at a constant rate

as stimulus frequencies vary. In addition, the types of neuronal responses (in-

creasing, decreasing or constant) were affected in some cases by the mean,

or offset, of stimulus intensity (see Fig. 3.1C, stimulus illustration). With the

diversity of firing patterns observed in individual neurons in my experiments,

it appears possible that the intrinsic properties of neurons can explain much of

the diversity of response patterns observedin vivo. A reasonable goal in mod-

elling these responses would be a simple model which could generate these

different patterns as its parameters are varied.

The leaky integrate-and-fire (LIF) model is simple, analytically tractable

and computationally efficient, compared with other complex biophysical mod-

els (e.g. Hodgkin-Huxley models). A number of studies have concluded that
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LIF neurons can not be used for simulating temporal frequency coding mech-

anisms at the single neuron level (Feng 2001; Koulakov, Raghavachari et al.

2002; Feng and Brown 2004; Machens, Romo et al. 2005; Miller and Wang

2006), and that the LIF model is blind in the temporal domain owing to the

fact that its efferent firing rate is independent of the input temporal frequency

(Feng and Brown 2004). This is true under certain circumstances, but not all.

Here, I have managed to generate output firing rates in LIF models with three

different patterns (increasing, decreasing or flat) as a monotonic function of

the input frequencyF , under a wider, but still biologically feasible, parameter

region than considered previously. I am able to provide a simple mathemat-

ical explanation for the underlying mechanism of these three different firing

patterns in the LIF model. I have also studied the behavior of prototypical

networks of these neurons, introducing higher order neurons which integrate

the response of heterogeneously-responding neurons, so enhancing the gain

of frequency encoding.

3.2 Materials and Methods

3.2.1 Biophysical Experiments

Electrophysiology

300 µm sagittal slices of somatosensory cortex were prepared from post-

natal days7 − 21 Wistar rats (killed according to United Kingdom Home
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Office guidelines), in chilled solution composed of the following (in mM):

125 NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2, and25 glucose

(oxygenated with95% O2, 5% CO2). Slices were held at room temperature

for at least30 min before recording and then perfused with the same solution

at 32 − 34◦C during recording. Whole-cell recordings were made from the

soma of pyramidal neurons in cortical layers 2/3. Patch pipettes of5−10 MΩ

resistance were filled with a solution containing of the following (in mM):105

K-gluconate,30 KCl, 10 HEPES,10 phosphocreatine,4 ATP, and0.3 GTP,

adjusted to pH7.35 with KOH. Current-clamp recordings were performed

using a Multiclamp 700B (Molecular Devices, Union City, CA). Membrane

potential, including stated reversal potential for injected conductances, was

corrected afterwards for the pre-nulling of the liquid junction potential (10

mV). Series resistances were in the range of10− 20 MΩ and were measured

and compensated for by the Auto Bridge Balance function of the Multiclamp

700B. Signals were filtered at6 − 10 kHz (Bessel), sampled at20 kHz with

16-bit resolution, and recorded with custom software written in Matlab (Math-

Works, Natick, MA).

Conductance injection

Recorded neurons were also stimulated using conductance injection, or

dynamic clamp (Robinson and Kawai, 1993; Sharp et al., 1993; Destexhe,

2009). A conductance injection amplifier (SM-1) or software running on a

DSP analog board (SM-2; Cambridge Conductance, Cambridge, UK) imple-
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mented multiplication of the conductance command signal and the real-time

value of the driving force, with a response time of< 200 ns (SM-1) or< 25

µs (SM-2), to produce the current command signal. Voltage dependence of

NMDA current was simulated by multiplying the command signal by an addi-

tional factor (1+0.33[Mg2+] exp(−0.06V ))−1 (Harsch and Robinson, 2000),

whereV is the membrane potential and [Mg2+] is the extracellular magne-

sium concentration set to 1 mM. The reversal potentialsEAMPA, ENMDA and

EGABA were set to be0, 0, and−70 mV, respectively.

Stimulus protocol

Randomly permuted sequences of stimuli were calculated for each com-

bination of different values of the mean offset, amplitude and frequency of

the sinusoidal input (Fig. 3.1C stimulus), either as injected positive current

or excitatory conductance, in order to obviate the effects of any progressive

adaptation to monotonic changes of any single parameter. Individual sweeps

consisted of2 s of stimulus, with data from the initial200 ms discarded to

eliminate transient onset responses. A15 second interval between sweeps

was allowed for recovery. A small hyperpolarizing holding current (< 50 pA)

was applied if necessary to ensure a fixed resting potential between sweeps,

usually between−65 to−75 mV. Step current injections from−100 pA grad-

ually increasing with a step size of100 pA were applied at the beginning, in

order to determine the neuron’s capacity to stimulus intensity and assess the

feasible range of the current and conductance injection within which neurons
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were able to generate action potentials.

Data analysis

The occurrence of spikes was defined by a positive crossing of a threshold

potential, usually−40 mV. Spike rate is calculated by the number of occur-

rence of spikes over the total time period (1.8 s). Of 23 cortical neurons

recorded in the experiment,11 regular-spiking (RS) cells were selected for

detailed analysis, whose average membrane time constant was22.7± 8.5 ms.

For each selected RS cell, tens to hundreds of good recordings were chosen

for the study of neuronal tuning to the stimulus frequencies.

3.2.2 Mathematical modelling

Single neuron model

I choose the integrate-and-fire model for simulation because it is simple

and analytical traceable. Action potentials are generated by a threshold pro-

cess. Letv(t) be the membrane potential of the neuron,Vθ the threshold, and

Vrest the resting potential. SupposeVθ > Vrest, and whenv(t) < Vθ, the leaky

integrate-and-fire model has the form

 dv(t) = −v(t)−Vrest

γ
dt + dIsyn(t)

v(0) = Vrest

, (3.2.1)
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whereγ is the decay time constant,Isyn(t) is the synaptic input defined by

dIsyn(t) = µ(t)dt + σ(t)dBt, µ(t) ≥ 0, σ(t) ≥ 0, andBt is the standard

Brownian motion. The synaptic current is composed of two terms: the de-

terministic driving forceγµ, that depolarize the cell to fire, and the noise

term γσ, that introduces perturbation of the system. I assume that a model

neuron receives synaptic inputs fromNs active synapses, each sending Pois-

son EPSPs (excitatory post-synaptic potentials) inputs to the neuron with rate

λE(t) = a
2
(1+cos(2πFt)), wherea (magnitude),F (temporal frequency) are

both constant, andt is the time (Feng and Brown, 2004). More specifically,

λ(t) = λE(t)Ns as the input rate, and the Poisson process inputs are defined

by µ(t) = λ(t),σ2(t) = λ(t). A refractory periodtref from 1 to 5 ms is also

introduced in the model, matching the observation of membrane potentials in

the experiment. The input temporal frequencyF is confined within the range

from 1 to 50 Hz, consistent with the feasible biological frequency (Salinas et

al., 2000; Romo et al., 2003). In this work I concentrate on the mean output

firing rate with respect to different input information frequencies.

Analytical solution of integrate-and-fire model

Suppose that initiallyt = 0, the neuron has just fired and the membrane

potential is reset tov(0) = Vrest. Before a spike has occurred, it is easy to get

the analytical solution for this integrate-and-fire model (Eq. 3.2.1) with the

sinusoidal synaptic current driving forceIapp(t) = C(1 + cos(2πFt)) when
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no noise term is presented, andC = aNs/2. The solution is

v(t) = Vrest +

∫ t

0

exp

(
− s

γ

)
Iapp(t− s)ds. (3.2.2)

This expression (Eq. 3.2.2) describes the membrane potential for0 < t < t∗

and is valid up to the moment of the next threshold crossing, wherev(t∗) =

Vθ. After a spike is generated, the membrane potential is reset toVrest and

the integration restarts. Using integration by parts, Eq. 3.2.2 can be solved

explicitly as

v(t) = Vrest − Cγ
(
exp

(
− t

γ

)
− 1
)

+ C

(
2πFγ2 sin(2πFt)−γ exp(− t

γ
+γ cos(2πFt))

(2πF )2γ2+1

)
.

(3.2.3)

If time t is infinitely long and no threshold is applied in the system, the limit

membrane potentialv(t) would lie in the range between

[
Vrest + Cγ − Cγ√

((2πF )2γ2 + 1)
, Vrest + Cγ +

Cγ√
((2πF )2γ2 + 1)

]
.

If the threshold is greater than the maximal value ofv(t), i.e.,

Vθ > Vrest + Cγ +
Cγ√

((2πF )2γ2 + 1)
,

the output firing rate would be zero and the corresponding critical value of the

input frequencyF ∗ can be calculated explicitly by settingVθ = Vrest + Cγ +



Chapter 3: Temporal Frequency Discrimination 41

Cγ√
((2πF )2γ2+1)

. Therefore,

F ∗ =

√(
Cγ

Vθ−Cγ

)2

− 1)

2πγ
. (3.2.4)

WhenF < F ∗, periodic spiking is guaranteed to be generated.

Equivalent ordinary differential equation system and its limit cycle

To explore the dynamic behavior of the system and to show the properties

of the model with sinusoidal input signal, the integrate-and-fire model (Eq.

3.2.1) can be converted into an autonomous dynamic system, by introducing

two more variablesx andy from the periodicity of the input frequencies. Let

 x = C cos(2πFt)

y = C sin(2πFt)

Excluding the noise term, the ODE system equivalently becomes:


dv
dt

= −v(t)−Vrest

γ
+ C + x

dx
dt

= −2πFy

dy
dt

= 2πFx

(3.2.5)

Because of the periodicity inx andy, a solution can be regarded as a curve

winding on a cylinder:x2 + y2 = C2. The limit cycle (a trajectory in phase

space having the property that at least one other trajectory spirals into it as
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time approaches infinity) of this ODE system is not explicit. However, the

maximal and minimal values of the limit cycle can be solved analytically by

assuming that no threshold is applied to the neuron firing model, and the time

tends to infinity, where the solution (Eq. 3.2.3) will tend to be the limit cycle.

In this case, the exponential terms in Eq. 3.2.3 tend to zero, and the remaining

sinusoid terms remain oscillating:

v(t) = Cγ +
C (2πFγ2 sin(2πFt) + γ cos(2πFt))

(2πF )2γ2 + 1
.

According to the properties of the sinusoid formula, I can set

sin φ =
2πFγ2√

(2πFγ2)2 + γ2
, and cos φ =

γ√
(2πFγ2)2 + γ2

.

so that

limt→∞ v(t) = limt→∞ Cγ +
C(2πFγ2 sin(2πFt)+γ cos(2πFt))

(2πF )2γ2+1

= limt→∞ Cγ + Cγ cos(2πFt−φ)√
(2πF )2γ2+1

.

Sincecos(2πFt − φ) ∈ [−1, 1], the two optimal points on the limit cycle

t →∞ can be found as

Cγ ± Cγ√
(2πF )2γ2 + 1

. (3.2.6)

From the above equation, it is not hard to see that the difference between the

maximal and minimal values of limit cycle becomes smaller and smaller ifF
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becomes bigger and bigger. In other words, the degree of tilt of the limit cycle

decreases asF increases (Fig. 3.5).

Recurrent excitatory network neurons

In a neural network of sizeN , we assume that neuroni is connected to

neuronj by a connection weightwi,j (drawn randomly from a standard nor-

mal distribution),i, j = 1, . . . , N , andwi,i = 0 (see Fig. 3.6A for an illustra-

tion of the network structure). Assume that theith neuron generates a spike

at timeti,p, 1 ≤ p ≤ ki, whereki is the number of spikes that theith neuron

generated within a certain time. Theith neuron receives the sensory synaptic

current inputIi,syn(t) and local synaptic input from the otherN − 1 neurons.

The behavior of the membrane potentialvi(t) of the ith neuron at timet is

then given by

dvi(t) = −vi(t)− Vrest

γ
dt + dIi,syn(t) + dt

N∑
j=1,j 6=i

∑
tip<tjq<t

wj,iδ(t− tjq).

When neuroni fires, it induces synaptic current in its connected neurons in

the network, and their membrane potential will either increase or decrease in

proportion to the synaptic connection weight, depending on the type of the

synaptic input (EPSP, IPSP).
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Higher hierarchy neuron (comparison neuron)

Because in the nervous system, neural signals are transmitted from lower

levels to higher levels, it is possible that higher hierarchy neurons exist whose

function is to integrate the outputs of all neurons with opposite spiking pat-

terns to enhance the gain of encoding. We refer to this higher order neuron

as a comparison neuron. The comparison neuron has the same parameter val-

ues as other neurons, except that it takes the output spike trains of the neural

network as inputs (Fig. 3.7B). The membrane potential behavior of the com-

parison neuron at timet is

dvc(t) = −vc(t)− Vc,rest

γc

dt

+ dt

 n∑
j=1,j 6=i

∑
tip<tjq<t

winc,j,iδ(t− tjq)−
m∑

l=1,l 6=k

∑
tkr<tls<t

wdec,l,kδ(t− tls)

 .

When neurons from the pool (of sizem) of decreasing-rate neurons fires, it

generates IPSPs in the comparison neuron, while the increasing-rate pool (of

sizen) excites the membrane potential of the comparison neuron, in propor-

tion to their connection weights.
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3.3 Results

3.3.1 Experiment

We carried out experiments to record from neurons in acutely-isolated

slices of somatosensory cortex of the rat. Although in these conditions, the

normal peripheral afferent pathways are of course removed, the intrinsic spike-

generating properties of neurons are believed to be largely intact, and can be

investigated under controlled conditions. Regular-spiking neurons were se-

lected by their pyramidal appearance and their membrane potential responses

to constant step current stimuli (Fig. 3.1A). 113 sets of stable recordings

suitable for analysis in different conditions of stimulus amplitude, offset and

frequency in 11 neurons were obtained. Of these, 21 out of 113 recordings

showed an increasing firing rate as the input frequency increased from 10 Hz

to 50 Hz, 28 recordings showed a decreasing firing rate with respect to the

stimulus frequency, and the remaining 64 recordings showed no significant

changes of firing rate as input frequency was varied. The averaged response

rates of each category of firing pattern as a function of input frequency are

plotted in Fig. 3.1B (mean± STD). We found that when the stimulus off-

set was relatively small in comparison to the neuronal input conductance (see

Methods), some neurons were able to fire at low frequency but decreased their

response rate as the stimulus frequency increased (Fig. 3.1B, blue line). In

other recordings, neurons fired in proportion to the stimulus frequency, with a

positive slope, when the stimulus offset was relatively high (Fig. 3.1B, green
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Fig. 3.1: Experimental result. (A) Infrared differential interference contrast photograph of a whole-cell 
patch-clamp recording from a regular-spiking pyramidal neuron: stimulation and recording are carried 
out through the pipette on the soma. Below: recorded membrane potential (black) filtered with a Gaussian 
digital filter when injected constant current (pink) is 300 pA (left) and -100pA (right). (B) Average tuning 
curves of neurons when the offset values of the injected simuli varies. The output spiking rate is a 
decreasing function of the input frequency (blue) when stimuli were of relatively small offset magnitude, 
and the neuron’s firing rate was steady (red) or even increasing (green) for stimuli with larger offset. 
(C) Membrane potential with sinusoidal current injection (pink) of different frequencies of 10, 30 and 
50 Hz, respectively (blue: decreasing, red: flat, and green: increasing). 



Chapter 3: Temporal Frequency Discrimination 46

line). A pattern in which firing rate remained constant as for stimulus fre-

quency varied was commonly observed as well (Fig. 3.1B, red line). Fig.

3.1C shows examples of the recorded membrane voltage in different types of

response patterns at 10 Hz, 30 Hz and 50 Hz stimulus frequencies. In some

cases, individual neurons could shift from a decreasing pattern of response

(with increasing stimulus frequency) at low stimulus offset amplitude, to an

increasing pattern, at higher offset amplitude. This undoubtedly reflects the

relationship between the threshold, the timescale of subthreshold leaky inte-

gration, and stimulus offset amplitude, which is clearly an important feature

for determining the type of response. Such a shift in response pattern may not

be physiologically significant, if the sensory synaptic input is in a restricted

range of amplitudes.

3.3.2 Single neuron simulation

We used an integrate-and-fire model for the simulation, studying the neu-

ronal responses to the deterministic and stochastic (Poisson noise) oscillatory

current stimuli. Every simulation was run 1000 times for the stochastic Pois-

son inputs. The simulation time for each neuron was 1000 ms. The modelling

parameter values areVθ = 20 mV, Vrest = 0 mV, andNs = 100, unless oth-

erwise specified. We choose parameter values in agreement with our experi-

mental data from the single cell recordings and with data from the literature

(Keener, Hoppensteadt et al. 1981; Feng and Brown 2004).
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Constant efferent firing rate

The LIF model had a constant firing rate when the parameters satisfied

Cγ > Vθ, whereC = aNs/2. With the parametersγ = 20 ms,a = 20.5 Hz,

and the refractory periodtref = 5 ms, the firing rate was essentially invariant

with respect to the input frequency, no matter if noise is applied in the model

(Fig. 3.2A, purple) or not (Fig. 3.2A, black), consistent with the biological

data (Fig. 3.1B, red line). Although the tuning curve for spike rate showed a

local peak at around 20 Hz (compare to fluctuations in the flat experimental

response pattern, Fig. 3.1B), this is smoothed when Poisson noise is added.

Membrane potential responses of are plotted in Fig. 3.2B for three different

input frequency valuesF = 10 (top),30 (middle), and50 (bottom) Hz, and for

both deterministic and noisy input. A constant efferent firing rate means that

no information about the temporal input frequency F is contained in the output

firing rate. Hence, by reading the efferent firing rate alone, it is impossible to

perform discrimination tasks between various input frequencies, for this kind

of response pattern.

One hypothesis to explain this phenomenon is that the model averages

out the information in time domain. This was proposed by Feng and Brown

(2004) to explain why the integrate-and-fire model neuron is insensitive to the

input temporal frequency in the. They examined low input rates varying from

1 to 10 Hz, and found that the output firing rate remained a constant. When
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Fig. 3.2: Simulation results for single neurons with flat output firing rates. (A) Tuning curve of 
a simulated neuron with parameter values: a = 20.5, γ = 20 ms, and tref = 5 ms, with (pink) or 
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at F = 0 Hz, the resting output firing rate remains constant when F is close to zero.
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F is high, the firing rate of the neuron model is given by

λ(t) =
a

2
lim

T→∞

[
1 +

∫ T

0

cos(2πFt)

T
dt

]
=

a

2
.

This finding is reproduced here in Fig. 3.2C. Another interesting phe-

nomenon is that there is a sudden decrement in the value of efferent firing

rates fromF = 0 to F > 0 (Fig. 3.2C), which means that the integrate-

and-fire model can easily detect whether there or not an oscillating signal is

present, but cannot tell how fast the period of the signal is.

Decreasing efferent firing rate

WhenCγ < Vθ, the neuronal efferent firing rate is a decreasing function

of the stimulus frequency (Fig. 3.3A). The parameter values used here are

γ = 20 ms,a = 16.8 andtref = 1 ms. The neuron stops firing when the input

frequency reaches the critical valueF ∗ = 41 Hz (Eq. 3.2.4 for detailed calcu-

lation). Membrane potential responses and input synaptic current are shown

in Fig. 3.3B at three different frequencies (F = 10 (top),30 (middle), and50

(bottom) Hz), for deterministic and stochastic input. This clearly illustrates

that firing rate decreases with increasing input frequency.

To further elucidate the cause of this decreasing relationship, we plotted

neuronal response rate at three different stimulus amplitudesa (16.8, 15 and

14) for deterministic input (Fig. 3.3C, top) and stochastic input (Fig. 3.3C,

bottom). Before the neuron’s firing is quenched (whenF > F ∗), even though
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the output firing rate is increasing over some segments of the input range (due

to the phase locking under this parameter region, see the following section

for a detailed explanation), its overall trend is decreasing. When Poisson

noise is added, the relationship is smoothed, giving an almost monotonically

decreasing trend.

Increasing efferent firing rate

To generate an increasing spiking rate with respect to the stimulus fre-

quency, a subthreshold intrinsic oscillationk(cos(2πω0t) + 1) is added to the

model, wherek andω0 are constant. The peak response rate is reached at the

value where the input frequencyF fully resonates with the intrinsic neuronal

frequencyω0. Neglecting the noise term in the system, the model is fully

defined by


dv
dt

= −v(t)−Vrest

γ
+ dIsyn(t)

dt
+ k(cos(2πω0t) + 1)

v(0) = Vrest

Whenγ = 9 ms,a = 10, tref = 5 ms andk = 1.5, the efferent firing rate

is an increasing function of the temporal input frequencyF . The maximal

response rate is reached atF = ω0 = 50 Hz (Fig. 3.4A, black). When the

Poisson noise is presented, the tuning curve becomes smoothly monotonically

linearly increasing (Fig. 3.4A, purple). Fig. 3.4B illustrates the membrane

potential trajectories for different frequency values (F = 10, 30, 50 Hz).

The goal of our mathematical modelling is to seek a simplest or minimal
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mechanism to mimic the three response patterns shown by biological neurons,

rather than giving a detailed biophysical model of spike generation. The sim-

plest LIF model without any modification is capable of generating constant

and decreasing firing patterns in terms of input frequency. However, in order

to make the spiking rate an increasing function of input frequency, the min-

imal addition to the model is to include an intrinsic oscillation, where firing

increases up to a peak value when the external frequency resonates with the

intrinsic oscillatory frequency.

3.3.3 Mechanism of various spiking patterns

We next analyze the underlying mechanism of these three different re-

sponse patterns. The reason for these distinct patterns can be understood in

the relative location of the limit cycle of the neuronal dynamics, defined by

the sinusoidal input and the ”integrate” part of the integrate-and-fire model

(in the absence of the spiking mechanism), and the threshold (Fig. 3.5). A

limit cycle is obtained when there is no threshold operation applied to the

membrane potential, so that the three-dimensional dynamical system of the

membrane potential is attracted to its stable trajectory (Eq. 3.2.5).

