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Abstract 

Background and Aims 

Regular physical activities have shown to have various health benefits however there is 

always an accompanying risk of developing musculoskeletal soft tissue injuries. Indeed, 

damaged tendons account for 30-50% of sports-related injuries where the lifetime risk of 

Achilles tendon pathology (ATP) approaches 50% in runners, and that of patellar tendon 

pathology (PTP) is 21% in football players. The exact aetiology and mechanisms of tendon 

pathologies are still under investigation, however extrinsic and intrinsic risk factors (of which 

genetic) have been identified. Recent genetic association studies found that gene variants 

within the TNC, COL5A1, MMP3, GDF5 and CASP8 were associated with ATP in a 

Caucasian Australian and South African population. Furthermore, epigenetic mechanisms 

such as DNA methylation and microRNA (miRNA) activity have been implicated in a range of 

diseases but were never investigated for their role in human tendinopathy. 

 

Based on the aforementioned information, this thesis aimed at investigating novel candidate 

genes that may be associated with ATP and to replicate previously conducted studies in a 

newly recruited case-control population. Additionally, this thesis aimed at investigating 

potential differences in DNA methylation profiles and miRNA expression levels between 

healthy and damaged Achilles and patellar tendons. 

 

One hundred and thirty six UK Caucasian participants with clinically diagnosed ATP and 131 

asymptomatic, unrelated, physically active control participants were recruited for this study. 

Furthermore, the previously recruited 173 clinically diagnosed ATP participants and 238 

asymptomatic, unrelated, physically active control participants from Australia and South 

Africa (AUS+SA) were also included in the studies of this thesis. 
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Participants within the combined AUS+SA were genotyped for the ELN rs2071307, FBN2 

rs331079, ADAM12 rs3740199, ADAMTS2 rs1054480, ADAMTS5 rs226794, ADAMTS14 

rs4747096, and TIMP2 rs4789932 variants, and the UK participants were genotyped for the 

COL5A1 rs71746744, FBN2 rs331079, GDF5 rs143833, MMP3 rs679620, TIMP2 rs4789932 

variants using fluorescent based TaqMan® technology. Furthermore, the UK cohort was 

genotyped for the COL5A1 rs12722 variant using polyacrylamide gel electrophoresis.  

 

Moreover, 10 healthy and 10 diseased patellar tendon tissue samples in addition to 4 

healthy, and 1 diseased Achilles tendon samples were obtained for the epigenetic studies. 

The DNA methylation profile within the TIMP2 and GDF5 promoter regions were analysed 

for all samples using pyrosequencing technology. Furthermore, the expression levels of 

TIMP2, miR-21, miR-155, and miR-191 were determined by RT-PCR using TaqMan 

technology. 

 

Results and Discussion 

The genetic association studies conducted showed that the FBN2 rs331079 GG genotype 

was over-represented among the tendinopathy (TEN) group and that the ELN rs2071307 AA 

genotype was over-represented in the rupture (RUP) group within the AUS+SA population.  

Furthermore, the COL5A1 rs12722 and rs71746744 were associated with RUP (TT 

genotype over-represented in the RUP group, p=0.004; OR=4.2; 95% CI 1.58-11.97) and 

ATP (DEL allele over-represented in the CON group, p=0.046; OR=1.61; 95% CI 1.01-2.56) 

respectively in the male UK cohort. The GDF5 rs143833, on the other hand, was not 

associated with ATP (p=0.538) and showed no sign of gender-specific association (female 

p=0.737; male p=0.319) in the UK population.  Furthermore, the CT genotype for the TIMP2 

rs4789932 variant was over-represented (p=0.004; OR=1.77; 95% CI 1.20 - 2.64) in the ATP 

group of the combined AUS+SA population and the CC genotype was over represented 

(p=0.016; OR=2.36; 95% CI 1.16 – 5.81) in ATP of the UK male cohort.  It was also reported 

that the MMP3 rs679620 GG genotype was over represented (p=0.027; OR=2.51; 95% CI 
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1.11 – 5.64) in the UK RUP group. The ADAM12 rs3740199 (p=0.633), ADAMTS2 

rs1054480 (p=0.316), ADAMTS5 rs226794 (p=0.342), and ADAMTS14 rs4747096 (p=0.849) 

gene variants were not associated with ATP in the AUS+SA population. 

 

Interestingly, individuals carrying the ADAMTS14 rs4747096 GG genotype within the 

AUS+SA population and the ELN rs2071307 AA genotype within the AUS population 

developed their injuries at a significantly (p=0.024; p=0.005, respectively) later stage than 

other participants. Moreover, UK males diagnosed with tendinosis and carrying the GG 

genotype at the MMP3 rs679620 locus developed significantly (p=0.003) thicker tendons 

than other participants with the AA, and AG genotypes. 

 

The preliminary epigenetic DNA methylation studies showed no differences in the average 

methylation profiles of the investigated regions within the TIMP2 (p=0.885) and GDF5 

(p=0.333) genes in the patellar tendon samples. Moreover, no DNA methylation differences 

(p=0.617) were observed in the investigated region of the TIMP2 gene in the Achilles tendon 

samples. Interestingly, the single ATP sample showed a lower GDF5 average methylation 

profile than the CON samples. Furthermore, the expression of TIMP2 was up-regulated, and 

miR-191 was down-regulated in the ATP tissue sample compared to the CON group.  The 

expression levels of miR-21 and miR-151, however, were not different between the two 

groups.  

 

Conclusion 

This thesis provides evidence that novel genes coding for structural and ECM regulatory 

enzymes are associated with ATPs in Caucasians. The findings of this thesis should to be 

replicated in new and larger cohorts from different ethnic backgrounds before being 

incorporated into multifactorial risk assessment models aiming at reducing the incidence of 

human tendinopathy. 
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1 Chapter 1 Introduction and scope of the thesis 

The regular involvement in physical activity is an important component for the maintenance 

of a healthy lifestyle (Jarvinen et al. 2005). In spite of the numerous health benefits that 

physical activity might bring to an individual, there is an increased risk of injuries, particularly 

musculoskeletal soft tissue injuries (Jarvinen et al. 2005). Among these injuries, Achilles 

tendinopathy and Achilles rupture (hereon referred to as Achilles tendon pathology or ATP) 

have been described to be serious injuries with an annual prevalence as high as 11% 

(Jarvinen et al. 2005, Kujala, Sarna & Kaprio 2005, Rees, Wilson & Wolman 2006). ATP 

represents as much as 18% of tendon injuries acquired during daily physical activity (Collins, 

Raleigh 2009). The devastating consequence resulting from such an injury stresses the 

importance of the identification of the risk factors associated with this injury, by conducting 

scientific research studies, to better understand the aetiology and the mechanisms involved. 

 

Various ATP intrinsic (anatomical variances, gender, and age) and extrinsic (type of physical 

activity, level of engagement in sports, footwear and equipment) risk factors have been 

identified (Riley 2004). Researchers started only recently investigating the role of genetic 

elements as predisposing risk factors for ATP (Mokone et al. 2005). Various musculoskeletal 

soft tissue injuries have been suggested to have important familiar predispositions (Flynn et 

al. 2005, Harvie et al. 2004). With this in mind genetic association studies have been 

initiated to identify gene variants that could associate with ATP. Variants within the TNC 

(Mokone et al. 2005), COL5A1 (Mokone et al. 2006), MMP3 (Raleigh et al. 2009), and GDF5 

(Posthumus et al. 2010) genes have all been shown to co-segregate with ATP. However, 

these studies have been limited to Caucasian Australian and South African cohorts only.  It 

is well established that confidence in the results of genetic association studies grows from 

the repetition of such work in trans-ethnic and trans-geographic cohorts (Greene et al. 2009). 

Therefore the replication of the aforementioned genetic association studies and the 
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identification of novel gene variants are crucial to our understanding of the genetic 

predisposition to ATP.  

 

With this in mind, a first objective of this thesis was to determine whether previously 

investigated variants within the COL5A1, GDF5, and MMP3 genes were associated with 

ATP in a UK population. Such approach would confirm that these genetic factors are not 

limited to isolated populations. Indeed the collection of an additional matched population 

cohort will permit the testing of novel genetic loci that may predispose humans to ATP.  

 

The identification of additional genetic risk factors, will further improve the understanding of 

the aetiology of ATP. Obtaining a clearer image of the pathways and mechanisms involved 

in the development of ATP is required for the introduction of appropriate evidence-based 

preventative measures which may contribute towards the reduction in the number of 

incidences (Collins, Raleigh 2009). 

 

Based on what is mentioned above, a second objective of this thesis was therefore to 

identify specific and novel genetic elements which predispose humans to ATP. Genetic 

association studies (case-control design) were used to test whether sequence variants 

(single nucleotide polymorphisms) within candidate genes influenced the risk of ATP. 

Candidate genes were selected, based on their structural and biological function within 

tendons. Specifically, genes which encode for the basic structural and functional unit of 

tendons (FBN2 and ELN), and enzymes maintaining the extracellular matrix integrity 

(ADAMs, ADAMTSs, and TIMPs) were identified as candidate genes.  

 

Furthermore, epigenetic modifications have become of interest in the investigations of 

human diseases. Mechanisms such as DNA methylation and microRNA activity have been 

implicated in the alteration and reduction of gene expression. However, those were never 

investigated for their role in human tendinopathy. Therefore a third objective of this thesis 
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was to assess whether there were different DNA methylation profiles (within TIMP2 and 

GDF5 genes) and microRNA (miR-21, miR-155, and miR-191) gene expression levels 

between healthy and diseased Achilles as well as patellar tendons.  

 

In preparation for the exploration of the content of this thesis, chapter 2 will provide a review 

of the gross anatomy of the tendons, the biomechanics of human tendon, the different 

tendon pathologies, the epidemiology of tendinopathy, and the identified risk factors for 

tendinopathies. Chapter 3 will be describing the materials and experimental methods used to 

conduct the research. All work has been conducted by the author unless otherwise stated. 

The core experimental chapters will use a case-control candidate gene approach to 

accomplish the aims and objectives of the thesis. 
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2 Chapter 2 Achilles and Patellar Tendon Pathology: A Review 
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2.1 GROSS ANATOMY OF HUMAN TENDONS 

2.1.1 Anatomy of the Achilles Tendon 

 

The Achilles tendon, the strongest and thickest tendon of the body (Benjamin et al. 2007), 

attaches the gastrocnemius and the soleus muscles to the calcaneus bone (heel) (Maffulli 

1999) (Figure 2.1.1). This tendon is suggested to have shaped human evolution since it is 

critically linked to humans’ ability to develop bipedalism and run away from danger (Bramble, 

Lieberman 2004). The tendon is formed when both gastrocnemius and soleus muscles 

merge approximately 5 to 6 cm above the calcaneal insertion (Maffulli 1999). In fact, the 

soleus tendon begins on the posterior surface of the soleus muscle whereas the 

gastrocnemius tendon originates at the distal margin of the muscle bellies (Cummins, Anson 

1946). Both tendons vary in length. The gastrocnemius component ranges from 11-26 cm 

while that of the soleus ranges from 3-11 cm (Cummins, Anson 1946). The width of the 

Achilles tendon at its point of insertion into the calcaneus varies from 1.2-3 cm (Schepsis, 

Jones & Haas 2002, Koch, Tillmann 1995). 

 

The Achilles tendon becomes gradually round in cross section, before inserting into the 

superior calcaneal tuberosity (Drake et al. 2010). The fibres of the Achilles tendon twist 90 

degrees during its descent: the medial fibres rotate posteriorly and the posterior fibres rotate 

laterally allowing the tendon to stretch and recoil (Schepsis, Jones & Haas 2002). 

Furthermore, the shape of the Achilles tendon varies from proximal to distal. It is suggested 

that the distal part of the tendon does not exceed 7 mm in thickness; otherwise this would be 

regarded as pathologic (Sadro, Dalinka 2000). However, it is considered normal to see a 

thickness of 2-3 mm at the level of the insertion where the tendon is flattened (Koch, 

Tillmann 1995). 
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The calcaneal insertion of the Achilles tendon is highly specialised (Rufai, Ralphs & 

Benjamin 1996, Rufai, Ralphs & Benjamin 1995). It is composed of layers of hyaline 

cartilage, and an area of bone that is not covered by periosteum (a membrane covering the 

surface of all bones). The Achilles tendon inserts on the posterior surface of the calcaneus.  

Proximal to the point of insertion, between the tendon and the skin, is the subcutaneous 

(superficial) bursa, a fluid-filled saclike cavity, which reduces friction between the tendon and 

the surrounding tissues (Maffulli 1999). 

 

The subtendinous (deep) bursa lies between the tendon and the calcaneus (Drake et al. 

2010) such that the tendon forms the posterior wall of the bursa which borders the 

cartilaginous layer of the calcaneal tuberosity, and the synovial lining located proximally 

would separate the bursa from the proximal fat pad (Karjalainen et al. 2000). Located 

anterior to the tendon, the fat pad is bordered anteriorly by the flexor hallucis longus muscle 

and posteriorly by the Achilles tendon. Figure 2.1.1 indicates the anatomical location of the 

different bursas around the Achilles tendon. 

 

Figure 2.1.1 Anatomy of the Achilles tendon. Obtained from (Asplund, Best 2013) with permission of 

the publisher. 
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The plantar aponeurosis (fascia) is a thick connective tissue that supports the arch at the 

bottom of the foot. It originates from the medial tubercule of the calcaneal and inserts into 

the phalanges through a network of fibrious tissue (Cheung, Zhang & An 2006). The plantar 

fascia has a special relation with the Achilles tendon wherein young individuals there is a 

continuous fibrillar extension from the tendinous insertion of the Achilles into the plantar 

fascia. However, with age this connection decreases to a point where few, if any, connective 

fibres remain (Snow et al. 1995). The plantar fascia is known to sustain high tension during 

weight bearing. Furthermore, a positive correlation has been reported between Achilles 

tendon loading and plantar fascia tension (Erdemir et al. 2004). This finding indicates that 

excessive stretching and tightness of the Achilles tendon can represent risk factors for 

plantar fasciitis. 

 

The Achilles tendon is encased in the paratenon which contains a single layer of cells. The 

paratenon consists of a highly vascularised fatty tissue responsible for a significant portion of 

the blood supply to the tendon (Stein et al. 2000). Additionally, blood supply to the tendon 

comes from two other sources: the musculotendinous junction and the osseous insertion. An 

area of relative avascularity is located 2-6 cm proximal to the insertion point into the 

calcaneus (Baxter, Zingas 1995). 

 

2.1.2 Anatomy of the Patellar Tendon 

 

The patellar tendon extends between the tibial tuberosity and the inferior pole of the patella. 

On the sagital plane, the tendon is 4-5 mm deep, and its width is ~3 cm on the coronal plane 

(Khan et al. 1998). The patellar tendon is thin and broad proximally, but gradually becomes 

thick and narrow at the distal end because of the convergence of the fibre bundles as they 

run down towards the tibial tuberosity (Basso, Johnson & Amis 2001). The patellar tendon is 

surrounded by the deep and superficial infrapatellar bursas (Snell 2011) which function to 

reduce friction between the tendon and the surrounding (Maffulli 1999). 
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2.1.3 Blood Supply 

 

Tendons can receive their blood supply from three sources: the musculotendinous junction, 

the surrounding connective tissue, and the bone-tendon junction (Drake et al. 2010). The 

blood flow of the Achilles tendon varies between young and older individuals with higher 

vascularisation among the former group (Theobald et al. 2005). The midportion of the 

Achilles tendon has been reported to be poorly vascularised and more prone for damage 

(Ahmed et al. 1998, Carr, Norris 1989). Nevertheless, the distribution of blood vessels in the 

tendon is still under investigation. Some studies have reported an even distribution of 

vessels (Carr, Norris 1989) while others described the middle part to have a lower density of 

blood vessels compared to the extremities with a variation depending on age, gender and 

physical activity (Astrom, Westlin 1994).  

 

On the other hand, the patellar tendon receives the blood supplies from the anastomotic ring 

located within the thin layers of connective tissue surrounding the knee (Snell 2011). The 

vascularisation of the patellar tendon is primarily provided by the Hoffa’s fat pad (Khan et al. 

1998). The proximal posterior aspect of the patellar tendon represents the point of entry of 

the blood supply to the proximal portion of the tendon, which is most often damaged during 

patellar tendon pathology (Khan et al. 1998). 
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2.2 THE STRUCTURE OF HUMAN TENDONS 

 

2.2.1 Tenocytes: The Tendon Cells 

 

Tenocytes are the fibroblast cells that make up the connective tissue forming the tendon. 

These cells are known to have a uniform, spindle shaped nucleus and a thin cytoplasm with 

a slender and elongated morphology (Chuen et al. 2004). Furthermore, the main role of 

tenocytes is the production of fibrillar (collagen, versican, aggrican, etc.) and nonfibrillar 

(enzymes and inflammatory proteins) components of the extracellular matrix (ECM) (Xu, 

Murrell 2008). Age is a major factor affecting the shape and activity of tenocytes which could 

provide a mechanistic explanation to the increase risk of tendinopathy in older individuals 

(Yu et al. 2013).  

 

2.2.2 Hierarchical Micro-Structure of Human Tendons 

Type I procollagen molecule represent the base unit of the collagen network. Fibrils, are next 

in the hierarchy and are formed by the conglomeration of five type I procollagen molecules. 

The compilation of several fibrils in parallel forms fibres which, in turn, are stacked together 

to form a fascicle.  Each fascicle is wrapped by a sheath containing blood vessels and nerve 

endings, the endotenon. The fascicles are further encapsulated by the epitenon which is 

surrounded by the paratenon (figure 2.2.1) (Hoffmann, Gross 2007). One of the many 

important features of tendons is the crimping alignment of fibres which provides shock-

absorbing properties. 
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Figure 2.2.1 The hierarchical organisation of a tendon ranging from the smallest subunit 

(tropocollagen) to a full size tendon. Figure obtained from (Hoffmann, Gross 2007) with permission of 

the publisher. 

 

2.2.3 Molecular Structure of Tendons 

The major molecular components of the ECM within tendons include structural (collagens, 

glycoproteins, and proteoglycans) and non-structural proteins (metalloproteinases and their 

inhibitors).  

 

2.2.3.1 Collagen 

 

Two thirds of a tendon consists of water while the rest is made up of structural fibrils where 

collagen accounts for 70 % of the dry weight (Obrien 1992).  Several collagens have been 

identified and classified into two groups based on their structure and function. The first group 

consists of fibrillar collagens which form the scaffolding network. The second group consists 

of non-fibrillar collagens such as the fibril-associated collagens with interrupted triple helices 

(FACIT) who serve as molecular bridges that are important for the organisation and stability 

the ECM (Riley 2005). Of the two groups, fibrillar collagen are the most abundant and are 

further categorised into major (types I, II, III) and minor (type V, VI) collagens (Birk 2001). 

 
Genes coding for collagen proteins play a very important role in determining the function of 

connective tissues. Mutations within different collagen genes result in serious connective 
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tissue disorders. For instance, mutations within the gene coding for type I collagen result in 

osteogenesis imperfecta (Pollitt et al. 2006), and mutations within the type II and XI collagen 

result in chondrodysplasias (Välkkilä et al. 2001) whereas mutations within the type III and V 

result in Ehlers-Danlos syndrome (EDS) (Malfait et al. 2005).  

 

Type I collagen, a heterotrimer consisting of two α1 and one α2 chains, is the most abundant 

structural component of the fibrils (Collins, Raleigh 2009). Type I collagen determines the 

mechanical and tensile strength of tendons (Hoffmann, Gross 2007). Type III collagen, 

another important fibrillar collagen of tendon, plays an important role in the healing process 

and during fibrillogenesis (Banos, Thomas & Kuo 2008). It is believed that type III collagen 

contributes towards the regulation of the diameter of type I collagen fibrils during healing by 

limiting lateral growth (Banos, Thomas & Kuo 2008).  

 

When comparing normal to pathological tendons, it can be reported that normal tendons 

consist mostly of type I collagen, and that pathological tendons contain a high proportion of 

type III collagen (Eriksen et al. 2002). Interestingly, it was reported that cultures of fibroblast 

cells from ruptured Achilles tendons produce both type I and type III collagen (Jarvinen et al. 

1997). It is important to note that type III collagen is known to be less resistant to tensile 

forces and therefore its abundance, instead of more elastic structural proteins, may 

predispose the tendon to damage.  

 

Type V collagen is a minor fibrillar collagen which is co-expressed with type I collagen (Birk 

2001). It exists predominantly as a heterotrimer composed of the predominant isoform of 

type V collagen of two α1 and one α2 chains, however some isoforms homotrimers of three 

α3 chains exist (Collins, Raleigh 2009). Type V collagen is embedded within the type I 

collagen molecule as indicated in figure 2.2.2. This interaction allows type V collagen to play 

a role in the regulation of the diameter of type I collagen fibril as will be discussed later in 

Chapter 4 (Collins, Posthumus 2011).  
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Figure 2.2.2 A schematic diagram of the basic structural unit of a tendon, the collagen fibril. The fibril 

consist predominantly of type I collagen and of trace amounts of FACITs, type III, and type V 

collagen. Furthermore, tenascin-C is a glycoprotein expressed during wound healing, and MMP3 is a 

proteolytic enzyme involved in ECM remodelling. Adapted from Collins and Raleigh (2009). 

 

2.2.3.2 Glycoproteins and Proteoglycans  

Glycoproteins are proteins with polypeptide chains covalently linked to oligosaccharide 

chains. Elastin (discussed in detail in Chapter 4) is considered to be the major glycoprotein 

in the tendon representing ~2% of the dry weight and has got elastic properties allowing it to 

stretch and return to its original state (Riley 2005). Furthermore, elastin has got an important 

load-bearing property, in musculoskeletal tissues, which is used for the storage of 

mechanical energy (Gosline et al. 2002). 

 

Other glycoproteins like tenascin-C (TNC), fibrillin, laminin and fibronectin execute a variety 

of functions in the ECM but are predominantly involved in mediating cell-matrix interactions 

(Riley 2005). Fibrillin (discussed in details in Chapter 4) is a cysteine-rich glycoprotein (Sakai 

et al. 1991, Sakai, Keene & Engvall 1986) which contributes to the assembly of the 

microfibril structures. These structures act as architectural frameworks for the deposition of 

tropoelastin (a precursor of elastin) and the assembly of elastic fibres (Charbonneau et al. 
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2004). Furthermore, COMP (cartilage oligomeric matrix protein) is another major component 

of tendon consisting of 5 subunits arranged as branches around a central cylinder (DiCesare 

et al. 1994). The COMP subunits bind and interact with type I and type III collagens during 

matrix assembly and healing (Hecht et al. 2005). Moreover, TNC is a mechanosensitive 

glycoprotein expressed during wound healing and tissue remodelling, especially after the 

exposure to a high tensile mechanical load (Jarvinen et al. 2003). 

 

Proteoglycans are heavily glycosylated proteins consisting of a core protein with pertruding 

GAG (glycosaminoglycans) side chains. Proteoglycans are important for the normal 

functioning of the tendon given their interaction with the fibrillar collagen network (Parkinson 

et al. 2011). They are known for their resistance to compressive shear forces and their 

involvement in the regulation of fibrilligenesis, cell migration and differentiation (Rees, Dent 

& Caterson 2009). Proteoglycans include hyalectan, aggrecan, versican, decorin, biglycan, 

fibromodulin, and lumican (Riley 2005). The perturbation of the metabolism and 

proteoglycans has been implicated in tendinopathy (Rees, Dent & Caterson 2009) however 

this is beyond the scope of this thesis and is expertly discussed elsewhere (Riley 2005, 

Rees, Dent & Caterson 2009). 

  

2.2.3.3 Matrix Metalloproteinases and their Inhibitors 

 

The essential maintenance of homeostasis in a tendon is guaranteed by the proteolytic 

activity of matrix metalloproteinase enzymes (Jones, Riley 2005). MMPs (matrix 

metalloproteinase), ADAMs (a disintegrin and metalloproteinase), and ADAMTSs (a 

disintegrin-like and metalloproteinase with thrombospondin motifs) degrade collagenous and 

non-collagenous molecules with the purpose of remodelling the ECM (Jones, Riley 2005). 

Furthermore, the activity of MMPs, ADAMs and ADAMTSs is regulated by TIMPs (tissue 

inhibitors of metalloproteinases) which bind to the enzymes and inhibit their attachment to 

their respective target sites (Jones et al. 2006). Changes in expression of metalloproteinases 



17 
 

and their inhibitors have been implicated in tendinopathy (Jones et al. 2006) and will be 

discussed in detail in Chapter 5.  

 

2.3 BIOMECHANICS OF HUMAN TENDONS 

 

Tendons act as contractile force transmitters between muscles and bones (Maffulli, 

Leadbetter & Renstrèom 2005). Vulnerability to injury increases as load is exerted on 

tendons to accomplish their function. In the case of the Achilles tendon, the gastrocnemius 

and soleus muscles are the main plantar flexors of the ankle joint and promote locomotion 

during a walk, a run, or a jump (Schepsis, Jones & Haas 2002). The gastrocnemius which 

contains a great number of the fast glycolytic type IIX fibres (fast-twitch) acts as an energy 

provider by contributing to knee flexion and by promoting a strong driving force during sprints 

and jumps (Ennion et al. 1995). Unlike the fast oxidative type IIA fibres which contain a 

larger amount of mitochondria and myoglobin, type IIX fibres break down ATP quickly which 

results in fast burst of power and rapid fatigue (Schiaffino, Reggiani 2011). On the other 

hand, the soleus contains a high proportion of type I (slow-twitch) fibres (Ennion et al. 1995) 

which plays a major role in maintaining posture by preventing the body from falling forward 

when standing immobile (Schepsis, Jones & Haas 2002).  

 

The filamentous proteins present in muscles, actin and myosin, are all involved in the 

transmission of force from muscles to bones during a tendon’s contraction or relaxation 

mechanisms (Fukashiro et al. 1995b). A force of 2.2 kN has been measured in vivo in a 

resting human Achilles tendon (Fukashiro et al. 1995a, Komi, Fukashiro & Jarvinen 1992). In 

addition to that, it has been reported that it can withstand a force up to 10 kN (equivalent to 

10 times body weight) when running; making it the strongest tendon in a human body (Komi 

1990). In a more recent study it has been reported that forces within the Achilles tendon vary 

between 6 to 8 times the body weight when running (Allenmark 1992); approaching the 

ultimate strength of the tendon (Schepsis, Jones & Haas 2002).  



18 
 

In the patellar tendon, a force of 0.5 kN is measured during a walk, however this force would 

increase to reach 8 kN when landing from a jump and 9 kN when sprinting (Zernicke, 

Garhammer & Jobe 1977, Stanish, Curwin & Mandel 2000). Interestingly, a force as high as 

14 kN has been measured in competitive weight lifters (Stanish, Rubinovich & Curwin 1986). 

 

During a normal gait cycle, force increases in the Achilles tendon just before the heel 

reaches contact with the ground. This force is then suddenly released during early impact. It 

was previously described that the Achilles tendon has a 90° spiral structure which explains 

the tendons elasticity when under load (Schepsis, Jones & Haas 2002). Palastanga et al. 

(1989) explain that upon landing from a jump, the tension is absorbed by the Achilles tendon 

and the recoil effect is regained as the body remains upright due to the activity in the triceps 

surae muscle (Palastanga, Field & Soames 1989). Indeed, the Achilles tendon is exposed to 

different forms of stress such as non-uniform stresses which might cause modifications in an 

individual muscle’s contribution towards mechanical activity (Allenmark 1992). The 

combination of non-uniform stresses with a poor coordination between agonist and 

antagonist muscle contractions could possibly predispose to an injury (Maffulli 1998, 

Allenmark 1992). 

 

To identify the mechanical properties of human tendons, stretching and elongation tests 

were conducted on tendon specimens. At rest, a tendon has a crimped arrangement, 

resulting from the crimping of the collagen fibrils and the retraction of the remaining elastic 

fibres (Obrien 1992). Stressing forces will cause the loss of the crimped arrangement as the 

fibrils of the structural proteins, mainly collagen, are stretched. As collagen fibres are being 

pulled apart, they respond in a linear way to the increasing tendon loads (Kirkendall, Garrett 

1997). The compliance of the tendon to strains is dependent on intra-tendinous waviness, 

which plays a direct role in the ability of the gastrocnemius-soleus muscle complex to 

generate force  (Hawkins, Bey 1997). Hence, four different stages that tendons go through 

before sustaining a rupture have been identified and are illustrated in figure 2.2.1. 
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Figure 2.2.1 Illustration demonstrating the different stages that precede tendon rupture. I, toe region; 

II, linear region; III and IV, failure regions. Adapted from (Maganaris, Narici 2005). 