Mechanism for constant firing pattern

When the limit cycle is located totally above or below the threshold, the

output firing rates are all constant. In fact, when the limit cycle is below the

value of the threshold, the neuron’s firing rate would be zero. This is because

when the membrane potential reaches the limit cycle, it will stay there forever,
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never crossing threshold. If the limit cycle lies above the threshold, the output

firing rate is roughly constant. This is the case for flat efferent firing rate

(γ = 20.5 ms). The limit circle is located above the threshold (Fig. 3.5 left

column), and consequently, the membrane potentialv(t) reaches the threshold

before it reaches the limit circle and is then reset to the initial value. Thus, the

input frequencyF cannot influence the system’s firing rate much. As a result,

whenever the limit cycle is located completely below or above the threshold,

the output firing rate is constant (zero for subthreshold case) and does not

contain any information about the input frequency. An additional point is that

the limit cycle is more tilted for small values ofF (= 10 Hz) than for big

values (50 Hz) (see Fig. 3.5 left column for detailed analysis).

Mechanism for decreasing firing pattern

When the limit circle intersects with the threshold (Fig. 3.5, middle col-

umn), the output spiking rate decreases until the input frequencyF increases

to the critical frequencyF ∗, when the firing rate becomes zero. This pattern

occurs because the limit cycle becomes flatter asF goes up, causing slower

spiking, but eventually comes to lie completely below the threshold, where-

upon the neuron stops firing.

An alternative explanation for the constant and decreasing output firing

rate versus input frequency comes from the view of phase mapping, the map-

ping from phase of forcing at one firing time to the next (Keener et al., 1981).

Keener et al (1981) classified the LIF neuron responses to oscillatory input

into three parameter regions for different dynamical properties:
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1. Phase locking for a subsetT of parameter values, and ergodic behavior

on its complement, wheremeas(TC) 6= 0.

2. Phase locking for almost all parameter values and aperiodic behavior

otherwise (meas(TC) = 0)

3. Quenching, where firing eventually stops.

Here, meas(·) refers to the measure of a set, andTC denote the complemen-

tary of setT . The parameter values used in our model fall into region 2

(piecewise phase locking) and region 3 (firing termination) in Keener’s paper.

When Poisson noise is presented, the fluctuation of piece-wise phase locking

pattern in neuronal firing rate is smoothed out and the response curves have a

consistently flat or decreasing trend versus the input frequency.

The dimensionless version of integrate-and-fire model proposed in their

paper is

du

dτ
= −σu + S(1 + B cos τ),

andu(τ+) = 0 if u(τ) = 1. The parameters used in their model correspond

to our model in this way



σ = 1
2πFγ

F = aNs/2
2πFVθ

τ = 2πFt

B = 1
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Hence, our suprathreshold case whereCγ > Vθ that having a constant output

firing rate corresponds exactly to the parameter region 2 (S > σ) in their

paper, where the circle mappingτN+1 = f(τN) is a piecewise monotonic

function and phase locked almost everywhere except parameter values on a

set of measure zero. WhenS < σ andB >
(

σ
S
− 1
)
·
√

σ2+1
σ

, (which is the

same asF < F ∗ in our model), where phase locking occurs for all parameters

except on a set of measure zero; whenS < σ andB < (σ/S − 1) ·
√

σ2+1
σ

(which isF > F ∗), the firing process terminates.

Mechanism for increasing firing pattern

Introducing an intrinsic oscillation in the neuron model is necessary to

generate an increasing output spiking pattern as input frequency increases.

The right column of Fig. 3.5 shows the limit cycle with an intrinsic oscillation

term (at 50 Hz) at input frequencyF = 10 andF = 50 Hz. The threshold

value lies between the maximum and minimum values on the limit cycle.

3.3.4 Gain enhancement

Network neurons

Even though the single neuron is sophisticated enough to generate differ-

ent patterns of firing rate with various input frequencies, a population of neu-

rons connected with each other in a network can perform much better than

single neuron. We assume that neurons in the network are identical, receive

the same input, and are connected with each other by excitatory synapses
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(Yoshimura, Dantzker et al. 2005). The LIF parameters used in the network

neurons are the same as for single neurons, and their connection weights are

assigned randomly from a standard normal distribution. The simulation re-

sults showed that a neural network’s spiking rates at different input frequen-

cies were more distinguishable than that of a single neuron. Fig. 3.6 shows the

decreasing and increasing firing rate patterns of the integrate-and-fire model

network with random connection weights of various sizes (N = 1, 25, and

40 for decreasing responses;N = 1 and 10 for increasing responses). It

can be seen that the discrimination ability of the network is better than that

of a single neuron since the difference of spike rates between two frequen-

cies in neural network is much bigger than for a single neuron, for networks

of both decreasing and increasing response patterns. Neural networks with

non-identical neurons whose threshold values varies (Vθ uniformly distributed

within range[19.5, 20.5] mV) were also simulated, to test for the robustness

of the network model, and no significant differences were found compared to

identical-neuron networks (data not shown).

Comparison neuron

What is the biological function of these different, opposed neural tunings,

especially the opposite tuning in the cortex? In experiments on electric fish

(Vonderemde and Bleckmann 1992; Vonderemde and Bell 1994; Goenechea

and von der Emde 2004), opposite types (increasing and decreasing) of fre-

quency responses of electroreceptor cells in the lateral line organs have also
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been observed, and it was shown that electric fish recognize objects by cen-

trally comparing the responses from these two different types of receptor cells.

Following this idea for the biological advantage of the heterogeneous spik-

ing patterns in the neuronal population (Romo, Hernandez et al. 2003), we

consider a comparison neuron which integrates the activity of multiple types

of unit (increasing and decreasing, Fig. 3.7B), further enhancing the gain of

encoding of input frequencies via the differences in spike rate amongst in-

creasing and decreasing response types.

Fig. 3.7A shows how the gain of comparison neuron exceeds any of the

previous cases (single neuron and network neurons). The gain here is defined

as the ratio between the output rate differences∆Fout over the input frequency

differences∆Fin. The structure of the network is illustrated in Fig. 3.7B,

with the increasing rate neural network exciting the comparison neuron and

the decreasing rate neural network inhibiting the comparison neuron. Fig.

3.7C shows raster plots of the comparison neuron response in each trial when

the input frequency is 10 Hz (left ) and 50 Hz (right).

3.4 Discussion

We measured experimentally the discrimination ability of single somatosen-

sory neuronsin vitro for temporal input frequency, in terms of their mean re-

sponse rate. The LIF model was used to reproduce the results by simulation,

allowing us to propose a simple underlying mechanism of the various patterns
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input frequencies were applied to two mutually independent neural populations, with one 
population showing an increasing firing pattern, and the other a decreasing firing pattern. 
The network with increasing firing rate generates excitatory synaptic current to another individual 
neuron called “comparison neuron”, while decreasing neural network generates inhibitory synaptic 
input to the comparison neuron. The comparison neuron is also in form of an integrate-and-fire 
model and has a refractory period of 1 ms. (C) Raster plot for the comparison neuron over 100 trials 
with input frequency F = 10 Hz (left) and F = 50 Hz (right). 
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of neuronal responses. We illustrated a possible function for these heteroge-

neous spiking patterns, by considering a comparison neuron which integrates

the activity of multiple types of unit (increasing and decreasing), which fur-

ther increases the gain of input information. Our work sheds light on the

possible cellular and network mechanisms for this heterogeneous frequency

tuning of somatosensory cortical neurons.

3.4.1 Experimental responses

In (Salinas, Hernandez et al. 2000; Romo, Hernandez et al. 2003), it was

found that some neurons in the somatosensory S2 area have a lower firing rate

(around 20 Hz) for high-frequency stimuli compared to the strong responses

(around 40 Hz) they show to the low-frequency stimulus, but high stimulus

frequencies did not completely stop the neurons from firing. However, in

the present experiments, we observed a progressive reduction in firing rate

with increasing input frequency, and in many instances, quenching of firing at

relative high frequency. This dissimilarity might be from the differences be-

tweenin vitro andin vivo conditions, affecting the intrinsic spike-generating

dynamics of neurons, but could also reflect receptor and synaptic adaptation,

and locally-recruited cortical inhibition.

Nevertheless, the quenching of firing observed experimentally is consis-

tent with the behaviour of the LIF neuronal model. Experimentally, neurons

decreased their firing rate versus the input frequency only when the injected

current offset was close to the minimal feasible range of stimuli, for which
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generation of spikes was guaranteed. This minimal feasible range of stimuli

of real neurons corresponds to the mathematical explanation of intersection

(see Fig. 3.5, middle column for details) between the threshold value and the

limit cycle of the dynamics. Biological neurons appeared to have a constant

or increasing response versus input frequency when the oscillatory stimulus

offset is in the middle range of the feasible stimuli intensity, and this is con-

sistent with our model parameter region as well.

To compare how accurately experimental and modelled neuronal responses

encode stimulus frequency, we compare them using neurometric performance

curves, as shown in Fig. 3.8. A detailed description of the generation of

neurometric curves can be found in (Romo, Hernandez et al. 2003). In Fig.

3.8, neurometric curves were generated by plotting the percentage of each

recorded data at different comparison stimulus frequencies (F = 10, 20, 30, 40

and50 Hz) in which the comparison frequencies was called higher than the

base frequency fixed at 30 Hz (because it is the middle point of the stimulus

frequency range), as a function of the comparison frequency. Points near0%

or 100%, where the base frequency and comparison frequency are very differ-

ent, correspond to easy discriminations, whereas points near50% correspond

to difficult discriminations. Both for the increasing and decreasing neural re-

sponses, the neurometric functions of the modeling were considerably better

than the experimental data.
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Fig. 3.8: Neurometric functions for the increasing and decreasing responses of the experimental 
recordings and the mathematical models. Left: For neuronal response with a positive slope. 
Continuous curves are sigmoidal fits (χ2, p < 0.001) to the data points for the five comparison 
stimulus frequencies (10, 20, 30, 40 and 50 Hz) paired with reference stimulus frequency fixed 
at 30 Hz. y axis is equivalent to the probability that the comparison frequencies is judged higher 
than the reference frequency (30 Hz). Gray line is neurometric function of experimental data; 
black line is of modeling data. Right: Same format as panel on the left, but for neuronal 
responses with a negative slope.



Chapter 3: Temporal Frequency Discrimination 58

3.4.2 Intrinsic oscillations in increasing response patterns

An intrinsic oscillation in the frequency range of 40 to 50 Hz of pyrami-

dal neurons, as is predicted to be required by the model to generate increasing

responses, has not been clearly described in the literature. However, it should

be pointed out that what is predicted is not necessarily a detectable subthresh-

old oscillation of membrane potential, but an intrinsic oscillation within the

suprathreshold spiking dynamics which interacts with and resonates with an

”integrate-and-fire” like component of the dynamics. A strong candidate for

this would be recruitment of the local fast-spiking inhibitory interneuron net-

work, and its feedback on the recorded pyramidal neuron (Galarreta and Hes-

trin 1999; Gibson, Beierlein et al. 1999; Cardin, Carlen et al. 2009). Thus,

it would be of interest in further studies to characterize input frequency re-

sponses in the presence of synaptic blockers of glutamate and GABA recep-

tors to disconnect this component of the network.

3.4.3 Biological function

In the nervous system, encoding and decoding is accomplished at a system

level rather than at a single neuron level. Network neurons gain an advantage

in generating more distinguishable efferent spike rates at different input fre-

quency levels, by the connectivity of the neurons in the network: one neuron’s

action potential will contribute to other neurons’ membrane potential in pro-

portion to the connection weight. As a result, the output firing rate of the
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whole neural network is boosted by positive feedback over the output rate of

an individual neuron. In (Romo, Hernandez et al. 2003), it is shown that

cortical networks can enhance the neural representation of features from the

complementary populations with positive and negative responses slopes as a

possible coding strategy. In our model, the maximal gain is about 0.3 for a

single neuron and network neurons, while the comparison neuron is able to

boost the gain up to around 0.7 by integrating the information from networks

of opposing types of neurons (increasing and decreasing), making a discrimi-

nation task much easier to perform.

3.4.4 Other possible neural models

The leaky integrate-and-fire model is not the only model that is able to de-

code the input frequency from its efferent firing rate, although using LIF alone

we can account for many biological phenomena, see for example (Rossoni,

Feng et al. 2008). One of the other possible forms is the quadratic integrate-

and-fire model (Burkitt 2006) that we have found can make the output firing

rate a decreasing function of the input frequency (data not shown). The prin-

ciple is similar to what we analyzed in the leaky integrate-and-fire neuron.

A more biophysically-realistic neuron model is the Hodgkin-Huxley (HH)

model (Brown, Feng et al. 1999). According to Feng and Brown (2001), the

tuning curve has two maximum points and one minimum point, but it is not

possible to uniquely read out the input temporal frequency (Feng and Brown

2004). The reason why the Hodgkin-Huxley model is able to generate an in-
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creasing pattern at low input frequencies is believed to be that the HH model

itself contains an intrinsic subthreshold oscillation with a defined frequency,

which makes it possible to generate two peaks at 60 Hz and 120 Hz, respec-

tively, for the standard Hodgkin-Huxley model (refer to the Appendix of Feng

and Brown (2004) for detailed equations and parameters).

3.5 Final Remark

In the current study, we have also tested if single neurons and network

neurons can discriminate input stimulus frequencies following Weber’s law1.

However, by examining the number of spikes of neurons generated at a certain

time alone does not give the behavior described by this psychophysical law,

and we realized that it is not only the mean spike rate, but also the variability

of the spike rate that matter. Hence, we propose a question to ourselves: under

what condition the mean and the variance of the neuronal spike rate must

follow, that the Weber’s law can be satisfied on neuronal level? This leads

to our study at the next chapter–link between psychophysical and neuronal

responses.

1Weber’s law is one of the mostly accepted psychophysical law, describing the relation
between the just noticeable difference and the reference stimulus intensity. The detailed
description of this law is presented in the next chapter
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Link between Psychophysical and

Neural Responses

In the previous chapter, we discussed how theneuronsrespond to a series

of stimuli of the same properties (e.g. frequency), while in psychophysical

studies, people are studying the correlation between humanperceptionand

environmentalstimuli. Therefore, it would be interesting to study the relation

between theneuronalresponse and thepsychophysicalbehavior in the pres-

ence of the same stimuli. In this chapter, I propose a quantitative link between

neural activities and perceptual responses.

63



Chapter 4: Link between Psychophysical and Neural Responses 64

4.1 Introduction

It is of little doubt that there exists a relation between the exquisite psy-

chophysical sensitivity of human and animal observers and the sensitivity of

individual cortical neurons. The transformation between sensory cortical neu-

rons signals and the perceptual responses remains unclear, despite the fact that

the link between the neuronal activity and psychophysical judgment of sen-

sory processing has been intensively studied by many researchers (Shadlen

and Newsome, 1994; Sawamura et al., 2002). The idea of quantitatively re-

lating cortical neuronal activities to sensory experiences was first proposed

by Werner and Mountcastle (Werner and Mountcastle, 1963), who enunciated

some fundamental principles for the analysis of neuronal discharge in a psy-

chophysical context. Weber’s law (also called Weber-Fechner law) (Fechner

et al., 1966), one of the classical psychophysical laws, states that the ratio

between the just noticeable differences (JNDs) in stimulus intensity (∆I) and

the reference stimulus intensity (I) is a constantk (Weber’s constant), i.e.,

∆I/I = k . This phenomenon has been observed in a wide range of mod-

erately intense stimuli experiments in sensory perception in terms of weights

(Fechner et al., 1966), pure tones (Gescheider et al., 1990), light intensities

(Wald, 1945), sizes (Smeets and Brenner, 2008), texture roughness (Johnson

et al., 2002), numbers (Dehaene, 2003) and etc., but there still lacks of a link

between this psychophysical property and neuronal activity.

Weber’s law describes the relationship only between the stimulus intensity
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and psychophysical behavior, so the challenge to study this law in neuronal

level is how to characterize the unclear intermediate connections of stimulus-

neuronal and neuronal-psychophysical responses. In most biophysical and

psychophysical experiments, the relation of neural response rate and input

stimulus intensity generally follows a nonlinear sigmoid function. The mid-

dle range of a sigmoid function is asymptotically a straight line reflecting the

linear relation between neural firing and the stimulus intensity. Starting from

the analysis on the simplest linear case of the input-output relation between

the stimulus intensity and neuronal response rate, we further extend our anal-

ysis on the nonlinear input-output relation (sigmoid function). Under Weber’s

law, it is found that for both linear and nonlinear relations of input stimulus

and output neuronal responses, the final results are similar in terms of the

neuronal spiking process. For a more biological realistic setup on neuronal

input-output relation, we also investigate the neuronal spike train properties

in spiking network model when Weber’s law holds. Therefore, we can estab-

lish the intermediate link between the psychophysical law (Weber’s law) and

neuronal spike train statistics.

On neuronal level, the cortical cells exhibit tremendous variability in terms

of their discharges at the repeated presentations of an identical stimulus over

large regions of the cerebral cortex (Shadlen and Newsome, 1998), thalamus

(Kara et al., 2000) and hippocampus (Fenton and Muller, 1998). Neuronal

spike trains are regarded as random process and thus can be characterized by

corresponding statistics. Spike rate is one of the most commonly used statis-
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tics. Another statistic is the spiking time, and it is usually expressed in terms

of the dimensionless coefficient of variation of interspike interval (CVISI, the

ratio of the standard deviation (STD) to the mean of the ISI distribution), a

measurement of dispersion widely used by experimentalists to determine the

degree of variability of neuronal discharge. The range ofCVISI of cortical

neurons of extracellular recordingin vivo has been reported to be from0.5 to

1 through a series of experiments in monkey primary visual cortex (Knierim

and Vanessen, 1992), middle temporal visual cortex (Newsome et al., 1989;

Shadlen and Newsome, 1998), and inferotemporal cortex (Douglas and Mar-

tin, 1991). The spike train may be more variable than a Poisson process when

non-stationary stimulus is presented (Hirase et al., 1998). The idea of renewal

theory (Tuckwell, 1989) is employed here to link the statistics of spike rate

and spike interval. This theory enables us to express Weber’s law in terms of

the irregularity of the interspike interval (CVISI).

I theoretically derived a relationship between the mean (µ) and the stan-

dard deviation (σ) of the neuronal spike rate when Weber’s law holds, and

expressed the relation in terms of the dispersion of interspike intervals which

requireCVISI ∈ [0.5, 1]. Started from single neurons, I studied the indepen-

dent and correlated superimposed population neuronal discharge patterns, as

well as competition attractor network neurons. The competitive attractor neu-

ral network also indicates that the neuronal interspike internal should be more

regular than a Poisson process in the winning pool so that Weber’s law holds.

This work links Weber’s law with neural firing property quantitatively: We-
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ber’s law indicates the variability of neuronal spike train; meanwhile given a

series of spike train data stimulated at different intensities, we can determine

whether this psychophysical law is satisfied. This study sheds light on the

relation between the psychophysical behavior and neuronal responses.

4.2 Methods

4.2.1 Single neurons activities under Weber’s law

Single neural firing rate statistics

Applying a constant stimulusI to a single neuron repeatedly, the neuron

will fire at mean rateµ with varianceσ2 over a certain time. If the increment

of input stimulus intensity∆I is just noticeable, the mean output firing ratesµ

andµ + ∆µ should be statistically discriminable under some criterionε. We

firstly assume the linear relation between the input stimulus intensityI and

the mean output firing rateµ (spikes/sec), as linearity of input-output relation

between stimulus intensity and neuronal response rate is widely accepted and

intensively used in simulation modeling (Holt and Koch, 1997), and also sup-

ported by experiments (Leng et al., 2001; Enoki et al., 2002; Johnson et al.,

2002). Therefore,

µ = aI,
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wherea is the scale, and

∆µ

µ
=

a∆I

aI
=

∆I

I
= k (4.2.1)

wherek is the Weber’s constant.

Discriminant x0

Discriminantx0 for two Normal distributions

Assume we have two neural firing rate distributions with different means

and variances (µ1, σ2
1) and (µ2, σ2

2), respectively. Without loss of generality,

assume thatµ1 < µ2, and thatµ1 andσ1 follows the same relation asµ2 and

σ2. First of all, we consider the case when the output firing rate of a neu-

ron follows Gaussian distribution at given constant input stimulus intensity.

For two Gaussian distributionsN(µ1, σ
2
1) andN(µ2, σ

2
2), let x0 be the linear

discriminant which minimizes the weighted classification errorγP1,2 + P2,1,

wherePi,j is the probability that a point from distributioni is classified by

x0 as being from classj, andγ is the weight. Here, only two classes will be

considered, soi, j = 1, 2.

Hence, the weighted classification error for Normal distribution will be

given by

1

2
γerfc

(
x0 − µ1√

2σ2

)
+

1

2
erfc

(
µ2 − x0√

2σ1

)
, (4.2.2)
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whereerfc(·) is the complementary error function

erfc(x) =
2√
π

∫ ∞

x

exp
(
−t2
)
dt.

The linear discriminantx0 which minimize Eq. (4.2.2) will occur when its

derivative with respect tox0 become zero, which yields

γ
1√
2πσ2

1

exp

(
−(x0 − µ1)

2

2σ2
1

)
− 1√

2πσ2
2

exp

(
−(x0 − µ2)

2

2σ2
2

)
= 0,

after rearranging, this gives

(x0 − µ1)
2

σ2
1

− (x0 − µ2)
2

σ2
2

= ln

(
γ2σ2

2

σ2
1

)
.

Choosingγ = σ1/σ2 simply implies one of the possible discriminant

x0 =
σ2

σ1 + σ2

µ1 +
σ1

σ1 + σ2

µ2,

and this is the discriminantx0 we use in this section.

Discriminantx0 for any distributions

Furthermore, this discriminantx0 can be used inanydistribution to obtain

the minimal misclassification rate, even if only the mean and variance are

known for that particular distribution. The detailed explanation is presented

as follows by showing this discriminantx0 being able to minimize the worst

possible error.
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Cooke and Peake (Cooke and Peake, 2002) showed the probability density

function of distribution having meanµ and varianceσ2 that maximizethe

classification error of the discriminatorx0 is of the form

f(x) =
σ2

σ2 + (x0 − µ)2
δ(x− c+) +

(x0 − µ)2

σ2 + (x0 − µ)2
δ

(
x− µ +

σ2

x0 − µ

)
,

whereδ is the Dirac delta function, whilec+ is defined to be a number in-

finitesimally larger thanx0. As a result, the worst possible weighted classifi-

cation errorγP1,2 + P2,1 will be

γ
(x0 − µ1)

2

σ2
1 + (x0 − µ1)2

+
(x0 − µ2)

2

σ2
2 + (x0 − µ2)2

.