 
Stage I, also known as the toe stage is when non-damaging forces reduce the crimping of 

the resting fibres. Also known as the linear stage, stage II is known for the stretching of the 

fibres beyond their elastic limit. It is at the end of this stage that signs of fibre damage start 

appearing. Stage II is followed by stage III where additional fibre failure occurs, and stage IV 

where complete rupture is observed (Vincent 1992, Diamant et al. 1972, Butler et al. 1978, 

Maganaris & Narici 2005). In vitro tests have shown that the Young’s modulus, during stage 

II, ranges between 1 and 2 GPa (Pollock, Shadwick 1994). Furthermore, the ultimate tendon 

stress (stress at rupture) was reported to be ~100 MPa, and that the tendon strain (strain at 

rupture) was between 4 and 10% (Butler et al. 1978, Shadwick 1990). On the other hand, in 

vivo studies have measured a tensile stress of 110 MPa which exceeds the in vitro 

measurements (Butler et al. 1978, Shadwick 1990). Such a high tensile stress highlights the 

possibility of tendon rupture following a single real life movement. Nevertheless, to 

understand the effect of altered mechanical loading on tendons, cross sectional (Komi, 
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Fukashiro & Jarvinen 1992) and longitudinal studies (Kubo et al. 2000) were conducted. It 

was reported that tendons gain stiffness after chronic mechanical loading and become more 

compliant when loading is decreased (Hansen et al. 2003, Kubo, Kanehisa & Fukunaga 

2002). Furthermore, a gender effect has been reported where male tendons are stiffer and 

more rebound-resilient than female tendons (Kubo, Kanehisa & Fukunaga 2002). 

 

A review by Allenmark (1992) states that the Achilles tendon can be exposed to various 

forces secondary to subtalar motion because of the tendon’ s insertion into the calcaneal. In 

fact, this can be noticed in pronating individuals. This review paper is therefore suggesting 

greater chances of developing Achilles tendon pathology among individuals with 

hyperpronated feet because of the reduced shock absorption attributed to this condition 

(Allenmark 1992).  

 

James et al. (1978) classify overpronation as a risk factor for non-insertional Achilles 

tendonitis (James, Bates & Osternig 1978).  It is reported that pronation happens during the 

midstance phase, leading to an internal rotation force on the tibia when the knee extends. 

Hence, damage to the Achilles tendon takes place at this particular instance when 

contradictory rotational forces are directed toward the tendon (James, Bates & Osternig 

1978, Myerson, McGarvey 1999, Saltzman, Tearse 1998). 
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2.4 DIFFERENT HUMAN TENDON PATHOLOGIES 

2.4.1 Non-Insertional Achilles Tendinopathy 

In the late 1990s, non-insertional tendinopathy was classified as a degenerative non-

inflammatory condition due to the absence of inflammatory cells and pro-inflammatory 

prostaglandins, PGE2 (Alfredson, Thorsen & Lorentzon 1999). However inflammation cannot 

be excluded as studies in rat models reported an increase of serum TNF-α and other 

cytokines due to the infiltration of macrophages into the tendon tissue following physical 

activity (Barbe et al. 2008). Furthermore, higher levels of lymphocytes B and T were 

detected in patients with Achilles tendinosis when compared to patients who suffered from a 

sudden Achilles tendon rupture (Schubert et al. 2005). In fact, inflammation and 

degeneration can co-exist in a tendon (Abate et al. 2009). This has been elucidated by 

recent genetic association studies which showed the association of gene variants within the 

interleukin-1β (IL-1β), interleukin-6 (IL-6), the receptor antagonist of IL-1β, interleukin-1ra 

(IL-1ra), and Caspase-8 (CASP8) genes with Achilles tendinopathy and by that implicating 

the inflammatory pathway in the pathogenesis of human tendinopathy (September et al. 

2011, Nell et al. 2012). 

 

Many tendinopathy pathogenesis models have been proposed, however none is considered 

exclusive since several factors contribute mutually in the progression of the pathology as 

described in section 2.6. Tendon loading discussed in section 2.3 is received and 

transduced by tenocytes to initiate either an appropriate or a pathological adaptation. The 

appropriate response involves the repair and healing of the tendon followed by the 

adaptation to the experienced load. On the other hand, if the tendon fails to appropriately 

adapt and the pathological adaptation is initiated, the healing and repair process will be 

malfunctioning leaving the ECM to degrade which could eventually lead to an injury (Kjaer 

2004). The effectiveness of the healing response is dependent on the amount of time 

allowed for the tendon to recover (Cook, Purdam 2009), and the implementation of a proper 

post-training stretching program (Judge et al. 2010, Smoljanovic et al. 2009). This model 
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was further discussed by Cook and Purdam (2009) who describe tendinopathy as a 

continuum of events, within different areas of the tendon, which proceed back and forth 

between stages in response to loading and recovery.  

 

When a healthy tendon is subjected to acute tensile loads, an adaptation reaction is initiated 

which involves increased stiffness and thickening of the tendon. This reaction is 

characterised by an increase influx of water and proteoglycans into the tendon and does not 

involve neovascularisation (Cook, Purdam 2009). Tendon properties are expected to revert 

to normal if the load is reduced and enough time is allowed for recovery. However, if the 

tendon is not rested and additional load has been exerted, tendon properties will reach the 

disrepair stage where separation of the collagen fibres and disorganisation within the ECM is 

reported as a result of the increase in the number of cells and proteins. Once this stage is 

reached, the reversibility back to the earliest stages of the tendinopathic spectrum is limited. 

The furthest end of the spectrum is classified as degenerative tendinopathy where the 

likelihoods of recovering are reduced to the minimum (Cook, Purdam 2009). At this stage the 

ECM becomes vascularised, full of matrix breakdown products, and acellular as a result of 

the increased rate of apoptosis. This model supports previous statements suggesting that 

tendinopathy is the result of an imbalance between adaptation and degradation following an 

unaccustomed load. 
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Figure 2.4.1 The tendinopathy continuum shows the four stages a tendon goes through following 

overload: healthy, reactive tendinopathy, tendon disrepair, and degenerative tendinopathy. The 

likelihood of the reversibility of symptoms at each stage is indicated in the top heat bar. Adapted from 

Cook and Purdam (2009).  

 

This section of the thesis will present an overview of the different non-insertional Achilles 

tendinopathies and how they fit with the aforementioned tendinopathy continuum model. 

 
2.4.1.1 Paratendinopathy 

 

The paratenon is a thin gliding membrane covering the whole of the tendon and acts as an 

elastic sleeve that facilitates the movement of the tendon (van Dijk et al. 2011, Perry 1997). 

Paratendinopathy is a swelling of the paratenon where subjects would report localised pain 

after strenuous activity, and is therefore commonly reported in middle and long distance 

runners (Schepsis, Jones & Haas 2002). Signs of tenderness and swelling are more 

frequently found on the medial side of the Achilles tendon because of the increased stress 

on the medial fibres due to the 90° lateral twist of the Achilles tendon (Schepsis, Jones & 

Haas 2002) and the presence of the plantaris (van Dijk 2006).  

 

Achilles paratendinopathy is considered to be an overuse injury (Józsa, Kannus 1997). 

However, circumstances that lead to damaging the paratenon exclusively, without damaging 
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the tendon body have not been identified (Paavola, Sayana & Maffulli 2007). Nevertheless, 

several explanations have been proposed such as training mistakes (sharp increase in 

distances and intensity, and asymmetry), weather, and running surfaces (Kvist 1994). 

Additionally, hyperpronation (Selvanetti, Cipolla & Puddu 1997) and limited ankle joint 

mobility were reported in athletes complaining from Achilles paratendinopathy. On a similar 

note, a mechanical explanation by Kaufman et al. (1999) suggests that the injury results 

from an increase in hindfoot inversion followed by a decrease in ankle dorsiflexion during 

knee extension (Kaufman et al. 1999).  

 

2.4.1.2 Non-Insertional Tendinosis 

 

Non-insertional Achilles tendinosis is a condition involving intra-tendinous degeneration and 

atrophy (Heckman, Gluck & Parekh 2009). This pathology results from a repetitive “whipping 

action” following excessive hindfoot movement accompanied by foot pronation and a lateral 

heel strike (Ajis et al. 2007). Such repetitive micro-trauma fits well in the Cook and Purdam 

(2009) model since they put subjects at risk of tendinosis if they occur at a rate faster than 

the tenocytes-mediated healing and repair process (Sharma, Maffulli 2006).  

 

Generally, pain is sensed at the beginning and at the end of a training session (Ajis et al. 

2007). However, as the pathology progresses, pain may occur during exercise and can 

interfere with daily life activities (Ajis et al. 2007). A swelling within the tendon is the main 

symptom of tendinosis and is believed to originate from a combination of biochemical and 

mechanical causes since high concentrations of the neurotransmitter glutamate have been 

reported (Alfredson, Thorsen & Lorentzon 1999). Non-insertional tendinosis is a 

degeneration of collagen accompanied by fibre thinning, followed by scattered vascular 

development (Józsa, Kannus 1997, Khan, Maffulli 1998, Leadbetter 1992). The reported 

degenerative changes in tendons are believed to be predominantly a result of the aging 

process, and a dysregulated cell signalling system combined with chronic mechanical 
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stresses (Józsa, Kannus 1997). Previous studies have reported that tendon damage can be 

caused by free radicals resulting from impaired tenocyte apoptosis following ischemia, 

hyperthermia, and hypoxia (Bestwick, Maffulli 2000).  

 
2.4.2 Insertional Achilles Tendinopathy 

Insertional Achilles tendinopathy is a clinically diagnosed condition characterised by pain 

and swelling in the posterior heel with impaired function of the Achilles tendon. Insertional 

Achilles tendinopathy is characterised by four elements (insertional tendinosis, Haglund’s 

deformity, intra-tendinous calcification, and retrocalcaneal bursitis) which can occur in 

combinations or independently. These four elements are described in the sections below.  

 

2.4.2.1 Insertional Tendinosis 

 

Insertional tendinosis is a process most commonly reported in overweight individuals and 

older or recreational athletes (Schepsis, Jones & Haas 2002). It is frequently associated with 

Haglund’s deformity or retrocalcaneal bursitis. The pathological changes acquired from an 

insertional tendinosis may include oedema, disruption of collagen fibrils, haemorrhage, and 

necrosis (Young, Sayana & Maffulli 2007). These may be caused by repetitive tensile load 

due to strain shielding around the insertion of the tendon (Lyman, Weinhold & Almekinders 

2004). Nevertheless, strains within the tendon and around the insertion are not uniform 

(Vogel et al. 1993). The stress-shielded side of the enthesis may develop cartilage in 

response to the lack of tensile stress and eventually, this process may induce degeneration 

within the tendon (Vogel et al. 1993). Such pathology explains why tendinopathy is not 

strictly related to activity, but also to other factors such as weight and age (Maganaris et al. 

2004). Furthermore, changes in the direction of strains can be observed when the joint 

changes position. At this stage, injury to the cellular and extracellular matrix can result from 

the internally generated shear forces and heat (Maganaris et al. 2004). Similar to non-

insertional tendinosis, hill running, and training errors are well known to exacerbate 

insertional tendinosis (Heckman, Gluck & Parekh 2009). 
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2.4.2.2 Haglund’s Deformity 

 

Haglund's deformity is a chronic and sometimes painful enlargement of the posterosuperior 

prominence of the calcaneus (Schepsis, Jones & Haas 2002) which causes pain by the 

mechanical impingement of the retrocalcaneal bursa (Kang, Thordarson & Charlton 2012). 

Such chronic condition results from repetitive traction forces (Benjamin, Rufai & Ralphs 

2000) which are caused by wearing shoes with rigid and high heels (Kang, Thordarson & 

Charlton 2012). Indeed, studies report strain shielding of the tendon is predominantly caused 

by repetitive tensile load (Sayana, Maffulli 2007).  

 

2.4.2.3 Intra-Tendinous Calcification 

 

Intra-tendinous calcification results from the protrusion of a bony spur into the tendon 

(Johnson, Zalavras & Thordarson 2006). It has been suggested that the bony spur is formed 

following inflammatory reactions within the tendon (Schepsis, Wagner & Leach 1994); 

however the exact biochemical interactions have not been described. This pathology results 

from repetitive mechanical stresses and can result in collagen degradation, fibrosis, and 

calcific metaplasia (Johnson, Zalavras & Thordarson 2006). Intra-tendinous calcification 

causes posterior heel pain at the bone-tendon junction and is usually painful after exercise 

or when wearing closed-heel shoes (Johnson, Zalavras & Thordarson 2006). 

 

2.4.2.4 Retrocalcaneal Bursitis 

 

Retrocalcaneal bursitis is a condition that involves the inflammation of the retrocalcaneal 

bursa, and is characterized by pain anterior to the Achilles tendon (Heckman, Gluck & 

Parekh 2009). The prolonged impingement of the retrocalcaneal bursa is thought to be the 

reason behind the pain in the heel (Schepsis, Jones & Haas 2002). Being situated between 

the calcaneus and the Achilles tendon, the bursa is squeezed during ankle dorsiflexion 
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(Maffulli 1999). Retrocalcaneal bursitis is frequently encountered in runners training for uphill 

running (McGarvey et al. 2002). 

 

2.4.3 Achilles Tendon Rupture 

2.4.3.1 Acute Achilles Tendon Rupture 

 

Acute rupture of the Achilles tendon was reported to occur more commonly in middle-aged 

men during athletic activities (Kannus, Jozsa 1991). Ruptures occur when pushing off with 

the weight bearing foot while extending the knee (Young, Movin & Maffulli 2007). The 

rupture can also occur during sudden or violent dorsiflexion of a plantar flexed foot 

(Heckman, Gluck & Parekh 2009). During tendon load, collagen loses its crimping 

conformation and responds linearly to the increasing load (Leadbetter 1992). Tendons can 

take up to 4% strain before showing signs of damage and failure (Leadbetter 1992). 

Furthermore, tendons are expected to completely rupture if strain levels exceed 8% of the 

ultimate strain (Leadbetter 1992). The rupture of the Achilles tendon occurs more commonly 

2-6 cm proximal to the insertion and may result after the accumulation of various micro-

traumatic and degenerative changes (Kannus, Jozsa 1991). Local or systemic 

corticosteroids (Mahler, Fritschy 1992) and fluoroquinolones (McGarvey, Singh & Trevino 

1996) have also been implicated as risk factors for Achilles ruptures. Patients with Achilles 

tendon ruptures report a sudden snap in their heel with subsequent weakness and 

discomfort (Schepsis, Jones & Haas 2002). Confirmation of a rupture is determined by the 

Thomson squeeze test and the palpation of a gap in the tendon (Maffulli 1999). 
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2.4.3.2 Chronic Achilles Tendon Rupture 

 

The definition of a chronic Achilles tendon rupture varies greatly across the literature but is 

more commonly known when a patient sustains a rupture that is not diagnosed within 4-6 

weeks of the incident (Maffulli, Ajis 2008). Studies have shown that up to 20% of Achilles 

ruptures are missed during the first examination (Ballas, Tytko & Mannarino 1998).  As time 

passes pain fades away making the diagnosis of chronic ruptures difficult. Following 4 weeks 

of delay, the tendon sheath may become thickened, would adhere to the retracted tendon 

ends, and would act as a weakened plantarflexor (Maffulli, Ajis 2008). A detailed 

examination of a tendon would show the absence of tendinous tissue inside the sheath at 

the site of the rupture. Furthermore, scar tissue is usually found at the site of the injury 

bridging both ends of the rupture (Yuan, Wang & Murrell 2003).  