Minimizing this by setting the derivative with respect tox0 to zero provides

γ
(x0 − µ1)σ

2
1

(σ2
1 + (x0 − µ1)2)

2 +
(x0 − µ2)σ

2
2

(σ2
2 + (x0 − µ2)2)

2 = 0. (4.2.3)

One can easily check that

x0 =
σ2

σ1 + σ2

µ1 +
σ1

σ1 + σ2

µ2

is a solution of Eq. (4.2.3) when the weightγ = σ1/σ2.

Therefore,x0 can be the discriminator that minimizes the misclassification

rateε for any two distributions with known (µ1, σ
2
1) and (µ2, σ

2
2).
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Misclassification rate

To begin with a simple situation, we assume that the neuronal spiking rate

of single neuron follows Normal distribution with parametersµ andσ2. Thus

the misclassification rate is

ε =
1

2

(
1 + erf

(
x0 − µ2√

2σ2

))
+

1

2

(
1− erf

(
x0 − µ1√

2σ1

))

for two Normal distributionsN(µ1, σ
2
1) andN(µ2, σ

2
2). Then we have

erf(x2)− erf(x1) = 2(ε− 1),

where

x1 =
x0 − µ1√

2σ1

andx2 =
x0 − µ2√

2σ2

.

By substitutingx0 into x1 andx2, we havex1 = −x2, and since the error

function is odd function, we have

erf(x2) = ε− 1.

Derivation of error function approximation

The error function is defined as

erf(x) =
2√
π

∫ x

0

exp
(
−x2

)
dx.
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We rewrite the integral
∫ x

0
exp(−x2)dx as

√(∫ x

0

exp(−x2)dx

)(∫ y

0

exp(−y2)dy

)
,

and represent it as a surface integral

√∫ x

0

∫ y

0

exp (−(x2 + y2)) dydx.

In polar coordinate, we havex2 +y2 = r2 anddxdy = rdrdθ, and the integral

above becomes

√∫ π/2

0

dθ

∫ r

0

exp (−r2) rdr =

√
π

4
(1− exp(−r2)). (4.2.4)

Note that the surface integrals inx-y plane andr-θ plane must be equal. Re-

placingy by x gives

Ax,y = Ax,x = x2 = Ar,θ =
πr2

4
,

and this is the approximation. Substitutingr = 2√
π
x to Eq. (4.2.4) and multi-

ply the scale 2√
π
, the error function finally becomes

erf(x) ≈

√√√√1− exp

(
−
(

2x√
π

)2
)

. (4.2.5)
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Note that although areasAx,y andAr,θ have the same numerical values, geo-

metrically they differ. It is known fact that the difference of integral
∫ x

0
exp(−x2)dx

evaluated in polar coordinate and Euclidean coordinate vanishes at the limit

whenx → 0 andx →∞. When the integral is evaluated in finite value ofx,

there exists a small but acceptable difference with maximal0.787% difference

atx = 1.169.

σ-µ relationship

From the approximation of the error function Eq. (4.2.5), we can work out

the relation between the means (µ1, µ2) and variances (σ2
1, σ

2
2) of the two dis-

tributions to be discriminated. After simple calculation, the relation between

µ1, µ2, σ1 andσ2 becomes

µ2 − µ1 = C(σ1 + σ2), (4.2.6)

where

C =

√
π

2
ln

(
1

1− (ε− 1)2

)
is a constant determined by the misclassification rateε under Normal distri-

bution.

Besides, relation (4.2.6) is true for any distributions under Weber’s law.

The reason is stated as follows.

It is stated earlier that for the worst possible probability density function

that maximize the classification error of discriminatorx0 gives a classification
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error (Cooke and Peake, 2002)

ε =
σ2

σ2 + (x0 − µ)2
.

If we have two distributions with only known mean and variance(µ1, σ
2
1) and

(µ2, σ
2
2), the worst possible misclassification rate is

ε =
ε1 + ε2

2
=

σ2
1

σ2
1 + (x0 − µ1)2

+
σ2

2

σ2
2 + (x0 − µ2)2

.

Taking the form ofx0 given earlier, the equation above is simplified as (com-

pare with Eq.(4.2.6))

µ2 − µ1 = C ′(σ1 + σ2),

where

C ′ =

√
1

ε
− 1.

For this worst possible case, the relation of the mean and standard deviation is

still the same as that derived from the Normal distribution, but only the scale

term C ′ is of different expression. For this case, the errorε is the maximal

possible error for misclassification, soC ′ would not be much different fromC,

whose value is derived from the misclassification rate of Normal distribution

.

To derive the relation betweenσ andµ, assumeσ is a function ofµ, i.e.

σ = f(µ). Substituteσ1 = f(µ1) andσ2 = f(µ2) into Eq. (4.2.6), and apply
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the first order Taylor expansion on functionf at pointµ, we have

C (2f(µ) + f ′(µ)(µ1 + µ2 − 2µ)) = µ2 − µ1. (4.2.7)

From Weber’s law, the relation forµ1 andµ2 obeysµ2−µ1

µ1
= k. Substitute

µ2 = (k + 1)µ1 in Eq. (4.2.7) and letµ1 = µ, it yields

f ′(µ) +
2

kµ
f(µ)− 1

C
= 0.

When the neural response rate has a nonlinear relation with respect to

the input stimulus intensity (e.g. sigmoid function), the analysis is relatively

complicated but the theoretical solution can still be obtained (see Discussion

session for details).

4.2.2 Superposition process of population neurons

In neural system, discrimination task is not performed by single neurons,

but it is processed by a population of neurons interconnected with each. The

superposition process (or superimposed process)N(t) for population neurons

is defined as the total number of arrivals of spikes for all neurons that occur

up to timet:

N(t) =

p∑
i=1

Nt,i t ≥ 0,

whereNt,i is the spike count for theith neuron during the time interval[0, t].

Assume that each neuronal ISI in the population is identical and indepen-
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dently following Gamma distributionΓ(A, B). Even though the expression

of the density function of the superimposed ISIs is complicated (Cox and

Miller, 1965; Lawrance, 1973), the superimposed counting statistics (mean

and variance) in a small time windowW can be found theoretically.

Define the correlation among network neurons by the spike train correla-

tion between pair-wised cells spike countsni andnj over a sliding window of

lengthW :

ρW =
cov(ni, nj)√
var(ni)var(nj)

.

The superposition process of correlated spike trains of population neurons of

sizep over sliding windowW can be found as:

Y = µ +
1

p
· 11×pM

1
2 (X− µ)

whereY stands for the standard superimposed spike count and

X =



x1

x2

...

xp


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is the spike rate of each neuron in the network with

E(X) = µ1p×1 = µ

cov(X) = σ2Ip×p

(I is the identical matrix) andM is the correlation matrix of the form

M =



1 ρ . . . ρ

ρ 1 ρ
...

... ρ
... ρ

ρ . . . ρ 1


.

Therefore, the standard superimposed spike count rate is

E(Y ) = µ

var(Y ) = σ2

(
1 + (p− 1)ρ

p

)
.

If ρ = 0, this is independent superposition processY with E(Y ) = µ, and

var(Y ) = σ2/p.

4.2.3 Competition attractor network

The model of a competition based network for decision making was orig-

inally proposed by Brunel and Wang (Brunel and Wang, 2001) and further

studied by Deco and Rolls (Deco and Rolls, 2006). The task of the network is
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to make a decision between two possible alternatives, according to the char-

acteristics of a sensory input, by reaching one of two predetermined firing

states. A typical task is the comparison of two different stimuli, e.g. vibrotac-

tile stimulation frequency.

The network is composed of four pools of fully connected leaky integrate-

and-fire neurons, both excitatory and inhibitory. The pools are divided accord-

ing to the strength of the connections between the neurons (Fig. 4.7A). Each

pool receives external inputs in the form of excitatory spikes with a Poisson

distribution; the frequency of the inputs depends on the stimuli characteristic

to be compared. A decision is reached when one of two specialized excitatory

neurons pools (pool A or pool B) reaches a high frequency (30 to 60 Hz) firing

state, while the other is almost silent. Competition is made possible by a pool

of inhibitory neurons, which usually fire at about 20 Hz. Inhibitory pool sup-

presses the activity of one of the two specialized pools, while the nonspecific

pool is consisted of nonspecialized excitatory neurons which do not react to

the stimuli characteristics. More details on the network architecture can be

found in the supplementary material and Wang (Wang, 2002).

The network reaches a correct decision when the high-rate firing pool is

the one with the larger input frequency; otherwise the decision is considered

”wrong”. Deco and Rolls have shown (Deco and Rolls, 2006) that for a certain

input range the network follows Weber’s law, in the sense that the difference

between input frequencies required to achieve, over many trials, a certain suc-

cess rate (85% in this paper) is proportional to the amplitude of one of the two
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input frequencies.

We rebuilt the competition based neural network model (Fig. 4.7A) and

measured the value ofCVISI for each pool, verifying that Weber’s law holds

for our implementation of the model. The input (Fin) to one of the specialized

pools (say, pool A) is considered as the reference input (Fig. 4.7A), while the

reference input frequency∆Fin was chosen in a range that allows the network

not to be saturated by the inputs. The input frequencyFin − ∆Fin applied

to pool B is set between30% and 100% of the reference input frequency

(thus,∆Fin varied between0 and0.7Fin). For each pair of input frequencies,

200 simulations were run, and the success rate achieved for each pair was

recorded. A curve of the success rate versus∆Fin can be drawn for each

reference valueFin. By fitting the curve for each value ofFin, the∆Fin value

achieving a certain success rate can be found.

We then altered the input spike train so that Weber’s law does not hold for

the discrimination task, by applying a different input spike distribution. The

distribution of the interspike intervals was altered to be uniform between0

and twice the average interval, which is the reciprocal of the input frequency.

The rest of the network setup remains the same.
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4.3 Results

4.3.1 Weber’s law in firing rate

In the previous section, we have derived the relation between the mean

(µ) and standard deviation (σ = f(µ)) of the neuronal discharge rate from

Normal distribution when Weber’s law holds

f ′(µ) +
2

kµ
f(µ)− 1

C
= 0.

wherek is the Weber’s constant ranging from0.05 to 0.3 (Gescheider et al.,

1990) andC is a constant determined by the misclassification rateε. The

value of the misclassification criterionε (ranging from5% to 20%) is not

crucial to the final result.ε is fixed to be15% (Deco and Rolls, 2006) in this

section and as a resultC ≈ 1.4. The ordinary differential equation (4.2.7)

describes the relationship between the first two order statistics of the neuronal

firing rate. A general solution for this first order non-homogeneous ODE is

σ = f(µ) =
k

C(k + 2)
µ + µ−2/kc0 (4.3.1)

wherec0 is a constant determined by the initial condition. The second term

µ−2/kc0 in Eq. (4.3.1) can be neglected (sincek is much smaller than1, and

discharge rateµ is fixed within0 to 200 spikes/sec), so the standard deviation
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σ and the meanµ of the discharge rate have a linear relation.

σ =
k

C(k + 2)
µ (4.3.2)

We call Eq. (4.3.2)Weber’s Equation. On the one hand, Weber’s Equa-

tion is derived from Weber’s law; on the other hand, Weber’s law is satisfied

when the mean and standard deviation of the neuronal discharge rate obey

Weber’s Equation. Theoretical derivation can be found in method section.

Moreover, even though this linear relation betweenσ andµ in Weber’s Equa-

tion is derived from Normal distribution, this result can be generalized to any

distribution, even a distribution with only known mean and variance, by just

varying the expression of the scaling parameterC.

We firstly test Weber’s law on single neuron level, by examining the neu-

ronal firing rate and interspike intervals in the presence of various stimulus

intensities. The detailed simulation results are presented in the following ses-

sions.

4.3.2 Single neurons

A simulation for this normally distributed spiking rate with its meanµ

and STDσ satisfying Weber’s Equation is shown in Fig. 4.1A for different

values ofk. The simulated ratio of∆µ/µ is smaller than the given Weber

constantk (simulated slopes= 0.04, 0.07, 0.14 and0.22, respectively). This

smaller ratio can be caused by the truncation error at the higher order of the
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Taylor expansion and the approximation of the error function (see Method).

However, Weber’s law provides a perfect description of linearity between the

JNDs∆µ and reference firing intensityµ.

The relation between JNDs∆µ andµ is also shown when they do not fol-

low Weber’s Equation as counter examples. In Fig. 4.1B, when the standard

deviationσ of the Normal distribution is constant, and consequentially, the

JNDs∆µ is a constant value for any reference rateµ. The reason is that the

Normal distribution with different means but constant variance is just a shift

without changing its shape. Thus, for fixed misclassification rate (ε = 15%),

∆µ is always the same for discrimination. When the STD (σ) equals to the

square root of meanµ (σ = µ1/2, Fig. 4.1C), and in turn∆µ has a non-

linear relation with respect toµ (∆µ = 2Cµ√
µ−C/2

), the plausible range of

the scale parameter in Weber’s Equation (σ = bµ) is b ∈ [0.02, 0.1] (since

C ≈ 1.4 in Eq.(4.3.2)). If coefficient parameterb goes beyond the plausi-

ble range (σ = µ/2, Fig. 4.1D), the JNDs∆µ is still a linear function of

the reference rateµ but with the slopek′ ≈ 2.1 (since the slopek′ = 2bC
1−bC

,

b = 1/2 in Fig. 4.1D), which is much larger than realistic psychophysical

values (k ∈ [0.05, 0.3]).

4.3.3 Weber’s law in single neuronal ISIs

Many researchers have pointed out that Poisson or renewal process is more

appropriate to describe the neuronal firing activity (Cox D. R, 1954; Cox

and Miller, 1965). Assume that the interspike intervalT of a spiking neuron
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follows Gamma distribution, i.e.T ∼ Γ(A, B), with meanµT = AB and

varianceσ2
T = AB2. Exponential distribution is a special case of Gamma

distribution when the parameterA = 1. The coefficient of variation of the

interspike interval (CVISI) equals to

CVISI =
σT

µT

=

√
AB

AB
=

1√
A

.

If ISIs follow Gamma distribution, the corresponding neural spike rate can be

described by a renewal process, and the spike rate have meanµ = 1/E(T ) =

1/(AB) and varianceσ2 = var(T )/(E(T ))3 = 1/(A2B) (Cox and Isham,

1980). Substitute the mean spiking rateµ and varianceσ2 in the Weber’s

Equation by the two parametersA and B of the Gamma distribution, and

express the Weber’s Equation byCVISI,

CVISI =
k

C(k + 2)

√
1

AB
=

k

C(k + 2)

√
µ.

In the above expression,µ only represents the quantity of the firing rate

and is invariant under different dimensions. IfCVISI = 1, the neural discharge

follows Poisson process. IfCVISI > 1, we call the renewal processsuper-

Poisson process; whenCVISI < 1, it is sub-Poisson process(in physics, the

super-Poisson process is defined by the index of dispersion variance-mean

ratio (VMR) of the counting of events with VMR> 1, and sub-Poisson is

similarly defined as VMR< 1 (Kolobov, 1999). Besides, VMR= CVISI
2 in
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renewal process). For a very regular spike train (’pacemaker’), the histogram

of ISIs has a very narrow peak andCVISI → 0. In the case of a random spike

train (Poisson process), the ISIs are exponentially distributed andCVISI = 1.

TheCVISI can be larger than one in the case of a multistate neuron (Wilbur

and Rinzel, 1983). The range ofCVISI under Weber’s law can be determined

from the range of the Weber’s constant (k ∈ [0.05, 0.3])

√
µ

100
< CVISI =

k

C(k + 2)

√
µ <

√
µ

10
, (4.3.3)

whereC = 1.4. Define Eq.(4.3.3) asWeber’s rangefor single neuron. The

detailed relation between the parameters is presented in Table 4.1. For single

neuron,CVISI is rather small (0.14 - 0.3) for biological feasible firing rate

(10 ≤ µ ≤ 200 Hz), which means the neuron fires very regularly. However,

the small value ofCVISI contradicts the irregularity of the cortical neuronal

discharge behaviorin vivo.

Several simulation examples are presented to demonstrate the range of the

feasible firing rate under which Weber’s law holds, by examining the spike

count over a small sliding time window (W = 20 ms). In the simulation, the

ISIs follow Gamma distribution with fixed parameterA = 1
CVISI

2 and rate-

dependent parameterB = 1
µA

.

Fig. 4.2 demonstrates the relation between the JNDs of firing rate∆µ

and µ for sub-Poisson, Poisson and super-Poisson discharge process. For

sub-Poisson process (Fig. 4.2A), linear relationship between∆µ andµ is
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more notable for relatively small value ofCVISI (0.2) than that of large val-

ues ofCVISI (0.5 and0.8), but the slope of the linear regression curve for

CVISI = 0.2 is much smaller (0.02) than Weber’s constant. For Poisson

process, Weber’s law does not hold when the firing rateµ < 100 Hz (Fig.

4.2B and Table 2.1), since the increasing trend of∆µ is nonlinear with re-

spect toµ. In contrast, whenµ > 100 Hz, the relation between JNDs∆µ

and reference firing rateµ is linear (slope= 0.06). For super-Poisson pro-

cess (CVISI = 1.2, 1.5 and3, Fig. 4.2C), Weber’s law cannot be satisfied

because of the nonlinearity of the curves. Moreover, they-axis intercept of

these curves does not pass the origin(0, 0). Fig. 4.2D is the contour plot of

Weber’s constantk versusCVISI and firing rateµ. It illustrates the range of

CVISI and firing rateµ whenk lies within [0.05, 0.3].

Fig. 4.3 shows the ISI distribution whenCVISI and firing rateµ follows

Weber’s Equation. The interspike interval distribution bends towards longer

ISI time for largerCVISI because of the nonlinear relation betweenCVISI and

the mean firing rateµ under Weber’s Equation (Eq.(4.3.2)).

From the experimental observations on cortical neuronal discharge vari-

ability, theCVISI should be from0.5 to1, which is much bigger than theCVISI

value under Weber’s range (0.14 to 0.3) for single neuron. The discrimination

behavior cannot be performed by single cortical neurons, and thus, population

neurons need to be considered.
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Figure 4.3 ISI distribution when Weber’s law is satisfied. The ISI is assumed to follow Gamma distribution, and 
the histogram of the ISI under Weber’s Equation reveals the property that the distribution is wider at low firing 
intensity and has big dispersion of ISI. It becomes narrower as the firing rate increases and the discharge process 
becomes more regular (CVISI becomes smaller).
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4.3.4 Superposition of independent neural discharge pro-

cess

Let us begin with the superimposed population neurons, with each neuron

firing independently. Assume each individual neuron’s firing pattern follows

identical distribution with mean discharge rateµ and standard deviationσ. If

each neuron fires independently, the mean discharge rateµ after superposition

is still the same as single neuron, but the variance of the instantaneous spike

count becomesσ2/p, wherep is the population size. Therefore, substituteµ

andσ2/p into Weber’s Equation, we have

CVISI =
k

C(k + 2)

√
µp

As a result, Weber’s range can be derived from Inequality (4.3.3)

√
µp

100
< CVISI <

√
µp

10
,

where the value ofCVISI depends on neuronal discharge rateµ and population

sizep. The range for the firing rateµ can be determined for a given popula-

tion sizep such that Weber’s law holds (see Table 4.1 for detailed range of

parameters).

The simulation results and illustrative parameter relation are shown in Fig.

4.4. and 4.5A. The first row of Fig. 4.4 shows the case for a large population

size (p = 1000). From Table 4.1,CVISI has to be large if the population
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size is large (CVISI > 4.5 ). Thus, for a large population, each individual

neuron should have a very irregular discharge process (CVISI >> 1) so that

Weber’s law is satisfied, but it is biologically unrealistic and impossible. From

the simulation, if the value ofCVISI is small (e.g.CVISI = 0.5, Fig. 4.4.

upper left panel), the JNDs are very small as the population firing rate is

extremely narrowly distributed, so Weber’s law does not hold for independent

superposition of large population. When the population size is relatively small

(p = 100), the Poisson process describes Weber’s law the best (Fig. 4.4.

central plot, and Table 4.1). If population size is very small (p = 10), the firing

intensity should be bigger than a certain minimal value (refer to Table 4.1),

and Weber’s law holds for sub-Poisson and Poisson neural discharge process

(Fig. 4.4, bottom panel). Fig. 4.5A depicts theCVISI values versus different

firing rates and population sizes. The value ofCVISI is unrealistically large

(30) at high firing rate (100 Hz) and large population size (1000). The different

layers in Fig. 4.5A represented different values of the Weber’s constantk, and

CVISI increases withk dramatically.

This result is interesting. For Weber’s law implementation on independent

population neurons, it demonstrates that a small group of neurons, rather than

large population neurons, can perform the discrimination task very well (ac-

tually p = 10 is sufficient for0.5 < CVISI < 1, see Table 4.1). If population

size is too large (p > 1000), Weber’s law can be satisfied only if each single

neuron generates its action potential at a highly irregular process (CVISI > 4),

which is biologically impossible. The result is consistent with the experimen-
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Figure 4.5 The parameters relation under Weber’s Equation for (A) independent superposition process and (B) 
correlated superposition process. (A) If population neurons are independent, CVISI tends to be extremely large 
under high firing rate and large population size. Different layers represent different values of the Weber’s 
constant k. When k gets bigger, CVISI increases dramatically. (B) Under weakly correlated superposition 
process, the saturated value of CVISI is around 3 when population size tends to infinity at firing rate 100 Hz. 
CVISI is an increasing function of the Weber’s constant k and the firing rate μ.
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tal observation by Britten et al (Britten et al., 1992).

However, the assumption of statistical independence among cortical neu-

ron interactions is not realistic. Nearby cortical neurons are usually highly

interconnected and sharing common inputs. Robust correlations among neu-

ronal activity have been reported in a number of cortical areas from electro-

physiological recordings, with an averaged correlation coefficient typically

ranging from0.1 to 0.2 (Britten et al., 1992; Gawne and Richmond, 1993).