 

2.4.4 Patellar Tendinopathy 

 

Patellar tendinopathy (PT), also known as jumper’s knee, is very common in sporting 

activities involving repetitive jumping such as basketball and volleyball (Khan, Cook & 

Maffulli 2005). It has been reported that injuries at the level of the patellar tendon are the 

most common (~26%) knee related pathologies (Kujala, Kvist & Österman 1986, Bollen 

2000).  

 

Patellar tendinopathy is considered to be an overuse injury and is characterised by a gradual 

onset of pain localised at the anterior aspect of the knee. Furthermore, the key feature of 

patellar tendinopathy is represented by a tenderness of the main tendon body when the 

knee is fully extended (Blazina et al. 1973). Some studies reported that tendinopathic tendon 

samples contained yellow-brown disorganised tissue (Reinhart et al. 2000); evidence of 

mucoid degeneration (Karlsson et al. 1992). However, other studies reported hardness in the 

tissue indicating a hyaline degeneration (Yu et al. 1995). Similar to Achilles tendinopathy, 

patellar tendinopathy is characterised by disorganised collagen fibres and the presence of 
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degenerative necrotic tissue resulting from repetitive micro-traumas (Khan, Cook & Maffulli 

2005). The main difference lies in that the damage to the patellar tendon occurs 

predominantly at the proximal end where as the Achilles tendon is most commonly damaged 

at mid-substance (Khan, Cook & Maffulli 2005, Jarvinen et al. 2005). 

 

2.4.5 Patellar Tendon Rupture 

 

Patellar tendon ruptures are relatively rare; however, it is not unusual to see them in active 

individuals around the age of 40 (Siwek, Rao 1981). A patellar tendon rupture, due to an 

indirect trauma, is believed to be the result of an existing and untreated chronic patellar 

tendinopathy (Kelly et al. 1984).  

 

Patellar tendon ruptures are usually sustained following a tough eccentric contraction of the 

knee extensor against the body weight thus placing the knee in a flexed position (Khan, 

Cook & Maffulli 2005); this is usually seen among weight lifters. Once the tendon is ruptured, 

pain suddenly shoots, and it becomes impossible for the individual to bare weight if not 

assisted. Furthermore, it becomes nearly impossible to maintain an extended knee against 

gravity (Kelly et al. 1984).  

 

It is not uncommon for patellar tendon ruptures to be undiagnosed. In such cases, some 

knee extension is possible due to the formation of scar tissue which acts as a bridge at the 

level of the rupture (Takebe, Hirohata 1985). Nevertheless, stair climbing and getting up 

from sitting position remain hard and painful tasks. 
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2.5 EPIDEMIOLOGY 

 

There are no accurate records of the global occurrence of Achilles tendon pathology (ATP) 

or patellar tendon pathology (PTP) but it has been noted that there is an increase in the 

reported incidences during the 1990s (Fredericson, Misra 2007) as people became more 

aware of the benefits of exercise. Non-insertional tendinopathies account for 55-65% of 

ATPs whereas insertional tendinopathies account for 20-25% (Jarvinen et al. 2005). Up to 

83% of incidences occur during sports activities (Jarvinen et al. 2005). Leppilahti et al. 

(1994) estimated the incidence of Achilles tendon rupture in the city of Oulu, Finland, in 

1994, to be ~18 per 100,000 individual, and the incidence peak was between the ages 30-39 

(Leppilahti, Puranen & Orava 1996b). A more recent study revealed that the average annual 

mean of Achilles tendon ruptures in Edmonton, Canada was 8.3 ruptures per 100,000 

inhabitants (Suchak et al. 2005). Furthermore, a study conducted in Sweden reports that the 

incidences of Achilles tendon ruptures peak at two intervals. A first and large peak includes 

young and middle aged individuals. A second smaller peak includes people in their 70s 

(Möller, Åström & Westlin 1996). 

 

Achilles tendon ruptures occur mainly when taking part in the most popular sport of a 

country. For instance, higher incidences of Achilles tendon ruptures in Scandinavian 

countries occur when playing badminton (Fahlstrom, Bjornstig & Lorentzon 1998). In north 

and central Europe ruptures occur when taking part in football, tennis, track and field, and 

gymnastics (Józsa, Kannus 1997). Furthermore, incidences in North America are reported in 

American football, basketball, baseball, and tennis (Józsa, Kannus 1997). On average, 8-

20% of patients with Achilles tendon rupture are competitive athletes, 75% are recreational 

athletes, and 10-12% do not take part in regular physical activities (Leppilahti et al. 1998).  

 

Pathologies of the Achilles tendon are more commonly reported in males, with a male-to-

female ratio of 4:1 (Suchak et al. 2005). Although there might be different factors, this figure 
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reflects the greater involvement of males in sports compared to females. Typically, more 

men sustain the first Achilles tendon injury during their 30s while women sustain it during 

their 40s. These individuals tend to occupy white-collar professions, and are occasionally 

involved in sports (Maffulli 1999).  

 

Achilles tendon ruptures have been described to be unilateral with a slight predominance of 

injuries in the left foot with a ratio of 1.2:1 (Leppilahti, Orava 1998). Such finding is due to 

people pushing-off with their left lower limb which predisposes the left Achilles tendon to 

damage more frequently. 

 

Achilles tendinopathies, as explained earlier, result from repetitive strenuous activities and 

the subsequent accumulation of micro-traumas. This explains, why running is the main 

activity for people presenting with ATP. In fact, there is a high incidence rate (11%) of 

Achilles tendinopathy among middle and long distance runners (Kujala, Sarna & Kaprio 

2005). 

 

As mentioned earlier, patellar tendinopathy (PT) is referred to as jumper’s knee for its high 

prevalence (14%) among elite athletes taking part in sport requiring repetitive jumping (Lian, 

Engebretsen & Bahr 2005). PT was reported to be highly prevalent in volleyball (45%) and 

basketball (32%) players and represents 15% of soft tissue injuries among military recruits 

(Lian, Engebretsen & Bahr 2005, Linenger, West 1992). Injuries sustained by athletes 

require particular attention as they present a career termination risk where the recovery 

period can be as long as 6 months (Willberg et al. 2011).  Similar to ATP, males are 

reporting more than twice the prevalence of PT than females (Janssen et al. 2014).  
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A study conducted by Agel et al. (2007) report that PTP among female NCAA volleyball 

players (season 1988-1989 through 2003-2004) was much lower than previous reports 

published in the 1980s (Ferretti 1986). It accounted for 3.1% (0.1/1000 athlete) of injuries 

acquired during matches and 5.4% (0.15/1000 athlete) of injuries during acquired during 

training (Agel et al. 2007). The authors justify these results by explaining that they only 

included injuries that resulted in an absence of more than 10 days. Furthermore, PT records 

among football players in professional European leagues corresponded to 1.5% of all 

injuries reported between 2001 and 2009 with an incidence of 0.12/1000 hours (Hagglund, 

Zwerver & Ekstrand 2011). Each season 2.4% of players missed a training session or a 

match due to PT. Unlike the study on NCAA female volleyball players (Agel et al. 2007), this 

study included athletes whose injury resulted in absence of less than a week (61% of cases) 

(Hagglund, Zwerver & Ekstrand 2011).  

 

The prevalence of PTP among Dutch non-elite athletes was reported to be 8.5% (78 of 891 

athletes) (Zwerver, Bredeweg & van den Akker-Scheek 2011). The highest numbers of 

reported injuries were among recreational volleyball (14.4%), handball (13.3%), and 

basketball (11.8%) players, and the lowest numbers of injuries were among field hockey 

(5.1%) and football (2.5%) (Zwerver, Bredeweg & van den Akker-Scheek 2011). 

Furthermore, this study reported a significantly higher prevalence rate in male non-elite 

athletes (10.2%, 51 of 502) than in female non-elite athletes (6.4%, 25 of 389) and have 

attributed this to the possibility that females’ patellar tendons were exposed to lower forces 

because they have less quadriceps strength and an inferior jumping capacity (Zwerver, 

Bredeweg & van den Akker-Scheek 2011). 
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2.6 FACTORS ASSOCIATED WITH HUMAN TENDON PATHOLOGIES 

 
Numerous factors have been associated with the increased risk of human tendinopathy. 

Therefore, like most musculoskeletal sports related injuries, tendinopathy is considered a 

multifactorial condition resulting from a combination of both extrinsic and intrinsic factors 

(table 2.6.1) as described by Meeuwissie (1994). In his proposed model, Meeuwisse 

suggests that intrinsic risk factors predispose individuals to the risk of injury. It is important to 

note that the injury will not take place without the exposure to at least one extrinsic factor, 

which will determine the susceptibility to the injury. Furthermore, the interaction of intrinsic 

and extrinsic risk factors does not cause the damage and requires an inciting episode (figure 

2.6.1) (Meeuwisse 1994). The inciting event in a tendinopathy is represented in the 

successive and repetitive micro-traumatic events which occur and place enough strain on 

the tendon to damage some fibrils and initiate the symptoms. Alternatively, tendon ruptures 

can result following one macro-traumatic event that exerts enough strain on the tendon and 

cause a rupture.  
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Figure 2.6.1 A schematic diagram illustrating the injury causation model as described by Meeuwisse 

(1994). The diagram highlights the interaction between the intrinsic, extrinsic factors, and the inciting 

event in the aetiology of tendinopathy. Many intrinsic factors are multifactorial phenotypes determined 

by either genetic (G) and environmental (E) factors, or both. This diagram is adapted from Raleigh 

and Collins (2012) and Ribbans and Collins (2013). 

 

Table 2.6.1 List of major extrinsic and intrinsic tendon pathology risk factors.  

Adapted from Riley (2004) and Collins and Raleigh (2009) 

Extrinsic factors Intrinsic factors 

Daily activity Age 

Type of sport Gender 

Training errors Anatomical variants 

Physical load Joint laxity 

Environmental conditions   Muscle weakness/imbalance 

Shoes and equipment Hyperthermia 

Corticosteroids Systemic disease 

Fluoroquinolone Antibiotics   Genetics 
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Tendon pathologies have been associated with a multitude of disorders, such as 

inflammatory, autoimmune, genetic, and infectious diseases (Maffulli 1999). However, there 

is little agreement with regard to its aetiology. 

 

Different disease processes may predispose the tendon to accumulate damage ranging from 

degeneration to ruptures (Waterston, Maffulli & Ewen 1997). As previously described, the 

blood flow in the tendon decreases with age (Astrom, Westlin 1994) therefore the area with a 

decreased vascularity is more prone to sustain damage in comparison with the rest of the 

tendon (Kuwada 1995). In addition to daily activity, sports place additional stress on tendons 

leading to the accumulation of micro-traumas which can eventually cause ruptures or 

alternatively lead to chronic tendinopathy described in Section 2.4 (Maffulli et al. 2007). 

 

2.6.1 Extrinsic Factors Associated With Increased Risk of Tendon Pathologies 

2.6.1.1 Daily Activity 

 

It is believed that regular loading of tendons through regular activity and daily exercise 

increase the tensile strength of tendons (Buchanan, Marsh 2002, Kjaer et al. 2005). This is 

believed to take place following activity-induced collagen type-I production (Kjaer et al. 

2005). On the other hand, reduced activity results in the reduction in collagen synthesis, 

which gives way to a stimulation of MMP activity (Kjaer et al. 2005). MMPs are known to 

degrade collagens which would ultimately lead to a decrease in tensile strength resulting in 

fragile tendons. 

 

2.6.1.2 Training Errors 

 

Among runners, the most common causes of Achilles tendon injuries are training errors, 

followed by anatomical differences (Fredericson, Misra 2007). Factors such as a sudden 

increase in training intensity, or the sudden change of inclination are major extrinsic factors 

predisposing to ATP (Fredericson, Misra 2007).  Similar to ATP, PTP could result from 
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repetitive loading of the tendon such as the repetitive exposure to counter-forces when 

landing from jumps, and fast progression in intensity (Cook et al. 1997).  There is a limited 

number of studies conducted on training errors and the risk of ATP or PTP. However a 1978 

study reports that 60% of running injuries were attributed to training errors (James, Bates & 

Osternig 1978). 

 

2.6.1.3 Environmental Conditions  

 

Exercising in extreme weather conditions has been suggested as a risk factor for 

tendinopathy (Riley 2004). However, there is limited evidence to support these claims. A 

single study conducted on 1500 military recruits reported an elevation in incidence rate of 

ATP during the winter season (Milgrom et al. 2003). The authors believe that the reduced 

temperatures increased the viscosity of the lubricant around the tendon which might have 

lead to increase friction. However, given that training surfaces have been cited as risk 

factors (Jarvinen et al. 2005), it could be hypothesised that the observed increase in 

incidence during colder weather could be an interaction between training on moist and 

muddy ground, and the low temperatures. On the other hand, there is no difference in the 

number of rugby, football, and American football injuries recorded on natural turf compared 

to artificial turf (Williams, Hume & Kara 2011). Therefore training surfaces cannot be seen as 

independent risk factors. 

 

2.6.1.4 Footwear  

 

Sports footwear are seen as protective garments worn during exercise to reduce the impact 

of collision between the foot and the ground (Robbins, Gouw 1991). In fact, different types of 

footwear have been reported to show differences in the risks of injuries. There was a 9.9% 

reduction in tension measured within the Achilles tendon when high-top athletic shoes were 

worn (Rowson, McNally & Duma 2010). Furthermore, wearing high-top shoes resulted in 

7.2% reduction in the angle of ankle dorsiflexion compared to low-top shoes. With that in 
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mind, Rowson at al (2010) suggested that high-top shoes as well as well-tied laces will act 

as one body with the foot and will prevent the shoe from moving independently of the foot. 

Such fixation of the foot in the shoe would help the transmission of forces to the shoe and 

prevent its accumulation in the foot and the tendons. It should be noted however that 

footwear orthotics and in-soles can reduce the risk of injury by correcting biomechanical 

malalignments (Rosenbloom 2011). 

 

2.6.1.5 Corticosteroids 

 

Corticosteroids are a class of chemicals involved in a wide range of physiologic responses, 

mainly the regulation of inflammation (de Kloet, Oitzl & Joëls 1999).  Corticosteroids are 

administered for a variety of diseases and have been widely implicated in tendinopathies 

(Mahler, Fritschy 1992). In a study published in 1972, different rabbits’ calcaneal tendons 

were injected with hydrocortisone, and a saline solution. Interestingly, necrosis was reported 

after 45 minutes in the rabbits injected with hydrocortisone. Furthermore the rabbits injected 

with hydrocortisone showed a delayed healing response in comparisons with those that 

received the saline solution (Balasubramaniam, Prathap 1972).  

 

Reviews of corticosteroid treatment of tendinopathy have acknowledged the short term 

benefits, however they stress on the severity of the long term outcome which include tendon 

rupture (Coombes, Bisset & Vicenzino 2010). The anti-inflammatory and analgesic 

properties of corticosteroids tend to mask various symptoms of tendon injury (Rees, Stride & 

Scott 2013) resulting in athletes maintaining a high level of activity instead of resting. 

 

A meta-analysis published in 1996 has shown that corticosteroid injections do not seem to 

play a beneficial role in the treatment of Achilles tendinopathy (Shrier, Matheson & Kohl 

1996). Other scientists have discussed the presence of corticosteroids in tendinopathic 

tendons (Unverferth, Olix 1973). Such findings reveal that corticosteroid accumulation at that 



38 
 

particular area compromises the proper functioning and wellbeing of the tendon. 

Furthermore, orally administered corticosteroids did not show different effects on the 

potential risks of tendon pathology (Sánchez et al. 2012). Therefore, given the available 

literature and evidences, corticosteroid administration should probably be avoided. 

 

2.6.1.6 Fluoroquinolones  

 

Fluoroquinolones are a family of antibacterial drugs that act by inhibiting bacterial DNA 

replication (Blondeau 2004).  Fluoroquinolone antibiotics have been implicated in the 

aetiology of tendinopathies (Childs 2007).  There are different ways in which 

fluoroquinolones may induce tendinopathies. First, they mediate G2/M cell cycle arrest in 

tendon cells by down-regulation of cyclin B and cyclin-dependent kinase 1 (Tsai et al. 2009). 

Second, they restrain migration of tenocytes by down-regulation of focal adhesion kinase 

phosphorylation (Tsai et al. 2009). Third, they boost the enzymatic activity of matrix 

metalloproteinase-2 which in turn degrades type I collagen (Tsai et al. 2011). Fourth, they 

decrease the expression of decorin which affects the elastic property of tendons and render 

them more fragile (Tsai et al. 2011). 

 

In France, between 1985 and 1992, 100 patients being treated with fluoroquinolone 

antibiotics developed tendon disorders, including 31 ruptures (Royer, Pierfitte & Netter 

1994). However, it was hard to implicate only fluoroquinolones since many had also received 

corticosteroids. Tendinopathy and tendon rupture were reported in 98 patients treated with 

fluoroquinolones:  the principal tendon affected was the Achilles (Khaliq, Zhanel 2003). 

Therefore fluoroquinolones should not be given to athletes since it represents a hazard of 

tendon damage when combined with their training load (Lewis, Cook 2014).  
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2.6.2 Intrinsic Factors Associated With Increased Risk of Human Tendon 
Pathology 

2.6.2.1 Age 

 

Age is often listed as an intrinsic risk factor for tendinopathy. However, these injuries are 

activity specific since sports induced injuries are reported between the ages of 30-50 

(Houshian, Tscherning & Riegels-Nielsen 1998) whereas the non-sports induced injuries 

occur at a later stage (Suchak et al. 2005). It could be therefore suggested that the 

mechanisms of injury differ between younger and older individuals. This can be explained by 

the observed age related changes in tendon properties (Tuite, Renström & O'brien 1997). 

For instance, there is a reported reduction in density and activity of tenoblasts in addition to 

a decrease in ECM glycosaminoglycans and increase in collagen content (Dressler, Butler & 

Boivin 2005). Collagen fibres increase in diameter which affects the structural cross-links 

rendering the tendon more susceptible to injury (Dressler, Butler & Boivin 2005). 

Furthermore, as discussed earlier in section 2.1.3 tendons of younger individuals are better 

vascularised which result in better delivery of oxygen to tendon cells (Theobald et al. 2005). 

Therefore, it is believed that the reduction in blood flow increases the risk of hypoxia and 

consequently death of tenocytes (Kannus, Natri 1997). 

 

2.6.2.2 Gender 

 

It has been stated earlier in the epidemiology section that there is a higher male : female 

ratio of ATP due to the higher involvement of males with sports (Maffulli 1999). Females 

however were found to have a higher incidence rate of other musculoskeletal injuries such 

as ACL ruptures (Mountcastle et al. 2007). It was suggested that females are biologically 

more vulnerable to soft tissue pathology given the hormonal activity accompanying the 

menstrual cycle (Slauterbeck et al. 2002). Oestrogen for instance, whose receptors have 

been identified in connective tissue, was reported to negatively affect the production of 
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collagen thus resulting in a smaller cross-sectional area of tendon which would withstand 

lower tensile forces (Magnusson et al. 2007).  

 

2.6.2.3 Anatomical Factors 

 

It was once stated that healthy tendons would not rupture (McMaster 1933). Barfred tested 

this hypothesis and suggested that in cases where straight traction was applied, the forces 

generated are evenly distributed across the muscle-tendon complex, and would therefore 

reduce the risk of tendon damage (Barfred 1971). However, in cases where oblique traction 

is applied, forces are concentrated on the tendon rendering it more prone to damage 

(Barfred 1971).  

 

Anatomical variances are second to training error as risk factors of tendon injuries 

(Fredericson, Misra 2007). Tendon damage caused by non-uniform stress between the 

gastrocnemius and the soleus is due to an uneven force contribution by each muscle 

(Leadbetter 1992). This results in uneven forces within the tendon which ultimately generate 

frictional forces between the fibrils (Leadbetter 1992). Furthermore, 2/3 of athletes 

diagnosed with an ATP showed signs of malalignment e.g. hyperpronation, limited subtalar 

joint mobility, and limited range of motion within the ankle joint (Kvist 1994). Indeed, Kvist 

(1994) suggests that heal strike running with excessive pronation intensifies the “whipping 

action” within the tendon, thus predisposing it to ATP.  

 

In addition to malalignments, leg length discrepancy is also believed to be another potential 

contributor (Kannus, Natri 1997). In the average person, discrepancies of 25 mm are not 

considered major risk factors for ATP. However, in elite athletes, a discrepancy greater than 

5 mm multiplies the risk of developing a pathology, and therefore the use of shoe insoles is 

advised (Kannus, Natri 1997). Additionally, both cavus foot and flat foot with excessive 

pronation, foot abnormalities, and malalignment factors above the ankle, such as genu 
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varum, can also contribute to increased stress on the Achilles tendon (Schepsis, Jones & 

Haas 2002). 

 

The intrinsic factors reported for PTP are similar to those described in ATPs. Studies have 

reported a significant correlation between patellar tendinopathy and leg length inequality 

(Kujala, Kvist & Österman 1986). Furthermore, the pain reported at the level of the patella 

insertion correlates with an increased laxity in the knee joint (Kujala, Kvist & Österman 

1986).  

 

2.6.2.4 Hyperthermia  

 

Stretching of tendons generates energy which is released when the tendon relaxes (Ker 

1981). Such accumulation and release of energy does not damage the tendon. However, the 

repetition of this physiological behaviour may result in the accumulation of heat from cellular 

respiration (Maganaris, & Narici 2005). Up to 10 % of the elastic energy stored in tendons 

may be released as heat (Ker 1981). Wilson and Goodship evaluated the temperatures 

generated in vivo within equine superficial digital flexor tendons during exercise (Wilson, 

Goodship 1994). The temperature of 45 °C was measured within the core of the tendon after 

seven minutes of trotting. This is the temperature at which tenocytes can be damaged 

(Arancia et al. 1989). Therefore, exercise-induced hyperthermia, may contribute to tendon 

degeneration. Given that good vascularisation and blood supply to tissues should help by 

cooling the heated area (Hastad, Larsson & Lindholm 1959), it is believed that tendons of 

older individuals are more at risk of incurring a pathology because the decrease in 

vascularisation attributed to the aging process decreases the dissipation of heat (Maffulli 

1999). 
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2.6.2.5 Systemic Diseases 

 

Systemic diseases such as diabetes mellitus, alkaptonuria, gout, rheumatoid arthritis, 

adrenal disorders, thyroid problems, and amyloidosis are believed to contribute to 2% of 

ATP cases (Abate et al. 2013, Järvinen et al. 2001). As these conditions develop, they lead 

to a reduction in vascularity in and around tendons, followed by matrix degradation (Abate et 

al. 2013, Fox et al. 2011). Furthermore, genetic disorder such as Ehlers-Danlos syndrome, 

Marfan syndrome, and osteogenesis imperfecta which lead to joint hypermobility have also 

been listed as risk factors of human tendinopathy  (Malfait, Wenstrup & De Paepe 2010). 

 

2.6.2.6 Genetic Risk Factors 

 

In 1989, a study investigated the ABO blood group as a genetic marker for tendon 

pathologies. The investigators found that the O blood group was associated with an 

increased risk of ATP and other tendon pathologies in a Hungarian population (Kannus, 

Natri 1997, Jozsa et al. 1989). Nevertheless, several attempts to replicate this study have 

failed (Leppilahti, Puranen & Orava 1996a, Maffulli et al. 2000).  

 

It was suggested that genes (coding for extracellular matrix proteins) closely located to the 

ABO locus might represent better candidates for an association with ATP. Knowing that the 

ABO blood group locus is found on the long arm of chromosome 9, Mokone et al. (2005, 

2006) investigated whether a possible association existed between the TNC and COL5A1 

genes, located on the same chromosome, and the risk of developing ATP (Mokone et al. 

2005, Mokone et al. 2006).  In the first genetic association study, a South African (SA) case-

control cohort was recruited to investigate the poly-GT micro-satellite variant within the TNC 

gene. The findings of the study showed that the GT allelic repeats 12 and 14 were over-

represented in participants with ATP, while the 13 and 17 repeat alleles were significantly 

under-represented (Mokone et al. 2005). These results suggest that alleles 12 and 14 could 

be causative variants whereas alleles 13 and 17 might be protective. Furthermore, the 
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rs2104772 and rs1330363 gene variants within the TNC genes reported allelic associations 

(p=0.017; p=0.020 respectively) with ATP (Saunders et al. 2013b). Saunders et al. (2013) 

further showed an interaction between the TNC and COL27A1 gene. Specifically, the TNC 

rs13321, TNC rs2104772 and the COL27A1 rs946053, which were not independently 

associated with ATP, formed a CAG haplotype which was significantly (p=0.019) over 

represented in ATP group.  

 

Furthermore, a second study found that the CC genotype in the BstUI restriction fragment 

length polymorphism (RFLP) within the 3’- untranslated (UTR) region of the COL5A1 gene 

(also known as rs12722) was significantly over-represented in the SA asymptomatic control 

participants of the study (Mokone et al. 2006). Interestingly, this study was replicated in an 

Australian (AUS) population group and generated similar findings (September et al. 2009).  

Therefore it was concluded that carriers of the COL5A1 rs12722 CC genotype were at 

reduced risk of ATP in the SA (OR 0.38, 95% CI: 0.18-0.77; p=0.008) (Mokone et al. 2006) 

and AUS (OR 0.42, 95% CI: 0.20-0.86; P=0.017) (September et al. 2009) populations. 

Interestingly, the rs12722 variant was associated with additional phenotypes such as ACL 

ruptures in females (Posthumus et al. 2009), joint range of motion (Brown et al. 2011), and 

endurance running performance (O'Connell, Posthumus & Collins 2014). Based on that, it 

has been suggested that the TT allele at the rs12722 variant results in the formation of 

densely packed thin collagen fibrils which lead to increased risk of injury through the 

reduction of tensile strength (Collins, Posthumus 2011). This is further discussed in Chapter 

4 of this thesis. 

 

A novel gene variant, COL5A1 rs71746744, was recently associated with ATP in the SA and 

AUS populations (Abrahams et al. 2013). This variant along with the rs12722 variant were 

suggested to play a role in the stability of the COL5A1 mRNA (Laguette et al. 2011). 

Laguette et al. (2011) report a lower luciferase activity (69.0 ± 22.0%, n=24 vs. 90.6 ± 13.7% 

n=30, p<0.001) when the C allele at the rs12722 locus is present in comparison to the T 
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allele. Furthermore, the TCT pseudohaplotypes formed by the COL11A1 rs3753841, 

COL11A1 rs1676486, and COL11A2 rs1799907 was significantly over-represented in the 

ATP group (Hay et al. 2013). The three variants were not independently associated with 

ATP. However, an interaction between COL11A1, COL11A2, and COL5A1 was reported 

where the TCT(AGGG) pseudohaplotype was significantly over-represented in the ATP 

group (Hay et al. 2013). Additional collagen coding genes have been investigated and 

showed no association with ATP, but were associated with ACL, such as the COL1A1 

(Posthumus et al. 2009b). 

 

Additional genes encoding proteins involved in biological processes in the Achilles tendon 

were also examined for possible association with Achilles tendon injuries. For example, the 

matrix metalloproteinases (MMPs) are enzymes known for their role in maintaining 

homeostasis within tendons by degrading structural proteins. One of the proteins within this 

family, MMP3, degrades various collagen types as well as laminin, fibronectin, proteoglycan, 

decorin and aggrecan (Birkedal-Hansen et al. 1993). In a study aimed at researching a 

possible association between MMP3 and ATP, Raleigh et al. (2009) investigated the 

possible association of three single nucleotide polymorphisms (SNP) within the MMP3 gene 

and the risk of developing ATP. Individuals carrying the homozygote genotypes for the 

rs679620 (GG: OR=2.5, 95% CI 1.2 to 4.90, p=0.010), rs591058 (CC: OR=2.3, 95% CI 1.1 

to 4.50, p=0.023), and rs650108 (AA: OR=4.9, 95% CI 1.0 to 24.1, p=0.043) SNPs were 

found to be at greater risk of developing ATP than those carrying other genotypes (Raleigh 

et al. 2009). Furthermore, when the G allele of the rs679620 variant within the MMP3 gene 

and the T allele within the COL5A1 rs12722 variant were combined, the risk of ATP was 

increased therefore indicating an interaction between the two variants (Raleigh et al. 2009).  
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In addition to MMP3, the GDF5 gene encodes for a protein involved in the maintenance, 

growth, and repair of cartilage and musculoskeletal soft tissues (Settle Jr et al. 2003). GDF5 

proteins are believed to enhance tendon healing (Aspenberg, Forslund 1999) by stimulating 

collagen synthesis (Wolfman et al. 1997, Mikic 2004). In 2010, Posthumus et al. reported 

that the TT genotype of the GDF5 rs143383 variant was significantly over-represented in the 

ATP group of a Caucasian population. Furthermore, gene variants within the CASP8, IL-6, 

IL-1β, and IL-1RN which are involved in the inflammatory pathway have also been 

implicated with ATP (September et al. 2011, Nell et al. 2012). 