What the effect would be if correlation between neurons is introduced?

4.3.5 Superposition of correlated neural discharge process

Cortical cells do not generate spikes independently, but rather, the spiking

activity is correlated, spatially and temporally (Smith et al., 2008). Correla-

tion arises from shared excitatory and inhibitory inputs (Morita et al., 2008),

either from other stimulus-driven neurons or from ongoing activities (Fiser et

al., 2004). In this chapter, we only concentrate on the effect of spatial cor-

relation on neural spike trains, and we only consider the positive correlation

here.

Assume that each neuron in the population is pair-wise correlated with

the same coefficient correlationρ = 0.1, and Weber’s Equation becomes (see

Methods for detailed derivation)

CVISI =
k

C(k + 2)

√
µp

1 + (p− 1)ρ
.
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Therefore, the corresponding Weber’s range becomes (compare with inequal-

ity (4.3.3)): √
µp

1+(p−1)ρ

100
< CVISI <

√
µp

1+(p−1)ρ

10
.

As the population sizep →∞, we have

√
µ
ρ

100
< CVISI <

√
µ
ρ

10
.

Consequently, the values ofCVISI lie in between[0.45, 1] for neuronal dis-

charge rate10 < λ < 200 Hz for infinite population neurons (see Table 4.1).

The simulation results are presented in Fig. 4.6. When the population sizep is

10, the feasible range of firing rate has a lower bound-the boundary is propor-

tional toCVISI (Table 4.1 and Fig. 4.6. bottom panel). When the population

sizep increases to100, Weber’s law holds (Fig. 4.6, middle panel). When

population size increases from100 to 1000, there is no significant improve-

ment on the linear relation, but rather, the JND reveals more random property

at super-Poisson process (CVISI = 1.5, Fig. 4.6, upper-right panel). Besides,

for large population size (p = 1000), ∆µ is very big (≈ 15 Hz) at low firing

intensity (µ = 2 Hz), which is not biologically plausible. The effect of the

weak correlation (ρ = 0.1) among neurons in the superposition process can

be seen from Fig. 4.5B. The value ofCVISI is bounded above by
√

µ
10

, which

is approximately3 for µ = 100 Hz andk = 0.3. The different layers of the

mesh represent different values of the Weber’s constantk, and most regions
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of CVISI lie below one for small values ofk.

Shadlen and Newsome (Shadlen and Newsome, 1998) pointed out that

the fidelity of signal transmission approaches an asymptote at50 to 100 in-

put neurons, and that there is little to be gained by involving more neurons in

psychophysical performance. In our simulations, the performance of the pop-

ulation neurons of size100 with correlation0.1 matches their experimental

observations very well.

4.3.6 Neural network based on competition attractor net-

work

In order to confirm our theoretical results (0.5 < CVISI < 1) derived from

Weber’s law, we use the model based on a competitive attractor network for

decision making (Fig. 4.7A), firstly proposed by Brunel and Wang (2001)

and subsequently examined by Deco and Rolls (2006). TheCVISI of neu-

ronal interspike intervals for each pool of the network was calculated. The

description of construction of the network is presented in the Method section.

In this neural network model, the input spike train follows Poisson pro-

cess, and the network can make the decision following Weber’s law (Fig.

4.7). The measuredCVISI values in inhibitory, nonspecific and winning pools

(see Fig. 4.7A) are all less than one, while the losing pool hasCVISI > 1.

When the input spike train follows a different distribution (ISIs uniformly

distributed between0 and2/Fin, whereFin is the input frequency), Weber’s
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law no longer holds. In this case, theCVISI values for the inhibitory, nonspe-

cific and winning pools become greater than one, while the losing pool has

CVISI < 1.

The results are demonstrated in Fig. 4.7B-E. Fig. 4.7B and 4.7C show

the rastergrams of randomly selected neurons from each pool in the network.

Fig. 4.7B is the rastergram when theCVISI of the winning pool (pool A)

is less than one. The spatio-temporal spiking activity shows the transition

to the correct final state attractor. When a decision is made (after a transi-

tion period of about 700 ms), the winning pool A generates most spikes and

becomes highly activated, while the losing pool B becomes relatively silent.

This rastergram illustrates how pool A wins the competition and the network

performs a transition to a single-state final attractor corresponding to a correct

discrimination. Fig. 4.7C is the case when the winning pool A hasCVISI > 1.

Contrary to Fig. 4.7B, the winning pools A withCVISI > 1 are very silent at

the beginning, following by a bursting for a short time (at 700 ms), then have a

subsequent phase similar to Fig. 4.7B. The reason that causes the differences

between these network behaviours can attribute to the input distribution. Orig-

inally, the input spike train follows Poisson distribution (or equivalently, the

interspike interval is exponential distribution heavily distributed near zero),

and this entails a very short transition time, after which the total network in-

put is more or less constant. In the alternative case, the input spike train have

its ISIs following uniform distribution, and this implies that the total input to

the network is lower at the beginning of the simulation, then peaks around



Chapter 4: Link between Psychophysical and Neural Responses 92

time 2/Fin (which is 660 ms since Fin is 3 Hz) and finally becomes nearly

constant; this trend in the total input level is mirrored by the network firing

activity.

Fig.4.7D plots the linear relationship between the values of∆F andF

(whereF is the input spike frequency) when the winning pool hasCVISI < 1,

supporting our theoretical results for Weber’s law. The misclassification rate

is fixed to be15% and the linear regression has slopek that varies between

0.24 and 0.32. Fig. 4.7E is the case when the winning pool hasCVISI > 1,

and as a result, the relationship between the reference frequenciesF and the

values of∆F is far from linear and is not even monotone.

4.4 Discussion

In this chapter, I derived the linear relationship between the mean and

the standard deviation of neuronal discharge rate when Weber’s law holds,

and expressed the relation in terms ofCVISI. It is found that under Weber’s

law (CVISI ∈ [0.45, 1]), neurons generate more regular spikes than a Pois-

son process. For single neuron, relative regular discharge process can satisfy

Weber’s law, but for superimposed population neurons, the firing variability

can be larger either with a small group of independent spiking neurons or a

large group of correlated cortical cells. The findings may shed light on the

theory between cortical neuronal firing property and this psychophysical law

quantitatively.
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4.4.1 Nonlinear relation of stimulus-neuronal responses

Cortical neuronsin vivo usually have a nonlinear response to external

stimulus, and the input-output relation is commonly described by a sigmoid

function (S-shaped). We carry out the analysis on this nonlinear input-output

relation to show that our conclusions based on the linear assumption in the

Method section still hold.

One of the commonly used sigmoid functions to describe the relation be-

tween the input stimulus (I) and the mean output neural response rate (µ) is

of the form

µ =
R0

1 + exp
(
−k0(I− 1

2
I0)

R0

) , (4.4.1)

where the parametersR0, I0 andk0 represent the maximal neural response

rate, the maximal input stimulus intensity, and the steepness (largerk0 im-

plies a step function), respectively. When the neuronal-stimulus relation is of

sigmoid function (Fig. 4.8A, dashed line) instead of linear (Fig. 4.8A, solid

line), the ratio of the increment of the neural firing rate∆µ over the reference

firing intensityµ is no longer Weber’s constantk, but can be expressed in

terms of the input stimulus intensityI:

g(I) =
∆µ

µ
=

exp
(
−k0(I− 1

2
I0)

R0

)
− exp

(
−k0((k+1)I− 1

2
I0)

R0

)
1 + exp

(
−k0((k+1)I− 1

2
I0)

R0

) .
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Figure 4.8: Analysis on the effects of CVISI range if the input-output relationship between the 
stimulus intensity and the neural response rate is of sigmoid function. Parameter values used for 
the the numerical simulation are: R0 = 120, k in [0.05, 0.3], k0 in [0.3, 2]. (a) Illustration for the 
sigmoid function compared with linear relation between the neuronal firing rate versus input stimulus
intensity. (b) Contour plots for CVISI values with respect to firing rate μ and Weber’s constant k. 
(c) Numerical solution of CVISI versus firing rate μ when the input-output is of nonlinear relation,
under different Weber’s constant k (0.05 and 0.3). For every value of k and μ, the feasible range of 
CVISI in [0.2, 0.4] is determined by the maximal and minimal value of the red line (k = 0.05) and 
blue line (k = 0.3). (d) When the input-output are of linear relation, the feasible range of CVISI in 
[0.17, 0.3] , as a comparison with the nonlinear case presented in (c).
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Re-interpreting Eq. (4.4.1), we have

I =
1

2
I0 −

R0

k0

log (R0/µ− 1) ,

so∆µ/µ can also be expressed in terms of the mean firing rateµ:

h(µ) =
∆µ

µ
=

R0

µ + (R0 − µ)
(

R0

µ
− 1
)k

exp
(
−k0kI0

2R0

) , (4.4.2)

Similar to the analysis presented in the Method section, we obtain the first

order non-homogeneous ODE under the nonlinear stimulus-neuronal relation

from the new expression (Eq. (4.4.2)):

f ′(µ) +
2

µh(µ)
f(µ)− 1

C
= 0

The ODE above yields a theoretical solution

σ(µ) = f(µ) = exp(−a(µ)) ·
(∫

1

C
exp(a(µ))dµ + µ0

)
,

whereµ0 is the constant of integration determined by the initial condition and

a(µ) =

∫
2

µh(µ)
dµ.

The solution cannot be expressed explicitly, but we can obtain the solution

numerically, and calculate the correspondingCVISI with respect to the firing
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rate from

CVISI = σ(µ)
√

µ.

Fig. 4.8b is the contour plot of theCVISI with respect to Weber’s con-

stantk and firing rateµ. The maximum value ofCVISI is reached at the

middle value of the firing rate (around 60 Hz), because of the nonlinear-

ity of the input-output relation, andCVISI is always smaller than 1 under

these parameter regions. Fig. 4.8c and 4.8d is the illustration for the feasible

range ofCVISI under reasonable biological parameter regions (k ∈ [0.05, 0.3]

and µ ∈ [10, 100]). Comparing the effects onCVISI ranges for nonlinear

input-output relation (Fig. 4.8c) with the linear case (Fig. 4.8d), the fea-

sible range forCVISI does not change much (CVISI for nonlinear relation;

CVISI for linear relation). Therefore, our conclusions obtained from linear

stimulus-neuronal relation from the previous analysis still hold for nonlinear

input-output relation under Weber’s law.

4.4.2 Relation between the mean and variance of neural sig-

nal

The Weber’s Equation (Eq.(4.3.2)), which describes the linear relation

between the standard deviation and the mean of the neural firing rate, is of

consistent form with the movement control model proposed by Harris and

Wolpert (Harris and Wolpert, 1998), who assumed that the variance of the



Chapter 4: Link between Psychophysical and Neural Responses 96

neural signal (neuronal firing rate) is proportional to the square of the mean

neural signal. There are also experimental and theoretical evidences from

force production supporting the linear scaling of force signal variability (STD)

with respect to the mean force level as a natural by-product of the organization

of motor neurons and muscle fibres (Jones et al., 2002; Faisal et al., 2008).

Some researchers are arguing that neural discharge rate with the standard

deviation (σ) linearly related to the mean (µ) is a super-Poisson control signal

becauseα = 1 in σ = κµα, while a Poisson process should satisfyα = 0.5

(and sub-Poisson processα < 0.5) (Feng et al., 2002; Feng et al., 2004).

In fact, the definition above only considers the powerα of the mean neural

signal but neglects the scale coefficientκ. In this chapter, it is concluded that

Weber’s law implies neural discharge more regular than a Poisson process

(CVISI < 1) even though Weber’s Equation matches the caseα = 1. In

Weber’s Equation, the constant scaleκ is very small (range from0.01 to 0.1),

and it is the range of the scaleκ that determines the range ofCVISI ∈ [0.5, 1]

at the given powerα = 1. Hence, the scale factorκ should also be taken

into consideration to determine which process (sub-Poisson, Poisson or super-

Poisson) the neuronal signal satisfies.

4.4.3 Weber’s law in single neuron or system level?

Traditional view in sensory physiology attributes to each neuron a unique

role in signaling the presence of a particular feature in the visual environment

(Barlow and Narasimhan, 1972). In contrast, more recent psychophysical ap-
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proaches have tended to emphasize the role of large neuronal networks and

pools in solving even simple perceptual problems. It has been widely accepted

that subjective intensity is based on the response of population neurons, rather

than a single neurons (Vega-Bermudez and Johnson, 1999). However, a most

surprising finding of sensory neurophysiology is that single neurons in visual

cortex can encode near-threshold stimuli with a fidelity that approximates the

psychophysical fidelity of the entire organism(Britten et al., 1992; Celebrini

and Newsome, 1994). This finding is understandable (in light of Weber’s

range for correlated superposition), which implies that psychophysical sensi-

tivity can exceed neural sensitivity by little more, given a modest amount of

correlation in the pool of sensory neurons.

In this chapter, I studied both the discharge patterns of single neurons and

superimposed population neurons (independent and correlated) when Weber’s

law is satisfied. To satisfy Weber’ law, single neuron has to have a more

regular discharge process while population neurons maintain large neuronal

discharge variability. This interesting finding is quite consistent with the phe-

nomenon presented in (Newsome et al., 1989), where Newsome proposed

one possible explanation that either signals from many neuronal sources are

not pooled to enhance the signal strength, or the variability in the responses

of similarly tuned neurons is correlated, when the neuronal performance is

similar or better than the psychophysical performance.
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4.4.4 Variability of spatial correlation in spike train

The correlation between neuronal spike trains depends on distance be-

tween neurons, and neuronal correlation would decrease as the distance in-

creases. Besides, correlation among ISIs can be affected by other factors as

well, such as firing rate (de la Rocha et al., 2007), the neuron assembly micro-

scopic structure and type of stimulus (Kohn and Smith, 2005). In this chapter,

I have only studied the simplest homogeneous superposition process of the

population neurons by assuming that each neuron is independent (or equally

correlated, neglecting the spatial effect), identical and evenly weighted. For

non-homogeneous population neurons or non-stationary, non-static neuronal

discharge, the situation would be much more complicated and we did not dis-

cuss it.

Moreover, the idea of linearly summation of neuronal signals may not be

the best way to pool neuronal activity in the cortex. A number of psychophys-

ical studies suggest that neuronal signals contribute disproportionately to per-

ceptual judgments. However, Britten and colleagues (Britten et al., 1992)

applied the idea of nonlinearly summing the responses of members of each

pool, and did not find significant difference from linear summation among

pools.
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4.4.5 Argument on Weber’s law

There are many literatures studying Weber’s law from different aspects

on neuronal responses. Some literatures defined Weber’s law as a logarith-

mic relationship between the strength of the stimulus and the mean response

rate of the nervous system, by stating Weber’s law as∆µ = ∆I/I, where

µ denotes the mean response rate of neurons,I the stimulus intensity, and∆

stands for the difference. However, this logarithmic relation between the input

stimulus intensity and the mean output firing rate over simplifies Weber’s law.

The mean firing rate is considered to be a continuous function of stimulus

intensity, and by integrating on both side of the formula yields the logarith-

mic relationµ = ln(I). But this continuous function is unable to perform

the discrimination task in terms of probability of making the right decision.

In other words, this logarithmic relation only considers the mean discharge

rate but does not take into account of the variability of the spike train. There

lacks of experimental evidence supporting the logarithmic relation of stimulus

intensity and mean firing rate.

Even though there are some new psychophysical law emerged (Stevens,

1961) when the expectation of Weber’s law is not fulfilled in some experimen-

tal methods, Weber’s law is still widely accepted and supported by various ex-

periments(Mahns et al., 2006) in psychophysics as a basic law. One argument

on this psychophysical law is the ’near-miss Weber’s law’, describing the ob-

servation that Weber’s law holds for a majority range of stimulus intensity but
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fails in certain range. My theory can explain this observation quite well, as

for given population size (p) and single neuron firing property (CVISI), the

feasible range of the firing rate (or equivalently the stimulus intensity) can be

determined under Weber’s range.

4.5 Final Remarks

In this chapter, we derived the relation between the mean and standard

deviation of the neural signal (firing rate in this case) when Weber’s law was

satisfied. However, the relations between the first two order statistics of neu-

ral signals under different conditions, e.g., sensory discrimination, percep-

tual judgement, or even motor control, are still under debate in neuroscience.

Therefore, we further extended our work into movement control, trying to de-

velop a systematic study on the variability of neural signal and its impact on

the precise control of movement in the next chapter.



Table 4.1. Parameter region under Weber’s Equation. 

 

 

 

 

 

0.05 ≤ k ≤ 0.3 

Correla

tion ρ 

Population size 

p 

Firing rate λ (Hz) CVISI 

CVISI = 0.5 CVISI = 1 CVISI = 1.5 10 ≤ λ ≤ 200 

 p = 1 [25, 2500] [100, 104] [225, 2.104] [0.14, 0.3] 

 

ρ = 0 

p = 10 [3, 250] [10, 1000] [23, 2250] [0.45, 1] 

p = 100 [0.25, 25] [0, 100] [2, 500] [1.4, 3.2] 

p = 1000 [0.02, 3] [0.1, 10] [0.2, 23] [4.5, 10] 

 

 

ρ = 0.1 

p = 10 [5, 472] [19, 1900] [42, 4200] [0.3, 0.73] 

p = 100 [3, 270] [11, 1100] [25, 2500] [0.43, 0.95] 

  p = 1000 [3, 250] [10, 1000] [23, 2300] [0.45, 1] 

 

Table description:  

This table describes the feasible range of the parameter values (k, ρ, p, CVISI and μ under Weber’s 

Equation: CVISI ൌ
௞
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 ටߤ

௣
ଵାሺ௣ିଵሻఘ

. We mainly focus on the range of the firing rate μ at given 

CVISI (0.5, 1 and 1.5) and the range of CVISI at feasible firing rate (10 ≤ μ ≤ 200), with the rest 

parameters fixed. It is concluded that the population size is p ≤ 11 for independent superposition 

process and p > 51 for correlated superposition process, under biological feasible CVISI ranging 

from 0.5 to 1, that the Weber’s law is validated. It is illustrated in the bold highlighted region. 

 

 



Chapter 5

A Novel Approach of Precise

Movement Control

In the previous two sections, I have discussed how neurons code sensory

stimulus input in terms of neural signal (firing rate) in Chapter 3, and how

neural activities are related psychophysical behavior with respect to stimulus

intensity (Weber’s law) in Chapter 4. In this chapter, I am going to study the

effect of neural signal to movement control.

From Chapter 4, I derived from Weber’s law that the standard deviation

of neural spiking intensity increases linearly with its mean value—the more

spikes generated, the more variability of the neural discharge process. In

biological systems, the variability and the mean of neural signal may have a

positive correlation, but they are not necessarily of a linear relation. In this

chapter, I studied the effect of the variability of the neural signal, and found

103
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that in terms of movement control, the less the noise, the more precise the

control can be.

5.1 Introduction

The sheer complexity of movement control is often masked by the effort-

less ease with which we move our body, and only becomes evident when we

try to build machines that perform similar tasks as we do. What makes the

problem hard is the presence of uncertainty both in the external world, and

in our own sensory-motor systems (Harris and Wolpert, 1998; Osborne et al.,

2005; Tanaka et al., 2006). Indeed, one of the central issues in Neuroscience

is to explain how the nervous system deals so effectively with noise and vari-

ability.

The minimum-variance principle proposed by Harris and Wolpert in their

seminal work (Harris and Wolpert, 1998), has largely influenced the theoret-

ical studies on the neural basis of motor control. There, the authors argued

that the observed characteristics of our movements (e.g. the trajectories and

velocity profiles of the eyes during a saccade or of the hand in a reaching

task) are the end result of a process whereby the brain seeks to minimize the

execution error (variance) caused by noise inherent in the neural control sig-

nals. Within such framework, the actual control signals issued by the nervous

system would be the (approximately) optimal solutions to related stochastic

control problems. In spite of its wide success, this theory still presents some
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open issues.

One of its main conclusions is that, assuming that noise in the neural

control signals is signal-dependent, and that the objective is to reduce the

movement error, the optimal control signals are smooth function of time, as

opposed to the degenerate, bang-bang controls that would result if the noise

was independent of the signal. In Harris and Wolpert (1998), this result was

obtained numerically under the specific assumption that the control signal is

a stochastic process with an index of dispersion equal to one (α = 1 in my

setting, see Fig. 1 and Model section). Later, an analytical solution was

found (Feng and Zhang, 2002; Feng et al., 2004) that generalized this result

to a whole range of noise models (α ≥ 0.5 in my setting). However, for

α < 0.5 the scenario changes radically due to lack of convexity of the related

cost functional. In this case, the cost function tends to favor brief pulses of

increasingly large amplitude, hence the optimal control signals turn out to be

degenerate, i.e. delta functions. It is remarked that any pulse-like form of con-

trol which may be taken to approximate the optimal solution in this case, will

produce velocity profiles with abrupt acceleration and deceleration phases,

which differ markedly from the bell-shaped profiles observed experimentally.

In the light of these results, one may draw the conclusion that large noise

is necessary to smooth out our movements. However, in mostin vivo exper-

iments (including multi-electrode array recordings from our group (Christen

et al., 2006; Horton, 2005)) neurons appear to receive and emit spike trains

which are at most as variable as Poisson processes, i.e.α < 0.5. Besides,
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one must take into account thatin vivo recordings are performed in a highly

non-stationary environment which could lead to significantly overestimate the

irregularity of firing. In conclusion, one is left to wonder whether the noise

regime considered in Harris and Wolpert (1998) is relevant.

This is linked to another issue. As illustrated in Fig.5.1A, forα ≥ 0.5 the

movement error has a positive lower bound, which sets an unsurpassable limit

to the precision of the movement. Yet recent experimental evidence (Osborne

et al., 2005) has indicated that most of the movement error is due to inaccurate

sensory estimates of the external parameters which define the task, so noise

in the motor system may not, by itself, limit our ability to move precisely.

All this brings the fundamental question: Is it possible to achieve a precise

control with a stochastic signal? As mentioned above, the answer has to be

negative forα ≥ 0.5, hence one must look further into the caseα < 0.5

to find possible solutions. However, in this case the problem is much harder

to tackle because the cost functional of the optimal control task is no longer

convex.