 

In addition to the aforementioned variants, many gene variants were not associated with 

ATP such as those found in COL1A1 (Posthumus et al. 2009a), COL12A1, COL14A1 

(September et al. 2008), TGFβ (Posthumus et al. 2010), THBS2, and COMP (Saunders et 

al. 2013a). 

 

2.7 EPIGENETIC MECHANISMS AS POTENTIAL RISK FACTORS FOR HUMAN 

TENDINOPATHY 

 

The heritability of phenotypes associated with medical pathologies has been investigated 

and discussed by different experts (Ehlert, Simon & Moser 2013). Following the completion 

of the Human Genome Project, it was thought that the obtained genomic data would reveal 

the origin of different phenotypes. However, gene expression differences in specific tissues 

between diseased and healthy samples could not be strictly attributed to variations in the 

genomic sequence. There is a growing number of evidence that heritable changes in gene 

expression are not influenced by mere genetic factors as described above, but also by 

numerous epigenetic factors (Jirtle, Skinner 2007). 

 

Epigenetics has been hard to define with consensus given the different regulatory 

mechanisms involved such as histone modifications, DNA methylation, and the expression 
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of non-coding RNAs (Berger et al. 2009). Nevertheless, a large number of scientists define 

epigenetics as heritable changes in gene expression that occur independent of changes in 

the primary DNA sequence (Russo, Martienssen & Riggs 1996). 

 

The role of epigenetic changes in the development of human tendinopathy was never 

explored. This subsection will go over different epigenetic mechanisms and their impact on 

health and physiological phenotypes which could be suspected to contribute to the onset of 

tendinopathies. 

 

2.7.1 Histone Modifications 

 

Histone modifications deal directly with the accessibility of transcription factors to DNA by 

changing the chromatin conformation and structure (Zhou, Goren & Bernstein 2010). The 

nucleosome octamer is composed of eight histones around which the DNA molecule is 

packed. Histones are subjected to various modifications induced by acetylatio or methylation 

which would determine a loose or tight chromatin packaging respectively (Zhou, Goren & 

Bernstein 2010). 

 

Histone acetylation is universally associated with gene activity (Egger et al. 2004). When the 

acetyl group is added to the amino acid lysine of the histone tail, it reduces the positive 

charge on the histone which leads to a reduced electrostatic attraction between the 

positively charged histone and the negatively charged DNA. The end product of such a 

mechanism is a loose packing of DNA which is more accessible for transcription factors 

(Grunstein 1997).  

 

Histone methylation can be associated with either gene activity or inactivity. The most 

commonly discussed methylation marks are the methylation of the fourth lysine on histone 

H3 (H3K4) which activates gene expression in addition to the methylation of H3K9 and 
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H3K27 both of which are linked to gene silencing (Zhou, Goren & Bernstein 2010). The 

methylation of H3K4 facilitates gene expression by recruiting the chromatin remodelling 

factors CHD1 (Flanagan et al. 2005) and BPTF (Li et al. 2006) which open chromatin, while 

preventing the binding of repressive complexes like NuRD (Nishioka et al. 2002) and 

INHAT (Schneider et al. 2004). 

 

On the other hand, the methylation of H3K9 leads, indirectly, to the recruitment of DNA 

methyltranferase enzyme (DNMT) (Handy, Castro & Loscalzo 2011) which methylates CpG 

sites on the DNA strand and by that suppressing gene expression as described later in this 

thesis. Furthermore, DNMT1 will recruit histone deacytelase enzyme which removes the 

acetyl group from the lysine on the histone tail (Taverna et al. 2007). This leads to a tighter 

and more compact chromatin where the DNA molecule is not accessed by the transcription 

factors (Fuks 2005). 

 

Modifications of the histone packaging have been described in various pathologies and 

therefore suggest an important role in health and disease (Jirtle, Skinner 2007). A common 

mark of human cancer is the loss of acetylation of lysine 16 and the methylation of lysine 20 

in histone H4 (Fraga et al. 2005a). In addition to that, modifications in histones H3 and H4 

could be used to predict the recurrence risk of prostate cancer as suggested by Seligson et 

al. (2005).  

 

Similar to other environmental factors, exercise promotes modifications of histone structure. 

In a study conducted by Collins et al. (2009) rats’ adaptation to new environments following 

physical exercise were tested. Subjects who exercised coped better with stress than the 

controls who did not exercise. Upon the investigation of the exercised rats’ brain cells, the 

authors of the paper found an increase in histone acetylation which associates with loosely 

packed chromatin and thus more accessible DNA (Collins et al. 2009). It can be concluded 

that gene expression facilitated by histone acetylation helped rats cope with stress. 
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2.7.2 DNA Methylation 

 

DNA methylation is an epigenetic modification where a methyl group binds to a cytosine 

base converting it to 5-methylcytosine (Robertson 2005). In particular, a cytosine followed by 

a guanine forming a CpG site, could potentially attract a methyl group and become 

methylated (Golbabapour, Abdulla & Hajrezaei 2011). Stretches of DNA with high 

concentrations of CpG sites are called CpG islands (Bock et al. 2007). CpG islands are 

assessed according to the criteria discussed by Gardiner-Garden (1987): 1) the island 

should be greater than 200 bp, 2) the GC contents should be greater than 50%, and 3) the 

ratio of observed/expected (obs/exp) CpG sites should be greater than 0.6. The obs/exp 

ratio is calculated as shown in the formula below (Bock et al. 2007, Gardiner-Garden, 

Frommer 1987): 

 

(Obs/exp) CpG sites = N x [number of CpG sites / (number of C x number of G)] 

N = number of nucleotides in the sequence of interest. 

 

The methylation is promoted by DNMT enzymes which are believed to transfer a methyl 

group from S-adenosylmethionine (SAM) to the cytosine on CpG sites (Golbabapour, 

Abdulla & Hajrezaei 2011). CpG islands are associated with the promoter region of genes 

since they can be used to regulate gene activity. In specific, DNA methylation serves to 

down regulate gene expression by regulating the accessibility of genes to transcription 

factors (Ehlert, Simon & Moser 2013). It is worth noting that in normal cases CpG islands are 

not methylated, instead CpG sites outside the promoter region eg. enhancer region of 

genes, or intragenic sites are more likely to be methylated (Meissner et al. 2008, Maunakea 

et al. 2010). The down regulation of genes is caused by different factors: 1) cytosine 

methylation could prevent the binding of transcription factors; or 2) CpG methylation could 

indirectly interfere with chromatin/histone folding (Weber, Schübeler 2007). DNA methylation 
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does not act alone on gene regulation but is acting collectively with other epigenetic factors 

on determining chromatin structure and thus gene accessibility. In some cases DNA 

methylation could enhance gene expression by silencing the transcription of a silencing 

element (Suzuki, Bird 2008).  

 

Following fertilisation, zygotes undergo a genome wide demethylation followed by a de novo 

remethylation (Morgan et al. 2005). The de novo methylation process is believed to be 

important for the specialisation of pluripotent cells during growth and development. 

Nevertheless there are genes that do not undergo demethylation. Instead, their methylation 

status is passed on to future generations along with the respective phenotypes (Wood, 

Oakey 2006, Reik, Walter 2001). While the DNA methylation status of some genes is 

determined primarily in the prenatal and early postnatal stage, and is assumed to be stable 

with a lifelong effect on gene expression (Farthing et al. 2008), other genes are subjected to 

changes in methylation levels as discussed in a study on monozygotic twins. This study 

reports that twins are likely develop different epigenomes as they age and adopt different 

lifestyles (Fraga et al. 2005b). 

 

The role played by DNA methylation in health and disease has been identified and 

discussed in different papers (Robertson 2005, Rushton et al. 2014, Javierre et al. 2010). 

Alterations in DNA methylation statuses have been reported to take place as people age, 

therefore it is not surprising to associate epigenetic changes with age related conditions 

such as rheumatic diseases and tendinopathies. A study conducted by Klein et al. (2013) 

reported an altered methylation status of the promoters of genes associated with the 

inflammatory cascade in peripheral blood mononuclear cells and fibroblast-like synoviocytes 

(Klein, Gay 2013). Interestingly, similar results were obtained in epigenome-wide association 

studies (Nakano et al. 2013, Liu et al. 2013). Likewise, in osteoarthritis (OA) different 

methylation levels of the promoter regions of genes coding for proteins involved with 

cartilage structure and maintenance such as COL1A2, COL5A3, MMP13, ADAMTS4 (Barter, 
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Bui & Young 2012) and GDF5 (Reynard et al. 2011) were reported. These observations are 

believed to contribute to the differential expression of those genes in OA.  

 

Physical activity and exercise contribute greatly to changes in DNA methylation profiles of 

different tissue cells. The methylation profile of an individual changes in response to physical 

activity, in a dose-dependent, gene-specific and tissue-specific manner. Barres et al. (2012) 

showed that acute exercise alters skeletal muscle cells DNA methylation statuses by 

increasing methylation of some genes, and reducing the methylation of other genes. 

Changes to the DNA methylation levels are initiated once an individual exceeds the exercise 

intensity threshold (Voisin et al. 2014): eg. in response to high intensity exercise skeletal 

muscle cells release calcium ions which interact with other cellular components to initiate an 

active demethylation of metabolic genes (Barres et al. 2012). On the other hand, to examine 

the effects of chronic exercise on DNA methylation levels, Alibegovic et al. (2010) placed 

young men on bed-rest for 9 days which significantly increased the methylation levels of the 

PGC1A gene, known to act as a regulator of muscle fibre type determination, and as a link 

between external physiological stimuli and mitochondrial activity. It is worth noting that the 

methylation levels were coupled with the reduction of PGC1A gene expression. These 

participants were later retrained for a period of 4 weeks. The results showed tendency 

towards altered methylation however those were not significant (Alibegovic et al. 2010).  

 

A longitudinal genome-wide study by Nitert et al. (2012) compared the skeletal muscles’ 

methylation levels of young sedentary individuals, before and after a 6-month endurance 

exercise training program. After the completion of the program, the methylation levels of 

genes coding for proteins associated with endurance phenotypes (RUNX1, MEF2A, and 

BDKRB2) were decreased. The decrease of BDKRB2 methylation was coupled with an 

increase in mRNA levels (Nitert et al. 2012). When attempting to replicate this work in 

adipose tissue, the same research team found a global increase in methylation levels (Rönn 

et al. 2013). This increase in methylation levels was coupled with only one third of mRNA 
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expression changes. These studies revealed an interesting difference in the response of 

skeletal muscle cells (hypomethylation) and adipose tissue (hypermethylation) to 6 months 

of endurance exercise.  

 

The literature reviewed above highlights the role played by DNA methylation in altering gene 

expression in connective tissue pathologies and also highlighted the effect of physical 

activity and exercise on methylation levels. Therefore it is important to investigate the status 

of DNA methylation in sports related pathologies such as tendinopathies. 

 

2.7.3 Non-coding RNAs 

 

As the name indicates, non-coding RNAs (ncRNA) are RNAs that do not code for proteins. 

There are many types of non-coding RNAs grouped into two major classes based on their 

sizes. Small ncRNAs which include Piwi-interacting RNA, small-interfering RNAs, and micro-

RNA are transcripts shorter than 200 nucleotides (nt) (Tang et al. 2014). The second class of 

ncRNA includes the long non-coding RNAs which range from 200 nt to 100 kb (Gibb et al. 

2011). In recent years it became evident that ncRNAs carried on the non-protein coding 

portion of the genome were functionally active in the determination of physiological and 

health phenotypes (Mercer, Dinger & Mattick 2009). These molecules have been described 

to regulate different cell mechanisms such as translation, proliferation, differentiation, and 

apoptosis by interacting with different acting proteins and are therefore important epigenetic 

regulators (Wang, Sen 2011). 

 

Although all ncRNAs are expressed in human cells, current research has been focused on 

micro-RNAs, since they are considered to be a critical component of complex functional 

pathways (Tang et al. 2014). Therefore this review will focus on them in the section below. 
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2.7.3.1 Micro-RNA 

 

Micro-RNAs (miRNA) are small (~ 20 nucleotide) non-protein-coding transcription products 

formed endogenously (Güller, Russell 2010). Details of their biogenesis are described in 

Chapter 7. They are known to repress gene expression post-transcriptionally by blocking 

translation or by degrading target mRNAs (Hamilton, Baulcombe 1999, Reinhart et al. 2000). 

Approximately one third of genes could be regulated by miRNAs (Lewis, Burge & Bartel 

2005). In fact, a single miRNA could target several genes (Vella et al. 2004), and a gene 

could be targeted by several miRNAs (Doench, Sharp 2004).  

 

Micro-RNAs are naturally transcribed by cells to maintain homeostasis through the 

regulation of gene expression (Tang et al. 2014). The role of miRNA in the onset of chronic 

diseases has been extensively studied (Mendias, Gumucio & Lynch 2012, Arroyo et al. 

2011, Shen, Ambrosone & Zhao 2009, Zufferey, Williams & Spector 2014). The expression 

levels of tumour miRNA were found to be different than those of normal cell which explains 

the differences in intra-cellular activities within diseased and healthy cells. These differences 

can contribute greatly to changes in cellular mechanisms (growth and apoptosis) and 

therefore the onset of diseases (Tang et al. 2014).  

 

In cancers, both the presence and absence of specific miRNAs play an important role in 

tumorigenesis. The down regulation of a miRNA can provide a greater opportunity for the 

expression of an oncogenic gene which is normally silenced by miRNA: eg. deficiency of 

miR-15a and miR-16-1 expression can lead to overexpression of Bcl2 (Cimmino et al. 2005), 

an important anti-apoptotic factor, resulting in decreased apoptosis, thereby promoting 

tumorigenesis and tumor development (Tie, Fan 2011). On the other hand, up-regulation of 

a miRNA which targets a tumour suppressor gene can also lead to the initiation and 

development of tumours: the over-expression of miR-221 or miR-222 suppresses the 
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expression of the gene coding for Kit protein which controls apoptosis, resulting in 

tumorigenesis in the thyroid (He et al. 2005). 

 

MicroRNAs have also been described to play a role in musculoskeletal soft tissue 

pathologies. In human OA, the reported increases in levels of aggrecan were explained by 

the deficiency of the aggrecanase ADAMTS5 (Bondeson et al. 2008). It was later reported 

that this deficiency could be resulting from an increase in the levels of miR-140 which 

decreases ADAMTS5 (Miyaki et al. 2009). Over-expression of other miRNA such as miR-9, 

miR-98 and miR-146 also disrupts homeostasis in OA by reducing the production of TNFa 

(Jones et al. 2009).  The expression of miRNA also correlates with the degree of the disease 

as described by Yamasaki et al. (Yamasaki et al. 2009) where the expression of miR-146a 

decreases when the severity of OA increases. As described above and in Chapter 4, 

metalloproteinases play an important role in the maintenance of ECM homeostasis. 

Reductions in miR-27a levels were reported in OA and are believed to disrupt the normal 

levels of MMP13 (Akhtar et al. 2010). Likewise, structural proteins are subject to miRNA 

activities where COL2A1 is indirectly up-regulated by the activity of miR-675 (Dudek et al. 

2010).  

 

Similar to previous epigenetic mechanisms miRNAs are differently expressed following 

exercise (Nielsen et al. 2010). Individuals who took part in resistance exercise training 

displayed different miR-378, miR-29a, miR-26a, and miR-451 expression levels between low 

and high responders. Such observations suggest a major role played by miRNA activity in 

determining muscle growth (Davidsen et al. 2011). Furthermore, exercise changes the level 

of circulating miRNA, as demonstrated by Nielsen et al. (2014). They showed a decrease in 

blood-circulating miRNA (miR-106a, miR-221, and miR-30b) immediately after an acute bout 

of exercise. However the levels of other miRNAs (miR-1, miR-133a miR-223 and miR-143) 

were significantly increased 1 h post-exercise. Based on that, it could be suggested that the 

sharp drop in the levels of miR-106a, miR-221, and miR-30b was part of the skeletal 
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muscles’ response to acute exercise (Nielsen et al. 2014). It was not however possible to 

postulate whether the observed increase in miR-1, miR-133a miR-223 and miR-143 

circulating levels was indicative of a recovery process, or resulting from damage that skeletal 

muscles would have incurred as result of the intensity of the activity. It is important to note 

that circulating miRNAs may enter recipient cells and by that can engage in exogenous 

interference and regulation of gene expression (Arroyo et al. 2011). Such activity has not 

been reported in musculoskeletal pathologies; however it is worth investigating whether 

circulating miRNAs produced following a specific physical activity can penetrate tendon cells 

and initiate a tendinopathy. No study up to this point has determined whether circulating 

miRNAs produced post-exercise affect the proper functioning of physiological systems.  

 

After having explored three different epigenetic mechanisms, it is important to appreciate 

that they do not act independent of one another or of the variations in the genome. 

Difficulties in identifying genes associated with diseases suggest that phenotypes are 

determined by the interactions of different epigenetic mechanisms with each other and with 

genetic variations. For instance, DNA methylation can promote the methylation of H3K9 

which leads to a more repressive chromatin state (Fuks et al. 2003). Furthermore, given that 

miRNAs are coded in the DNA sequence, their expression levels are dependent on the 

histone and DNA methylation statuses (Saito et al. 2006). With that in mind epigenetic 

regulations represent a forthcoming avenue of research in human tendinopathy. 
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2.8 AIMS AND OBJECTIVES OF THE THESIS 

 

As discussed in the previous section, the aetiology and mechanisms of human tendinopathy 

have not been fully elucidated. It has been established however that human tendinopathies 

are multifactorial conditions resulting from the interaction of several extrinsic and intrinsic risk 

factors. As more studies revealing the association of gene variants with human 

tendinopathies are being published, confidence grows around the existence of genetic 

predispositions. Therefore it is important to conduct additional studies to identify all variants 

associated with tendinopathy. Based on that, the primary aim of this thesis was to identify 

genetic variants associated with human tendinopathy and propose biological mechanisms 

underlying the genetic risks. The secondary aim was to identify the potential roles played by 

different epigenetic factors in the development of tendinopathy. The objectives put in place 

to atcheive the aims of the thesis were: 

 To recruit a UK case-control population with the purpose of identifying gene variants 

as determinant of human tendinopathy. 

 To determine whether previously investigated variants within the COL5A1, GDF5, 

(Chapter 4) and MMP3 genes (Chapter 5) were associated with ATP in a UK 

population. 

 To determine if gene variants within structural proteins like ELN and FBN2 were 

associated with ATP (Chapter 4).  

 To determine if gene variants within the ADAM12, ADAMTS2, ADAMTS5, 

ADAMTS14, and TIMP2 genes were associated with ATP (Chapter 5).  

 To determine whether there are different, epigenetic TIMP2 and GDF5 DNA 

methylation profiles between healthy and damaged patellar tendon (Chapter 6) and 

Achilles tendon samples (Chapter 7). 

 To determine whether there are different gene (TIMP2) and miRNA (miR-21, miR-

155, and miR-191) expression levels between healthy and damaged Achilles tendon 

samples (Chapter 7) 
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3 Chapter 3 Material and Methods 
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3.1 GENERAL APPROACH TO INVESTIGATING GENE VARIANTS 

ASSOCIATED WITH COMPLEX DISEASES 

 

It has been stated earlier in this thesis that the main aim was to identify gene variants that 

predispose humans to tendinopathy. In order to characterise the genetic contributors of a 

particular medical condition, genetic association studies are conducted. These studies aim at 

relating genetic information derived from a population to a complex disorder status (Lewis, 

Knight 2012). Complex disorders result from the interaction of both genetic and 

environmental factors. In fact, the risk of a complex medical condition is controlled by 

different gene variants with small to moderate effects (Lewis, Knight 2012).  

 

Variants such as insertion/deletion, copy number variations (CNVs), variable-number 

tandem repeats (VNTRs) and short tandem repeats (STRs) can be used as genetic markers 

for association studies. However, the most widely used variants in association studies are 

the single nucleotide polymorphisms (SNPs) (Lewis, Knight 2012). Genetic associations can 

be regarded as direct associations, indirect associations, or false-positives. Direct 

associations involve the association of non-synonymous SNPs which are considered 

putative causal variants due to their role in altering codons (Cordell, Clayton 2011). Causal 

variants are not strictly located in the coding region and can be found in the non-coding 

region where they can play a role in the regulation of gene expression (Tabor, Risch & 

Myers 2002). There is limited knowledge that can help in predicting which variants play a 

causal role. With that, direct associations can only reveal some of the genetic causes of 

complex diseases. Indirect associations do not involve the true disease-causing variants 

and, instead, involve variants located at a proximity, or in high LD (linkage disequilibrium) 

with the disease causing variant (Cordell, Clayton 2011). False-positive associations can 

arise by chance or from systematic type I errors resulting from biases in the frequencies of 

alleles and genotypes.  Additionally, false positive associations can be obtained in under-

powered studies with relatively small sample sizes (Lewis, Knight 2012). 
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There are different approaches to identify gene variants associated with complex diseases. 

The two most common approaches are the genome wide association studies (GWAS) and 

the candidate gene studies. Both approaches in addition to the use of genetic association 

studies in the investigation of ATP will be briefly discussed in the following sections.  

 

3.1.1 Genome Wide Association Studies (GWAS) 

 

GWAS aims at determining which alleles or genotypes appear in a significantly different 

frequency between a case and a control group. Unlike the candidate gene approach 

(discussed in section 3.1.2) GWAS tend to be less hypothesis-driven and involves 

conducting an investigation into a large number of SNPs (Visscher et al. 2012). While the 

underlying goal of both approaches is similar, data processing and analysis is far more 

complex in the case of GWAS which would require the usage of special computer operating 

systems to handle the large volume of data (Foulkes 2009). To account for multiple testing, 

significance in GWAS would be called at a very small p-value (p<10-7) (Grant, Hakonarson 

2008). It is important to note that GWAS has gained popularity in recent years following the 

widespread availability of the “SNP chip” (Visscher et al. 2012).  
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3.1.2 Candidate Gene Association Studies  

 

A candidate gene study is an investigation into an association for which there is an a priori 

hypothesis about the involvement of the candidate gene into the mechanism of pathology 

(Tabor, Risch & Myers 2002). There are two candidate gene association approaches: the 

transmission disequilibrium tests and case-control studies. Transmission disequilibrium tests 

aim at identifying genetic determinants of complex diseases by measuring the over-

transmission of an allele from heterozygous parents to the affected offspring (Zhang et al. 

2013). On the other hand, the aim of case-control studies would be to determine whether an 

allele or genotype of a specific SNP appears at a significantly greater frequency in cases 

compared to a matched control group (Cordell, Clayton 2011). One of the major challenges 

faced when designing a candidate gene association study is the selection of SNPs that 

would be most likely playing a role in the development of the disease. Variants are usually 

selected on the basis of allele frequency and their potential functional effect on the 

phenotype (Lewis, Knight 2012). Information on allele frequencies are abundant and easily 

accessible through bioinformatics databases such as NCBI and Ensembl. However the 

literature contains limited information describing the biological function of SNPs and 

therefore rendering it harder to classify associations as direct, indirect, or false positive as 

described before (Cordell, Clayton 2011, Rebbeck, Spitz & Wu 2004).  

 

The candidate gene association approaches are useful in validating GWAS results and have 

been widely used for the study of complex diseases (Foulkes 2009). However on many 

occasions this approach has been criticised for failure to replicate. Tabor et al. (2002) 

suggested the application of rigorous gene selection and prioritisation principles that could 

improve the chances of successfully replicating associations. For instance, candidate genes 

should be selected based on previous associations in linkage or expression studies present 

in the literature. When designing the study, priority should be given to polymorphisms with 

greater biological impact (nonsense, missense, insertion/deletions) which are likely to have 
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an effect on the function or expression of a protein (Tabor, Risch & Myers 2002). Another 

important aspect to consider when selecting SNPs would be whether the target variants are 

part of a linkage block. If several SNPs are in complete linkage disequilibrium it becomes 

possible to infer the genotype of the remaining SNPs based on the genotype of a single SNP 

(Tabor, Risch & Myers 2002). This can contribute towards the reduction of the tested 

variants and would in some cases provide greater power to detect associations than simple 

testing of individual SNPs (Subrahmanyan et al. 2001). 

 

3.1.3 Genetic Association Studies in Relation to Achilles Tendon Pathology 

 

Case-control candidate gene studies have been successfully employed in identifying risk 

variants for musculoskeletal injuries like Achilles tendon pathology, and ACL ruptures 

(Collins, Raleigh 2009, Raleigh, Collins 2012). These studies relied on the accurate selection 

of a well defined clinical phenotype i.e. injuries to the Achilles tendons. In a successful 

genetic association study, confounding factors such as population stratification (differences 

in allelic frequencies due to differences in ancestry) should be taken into consideration when 

designing the study (Lewis 2002). Population stratification can be eliminated by matching 

cases and controls according to ancestry and geographical origins (Wacholder, Rothman & 

Caporaso 2002). In the case of multifactorial conditions such as tendon injuries, intrinsic and 

extrinsic factors discussed in Chapter 2 have to be considered and controlled for when 

recruiting participants for both the case and control groups. The severity of the injury should 

also be taken into consideration when defining the inclusion and exclusion criteria (section 

3.2.2). Furthermore, the selection of appropriately matched controls (biometrics and physical 

activities) is as important as the selection of the cases. 
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3.2 PARTICIPANTS 

3.2.1 Ethics Approval 

 
Approval for the work outlined in this thesis was obtained from the relevant research ethics 

committees (RECs) (Appendix I). Those involved included: The University of Northampton 

Research Ethics Committee, The University of Northampton School of Health Research 

Ethics Committee, The University of Cape Town Research Ethics Committee, Monash 

University Research Ethics Committee and La Trobe University Research Ethics 

Committee. Research on the Achilles tendon tissue samples obtained by the Royal National 

Orthopaedic Hospital (RNOH) had been approved by the National Research Ethics Service 

Committee within the National Health Services. Storage and use of these materials at the 

University of Northampton was subject to a material transfer agreement (MTA) that was set 

up between the RNOH and The University of Northampton. All procedures were compliant 

with the Human Tissue Act 2004. 

 

3.2.2 British Cohort for Genetic Association Studies 

 
One hundred and thirty six British Caucasian participants with clinically diagnosed Achilles 

tendon pathology (ATP) were recruited for this thesis and subsequent studies from The 

County Clinic in Northampton, UK.  

 

Of the 136 ATP cases, 109 (80.1%) participants were diagnosed with an Achilles 

tendinopathy as previously described by Mokone et al. (2005): 1) pain for at least 6 months, 

2) morning stiffness and pain, 3) swelling of the tendon, 4) tenderness to palpation, 5) 

nodular thickening in the tendon, 6) movement of the painful area with plantar-dorsiflexion. 

The width and the exact pathology of damaged tendons (non-insertional tendinopathy, 

insertional tendinopathy, or tendon rupture) were determined by Prof Ribbans using MRI 

images. The imaging was conducted by experienced staff at The Three Shires Hospital on a 

Toshiba Advantage 1.5T Atlas Machine (Excelart Vantage Powered 
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by Atlas; Toshiba Medical Systems, Tokyo, Japan) using the standard sequences used for 

imaging of the Achilles tendon: sagittal and axial T1 weighted sequences, sagittal and axial 

T2 weighted fat suppressed sequences and a coronal T2 fast spin echo sequence, slice 

thickness 3 mm with a field of view of 20 cm. There were 80 (58.8%) cases of non-

insertional tendinopathy, and 49 (36%) cases of insertional tendinopathy in addition to 36 

(26.3%) cases diagnosed with midpoint Achilles tendon rupture. Nevertheless, several 

participants displayed a combination of pathologies. Furthermore, 3 (2.2%) participants, 

initially recruited for the asymptomatic control group, developed an ATP after recruitment 

and were therefore re-categorised as cases. Unfortunately, it was not possible to obtain 

details of their diagnosis since they were not recruited through The County Clinic. Figure 

3.2.1 provides a clearer image of the breakdown of pathologies in this newly recruited 

Caucasian British population (UK cohort). 
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Figure 3.2.1 Venn diagram showing the distribution of the UK ATP cases among the different 

diagnostic groups. NON-INS, Achilles non-insertional tendinopathy; INS, Achilles insertional 

tendinopathy; RUP, Achilles tendon rupture; ND, not diagnosed. Values are reported as the count 

followed by the frequency in parenthesis. 