Here I will firstly show how to construct suitably definedgeneralizedsolu-

tions for the optimal control signal when0 < α < 0.5, inspired by the idea of

Young measure theory (Hanson, 2007; Valadier, 1990; Young, 1937; Young,

1942). In terms of these solutions, I will demonstrate that the movement error

can be made to approach zero, thus achieving a precise movement control.
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Fig. 5.1 (A) Plotted is the optimal variance I(α) vs. the noise parameter α. Results are scaled so
that the case of α = 1, corresponds to unity. (B). A convex cost function allows us to find the minimal
solution, corresponding to the case of α > 0.5 in A. (C). For a concave cost function, the minimal points
are the boundary, corresponding to the case of α < 0.5 in A. Hence the constraint is usually violated.
(D). A proper combination of the boundary solutions (toggling between the boundary) leads to a minimal
solution, and satisfies the constraint as well. (E). I0(λ) for different λ1, λ2 and λ4. We see that increasing
the frequency of toggling will reduce the variance.
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5.2 Young measure

For a optimization problem, supposeI0 ∈ R is the objective functional to

be optimized on setU . The optimization problem is to findu ∈ U such that

I0(u
∗) = inf

U→R∪{+∞}
I0(u) ∈ R. (5.2.1)

If the objective functionalI0(u) is of the form

I0(u) =

∫
Ω

F0(x, u(x),∇u(x))dx,

whereΩ ⊂ RN ,

F0 : Ω×Rm ×Mm×N → R∗,

and the integrandF0 is convex (Fig. 1B), direct method of the Calculus of

Variations is the common technique to solve this kind of questions. However,

when there is lack of existence of the classical solutions to the optimization

problem (5.2.1), Young measure approach can be applied.

In most of the cases of lack of solutions in optimal control, the essential

reason is the oscillatory behavior of minimizing sequences1 (Pedregal, 1999).

I will demonstrate oscillatory behavior of the control solution by the following

1The minimizing sequences asymptotically minimize the cost but have no limit in ordinary
sense.
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example. Consider the functional

I0(λ) =

∫ 1

0

[X(t)2 + (1− λ(t)2)] dt,

whereλ is a measurable function from[0, 1] to [−1, 1] andX satisfiesdX/dt =

λ with boundary conditionsX(0) = 0, X(1) = 0. There is no admissi-

ble λ∗ such thatI(λ∗) = inf I(λ). It is clear that the functionsλn(t) =

sign[sin(2n+1πt)] form a minimizing sequence which asymptotically mini-

mize the cost forn → ∞, but due to the increasingly rapid oscillations, the

sequence{λn} admits no ordinary limit (see Fig. 1E).I(λ∗) = 0 is impossi-

ble for a single function.

The scenario described above is typical. To deal with the oscillatory be-

havior of the optimal solutions, Young measure was proposed by L. C. Young

(Young, 1937 and 1942) as a tool. The basic idea underlying the Young mea-

sure approach is simple: enlarging the class of the competing functions in

such a way that, when extended to this new class, the optimization problem

always admits a solution. Each competing functionu(x), x ∈ Ω, can be

regarded as a family of probability measuresνx = δu(x) considered as a map-

pingν: Ω →M whereM is huge. Any such mappingν = {νx}x∈Ω is called

a Young measure. The success of Young measure in the field of optimiza-

tion is due to the fact that the cost functionals are integrals (Pedregal, 1999).

The advantage of this approach is that regardless of whether we have pre-

cise information about existence or nonexistence of the optimal solution, we
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lose nothing in considering a generalized formulation with the help of Young

measure, but we may gain a lot by doing so.

Originally introduced in the context of optimal control problems (Tuck-

well, 1984), Young measure have been successfully used in the field of engi-

neering, material science and partial differential equations (Valadier, 1990).

So far, Young measure have not yet been used in the field of biology, but it

can be a convenient tool to solve some optimization problems in biological

systems. The following sections provide examples illustrating the application

of Young measure in motor control problems of saccadic eye movement and

straight-trajectory arm movement.

5.3 Example 1: Saccadic eye movement model

In order to illustrate this ideas, consider a commonly used model of sac-

cadic eye movements (Harris and Wolpert, 1998; Robinson et al., 1986) which

is simple enough to obtain analytical results. Letx denotes the (horizontal)

eye displacement from the rest position measured in degrees (eccentricity).

Consider saccades from the primary position (x(0) = 0) to targets located at

a given eccentricity (x(T ) = D). Assumex evolves in time according to

ẍ = − 1

τ1τ2

x− τ1 + τ2

τ1τ2

ẋ + γ [λ(t) + ξ(t)] (5.3.1)
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whereτ1, τ2, γ are parameters characteristic of the oculomotor plant. The

driving term in brackets models the motor commands, i.e. the output of the

motor neurons which innervate the extraocular muscles2, and is assumed to

be stochastic in nature. Separate a deterministic termλ(t) (which is denoted

as the control signal in the following) and a noise partξ(t), which is modelled

as a mean zero, gaussian white noise with

E[ξ(t)ξ(t′)] = κ|λ(t)|2αδ(t− t′) (5.3.2)

whereκ andα > 0 are parameters. Eq.(5.3.2) describes the experimental ob-

servation that the variability of neuronal signalsin vivo tends to increase with

the signal strengthλ(t), and generalizes the signal-dependent noise model

considered in Harris and Wolpert’s (1998), whereα = 1. Remark that the

driving term in Eq.(5.3.1) is only a continuous approximation to the actual

neural signal, which would be more suitably described as a stochastic point

process (Brown et al., 1999; Feng, 2004; Feng and Tuckwell, 2003; Tuckwell,

1984). In particular, forα < 0.5, α = 0.5, or α > 0.5, the input approxi-

mates of a process is less, equally, or more variable than a Poisson process,

respectively.

Solving Eq.(5.3.1) we obtain solutionx(t) which is driven byλ(t), with

2We assume that force, or torque produced by the muscle is simply proportional to the
neural signal. More refined models taking into account the temporal filtering property of the
muscles, lead to higher-order systems.
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initial conditionsx(0) = 0, ẋ(0) = 0:

 x(t)

ẋ(t)

 =

 γ

∫ t

0

b12(t− s)λ(s)ds

γ

∫ t

0

b22(t− s)λ(s)ds

+

 γ

∫ t

0

b12(t− s)λα(s)dB(s)

γ

∫ t

0

b22(t− s)λα(s)dB(s)

 ,

where


b12(t) =

τ1τ2

τ2 − τ1

[
exp

(
− t

τ 2

)
− exp

(
− t

τ 1

)]
b22(t) =

τ1τ2

τ2 − τ1

[
1

τ1

exp

(
− t

τ 1

)
− 1

τ2

exp

(
− t

τ 2

)]
.

andB(t) stands for the standard Brownian motion.

The optimal control problem is then defined as follows: For a target posi-

tion D, and timeT,R > 0, find a control signalλ∗(t) such that

E[x(t)] = D, for t ∈ [T, T + R] (5.3.3)

and

I(λ∗) = min
λ∈L2α[0,T+R]

I(λ)

= min
λ∈L2α[0,T+R]

∫ T+R

T

Var[x(t)]dt. (5.3.4)

The physical meaning of the problem is clear: at timeT , the eye must be on

average on the target (Eq.(5.3.3)), and as precisely as possible (Eq.(5.3.4)).

Also, the requirement that the average eye position is a constant in the post-
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movement periodt ∈ [T, T + R] implies that the average velocity must be

zero on the target.

Note that

∫ T+R

T

Var(x(t))dt (5.3.5)

= γ2〈
∫ T+R

T

[

∫ t

0

b12(t− s)λ(s)α · dB(s)]2dt〉 (5.3.6)

= γ2

∫ T+R

T

[∫ t

0

b2
12(t− s)|λ(s)|2αds

]
dt, (5.3.7)

then the original control problem defined by Eq.(5.3.3) and (5.3.4) is reduced

to the following optimization problem: Findλ∗(s) ∈ L2α[0, T + R] which

minimizes

I(λ) =

∫ T+R

T

[∫ t

0

b2
12(t− s)|λ(s)|2αds

]
dt (5.3.8)

subject to the constraint

∫ t

0

b12(t− s)λ(s)ds =
D

γ
, for t ∈ [T, T + R]. (5.3.9)

Rewrite the above objective functionalI(λ) and express it by during-movement

(I1(λ)) and post-movement (I2(λ)) functionals:

I(λ) = I1(λ) + I2(λ),
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where

I1(λ) =

∫ T

0

[∫ T+R

T

b2
12(t− s)dt

]
|λ(s)|2αds

I2(λ) =

∫ T+R

T

[∫ s

T

b2
12(t− s)dt

]
|λ(s)|2αds.

(5.3.10)

When2α > 1, the objective functionalI(λ) is convex, and this optimal

control problem can be solved theoretically with the method Calculus of Vari-

ation. The detailed technique and solution is presented as follows.

5.3.1 Ordinary solution whenα > 0.5

Post-movement solution int ∈ [T, T + R]

The optimal post-movement solutionλ∗ for t ∈ [T, T +R] of the objective

functional I2(λ
∗) is determined by the constraint (5.3.9) and its derivative

directly. By differentiating Eq.(5.3.9) (sinceR > 0), we obtain

− 1

τ2

exp

(
− t

τ 2

)∫ t

0

exp
(s

τ 2

)
λ(s)ds +

1

τ1

exp

(
− t

τ 1

)
·
∫ t

0

exp
(s

τ 1

)
λ(s)ds = 0 (5.3.11)

for t ∈ [T, T + R]. Solving Eq.(5.3.9) and Eq.(5.3.11) we see that


∫ t

0

exp
(s

τ 2

)
λ(s)ds =

D

τ1γ
exp

(
t

τ2

)
∫ t

0

exp
(s

τ 1

)
λ(s)ds =

D

τ2γ
exp

(
t

τ1

) (5.3.12)
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for t ∈ [T, T + R]. This implies

λ∗(t) =
D

τ1τ2γ
, ∀t ∈ [T, T + R]

and in particular


∫ T

0

exp
(s

τ 2

)
λ(s)ds =

D

τ1γ
exp

(
T

τ2

)
∫ T

0

exp
(s

τ 1

)
λ(s)ds =

D

τ2γ
exp

(
T

τ1

)
.

(5.3.13)

During-movement solution in t ∈ [0, T ]

To find the optimal signalλ∗(t) in t ∈ [0, T ] for the objective functional

I1(λ) during saccadic eye movement, we apply the calculus of variations

method in (5.3.10). To this end, let us define

{
λ,

∫ T

0

b12(T − s)λ(s)ds =
D

γ
, λ(t) =

D

τ1τ2γ
, t ∈ [T, T + R]

}
= UD.

(5.3.14)

For a smallτ , considerλ + τφ ∈ UD, i.e.

φ ∈
{

φ,

∫ T

0

exp(
s

τ1

)φ(s)ds = 0,

∫ T

0

exp(
s

τ2

)φ(s)ds = 0, φ(t) = 0, t ∈ [T, T + R]

}
= U0

D. (5.3.15)

The first two constraints inU0
D are from Eq. (5.3.13). We then have

dI1(λ + τφ)

dτ
|τ=0 = 0,



Chapter 5: A Novel Approach of Precise Movement Control 116

which gives

∫ T

0

{[∫ T+R

T

b2
12(t− s)dt

]
|λ(s)|2α−1sgn(λ(s))φ(s)

}
ds = 0. (5.3.16)

Comparing Eq. (5.3.16) with the first two constraints inU0
D, we conclude that

[∫ T+R

T

b2
12(t− s)dt

]
|λ(s)|2α−1sgn(λ(s)) = A(ξ, η) (5.3.17)

almost surely fors ∈ [0, T ] andA(ξ, η) with two parametersξ, η ∈ R is of

the form

A(ξ, η) = ξexp

(
t

τ1

)
+ ηexp

(
t

τ2

)
, (5.3.18)

being the solution of the following equations



D

τ1γ
exp

(
T

τ 2

)
=

∫ T

0

exp
(s

τ 2

)
· |A(ξ, η)|

1
2α−1

·sgn[A(ξ, η)]

(∫ T+R

T

b2
12(t− s)dt

)− 1
2α−1

ds

D

τ2γ
exp

(
T

τ 1

)
=

∫ T

0

exp
(s

τ 1

)
· |A(ξ, η)|

1
2α−1

·sgn[A(ξ, η)]

(∫ T+R

T

b2
12(t− s)dt

)− 1
2α−1

ds.

Therefore, forα > 0.5 we obtain

λ∗(t) = |A(ξ, η)|
1

2α−1 sgn[A(ξ, η)] ·
(∫ T+R

T

b2
12(s− t)ds

)− 1
2α−1

(5.3.19)

for t ∈ [0, T ]. Also, for the post-movement periodt ∈ (T, T + R] the optimal
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solution is simply given by the hold-on controlλ∗ = D/(τ1τ2γ), as derived

earlier. Whenα = 0.5, the solution is harder to find analytically, but simi-

lar conclusions hold. Hence, forα ≥ 0.5, a minimizerλ∗ is guaranteed to

exist and to be unique by the convexity of the cost functional and the set of

admissible controls. Finally one can easily verify thatI(λ∗) > 0.

For 0 < α < 0.5 the cost functional is concave, therefore according to

Young measure theory, a solution, if exists, must be found among the extreme

points of the set of admissible controlΩ = {λ ∈ L : the constraint is verified}

(Fig. 1C-D). This means that any solution must be a superposition of delta

functions. For instance, one can easily verify that, fort ∈ [0, T ], all controls

of the formλ(t) =
∑

i Aiδ(t − ti) with ti ∈ [0, T ] and suitable choice of

the constantsAi, will drive the system on the target with absolute precision,

i.e. they bear a vanishing contribution to the error3. It can be concluded that

for 0 < α < 0.5, the optimal control is degenerate and not unique, with

I(λ∗) = 0.

In Fig. 1A is the minimum movement error,I(λ∗), as a function ofα.

The meaning of this result is clear. Forα ≥ 0.5 there is a lower bound to

the movement error. In other words, although there exists an implementable

and finite signal which minimizes the error, the end result will be degraded by

higher noise levels in the system, consistent with our intuition. By contrast,

for 0 < α < 0.5 the minimum error is zero, although there is no finite control

3For t > T , one could consider solutions of the form
∫ T+R

T

δ(t− t′)A(t′)dt′
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signal that can achieve it. The question to be addressed in the next section is

whether- and most importantly how- such minimum can be approached.

5.3.2 Generalized control whenα < 0.5

Based on the previous discussion, forα < 0.5 we can achieve an arbitrary

degree of precision, although the optimal controlλ∗ which would reduce the

error to zero is not implementable. Obviously, if we could find a sequence of

finite controls{λ∗M} satisfying

lim
M→∞

I(λ∗M) = 0, (5.3.20)

we could use these as a replacement forλ∗ and improve the accuracy as we

wished. For instance, one may consider selectingλ∗M among the minimizers

of I in the space of bounded controls

ΩM = Ω ∧ {f ∈ L2α[0, T + R], |f | ≤ M}.

Unfortunately this approach is not directly feasible in practice. Indeed, when

the cost functional is not convex, there is no guarantee that the minimizersλ∗M

exist among ordinary functions.

From the previous discussion on Young measure in section 2, we can con-

struct a generalized control for this nonconvex optimization problem. Partic-

ularly, this generalized control is a one-parameter family of probability distri-
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butions over the control domain indexed by time, i.e.ν̃ = {ν̃t}t∈I . In other

words, while an ordinary control is a mapping which assigns to each time a

precise value to the driving signal, a generalized control provides at each time

a probability distribution over all the allowed control values. One sees that

ordinary controls map naturally onto (or can be identified with) a subset of

generalized controls4, hence the latter provides an extension of the former in

some sense.

Let us see how our control problem can be reformulated here. For conve-

nience of notation, we will represent this generalized controlν̃ by a stochastic

processν(t) such thatP (ν(t) ∈ A) = ν̃t(A) for any subsetA ∈ [0, T ] 5.

Then, for a generalized controlν̃ we define the functional

Ĩ(ν̃)
.
= EI(ν) =


∫ T

0

[∫ T+R

T

b2
12(t− s)dt

]
E(|ν(s)|2α)ds s ∈ [0, T ]∫ T+R

T

[∫ s

T

b2
12(t− s)dt

]
E(|ν(s)|2α)ds s ∈ [T, T + R],

whereE(·) denotes the expectation with respect to the measure of the pro-

cessν(t). Finally, the constraints on the admissible generalized control are

4Every ordinary controlλ can be identified with its associated generalized controlλ̃t =
δλ(t) whereδ stands for the Dirac mass.

5However, we remark that the stochastic processν here is only a formal ‘handle’ to the
underlying generalized control, and that strictly speaking, there are no ‘realizations’ ofν̃,
since the latter does not take values inU .
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obtained in a similar fashion, i.e.


∫ t

0

exp
(s

τ 2

)
E(ν(s))ds =

D

τ1γ
exp

(
t

τ2

)
∫ t

0

exp
(s

τ 1

)
E(ν(s))ds =

D

τ2γ
exp

(
t

τ1

) (5.3.21)

for t ∈ [T, T + R].

We are now in a position to reconsider our original problem in its gener-

alized formulation. Starting from any ordinary control, we can thus consider

all the generalized controls whose average correspond to it. In particular,

when the cost functional is concave, any generalized control which is not ex-

clusively concentrated on the signal, will bring a lower generalized cost, and

the cost will be minimum for those measures which are concentrated on the

extreme control values, say{0, M}. Thus, for any ordinary controls which

obeys our problem constraints, we obtain a corresponding ’optimal’ general-

ized control in the form

ν̃t = (1− β(t))δ0 + β(t)δM ,

with β(t) ∈ [0, 1] andδ as the delta function.

By this we proved that it is relatively easy in our case to find good, al-

beit perhaps not optimal, generalized solutions. These class of solutions

are now defined in terms of a simple function,β(t) and may be identified

with a stochastic processes toggling between two values, i.e.ν such that

ν(t) ∈ {0, M}, with P (ν(t) = M) = β(t).
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Fig. 5.2 Simulation results for saccadic eye movemet model. A, B, C, D, E, F are the case for α = 1 and 
G, H, I, J, K, L are the case for α = 0.25. E, F, H, I are sample velocities and sample paths. Red curves are 
the mean. C, L are the mean and standard deviations. 
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Generalized post-movement solution int ∈ [T, T + R]

To minimize the post-movement objective functionalI2(λ) with constraint

(5.3.9) for t ∈ [T, T + R], we restrict ourselves to consider generalized

controls which are concentrated on extreme values only. To this end, con-

sider the stochastic processν(t), t ∈ [T, T + R], whereν(t) ∈ {0, M} and

P (ν(t) = M) = β(t) ∈ [0, 1]. Let us see the implications of our construction:

EI2(ν) =

∫ T+R

T

[∫ s

T

b2
12(t− s)dt

]
E[|ν(s)|2α]ds

=

∫ T+R

T

[∫ s

T

b2
12(t− s)dt

]
M2αβ(s)ds

with the constraints



∫ t

0

exp
(s

τ 2

)
E[ν(s)]ds =

∫ t

0

exp
(s

τ 2

)
Mβ(s)ds

=
D

τ1γ
exp

(
t

τ2

)
∫ t

0

exp
(s

τ 1

)
E[ν(s)]ds =

∫ t

0

exp
(s

τ 1

)
Mβ(s)ds

=
D

τ2γ
exp

(
t

τ1

)
(5.3.22)

for t ∈ [T, T + R]. The constraints equations above imply thatβ(s) is a

constant measure, independent ofs and

β(s) =
D

Mτ1τ2γ

for s ∈ [T, T + R] andM >> 1.

To further explore the advantages of our approach here, let us estimate the
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termEI2(ν) in more details. Summarizing results above we have

EI2(ν) = C2(T, R) · D

M1−2ατ1τ2γ

where

C2(T,R) =

∫ T+R

T

[∫ s

T

b2
12(t− s)dt

]
ds

is a constant depending onT andR. Therefore the variance goes to zero asM

goes to infinity at a rate of1/M1−2α for α < 1/2. In other words, the smaller

theα is (the less noisy the system is), the faster the variance approaches zero.

Numerically, the generalized control solutionλ∗M(t) for t ∈ [T, T +R] can

be constructed in the following way. For a given time steph andt+(k+1)h ≤

T + R, k = 0, 1, 2, · · · , we define

λ∗M(t) =

 M if 0 ≤ t− T − kh < h ∗ β(T + kh)

0 if h ∗ β(T + kh) ≤ t− T − kh < h

(5.3.23)

Therefore,λ∗M(t) is a pulse function of widthβ(t). Obviously, whenh →

0, λ∗M(t) ∼ ν(t) for t ∈ [T, T + R].

Generalized during-movement solution int ∈ [0, T ]

The same idea can be applied to finding the generalized solution in[0, T ]

as well. The problem we consider here is to minimize the objective functional

during movementI1(λ
∗) with constraints (5.3.9) forλ ∈ L2α[0, T + R] ∧
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[−M, M ]. It is easily seen thatν(t) should be a random process taking values

in {−M, 0, M}. To simplify the issue further, we only consider a stochastic

processν(t) taking two values alternatively. DenoteE = {t, ν(t) ≥ 0} and

defineP (ν(t) = M) = w(t) for t ∈ E. For t ∈ [0, T ] − E, we have

P (ν(t) = −M) = w(t). Hence the processν(t) is uniquely defined by a

one-dimensional functionw(t).

Defineβ(t) = [w(t)IE − w(t)I[0,T ]−E], the optimal problem becomes to

find w(t) to minimize

I1 =

∫ T

0

[∫ T+R

T

b2
12(t− s)dt

]
M2α|β(s)|ds (5.3.24)

with constraints


∫ T

0

exp

(
s

τ2

)
β(s)ds =

D

Mτ1γ
exp

(
T

τ2

)
∫ T

0

exp

(
s

τ1

)
β(s)ds =

D

Mτ2γ
exp

(
T

τ1

) (5.3.25)

for |β(t)| ≤ 1.

To obtain the generalized control signal which asymptotically approaches

the global minimum, we define

β(t) =
ξ1

τ1

exp

(
t− T

τ1

)
+

ξ2

τ2

exp

(
t− T

τ2

)
,

whereξ1, ξ2 are two constants to be determined later. For simplicity, let us

further defineωi(t) = 1
τi

[
exp

(
t−T
τi

)]
for i = 1, 2. The definitions above and
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the constraints yield


||ω1||2ξ1 + 〈ω1, ω2〉ξ2 =

D

Mτ1τ2γ

〈ω1, ω2〉ξ1 + ||ω2||2ξ2 =
D

Mτ1τ2γ
,

(5.3.26)

where〈ω1, ω2〉 =
∫ T

0
ω1(s)ω2(s)ds. Therefore

 ξ1

ξ2

 =
1

||ω1||2||ω2||2 − (〈ω1, ω2〉)2

 ||ω2||2 −〈ω1, ω2〉

−〈ω1, ω2〉 ||ω1||2

·
 D

Mτ1τ2γ

D
Mτ1τ2γ

 .

Summarize the result we have

EI1(ν) = C1(T, R) · D

M1−2ατ1τ2γ

where

C1(T,R) =

∫ T+R

T

[∫ s

T

b2
12(t− s)dt

]
W (s)ds

is a constant depending onT andR, and

W (t) =
ω1||ω2||2 + ω2||ω1||2 − 〈ω1, ω2〉 · (ω1 + ω2)

||ω1||2||ω2||2 − (〈ω1, ω2〉)2

It can be easily shown thatEI1 converges to zero with a rate of1/M1−2α,

similar toEI2.

Numerically,λ∗M for t ∈ [0, T ] can be exactly constructed asλ∗M for t ∈

[T, T +R] with the width of beingM or−M depending ont. More precisely,
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for a given time steph andt + (k + 1)h ≤ T, k = 0, 1, 2, · · · , we define

λ∗M(t) =

 sign(β(kh)) ·M if 0 ≤ t− kh < h ∗ |β(kh)|

0 if h ∗ |β(kh)| ≤ t− kh < h

(5.3.27)

5.3.3 Numerical simulations

In Fig. 5.2, we plot two cases ofα = 1 (A,B,C,D,E,F) andα = 0.25 with

M = 500 (G,H,I,J,K,L). It is clearly shown that whenM = 500, α = 0.25,

the control accuracy is improved considerably, in comparison with the case of

α = 1. This numerical simulation is in agreement with our theoretical results

derived above. The parameters used areτ1 = 224 msτ2 = 13 ms,T = 50 ms,

R = 50 ms,D = 10 degree,γ = 1e − 2, κ = 0.58, exactly the same set of

parameters as in Harris and Wolpert’s (1998). It is interesting to compare Fig.

2D with Fig. 2G, for example. With our approach, the accuracy is improved

by 25 times!

5.4 Example 2: Straight-trajectory arm movement

control

Another optimization problem related to biological signal control is the

arm movement. This model is relative more complicated than the saccadic

eye movement model owing to its multi-variables and nonlinearity. This sen-

sorimotor transformations are often formalized in terms of coordinate trans-
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formations. The nonlinearity arises from the geometry of our joints. The

change in spatial location of the hand that results from bending the elbow de-

pends not only on the amplitude of the elbow movement, but also on the state

of the shoulder joint.

For simplicity, I ignore the gravity and viscous forces, and only consider

the movement of hand on a horizontal plane in the absence of friction. Let

θ1 denote the angle between the upper arm and horizontal direction, andθ2

the angle between the forearm and upper arm (Fig. 5.3A). When reaching

between two points, humans move their arms to make the path of the hand be-

tween the two points roughly straight. These straight movements are smooth:

the acceleration profile of the movement contains no discontinuities. This

results in a characteristic bell-shaped velocity profile for the movement.

The straight-trajectory hand movement can be defined as follows. Let

H0 = (xH(0), yH(0)) be the initial position of hand at timet = 0, andH1 =

(xH(T ), yH(T )) the target position of hand (Fig. 5.3B).T is the total duration

of movement,d is the distance betweenH0 andH1, and the straight hand

trajectory can be expressed by


xH(t) = xH(0) + d · φn(

t

T
) · cos ϕ

yH(t) = yH(0) + d · φn(
t

T
) · sin ϕ,

whereϕ is the angle between the vector
−−−→
H0H1 and thex-axis, andφn is the
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one-parameter family of functions

φn(z) = zn − 1

2π
sin(2πzn). (5.4.1)

For n = 1, the velocity profile is bell-shaped and symmetric; forn > 1, the

velocity is shifted towards the end, forn < 1 towards the start.

From the expression above we have the hand start fromH0 at timet = 0

and reachH1 at timet = T . The trajectory is straight, and the distance from

H0 increases monotonically. Also, the tangential hand velocity and accelera-

tions are zero for botht = 0 andt = T . The corresponding joint angles can

be obtained from the following equations (see Fig. 5.3)


θ1(t) = tan−1

(
y(t)

x(t)

)
− tan−1

(
l2 sin θ2(t)

l1 + l2 cos θ2(t)

)
θ2(t) = cos−1

(
x2(t) + y2(t)− l21 − l22

2l1l2

)
.

(5.4.2)

Furthermore, the whole arm movement dynamic system satisfies the Euler-

Lagrange equation, which can be expressed by the following non-linear sys-

tem of differential equation

M(θ1, θ2)

 θ̈1

θ̈2

+ C(θ1, θ2, θ̇1, θ̇2)

 θ̇1

θ̇2

 = γ0

 Q1

Q2

 (5.4.3)

whereγ0 is the scale parameter,M andC areθ-dependent matrices6, andQi

6M is the mass matrix of the formM =
(

I1 + m1r
2
1 + m2l

2
1 + I2 + m2r

2
2 + 2k cos θ2 I2 + m2r

2
2 + k cos θ2

I2 + m2r
2
2 + k cos θ2 I2 + m2r

2
2

)
,
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are the external forces (torques) applied to the joints of arm,i = 1, 2. We

use the minimum variance model for this optimal control task (optimization

in the presence of signal-dependence noise), which has more advantages over

other optimization based models for the control of a robot arm (Simmons

and Demiris, 2005). We regard the torquesQi = λi(t) + ξi(t) as the motor

commands, which is assumed to be stochastic in nature. We separate the

motor command signal into a deterministic termλi(t) and a noise termξi(t) ,

which is modelled as a mean zero, gaussian white noise with

E[ξi(t)ξi(t
′)] = κ0|λi(t)|2αδ(t− t′),

whereκ0 andα > 0 are parameters.

We define our objective functional as the minimal end-point error

I = min
λ1,λ2∈L2α[0,T ]

√
σ2

1 + σ2
2,

whereσ1 andσ2 are the eigenvalues of the covariance matrix of the final hand

positionH1 = (xH(T ), yH(T )) for t = T .

It is not possible to find a theoretical solution to this problem. However,

numerical simulation demonstrates the advantage of Young measure control

signal with less noise (α < 0.5) compared with ordinary control when more

andC = k sin θ2

(
θ̇2 θ̇1 + θ̇2

θ̇1 0

)
, with mi, li, Ii, i = 1, 2 being the mass, the length and

the moment of inertia with respect to the center of mass for thei-th link, k = m2l1r2. i = 1
denotes the upper arm,i = 2 the forearm (see Fig. 3A).
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noise (α ≥ 0.5) are presented.

Numerical simulation

We obtain the control signalsλ1 andλ2, which are the torquesQ1 and

Q2 to be applied to the joints to move the hand along the prescribed from

the trajectory(x(t), y(t)), by numerically estimate the first and second order

derivatives of the angle(θ1, θ2) from Eq.( 5.4.2). After corrupting the con-

trol signal(λ1(t), λ2(t)) with the corresponding noises, we generate a set of

trajectories by solving the system (5.4.3). We only show the simulation for

the symmetric velocity profile (with skewness indexn = 1), but similar re-

sults are obtained for right-shift (n > 1) or left-shift (n < 1) arm-movement

velocity.

Fig. 5.4A shows the case forα = 1 with end of point error 0.07 m, while

Fig.4B is the case whenα = 0.25, and the end of point error equals 0.01 m

with the large Young measure valueM . To increase the value ofM , more

accurate control can be achieved. 10 trials of the simulation results are shown

for each case. The parameters used in the simulation are:m1 = 2.28 kg,

m2 = 1.31 kg, l1 = 0.305 m, l2 = 0.254 m, I1 = 0.022kg · m2, I2 =

0.0077kg · m2, r1 = 0.133 m, r2 = 0.109 m, T = 650 ms,dt = 0.01 ms,

ϕ = 3π/4. These parameter values are consistent with morphological data

(Simmons and Demiris, 2005).



A

B

Fig. 5.3 (A) Illustration for an arm model. Let m1, l1 and I1 be the mass, length and the moment of inertia with 
respect to the centre of mass for the upper arm, and m2, l2 and I2 for the forearm. Also, r1 and r2 are the distances
of the upper arm and forearm centre of mass from the shoulder and elbow joint, respectively. Besides, θ1 and θ2 
are the angles as indicated in the figures. (B) Illustration for the case of straight hand trajectory with movement 
duration T and distance d.
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5.5 Discussion

Thanks to a novel theoretical approach, it is demonstrated in this chapter

that the presence of noise in the neural control signals does not necessarily

limit the precision of movements. This idea originated from the analysis of a

classical model of movement control. In particular the solution to this prob-

lem changes qualitatively, depending on how fast the noise (its variance) scale

with the signal amplitude. That is, while in the supralinear case (α ≥ 0.5)

there is a positive lower bound on the movement error, in the sublinear case

(0 < α < 0.5) such lower bound vanishes, hence we can in principle find con-

trols which reduce the movement error arbitrarily close to zero. This abrupt

transition reflects the loss of convexity of the cost functional forα < 0.5,

which makes the most interesting case for our purposes. Clearly the only

’obvious’ optimal solutions in this case, i.e. delta functions, are of little sig-

nificance. Moreover, any finite approximation of this sort of control, would

require an extreme temporal precision (apart from sizable power) and there-

fore it is hardly an option in practice.

It turns out that concentrating the control signal in two large and short

pulses is not the only way to minimize the cost. The larger the pulse is,

the better the control is. However, to fully comprehend what other features

could lead to minimize the cost, it is necessary to reformulate the problem

in more abstract terms and to introduce the concept of generalized control.

Far from being only a theoretical construct, however, this approach allows us
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to find sequences of ordinary control signals which asymptotically approach

absolute precision. These signals are markedly different from the solutions

of α > 0.5, and most interestingly, lead to trajectories and velocity profiles

which are compatible with the experimental ones.

Also, because our control signals are effectively distributed throughout the

whole duration of the movement, they are inherently more robust to perturba-

tions. One can see that variability in the actual implementation of our control

strategy have little effect on the performance.

This theory opens up many new and significant issues to be further ex-

plored, inspired by neuroscience research but has potential ramifications in

other fields, e.g. robotics.



Chapter 6

Conclusion and Future Work

6.1 Conclusion and contribution

This thesis has investigated how neurons code the external information

and control movement precisely using noisy neural signals (spike frequen-

cies and ISIs). Both biological experiments and mathematical modelling ap-

proaches were utilized to investigate the functions of single neurons and the

central nervous system in discrimination and control tasks. In the first part of

this thesis, the experiments of intracellular recording using the patch-clamp

technique on single neurons in rat brain slices have shown increasing, decreas-

ing, or constant firing patterns when the input stimulus frequency increases. It

was experimentally observed that the neuronal responses (increasing, decreas-

ing, or constant) depend on the amplitude of the oscillatory input. Moreover,

the LIF model with the sinusoidal current injection and Poisson noise can pre-

135
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cisely mimic the neuronal firing patterns observed in the experiment; this the-

sis proposed a simple mechanism to explain the principle regarding how the

three firing patterns are generated (from the relative positions of the threshold

value and the limit cycle of the neuronal dynamic system). The implication of

this piece of work is the consistency between the experimental observations

and simulation results of single neuron discrimination on stimulus frequen-

cies. Another focus in this thesis is the novel idea to quantitatively link the

psychophysical perception property (Weber’s law) with neural activity. We

have derived the linear relationship between the mean and the standard devi-

ation of neural firing rate under Weber’s law, which implies that the efferent

spike train of a single neuron is less variable than a Poisson process, as sup-

ported by much of the literature (Harris and Wolpert, 1998; Deco and Rolls,

2006). This work further demonstrates how psychophysical behaviour reflects

intrinsic neural activities quantitatively. The final focus in this thesis is how to

apply a novel theoretical approach to resolve a seemingly contradictory result

in the movement control problem. With the application of the Young measure

method, pulses are used as neural signals; a precise control of movement is

achievable even at the presence of signalling noise. Applications to saccadic

eye movement and arm movement demonstrate the significant improvement

of movement precisions using this novel optimization approach.

The main contributions of this thesis are:

1. An experimental design of single-neuron recording with patch-clamp

and dynamic clamp techniques. In order to demonstrate the discrimi-
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nation ability of the single neuron to external stimuli with various fre-

quencies, the random permutated artificial stimuli were designed and

injected into biological neurons to record the single neuron activities

at different values of the mean intensities of stimulus and stimulus fre-

quencies and to examine each neuron’s sensitivity to stimulus intensi-

ties and frequencies. The experimental results indicate that single neu-

rons could encode the stimuli frequency in their firing rates.

2. Mathematical modelling. The simple neuron model (LIF model) was

employed to successfully simulate the experimental observations by our

considering a broader but still biologically feasible parameter region,

compared with earlier literature (Feng and Brown, 2004). A simple

mechanism (limit cycle position in neural dynamic system) was used

to explain the underlying reason of the heterogenous types of neuronal

spiking patterns (increasing, decreasing, and flat), as observed in the

experiments. Furthermore, the proposal was put forth that the reason

for the existence of the opposing (increasing and decreasing) neural re-

sponses in the nerve system was that biological ensembles may benefit

from the opposing responses in terms of the enhancement of the gain of

contrast, making discrimination tasks easier to perform.

3. Linking the psychophysical responses with neuronal behaviours. This

work theoretically derived the condition for the neuronal spike rate us-

ing a psychophysical law—namely, Weber’s law. This work quantita-
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tively linked psychological behaviour with neural firing property, and

provided the necessary and sufficient conditions of Weber’s law at the

neuronal level. Weber’s law indicates the conditions for the variability

of neuronal spike train (CVISI < 1); meanwhile, given a series of spike

train data stimulated at different intensities, it can be justified from the

spike train statistics regarding whether Weber’s law holds. This study

sheds light on the relation between the psychophysical behaviour and

neuronal responses.

4. A novel approach to the optimization problem. This thesis applied a

novel method—Young measure—to constructgeneralizedsolutions for

the optimal movement control problems when earlier methods failed.

In the presence of stochastic noise in the neural signal, this method can

make the end-point error approach zero, thereby achieving a precise

movement control. Two examples (saccadic eye movement and arm

movement) were used to illustrate the advantages of this generalized

approach to precise movement control.

6.2 Further extensions

6.2.1 Frequency coding extension

Chapter 3 primarily focused on the single neurons activity when the fixed

(F is a constant) stimulus frequency was applied in the experiments and mod-
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elling (periodic stimuli). In the literature, experimentalists have also applied

aperiodic (or stochastic) vibrotactile stimuli in monkeys to demonstrate that

firing rate encodes important information in frequency discrimination rather

than periodic spike timing as neurons behave similarly to periodic and ape-

riodic stimuli in both S1 and S2 areas. Experiments have not yet been con-

ducted on aperiodic stimuli on single neuronsin vitro or simulated with the

aperiodic stimulus input in modelling; it would be interesting to compare the

numerical results with the experimental observations for such stochastic input

frequencies. Based on the current work, stochastic artificial stimuli can be

designed and applied in the experiments, and modification of current models

with a stochastic frequency input could be examined in the near future.

Previous studies have demonstrated that the firing rate changes little within

flutter ranges in the S1 unit (Talbot et al., 1968; Mountcastle et al., 1969;

Mountcastle et al., 1990; Recanzone et al., 1992); it was initially believed

that it is the periodicity of the stimuli that drove neurons to evoke highly pe-

riodic spiking trains containing the input information rather than the efferent

firing rate. Although in this work it was sufficient to use neural firing rate to

code the input temporal information in certain parameter regions, spike tim-

ing and the phase-locking effects of the output spike train may contain more

information in other parameter regions. Thus, the research on spike timings

and phase modulation at different oscillation frequencies will be further re-

searched in greater depth.

In this work, only the simplest case of encoding and decoding one di-



Chapter 6: Conclusion and Future Work 140

mensional information-temporal frequencyF was studied in detail. In fact,

neurons can also decode the stimulus amplitude in terms of their firing rate

as the output firing rate of a neuron is always an increasing function of the

magnitudea of the applied stimulus. Future work will investigate the neural

coding mechanism in high dimensions, for example, decoding both the am-

plitude and frequency(a, F ) from the mean and CV (coefficient of variance)

of efferent spike train rates rather than simply using the firing rate alone.

6.2.2 More systematic study on links between psychophysi-

cal laws and neural activities

This thesis also derived the conditions for neural discharge process from a

psychophysical law (Weber’s law), while earlier studies focused on how to ad-

just single neuron models or network models to match Weber’s law. Chapter

4 of this work did not consider the effect of the refractory period on the neural

activities according to Weber’s law; however, theoretically, the existence of

the refractory period does not affect the conclusion and the simulation results.

Detailed simulation results will be presented in another paper currently being

finalized.

Deco and Rolls’ (2006) observed Weber’s law in population neurons in

biased competition attractor networks. The authors claimed that the synaptic

connectivity of the neural network rather than the firing rate or spike timing

of single neurons resulted in the implementation of a psychophysical law.
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The preliminary simulation results from work using the same neural network

as Deco and Rolls support the conclusion derived from Chapter 4 that the

coefficient of variation of a neural spike train is less than 1. Future studies

should examine the underlying principle behind the network effects compared

with the relatively simple case of single neurons.

One of the most controversial conclusions of this work in Chapter 4 was

the derivation of the relation between the STD and mean of neural firing rate

from Weber’s law as most researchers believe that the variance, not the STD,

is linearly proportional to the mean firing rate. Thus far, it is still unclear how

the variability of the neural spiking process is related to its firing intensity

when performing a specific task. I will focus on extending this derivation

from Weber’s law into other psychophysical behaviours, such as Fitts’ law,

Hick’s law, or Steven’s power law, in the near future in order to investigate

whether the neural activities derived herein from Weber’s law also fit other

psychophysical observations.

6.2.3 Applications of movement control

Chapter 5 made advances by applying the generalized control method (us-

ing Young measure theory) to understanding the principle of movement con-

trol at a computational level. This control method has proven very useful

through the two simplified movement simulations. This approach has huge

potential in the application of motor control of biological systems. Therefore,

I will seek to realize this novel approach in the applications of clinical indus-
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try, such as human-robot interfaces or the treatment of Parkinson’s disease.
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Appendix B 
 
 
Selected Matlab code used in this thesis 
 
Due to the length of the Matlab code that I wrote for modelling and simulation 

throughout my PhD work, selected Matlab code are presented in this appendix. For the 

complete set of the programming, please go to my ePortfolio at 

http://www2.warwick.ac.uk/study/csde/gsp/eportfolio/directory/pg/msrfai/matlabcodings . 

 

 
B.1 Code for modelling in chapter 3 
 
clear all; 
clc; 
close all; 
  
a =[20.5 16.8 10]; %value of a for three different cases: 1.flat, 2. 
decrease, 3.increase 
ratio = 0; %ratio between # of inhibitary synapses and excitatory 
synapses 
refr = [5 1 1]; % refractory period 
%NN = [50 39 50]; % number of neurons in a network 
NN = [1 1 1]; %single neuron  
T = 1000;  %ms, total time 
dt = .01; % in msec, time step 
F=[ 10:10:60]; 
w = [1 1 1]; % ;  
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gamma = [20 20 9];  
k = [0 0 1.5]; 
  
runs = 1000;  
FR = zeros(runs,size(F,2)); 
  
for z = 1:3 
    if z == 1 
        weight=randn(NN(z),NN(z)); 
        Tsteps = round((T+refr(z))/dt); 
        vshow=zeros(size(F,2),Tsteps-1); 
        Iapp = zeros(size(F,2),Tsteps); 
        for y=1:size(F,2) 
            for x=1:runs 
                [FR(x,y),vshow(y,:), Iapp(y,:)] = IF_network1(NN(z), T, 
dt,Tsteps, F(y),a(z),ratio(1), gamma(z),w(z),k(z),weight, refr(z)); 
            end 
        end 
        FF1=mean(FR); 
        figure(1); subplot(3,2,2*z-1); plot(F, FF1,'o-'); hold off; 
        figure(2); subplot(3,2,2*z); plot(vshow(1,:)); axis([2000 7000 
-10 50]);  
                   subplot(3,2,4*z); plot(vshow(3,:)); axis([2000 7000 
-10 50]);  
                   subplot(3,2,6*z); plot(vshow(5,:)); axis([2000 7000 
-10 50]);  
                    
    elseif z == 2 
        weight = rand(NN(z), NN(z)); 
        Tsteps = round((T+refr(z))/dt); 
        vshow = zeros(NN(z),Tsteps); 
        Iapp = zeros(size(F,2),Tsteps); 
        for y=1:size(F,2) 
            for x=1:runs 
                [FR(x,y),vshow, Iapp(y,:)] = IF_network1(NN(z), T, 
dt,Tsteps, F(y),a(z),ratio(1), gamma(z),w(z),k(z),weight, refr(z)); 
            end 
        end 
        FF2=mean(FR); 
        figure(1); subplot(3,2,2*z-1); plot(F, FF2,'-'); %axis([0 55 -
10 100]); 
        figure(2); subplot(3,2,z); plot(vshow); axis([2000 7000 -10 
50]); hold on; plot(Iapp(1,:)); 
%                    subplot(3,2,2*z); plot(vshow(3,:)); axis([2000 
7000 -10 50]); hold on; plot(Iapp(3,1:end-1)); 
%                    subplot(3,2,3*z); plot(vshow(5,:)); axis([2000 
7000 -10 50]); hold on; plot(Iapp(5,:)); 
                    
     
    else 
        weight = randn(NN(z), NN(z)); 
        Tsteps = round((T+refr(z))/dt); 
        vshow = zeros(NN(z),Tsteps-1); 
        vol = zeros(size(F,2), Tsteps-1); 
        Iapp = zeros(size(F,2),Tsteps); 
        for y=1:size(F,2) 
            for x=1:runs     
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                [FR(x,y),vshow, Iapp(y,:)] = IF_network1(NN(z), T, 
dt,Tsteps, F(y),a(z),ratio(1), gamma(z),w(z),k(z),weight, refr(z)); 
                vol(y,:) = vshow(1,:); 
            end 
        end 
        FF3=mean(FR);  
        figure(1); subplot(3,2,2*z); plot(F, FF3,'o');hold on; 
        figure(2);  
        for g = 1:size(F,2) 
            subplot(2,3,g);plot(vol(g,:),'b'); hold on; 
plot(Iapp(g,:),'r');hold off; 
        end 
    end 
end 
  
%save('networkinc.mat','FR','F'); 
 

%IF model with population connected weight network 
%dvi/dt=-(Vi-Vrest)/gamma+Isyn(t)+sum wji*delta(t-tjq) 
  
function [FR,vshow, I] = IF_network1(NN,T,dt,Tsteps, F,a,r,gamma,w, 
k,weight, refr) 
  
thres = 20;  %threshold value to define a spike 
Vrest = 0; %mV, =EL 
s = gamma/dt; 
vshow = zeros(NN,Tsteps-1); 
  
% initial conditions: 
Volt = Vrest*zeros(NN,1); %ms 
vshow(:,1) = Vrest;  
  
Ns = 100; %number of synapses for each neuron 
a = a*1e-3; F = F*1e-3; %ration between inh and exc. 
  
mu_weight = 0; 
st_weight = 1; 
weight = mu_weight+st_weight*weight; 
  
tt = [1:Tsteps]; %tt is a vector now 
   %brownian motion for Isyn 
   lambdaE = a/2*(1+cos(2.*pi.*F.*tt.*dt)); %  
   lambdat = lambdaE.*Ns;%size(lambdat)   
   mu = w*lambdat*(1-r);%size(mu)   
   sigma2 = w^2*lambdat*(1+r);% size(sigma2)       
   sigma = sqrt(sigma2);   
   [Bt] = brownian1(Tsteps,0,1,1); 
   dBt = Bt(2:end) - Bt(1:end-1);    
   dIapp = kron(mu*dt, ones(NN,1)) ; 
   dBt = dBt'; 
   noise = kron(sigma.*dBt,ones(NN,1)); % NOTE THAT BROWNIAN 
noise=sigma.*dBt; 
   % MOTION IS ACTUALLY N(0,T)*SQRT(STEP SIZE), HERE STEP SIZE IS dt, 
but 
    Iapp=(dIapp + noise*1)/dt ; 
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t = zeros(NN, 1); 
j = ones(NN,1); 
spikes = 0;   
omega = randn(NN,1)*0*1e-3+50*1e-3; 
  
while t < T    
    for l = 1:NN      
           j(l) = j(l)+1; 
           t(l) = (j(l)-1)*dt;  
           if Volt(l) > thres    
               Volt(l) = Vrest; 
               vshow(l,j(l)) = thres + 20; 
               spikes = spikes + 1; 
               for m = 1:NN 
                   if m ~= l 
                       %Volt(m) = (s*Volt(m)+Vrest+gamma*(Iapp(m,j(l)-
1)+weight(m,l))+gamma*k*(cos(2*pi*omega(l)*t(l))+1))/(s+1); 
                       Volt(m) = Volt(m) + weight(m,l); 
                       vshow(m,j(l)) = Volt(m);   
                   end 
               end 
               j(l) = j(l) + round(refr/dt) ; 
               t(l) = t(l) + refr;           
           else 
               % Volt(l) = (s*Volt(l)+Vrest+gamma*Iapp(l,j-1))/(s+1); 
               Volt(l) = (s*Volt(l)+Vrest+gamma*Iapp(l,j(l)-
1)+gamma*k*(cos(2*pi*omega(l)*t(l))+1))/(s+1); 
               vshow(l,j(l))=Volt(l); 
           end 
    end 
end 
T=T*1e-3; 
FR=spikes/T/NN; 
I = Iapp(1,:); 
 

B.2 Code for simulation in chapter 4 
 
close all; 
clc 
clear all; 
  
alpha = 0.15; %misclassification rate 
C = sqrt(pi/2*log(1/(1-(1-alpha)^2))); 
  
%define the renewal process: Nt~(1/ET, Var(T)/(ET)^3), where T is the 
ISI 
%follwoing gamma distribution 
  
samples =1000; 
dmu = 0.1; 
mu = [2:dmu:200]'; % this is the mean for output spiking rate 
n_ISI = round(1.2*mu); 
Nt = zeros(size(mu,1),samples); 
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% %--------------------------------------------------------------------
--- 
% %using exponential ISI to generate Poisson distri spike count 
% mu = [2:100]'; % this is the mean for output spiking rate 
% sigma = sqrt(mu); %for poisson 
% n_ISI = round(1.2*mu); 
% Nt = zeros(size(mu,1),samples); 
%  
% for ii = 1:size(mu,1) 
%     x = zeros(size(mu,1),n_ISI(ii)); 
%     x_time = zeros(size(mu,1),n_ISI(ii)); 
%     for jj = 1:samples 
%         x(ii,:) = exprnd(1/mu(ii), [1 n_ISI(ii)]);          
%         x_time(ii,:) = cumsum(x(ii,:));    
%         Nt(ii,jj) = n_ISI(ii)/x_time(ii,end); 
%     end 
%     diff = var(x(ii,:))-(mean(x(ii,:)))^2; 
% end 
% mean_Nt = mean(Nt'); 
% var_Nt = var(Nt'); 
% std_Nt = std(Nt'); 
%  
% compare_mu = mean_Nt - mu'; 
% compare_sigma = std_Nt-sigma'; 
% VMR = mean(var_Nt./mean_Nt); 
  
  
  
%-------------------------------------------------------------- 
%using gamma distri ISI to generate sub or supra-Poisson 
%as for gamma distri, mu_gamma = k*theta = A*B, var_gamma = k*theta^2 = 
%A*B^2, then for Nt~(1/(A*B), A*B^2/(A*B)^3), 
  
%case 1. CV = 1 
CV = .2; 
A = 1/CV^2; 
B = 1/A./mu; %these are the two parameter for gamma distri 
sigma = 1/A./sqrt(B); 
for ii = 1:size(mu,1) 
    x = zeros(size(mu,1),n_ISI(ii)); 
    x_time = zeros(size(mu,1),n_ISI(ii)); 
        for jj = 1:samples 
            x(ii,:) = gamrnd(A,B(ii), [1 n_ISI(ii)]);          
            x_time(ii,:) = cumsum(x(ii,:));    
            Nt(ii,jj) = n_ISI(ii)/x_time(ii,end); 
        end 
end 
  
%     mean_Nt = mean(Nt'); 
%     var_Nt = var(Nt'); 
%     std_Nt = std(Nt'); 
%     sigma = 1/A./sqrt(B); 
%     compare_mu = mean_Nt - mu'; 
%     compare_sigma = std_Nt-sigma'; 
%     VMR = mean(var_Nt./mean_Nt); 
%     figure(100); plot(compare_mu,'b');hold on; 
plot(compare_sigma,'r');hold on; 
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%     plot(VMR,'g');hold off; 
  
    delt = zeros( size(mu,1), 1); 
    for i = 1:size(mu,1) 
        for j = i:size(mu,1)         
            x0 = mu(j)*sigma(i)/(sigma(i)+sigma(j)) + 
mu(i)*sigma(j)/(sigma(i)+sigma(j)); 
            A1 = sum(Nt(i,:)>x0); 
            B1 = sum(Nt(j,:)<x0); 
            area = A1+B1; 
            alpha = area/2/samples; 
            if alpha < 0.15 
                delt(i) = (j - i)*dmu; 
                break; 
            end         
        end 
    end 
    n = sum (delt >0);    
    m = round((CV*10)^2/dmu); 
    figure(1);  
    subplot(1,3,2); 
plot(mu(1:ceil(1/dmu)*10:n),delt(1:ceil(1/dmu)*10:n),'.r');hold on; 
    coef = polyfit(mu(m:ceil(1/dmu)*10:n),delt(m:ceil(1/dmu)*10:n),1); 
    linfit = polyval(coef,mu(m:ceil(1/dmu)*10:n));  
    plot(mu(m:ceil(1/dmu)*10:n), linfit,'k-');hold on; 
    plot([m m]*dmu,[0 max(delt)],'k'); hold off; 
    slope = (max(linfit)-min(linfit))/range(mu(m:n)); 
    title(['Poisson, CV_{ISI} = ' num2str(CV) ', slope = ' 
num2str(slope)]); 
    xlabel('\lambda (spikes/sec)'); 
     
%generate correlated spike trains over sliding window  
% single neuron ISI generation follow Gamma(A,B) 
 clc; 
 clear all; 
 %close all; 
   
Tref = 1*1e-3; %ms 
CV = .5; 
WIN = 20;   %:10:100;%unit: second, take the length of each window as 
20 ms 
win = WIN*1e-3; 
p = 10; % number of population neurons 
dmu = .5; 
mu = 2:dmu:120; %Hz, each neuron mean firing rate-correspond to Nt mean 
n_window_count = 1001; 
datay = zeros(size(mu,2),n_window_count-1);  
             
%define the correlation matrix 
rho = 0.1; 
M = rho*ones(p,p); 
for i = 1:p 
    M(i,i) = 1; 
end 
  
rand('state',rem(now,1)); 
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for aa = 1:size(mu,2) 
    samp_freq = 100*mu(aa)*p; %for each second, we take 20000 divisions, 
like 20000 steps 
    A = (1-mu(aa)*Tref)^2/CV^2; 
    B = CV^2/(mu(aa).*(1-mu(aa)*Tref)); %these are the two parameter 
for gamma distri 
    %     B = 1/(A*mu(aa)); %shape parameter 
    samples = 1.2*mu(aa); % number of spikes generated by each neuron;     
    %window 
    window_step = samp_freq*win; % the length of each window in terms 
of how many steps used 
    slide_step = 1*1e-3*samp_freq; 
     
    x = gamrnd(A, B, p, samples); % unit: second. the ISI distribution 
generated for p neurons, with 1000spikes each 
    x_time = cumsum(x,2); %spike timing, unit: second%      
    x_count_w = zeros(p,n_window_count); %firing rate for each single 
neuron 
         
        for i = 1:n_window_count-1 
            timeduration = (slide_step*(i-
1)+1:window_step+slide_step*(i-1))/samp_freq; 
            index1x = (x_time >= timeduration(1)); 
            index2x = (x_time <= timeduration(end)); 
            x_count_w(:,i) = sum(index1x & index2x, 2); 
        end 
        xw = x_count_w(:,1:end-1);  
    xw1 = xw - mu(aa) *win; 
    zw1 = sqrtm(M) * xw1; %expected var(zw) = win^2 * sigma^2 * M 
    yw1 = ones(1,p) * zw1;  
    yw = yw1 + mu(aa) * win * p;    
    datay(aa,:) = yw/p; 
end 
    
figure(20);  
subplot(2,2,1); plot(var(datay'));hold on; plot(mu*win *1/A*(1+(p-
1)*rho)/p,'r');hold off; 
     
muy = mean(datay,2)'; 
sigmay = std(datay'); 
  
  
%test Weber's law 
delt = zeros(1, size(mu,2)); 
for ii = 1:size(mu,2) 
    for jj = ii+1:size(mu,2)         
        x0 = muy(jj)*sigmay(ii)/(sigmay(ii)+sigmay(jj)) + 
muy(ii)*sigmay(jj)/(sigmay(ii)+sigmay(jj)); 
        A1 = sum(datay(ii,:) > x0); 
        B1 = sum(datay(jj,:) < x0); 
        area = A1+B1; 
        totalarea = size(datay,2) * 2; 
        alpha = area/2/totalarea; 
            if alpha < 0.15 
                delt(ii) = (jj - ii)*dmu; 
                break; 
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            end         
    end 
end 
n = sum (delt > 0); 
  
  
%m = 1; 
m = round(1/A*100/dmu/(p/(1+(p-1)*rho))); 
m2 = n; 
%m2 = round(1/A*10000/dmu/NN); 
  
jump = 1; 
figure(WIN); subplot(2,2,4); 
plot(muy(1:ceil(1/dmu)*jump:n)/win,delt(1:ceil(1/dmu)*jump:n),'.r'); 
hold on; 
%use linear regression to fit data 
coef = 
polyfit(muy(m:ceil(1/dmu)*jump:m2)/win,delt(m:ceil(1/dmu)*jump:m2),1); 
linfit = polyval(coef,muy(m:ceil(1/dmu)*jump:m2)/win);  
plot(muy(m:ceil(1/dmu)*jump:m2)/win, linfit,'k-');hold on; 
plot([m m]*dmu,[0 max(delt)],'k'); hold off; 
slope = (max(linfit)-min(linfit))/range(muy(m:ceil(1/dmu)*jump:m2)) 
*win; 
xlabel('\mu_{yw}'); ylabel('\Delta \mu_{yw}'); 
title(['Weber law in window ' num2str(win*1e3) '(ms), slope = ' 
num2str(slope)]); 
  
%plot out histogram for the superposition firing rate at each single 
rate mu value 
figure(200); 
for cc = 1:round(1/dmu):size(mu,2) 
    
subplot(10,10,ceil(cc*dmu));hist(datay(cc,:)/win,40);xlabel(['\mu_{sing
le} = ' num2str(mu(cc))]); 
    %xlim([0 200]); ylim([0 100]); 
end 
 
clc; clear all; close all; 
% theoretical solution for sigmoid input-output relation 
C = 1.4; 
R0 = 120; 
  
%CV value when k = 0.05 
k = 0.05; 
color = ['r' 'b' 'g' 'k' 'y' 'm' 'p' 'o' '+' '*' 'r' 'b' 'g' 'k' 'y' 
'm' 'p' 'o' '+' '*']; 
time_step = 1000; 
k0 = k*R0*(log(R0/5-1)-log(R0/(R0-5)-1))/(R0-10);          
I0 = R0/k0*(log(R0/5-1)-log(R0/(R0-5)-1));  
slope = (R0-10)/I0; 
mu_range = 0:I0; 
sigmoid = R0./(1+exp(-k0*(mu_range-1/2*I0)/R0)); 
figure(1); plot(mu_range, sigmoid);title(['mu vs. I_0']);hold on; 
t1 = R0/(1+exp(-(0-0.5*I0)*k0/R0)); 
t2 = R0/(1+exp(-(I0-0.5*I0)*k0/R0)); 
Tspan = [t1 t2];  %t is the mean firing rate mu, y is sigma = f(mu) 
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ft = linspace(t1,t2,time_step); %define the time step, which is range 
of valid mu        
h = R0./(ft.*(1+(R0./ft -1).^(k+1)*exp(-k0*k*I0/(2*R0)))) -1; 
f = 2./(ft.*h); 
gt = ft; 
g = 1/C*ones(size(gt)); 
validindex = find(h>0.01); 
ft1 = ft(validindex); 
h1 = h(validindex); 
f1 = f(validindex); 
gt1 = ft1; 
g1 = g(validindex); 
hk = k*ones(size(ft1)); 
fk = 2./(ft1*k); 
newindex = find(f1<fk); 
t1_new = ft1(newindex(1)); 
Tspan1 = [t1_new t2]; 
IC = k*t1; %y(t=t1) = slope k * initial firing rate t1; 
[T Y] = ode23s(@(t,y) webfun(t,y,ft1,f1,gt1,g1),Tspan1,IC); % Solve ODE 
CV = Y.*sqrt(1./T); 
CVISI = CV;   
smallindex = find( T <= 100 ); 
CV_range1 = max(CVISI(smallindex)); 
  
%calculate value of CV when k = 0.3 
k = 0.3; 
color = ['r' 'b' 'g' 'k' 'y' 'm' 'p' 'o' '+' '*' 'r' 'b' 'g' 'k' 'y' 
'm' 'p' 'o' '+' '*']; 
time_step = 1000; 
k0_2 = k*R0*(log(R0/5-1)-log(R0/(R0-5)-1))/(R0-10);          
I0 = R0/k0_2*(log(R0/5-1)-log(R0/(R0-5)-1));  
slope = (R0-10)/I0; 
mu_range = 0:I0; 
sigmoid = R0./(1+exp(-k0_2*(mu_range-1/2*I0)/R0)); 
figure(1); plot(mu_range, sigmoid);title(['mu vs. I_0']);hold on; 
t1 = R0/(1+exp(-(0-0.5*I0)*k0_2/R0)); 
t2 = R0/(1+exp(-(I0-0.5*I0)*k0_2/R0)); 
Tspan = [t1 t2];  %t is the mean firing rate mu, y is sigma = f(mu) 
ft = linspace(t1,t2,time_step); %define the time step, which is range 
of valid mu        
h = R0./(ft.*(1+(R0./ft -1).^(k+1)*exp(-k0_2*k*I0/(2*R0)))) -1; 
f = 2./(ft.*h); 
gt = ft; 
g = 1/C*ones(size(gt)); 
validindex = find(h>0.01); 
ft1 = ft(validindex); 
h1 = h(validindex); 
f1 = f(validindex); 
gt1 = ft1; 
g1 = g(validindex); 
hk = k*ones(size(ft1)); 
fk = 2./(ft1*k); 
newindex = find(f1<fk); 
t1_new = ft1(newindex(1)); 
Tspan1 = [t1_new t2]; 
IC = k*t1; %y(t=t1) = slope k * initial firing rate t1; 
[T Y] = ode23s(@(t,y) webfun(t,y,ft1,f1,gt1,g1),Tspan1,IC); % Solve ODE 
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CV = Y.*sqrt(1./T); 
CVISI = CV;   
MU = T; 
SIGMA = Y; 
largeindex = find(T <=100); 
CV_range2 = min(CVISI(largeindex)); 
  
%test if k0 is bigger than the calculated value from k, what will 
happen? 
dk0 = .1; 
i = 1; 
k = 0.05; 
while k0 < k0_2 
         k0 = k0+dk0; 
         i = i+1; 
         I0 = R0/k0*(log(R0/5-1)-log(R0/(R0-5)-1));  
         mu_range = 0:I0; 
         sigmoid = R0./(1+exp(-k0*(mu_range-1/2*I0)/R0)); 
         figure(1); subplot(2,2,1); plot(mu_range, sigmoid);title(['mu 
vs. I_0']);hold on; 
        t1 = R0/(1+exp(-(0-0.5*I0)*k0/R0)); 
        t2 = R0/(1+exp(-(I0-0.5*I0)*k0/R0)); 
        Tspan = [t1 t2];   
        ft = linspace(t1,t2,time_step); %define the time step, which is 
range of valid mu        
        h = R0./(ft.*(1+(R0./ft -1).^(k+1)*exp(-k0*k*I0/(2*R0)))) -1; 
        f = 2./(ft.*h); 
        gt = ft; 
        g = 1/C*ones(size(gt)); 
        validindex = find(h>0.01); 
        ft1 = ft(validindex); 
        h1 = h(validindex); 
        f1 = f(validindex); 
        gt1 = ft1; 
        g1 = g(validindex); 
        hk = k*ones(size(ft1)); 
        fk = 2./(ft1*k);         
        newindex = find(f1<fk); 
        t1_new = ft1(newindex(1)); 
        Tspan1 = [t1_new t2]; 
        IC = k*t1; %y(t=t1) = slope k * initial firing rate t1; 
        [T Y] = ode23s(@(t,y) webfun(t,y,ft1,f1,gt1,g1),Tspan1,IC); % 
Solve ODE 
        CV = Y.*sqrt(1./T); 
        smallindex = find(T<=100); 
        CV_range1(i) = max(CV(smallindex)); 
end    
     
subplot(2,2,2); plot([0.05:dk0:k0-2*dk0],CV_range1,'r');hold on; 
plot([0.05 k0], [CV_range2 CV_range2],'g');hold on; 
     
 

B.3 Code for simulation in chapter 5 
 
clear all; 
clc; 
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close all; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% TASK/MOTOR PLANT PARAMETERS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
task_parameters = 'R&F'; 
task_parameters = 'H&W'; 
  
switch task_parameters 
  
    case 'R&F' 
  
        %% (regular) 
        pars.tau_1 = 1; pars.tau_2 = 2; pars.tau_3 = 0.15; pars.T = 1; 
pars.R = 0.1; pars.D = 2;  pars.noise_scale=1; 
  
        %%% (anomalous) 
        % pars.tau_1 = 1; pars.tau_2 = 2; pars.tau_3 = 15; pars.T = 1; 
pars.R = 0.1; pars.D = 2;  pars.noise_scale=1; 
  
        dt = 1e-3; 
  
    case 'H&W' 
  
        %%% Default settings 
        pars.tau_1 = 224; pars.tau_2 = 13; pars.tau_3 = 1e-2; pars.T  =  
50; pars.R  =  50; pars.D   =  10; pars.noise_scale = 0.58; 
  
        %%% noise_scale (CV) set as in de Beers et al.  k_SDN = 0.172) 
        %         pars.tau_1 = 224; pars.tau_2 = 13; pars.tau_3 = 1e-2; 
pars.T  =  50; pars.R  =  50; pars.D   =  10; pars.noise_scale = 0.172; 
  
        %%% anomalous dependecy of Optimal Var vs. alpha 
        % pars.tau_1 = 224; pars.tau_2 = 13; pars.tau_3 = 1; pars.T  =  
50; pars.R  =  50; pars.D   =  10; pars.noise_scale = 0.58; 
  
        %%% for experimenting 
        pars.tau_1 = 224; pars.tau_2 = 13; pars.tau_3 = 1e-2; pars.T  =  
50; pars.R  =  50; pars.D   =10; pars.noise_scale = .58; 
  
        %         NB: Task duration superceded by empirical 
        %         Duration-Amplitude relation taken from 
        %         Collewijn et al. 
        %         Binocular co-ordination of human horizontal saccadic 
eye movements. 
        %         The Journal of Physiology (1988) 
        %         vol. 404 pp. 157-82 
  
        pars.T = 2.7 * pars.D + 23; 
  
        dt = 1e-1;      %% defaul 1e-2; 
  
end 
  
  
%% load previously stored initial guess values for csi/eta at different 
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%% alpha values 
  
load_guess; 
  
  
T_range = 10:10:150; 
D_range = [5 10 20 30 40 50]; 
D_range = 50; 
ifitts = 1; 
% for T_fitts = T_range 
for D_scan = D_range 
     
    pars.D = D_scan; 
%     pars.T = 2.7 * pars.D + 23; 
     
    scan_control  = []; 
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %% SIMULATION SETUP (EDIT THESE) 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
    % rand('state',1); 
    % randn('state',1); 
  
    pars.M = 100; 
  
    x0 = [0;0]; 
  
    alp_range =[0.51 0.55:0.05:1];    %% used to generate Fig. 1 
  
    alp_range = 1;           %% set this for alpha 
  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %%  OPTIONS 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
    ntrials = 10;    %10 
  
    calculate_mean_variance = 1; 
    calculate_partial_cost = 1; 
    use_beta_pulse_solution = 0; 
    plot_sample_mean_variance = 1; 
  
    %% when use_HW_solution = 1, then alp=1 is used for calculation of 
control 
    %% signal 
     
    use_HW_solution = 0;          
     
    print_figures = 0; 
  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %% DERIVED QUANTITIES 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
    t_end = pars.T + pars.R; 
    t = dt:dt:t_end; 



167 
Appendix B: Matlab code used in this thesis 

 
 

    iT = round(pars.T/dt); 
    k= pars.noise_scale^2/dt; 
    nsteps = round(t_end/dt); 
  
    lam_hold = pars.D/(pars.tau_1*pars.tau_2*pars.tau_3); 
  
    A = eye(2) + dt*[0 1; -1/(pars.tau_1*pars.tau_2) -
(pars.tau_1+pars.tau_2)/(pars.tau_1*pars.tau_2)]; 
    B = dt*[0; pars.tau_3]; 
  
    a_1 = -1/(pars.tau_1*pars.tau_2); 
    a_2 = -(pars.tau_1+pars.tau_2)/(pars.tau_1*pars.tau_2); 
    a_3 = pars.tau_3; 
    sqdt = sqrt(dt); 
  
    csi_opt = zeros(length(alp_range),1); 
    eta_opt = zeros(length(alp_range),1); 
  
  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %% GRAPHICS 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
    font_size = 28; 
    linewidth_1 = 2; 
    linewidth_2 = 0.5; 
    axis_linewidth = 1; 
  
  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %% RUN 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
    ii_scan = 1; 
    for alp = alp_range 
         
        if use_HW_solution 
            alp_calc = 1; 
        else 
            alp_calc = alp; 
        end 
         
        if  (alp>=0.5) |  (use_HW_solution) 
            %% find an ordinary solution 
  
            %% set initial point for optimizations by interpolating 
between stored guesses 
            csi_0 = spline(pars.guess_points(:,1), 
pars.guess_points(:,2), alp_calc); 
            eta_0 = spline(pars.guess_points(:,1), 
pars.guess_points(:,3), alp_calc); 
  
            %% solve nonlinear equations for (csi, eta) and compute 
control signal 
            [lam_star, csi, eta] = solve_optimal_lambda(pars.D, pars.T, 
pars.R, alp_calc, pars.tau_1, pars.tau_2, pars.tau_3, t, csi_0, eta_0); 
            lam_star = lam_star'; 
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            %% concatenate hold-on solution in the post-movement period 
            lam_star((iT+1):end) =  lam_hold; 
  
            %% store csi, eta solution 
            csi_opt(ii_scan) = csi; 
            eta_opt(ii_scan) = eta; 
  
            SIGNAL = lam_star; 
            NOISE   = abs(lam_star).^alp; 
  
        else 
            %% find Young measure solution 
  
            w1 = (1/pars.tau_1) * exp((t-pars.T)/pars.tau_1); 
            w2 = (1/pars.tau_2) * exp((t-pars.T)/pars.tau_2); 
            w1sq = 1/(2*pars.tau_1) * (1-exp(-2*pars.T/pars.tau_1)); 
            w2sq = 1/(2*pars.tau_2) * (1-exp(-2*pars.T/pars.tau_2)); 
            w1w2 = 1/(pars.tau_1+pars.tau_2) * (1-exp(-
pars.T*(pars.tau_1+pars.tau_2)/(pars.tau_1*pars.tau_2))); 
            W = [w1sq w1w2; w1w2 w2sq]; 
            xi  = (1/pars.M) * lam_hold * inv(W) * [1; 1]; 
            beta_t  = xi(1) * w1' + xi(2) * w2'; 
            beta_t((iT+1):end) = (1/pars.M) * lam_hold;      %% hold-on 
control 
  
            %         if use_beta_pulse_solution>0 
            %             [t_1, t_2 ] = optimal_beta(pars) 
            %             beta_t = zeros(size(beta_t)); 
            %             beta_t((t<t_1)) = 1; 
            %             beta_t((t>t_2)&(t<pars.T)) = -1; 
            %             beta_t((t>=pars.T)) = (1/pars.M) * lam_hold; 
            %         end 
  
            SIGNAL = pars.M*beta_t; 
            NOISE   = (pars.M^alp)*sqrt(abs(beta_t)); 
  
        end 
         
        if use_HW_solution 
            beta_t = SIGNAL/pars.M; 
            NOISE   = (pars.M^alp)*sqrt(abs(beta_t)); 
        end 
             
             
  
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        %% PLOT CONTROL SIGNAL 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
        if alp>=0.5 
  
            %% Agonist 
            hfig_11 = figure(11); 
            hh = plot(t,SIGNAL.*(SIGNAL>0), 'LineWidth', linewidth_1); 
            xlim([0 pars.T+pars.R]); 
            xlabel('Time (ms)', 'Fontsize', font_size); 
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            ylabel('Agonist signal', 'Fontsize', font_size) 
            set(gca, 'FontSize', font_size, 'Linewidth', axis_linewidth, 
'TickDir', 'out') 
            box off 
  
            %% Antagonist 
            hfig_12 =  figure(12); 
            plot(t,-SIGNAL.*(SIGNAL<0), 'LineWidth', linewidth_1); 
            xlim([0 pars.T+pars.R]); ylabel('Antagonist signal', 
'Fontsize', font_size); 
            xlabel('Time (ms)', 'Fontsize', font_size); 
            set(gca, 'FontSize', font_size, 'Linewidth', axis_linewidth, 
'TickDir', 'out') 
            box off 
  
        else 
  
            %% Agonist 
            hfig_11 = figure(11); 
            hh = plot(t,beta_t, 'LineWidth', linewidth_1); 
            xlim([0 pars.T+pars.R]); 
            xlabel('Time (ms)', 'Fontsize', font_size); 
            ylabel('\beta(t)', 'Fontsize', font_size) 
            set(gca, 'FontSize', font_size, 'Linewidth', axis_linewidth, 
'TickDir', 'out') 
            box off 
  
        end 
  
        drawnow 
  
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        %% THEOR. VARIANCE AT END-POINT 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
        interval_integration = 1:iT; 
        t_integration = pars.T - dt*interval_integration; 
        endpoint_var(ii_scan) = pars.tau_3^2 * pars.noise_scale^2 * dt 
* sum((NOISE(1:iT).^2)'.*(b_12(t_integration, pars.tau_1, 
pars.tau_2).^2 ) ); 
  
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        %% THEOR. MEAN AND VARIANCE PROFILES 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
        if calculate_mean_variance>0 
  
            disp('Calculating theor. mean and variance, please 
wait...'); 
  
            At = eye(2); 
            a_t = zeros(2, nsteps); 
            b_t = zeros(2,2,nsteps); 
            c_t = zeros(1,nsteps); 
  
            %% Define Propagators 
            for isteps = 1:nsteps 
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                a_t(:, isteps) =  At*B;     %%% mean 
                b_t(:, :, isteps) =  (At*B)*(At*B)';    %%% covariance 
                At = A*At; 
            end 
            c_t = reshape(b_t(1,1,:), [1 nsteps]); 
  
            %% for a delta-signal at 0 
            % Varx_T = k*c_t(iT) * Pulse_amp(1); 
  
            x_t = zeros(2,nsteps); 
            Ex_t = zeros(2,nsteps); 
            Varx_t = zeros(1,nsteps); 
  
            if calculate_partial_cost>0 
  
                NOISE_CUT = NOISE; 
                NOISE_CUT((iT+1):end) = 0; 
                for isteps = 1:nsteps 
                    Ex_t(:,isteps)  = a_t(:,isteps:-
1:1)*SIGNAL(1:isteps); 
                    Varx_t(isteps) = c_t(isteps:-
1:1)*k*(NOISE_CUT(1:isteps)).^2; 
                end 
  
            else 
  
                for isteps = 1:nsteps 
                    Ex_t(:,isteps)  = a_t(:,isteps:-
1:1)*SIGNAL(1:isteps); 
                    Varx_t(isteps) = c_t(isteps:-
1:1)*k*(NOISE(1:isteps)).^2; 
                end 
  
            end 
  
            %% check with calculation above 
            %         endpoint_var(ii_scan) = Varx_t(iT); 
  
            Cost(ii_scan) = sum(Varx_t(iT:end)*dt); 
  
  
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            %% PLOT MEAN AND VARIANCE PROFILES 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
            %% Trajectory mean and STD 
            hfig_21 = figure(21); 
            hold on 
            plot(t, Ex_t(1,:), 'LineWidth', linewidth_1, 'Color', 'r') 
            plot(t, Ex_t(1,:) + sqrt(Varx_t),  'LineWidth', linewidth_1, 
'Color', 'r', 'LineStyle', '--') 
            plot(t, Ex_t(1,:) - sqrt(Varx_t),  'LineWidth', linewidth_1, 
'Color', 'r', 'LineStyle', '--') 
            plot(pars.T, pars.D, 'Marker','o', 'MarkerSize',8, 'Color', 
'r', 'MarkerFaceColor', 'w'); 
            xlabel('Time (ms)', 'Fontsize', font_size); 
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            ylabel('Position (deg)', 'Fontsize', font_size); 
            set(gca, 'LineWidth', axis_linewidth, 'FontSize', 
font_size); 
            hold off 
  
            %% Velocity mean profile 
            hfig_22 =figure(22); 
            hold on 
            plot(t, Ex_t(2,:)*1e3, 'LineWidth', 
linewidth_1,'Color','r'); 
            xlabel('Time (ms)', 'Fontsize', font_size); 
            ylabel('Velocity (deg\cdot s^{-1})', 'Fontsize', font_size); 
            set(gca, 'LineWidth', axis_linewidth, 'FontSize', 
font_size); 
            hold off 
  
            %% Positional variance 
            hfig_23 =figure(23); 
            hold on 
            plot(t,Varx_t,  'LineWidth', linewidth_1 ) 
            xlabel('Time (ms)', 'Fontsize', font_size); 
            ylabel('Pos. variance (deg^2)', 'Fontsize', font_size); 
            set(gca, 'LineWidth', axis_linewidth, 'FontSize', 
font_size); 
            hold off 
  
            fprintf(1,'alpha = %f \t Cost = %f \t Endpoint Variance 
= %f \n', ... 
                alp, Cost(ii_scan), endpoint_var(ii_scan)); 
  
        end 
  
        drawnow 
  
%         disp('Generating sample trajectories'); 
%         pause(0.5) 
  
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        %% GENERATE SAMPLE TRAJECTORIES 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
        sample_mean     =    0; 
        sample_var          =   0; 
  
        if ntrials>0 
  
            hfig_31 = figure(31); 
            haxes_31 = axes; 
            set(haxes_31 , 'NextPlot', 'add'); 
            set(haxes_31, 'LineWidth', axis_linewidth, 'FontSize', 
font_size); 
            xlabel('Time (ms)', 'Fontsize', font_size); 
            ylabel('Position (deg)', 'Fontsize', font_size); 
  
            hfig_32 = figure(32); 
            haxes_32 = axes; 
            set(haxes_32, 'NextPlot', 'add'); 
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            set(haxes_32, 'LineWidth', axis_linewidth, 'FontSize', 
font_size); 
            xlabel('Time (ms)', 'Fontsize', font_size); 
            ylabel('Velocity (deg\cdot s^{-1})', 'Fontsize', font_size); 
  
            x_endpoint = zeros(ntrials,1); 
            v_endpoint = zeros(ntrials,1); 
  
            Xt = zeros(nsteps+1,1); 
            Vt = zeros(nsteps+1,1); 
            Xt_mean = zeros(size(Xt)); 
            Vt_mean = zeros(size(Vt)); 
  
            for itrial = 1:ntrials 
  
                dB = sqdt*randn(nsteps,1); 
                Vt(1) = 0; 
                Xt(1) = 0; 
                for isteps = 1:nsteps 
                    Xt(isteps+1) = Xt(isteps) + Vt(isteps) *dt; 
                    Vt(isteps+1) = Vt(isteps) + dt*(a_1*Xt(isteps) + 
a_2*Vt(isteps) + a_3*SIGNAL(isteps)) 
+pars.noise_scale*a_3*NOISE(isteps)*dB(isteps); 
                end 
                Xt_mean = (itrial-1)/itrial * Xt_mean + Xt/itrial; 
                Vt_mean = (itrial-1)/itrial * Vt_mean + Vt/itrial; 
                x_endpoint(itrial) = Xt(iT+1); 
                v_endpoint(itrial) = Vt(iT+1); 
  
                figure(hfig_31); 
                plot([0 t], Xt, 'LineWidth', 1) 
                plot(pars.T, x_endpoint(itrial), 'LineStyle', 
'none','Marker', '.') 
  
                figure(hfig_32); 
                plot([0 t], Vt*1e3, 'LineWidth', 1) 
  
  
            end 
  
            sample_mean   = mean(x_endpoint); 
            sample_var       = var(x_endpoint); 
  
            if plot_sample_mean_variance>0 
  
                figure(hfig_31); 
                plot([0 t], Xt_mean, 'r' ) 
  
                figure(hfig_32); 
                plot([0 t], Vt_mean*1e3,'r' ) 
  
            end 
  
  
            %         %% OVERLAY THEOR. MEAN AND VARIANCE 
            if calculate_mean_variance>0 
                figure(hfig_31); 
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                plot(t, Ex_t(1,:), 'LineWidth', linewidth_1, 'Color', 
'r'); 
                plot(pars.T, pars.D, 'Marker','o', 'MarkerSize',8, 
'Color', 'r', 'MarkerFaceColor', 'w'); 
                hold off; 
  
                figure(hfig_32); 
                plot(t, Ex_t(2,:)*1e3,  'LineWidth', linewidth_1,   
'Color', 'r'); 
                hold off 
            end 
  
  
            %         subplot(2,2,3); 
            %         plot(t,SIGNAL); xlim([0 pars.T+pars.R]); 
ylabel('\lambda^*(t)', 'Fontsize', font_size); xlabel('Time (ms)', 
'Fontsize', font_size); 
            %         subplot(2,2,4); 
            %         plot(t,SIGNAL); xlim([0 pars.T+pars.R]); 
ylabel('Signal', 'Fontsize', font_size); xlabel('Time (ms)', 'Fontsize', 
font_size); 
            %         drawnow; 
  
            fprintf(1,'alpha = %f \t  Mean[X(T)] = %f \t Var[X(T)] = %f 
\n', alp, sample_mean, sample_var); 
  
        end 
  
        scan_control(:,ii_scan) = SIGNAL; 
  
        ii_scan = ii_scan + 1; 
    end  %% end loop over alpha 
  
  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %% PLOT ERROR VS. ALPHA 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
    if length(alp_range)>1 
        figure(4) 
        plot(alp_range, endpoint_var, '-o' ); xlabel('\alpha', 
'Fontsize', font_size); ylabel('Var(x(T))', 'Fontsize', font_size) 
        figure(5) 
        plot(alp_range, Cost, '-o' ); xlabel('\alpha'); 
ylabel('I(\lambda^*)', 'Fontsize', font_size) 
    end 
  
    if print_figures>0 
  
        string_eps=  strcat('alp_', num2str(alp), 'M_', 
num2str(pars.M),'.eps'); 
        string_fig=  strcat('alp_', num2str(alp), 'M_', 
num2str(pars.M),'.fig'); 
  
        if alp>=0.5 
  
            filename = strcat('agonist_',string_eps); 



174 
Appendix B: Matlab code used in this thesis 

 
 

            print(hfig_11, '-depsc', filename); 
            filename = strcat('agonist_',string_fig); 
            saveas(hfig_11, filename); 
  
            filename = strcat('antagonist_',string_eps); 
            print(hfig_12, '-depsc', filename); 
            filename = strcat('antagonist_',string_fig); 
            saveas(hfig_12, filename); 
  
        else 
  
            filename = strcat('beta_',string_eps); 
            print(hfig_11, '-depsc', filename); 
            filename = strcat('beta_',string_fig); 
            saveas(hfig_11, filename); 
  
        end 
  
  
  
        if calculate_mean_variance>0 
  
            filename = strcat('traj_' ,string_eps); 
            print(hfig_21, '-depsc',filename); 
  
            filename = strcat('velprof_' ,string_eps); 
            print(hfig_22, '-depsc',filename); 
  
            filename = strcat('posvar_',string_eps); 
            print(hfig_23, '-depsc',filename); 
  
            filename = strcat('traj_' ,string_fig); 
            saveas(hfig_21,filename); 
  
            filename = strcat('velprof_' ,string_fig); 
            saveas(hfig_22, filename); 
  
            filename = strcat('posvar_',string_fig); 
            saveas(hfig_23 ,filename); 
  
        end 
  
        if ntrials>0 
  
            filename = strcat('sampletraj_' ,string_eps); 
            print(hfig_31, '-depsc',filename); 
  
            filename = strcat('samplevel_' ,string_eps); 
            print(hfig_32, '-depsc',filename); 
  
            filename = strcat('sampletraj_',string_fig); 
            saveas(hfig_31, filename); 
  
            filename = strcat('samplevel_' ,string_fig); 
            saveas(hfig_32, filename); 
        end 
  



175 
Appendix B: Matlab code used in this thesis 

 
 

    end 
  
    res_fitts(ifitts) = Cost; 
    ifitts = ifitts + 1; 
end 
  
return 
  
figure; plot(log2(2*pars.D./res_fitts), T_fitts_range, '-o') 
  
 

 

function [y , csi, eta] = solve_optimal_lambda1(D, T, R, alp, tau_1, 
tau_2, tau_3, s) 
  
TOLERANCE = 1e-6;   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  CONSTANTS  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
bet = -1/(2*alp-1); 
%%% CHECKED OK 
C1 = D/(tau_2*tau_3)*exp(T/tau_1); 
C2 = D/(tau_1*tau_3)*exp(T/tau_2); 
C3 = (tau_1*tau_2)/(tau_2-tau_1); 
tau_12 = (tau_1 * tau_2)/(tau_1 + tau_2); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% SOLUTION OF THE SYSTEM  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     %quadl-numerical calculate integral 
        K11 = quadl( @phi_1,   0, T, TOLERANCE, [], bet, T, R, tau_1, 
tau_2, tau_12, C3); 
        K22 = quadl( @phi_2,   0, T, TOLERANCE, [], bet, T, R, tau_1, 
tau_2, tau_12, C3); 
        K12 = quadl( @phi_12,  0, T, TOLERANCE, [], bet, T, R, tau_1, 
tau_2, tau_12, C3); 
         
        detK = K11*K22 - K12*K12;%because as below: (but A(csi, eta) 
into the constraint Eq(21) 
        %csi * K11 + eta * K12 = C1; 
        %csi * K12 + eta * K22 = C2; 
         
        csi = (K22*C1 - K12*C2)/detK; 
        eta = (K11*C2 - K12*C1)/detK; 
         
        y = (csi*exp(s/tau_1) + eta*exp(s/tau_2)).*phi(s, bet, T, R, 
tau_1, tau_2, tau_12, C3); 
            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function y = phi(s, bet, T, R, tau_1, tau_2, tau_12, C3) 
%this is the integration of b12^2 part with power -1/(2\alpha-1)  
%Eq(7) last term 
b = 4*tau_12*(exp(-(T+R-s)/tau_12)-exp(-(T-s)/tau_12)) ... 
    -tau_2*(exp(-2*(T+R-s)/tau_2)-exp(-2*(T-s)/tau_2)) ... 
    -tau_1*(exp(-2*(T+R-s)/tau_1)-exp(-2*(T-s)/tau_1)); 
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y = (0.5*(C3^2)*b).^bet; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function y = phi_1(s, bet, T, R, tau_1, tau_2, tau_12, C3) 
  
b = 4*tau_12*(exp(-(T-s+R)/tau_12)-exp(-(T-s)/tau_12)) ... 
    -tau_2*(exp(-2*(T-s+R)/tau_2)-exp(-2*(T-s)/tau_2)) ... 
    -tau_1*(exp(-2*(T-s+R)/tau_1)-exp(-2*(T-s)/tau_1)); % int^(T+R)_(T) 
b12(t-s)^2 dt 
  
y = exp(2*s/tau_1).*((0.5*C3^2)*b).^bet; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function y = phi_2(s, bet, T, R, tau_1, tau_2, tau_12, C3) 
  
b = 4*tau_12*(exp(-(T-s+R)/tau_12)-exp(-(T-s)/tau_12)) ... 
    -tau_2*(exp(-2*(T-s+R)/tau_2)-exp(-2*(T-s)/tau_2)) ... 
    -tau_1*(exp(-2*(T-s+R)/tau_1)-exp(-2*(T-s)/tau_1)); 
  
y = exp(2*s/tau_2).*((0.5*C3^2)*b).^bet; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function y = phi_12(s, bet, T, R, tau_1, tau_2, tau_12, C3) 
  
b = 4*tau_12*(exp(-(T-s+R)/tau_12)-exp(-(T-s)/tau_12)) ... 
    -tau_2*(exp(-2*(T-s+R)/tau_2)-exp(-2*(T-s)/tau_2)) ... 
    -tau_1*(exp(-2*(T-s+R)/tau_1)-exp(-2*(T-s)/tau_1)); 
  
 y = exp(s/tau_12).*((0.5*C3^2)*b).^bet;     
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