 

In addition to the 136 ATP cases, 131 asymptomatic, healthy, unrelated, and physically 

active British Caucasians were recruited from sports clubs within the county of 

Northamptonshire to form the control group (CON). The criteria for inclusion into the CON 

group required potential participants to be older than 25 years of age since sports related 

injuries are commonly reported after that age (Renstrom, Woo 2008). Furthermore, control 

participants had to be physically active i.e. high intensity exercise for a period of 2 hours per 

week or more (Schneider et al. 2006, Lee, Paffenbarger 2000). 
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Table 3.2.1 shows a list of the most common sports played by both the UK CON and the 

ATP groups. In summary, 58.5% (48 of 82) and 57.7% (47 of 82) of males within the control 

group were dedicated at some point to playing rugby and football respectively. In contrast, 

46.4% (39 of 84) and 38.1% (32 of 84) of males within the ATP group were committed to 

football and running respectively, at some point in their life. Furthermore, running was the 

most popular sport among females with 63.3% (31 of 49) and 46.1% (24 of 52) of females 

within the CON and ATP group respectively. 

 

Table 3.2.1 Table showing the most commonly played sports by UK males and females in the CON 

and ATP groups 

  Males Females 

  CON (n=82) ATP (n=84) CON (n=49) ATP (n=52) 

Rugby 48 58.5% 27 32.1% 3 6.1% 1 1.9% 

Football 47 57.3% 39 46.4% 2 4.1% 0 0.0% 

Running 19 23.2% 32 38.1% 31 63.3% 24 46.2% 

Cricket  15 18.3% 15 17.9% 0 0.0% 2 3.8% 

Squash 13 15.9% 27 32.1% 5 10.2% 7 13.5% 

Cycling 12 14.6% 27 32.1% 9 18.4% 11 21.2% 

Tennis 8 9.8% 28 33.3% 6 12.2% 11 21.2% 

Swimming 8 9.8% 25 29.8% 16 32.7% 16 30.8% 

Hockey 6 7.3% 2 2.4% 11 22.4% 14 26.9% 

Badminton 5 6.1% 11 13.1% 5 10.2% 9 17.3% 

Netball 0 0.0% 0 0.0% 5 10.2% 17 32.7% 
 

Prior to participation in the study, all participants gave informed written consent (Appendix 

II). Furthermore, all participants were asked to fill a questionnaire detailing their involvement 

in physical activities as well as their medical and injury history (Appendix III).  

 

3.2.2.1 DNA Extraction from Saliva. 

 
The Oragene DNA Genotek OG-500 tubes (DNA Genotek, Inc, Ottawa, Ontario, Canada) 

were used to collect saliva samples from all participants in the UK cohort. Participants were 

asked to provide 2 ml of saliva, and were also instructed to refrain from drinking, eating and 

smoking for a period of 30 minutes ahead of the sample collection procedure. The OG-500 
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tubes contain a preserving solution that will keep saliva stable at room temperature for a 

period longer than a year (Birnboim 2004). Therefore, the saliva samples were stored on the 

laboratory bench surface until the time of DNA extraction.  

 

DNA was extracted using the manufacturer’s protocol (Appendix IV) with slight modification. 

The OG-500 tubes containing saliva samples were incubated in a water bath set at 50 °C for 

one hour. After incubation, 500 μl of saliva was transferred to 1.5 ml minicentrifuge tubes 

and mixed with 20 μl of PT-L2P solution. The PT-L2P solution contains a detergent to lyse 

the epithelial cells present in the saliva. Additionally, the PT-L2P solution is known to isolate 

and precipitate impurities and inhibitors (Nunes et al. 2012). To maximise the effectiveness 

of the PT-L2P solution, the minicentrifuge tubes were incubated on ice for 10 minutes and 

then centrifuged at room temperature for 10 minutes at 15,000 x g. The supernatant 

containing the DNA was transferred to new tubes while the tubes containing the pellet and 

impurities were discarded. To precipitate the DNA, 500 μl of 95-100% (v/v) ethanol was 

added to each of the new minicentrifuge tubes. The tubes were inverted 10 times and were 

allowed to stand for 10 minutes at room temperature. Once the 10 minutes have elapsed, 

the tubes were centrifuged for 3 minutes at 15,000 x g. The pellet of DNA was then visible at 

the bottom of the tube. At this stage, the supernatant was discarded, and an ethanol wash 

was conducted using 250 μl of 70% (v/v) ethanol. The tubes were left to stand for 1 minute, 

then ethanol was completely removed, and the tubes were left open to air dry. Once the 

tubes had dried, 100 μl of pH 8 TE buffer was added to each tube. DNA was left on the 

laboratory bench surface to re-suspend at room temperature over-night. A NanoDrop 2000 

spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA) was used to measure 

the DNA concentration and purity. Once the DNA concentration was measured, working 

stocks were prepared in 96 wells storage plates (Costar, Corning, NY, USA) and refrigerated 

at 4 °C whereas, samples for long term storage were archived at -20 °C. 
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3.2.3 Australian and South African Cohorts 

 
In addition to the samples obtained from the newly recruited British cohort, samples from 

previously recruited populations (Mokone et al. 2005, September et al. 2009) were also 

included in this thesis as part of collaborative studies. The inclusion of these samples in this 

study was approved by the Research Ethics Committees of the Faculty of Health Sciences 

at the University of Cape Town, La Trobe University, Monash University, and the University 

of Northampton.  

 

The Australian cohort (AUS) was composed of 149 asymptomatic healthy controls and 60 

clinically diagnosed ATP cases. For the South African cohort, 98 asymptomatic healthy 

controls and 115 clinically diagnosed ATP cases were included. Both cohorts were recruited 

using the same clinical criteria used for the UK cohort (section 3.1.1) as documented by 

Mokone et al. (2005) and September et al. (2009).  

 

For the AUS group, staff at the Musculoskeletal Research Centre at La Trobe University 

extracted DNA from whole blood using a Flexigene DNA Kit (Qiagen, Valencia, CA, USA) 

following the manufacturer protocol. As for the SA group, DNA was extracted from whole 

blood, by Dr G. Mokone at the Sport Science Institute of South Africa, according to the Lahiri 

and Nurnberg (1991) protocol and modified by Mokone et al. (2005 and 2006). 
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3.2.4 British Achilles Tendon Samples for Gene Expression and Epigenetic 
Studies 

Achilles tendon samples were obtained from the Royal National Orthopaedic Hospital 

(RNOH). One damaged tendon sample was obtained from a male individual undergoing an 

Achilles tendon repair surgery whereas, 4 healthy Achilles tendon samples (3 males and 1 

female) were obtained from participants undergoing surgery in their lower limbs for medical 

conditions not involving tendon pathologies. The tissue samples collected were cut into 

sections of 4x4x4 mm.  

 

To stabilise and preserve the DNA, RNA, and miRNA in the tissue, the samples were stored 

in minicentrifuge tubes containing Allprotect Tissue Reagent ® (Qiagen, Hilden, Germany) 

and were kept at 4 °C until DNA or RNA extraction day. 

 

3.2.4.1 DNA Extraction 

 
To extract DNA from the Achilles tendon samples, tissues were mashed and lysed using the 

TissueLyser LT (Qiagen, Hilden, Germany) with slight modifications to the manufacturer’s 

guidelines (Appendix IV). Tissue sections, not exceeding 25 mg in weight, were transferred 

into precooled (in 70% (v/v) ethanol at -80 °C, overnight) 2 ml microcentrifuge tubes 

containing 1 stainless steel bead (5 mm in diameter). The tubes containing the samples 

were further incubated in -80 °C cooled 70% (v/v) ethanol for 15 minutes. Once the 15 

minutes incubation was over, the tubes were placed in the tissue lyser for 2 minutes at room 

temperature. Next, 180 μl of ATL buffer from the QIAamp DNA Mini Kit (Qiagen, Hilden, 

Germany) was added to each tube. The tubes were allowed to lyse in the tissue lyser for 40 

seconds at a speed of 30 Hz/s. A second 5 mm stainless bead was then added to each tube, 

and the lysis procedure was allowed to go on for a period of 5 minutes at a speed of 50 Hz/s. 

To achieve a complete lysis, 20 μl of proteinase K was then added to each tube and 

incubated for 3 hours at 56 °C in an Eppendorf Thermomixer comfort (Eppendorf, Hamburg, 

Germany) at a speed of 1400 rpm. Once the 3 hours had elapsed, 200 μl of AL buffer was 
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added to the samples and left to incubate for 10 minutes at 70 °C. Next, 200 μl ethanol (95-

100%) was added to each tube. Upon the addition of ethanol, DNA precipitation was 

observed. The mixtures were then transferred to QIAamp Mini spin columns and were 

centrifuged for 1 minute at 6,000 x g. At this point the mixture went through a series of 

column washing where 500 μl of AW1 and AW2 buffers were added and centrifuged for 1 

minute at 6,000 x g and for 3 minutes at 20,000 x g respectively. The columns were then 

transferred into 1.5 ml microcentrifuge tubes. To elute the washed and isolated DNA, 200 μl 

of AE buffer was added to each column and allowed to spin for 1 minute at 6,000 x g. To 

confirm the success of the extraction and to quantify the DNA, the concentration of the 

eluted solution was measured using the NanoDrop 2000 spectrophotometer (Thermo Fisher 

Scientific, Wilmington, DE, USA). 

 

3.2.4.2 RNA and miRNA Extraction 

 
RNA and miRNA were extracted using the miRNeasy Mini Kit (Qiagen, Hilden, Germany) 

and the TissueLyser LT (Qiagen, Hilden, Germany) with a slight modification to the 

manufacturer’s protocol (Appendix IV). Tissue sections, not exceeding 30 mg in weight, were 

transferred into precooled (in 70% (v/v) ethanol at -80 °C, overnight) 2 ml microcentrifuge 

tubes containing 1 stainless steel bead (5 mm in diameter). The tubes containing the 

samples were further incubated in -80 °C cooled 70% (v/v) ethanol for 15 minutes. Once the 

15 minutes incubation was over, the tubes were placed in the tissue lyser for 2 minutes at 

room temperature. Next, 700 μl of QIAzol Lysis Reagent was added to each tube. The tubes 

were allowed to shake in the tissue lyser for 40 seconds at a speed of 30 Hz/s. A second 5 

mm stainless bead was added to each tube, and the lysis procedure was allowed to go 

longer for a period of 5 minutes at a speed of 50 Hz/s. Upon completion of the mashing 

procedure, 140 μl of chloroform was added to the tubes containing the homogenates, 

followed by vigorous shaking for 15 seconds. The tubes were then centrifuged for 15 

minutes at 12,000 x g at 4 °C. Following this step, the samples were separated into 3 
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phases: the upper aqueous phase containing the RNA; a middle white interphase; and a 

lower organic phase. The aqueous solutions (~350 μl each) were transferred to new 

microcentrifuge tubes and were mixed using the pipette with 525 μl 95-100% ethanol. The 

mixtures were next transferred to RNeasy Mini spin columns and were centrifuged for 15 

seconds at 9,000 x g at room temperature. Next the spin columns went through a series of 

washing steps where 700 μl of RWT buffer and 500 μl of RPE buffer was added and 

centrifuged at 9,000 x g for 15 seconds and 2 minutes respectively. To elute the RNA and 

miRNA preserved in the columns, 30 μl of RNase-free water was added to each column and 

centrifuged for 1 minute at 9,000 x g. To confirm the success of the extraction and to 

quantify the RNA, the concentration of the eluted solution was measured using the 

NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA). 

 

3.2.5 Australian Patellar Tendon Samples for DNA Methylation 

 

In addition to the Achilles tendon samples used for DNA methylation analysis, additional 

DNA samples from patellar tendons were obtained from La Trobe University, Melbourne, 

Australia. Ten healthy patellar tendons were obtained from male participants undergoing 

ACL reconstruction surgeries using a patellar tendon graft, and 10 abnormal samples were 

obtained from male individuals undergoing surgery for patellar tendinopathy as previously 

described by Parkinson et al. (2010). DNA was isolated by staff members at La Trobe 

University, using the PureLink® Genomic DNA Kit (Invitrogen, Carlsbad, CA, USA) as per 

the manufacturer’s recommendations. 
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3.3 GENOTYPING 

3.3.1 SNP Genotyping 

 
SNP genotyping was conducted using custom made TaqMan® SNP genotyping assays 

(Applied Biosystems, Foster City, CA, USA). A 6 μl PCR mixture was prepared according to 

the volumes in table 3.3.1. 

 

Table 3.3.1 List of reagents included for each  

TaqMan® SNP genotyping PCR reaction 

Reagents Volume 
(μl) 

TaqMan® Universal PCR 
Master Mix, No AmpErase® 
UNG 

3 

40x SNP genotyping assay 0.15 

Nuclease-free water 2.25 

Template DNA (10 ng/μl) 0.6 

  
Total volume 6 

Volumes modified from Applied Biosystems’ recommendations  
 

All qPCR reactions were prepared in 96 well plates. The 96 well plates contained 88 different 

DNA samples in addition to 4 no-template negative control reactions and 4 sample repeats 

acting as positive controls. Before the start of the reactions the 96 well plates were covered 

using transparent MicroAmp® Optical Adhesive Films (Applied Biosystems, Foster City, CA, 

USA). 

 

All SNP genotyping reactions were conducted on an Applied Biosystems StepOnePlus 

platform (Applied Biosystems, Foster City, CA, USA) according to the manufacturers 

protocols described in table 3.3.2. 
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Table 3.3.2 qPCR protocol for TaqMan® SNP genotyping 

  

Pre PCR 
read Thermal Cycling 

Post 
PCR 
read 

 Holding 
stage 

Holding 
stage 

Cycling (40 cycles) 
Holding 
stage Stage/step Denature Anneal & 

elongate 

Temperature 60 °C 95 °C 92 °C 60 °C 60 °C 

Time (mm:ss) 00:30 10:00 00:15 01:00 00:30 

  

Upon completion of the reaction, the data was analysed using the StepOne software v2.1 

(Applied Biosystems, Foster City, CA, USA). All genotypes were automatically called by the 

software on allelic discrimination plots. 

 

3.3.2 COL5A1 rs12722 Polyacrylamide Gel Electrophoresis Genotyping 

 
The BstUI RFLP SNP rs12722 is located on the 3’-UTR of the COL5A1 gene. A 667 bp 

fragment containing this gene variant was amplified with a slight modification from the 

description of Greenspan and Pasquinelli (1994) and Mokone et al. (2006). The PCR 

reaction was conducted in a volume of 60 μl. The PCR mix contained 20 pmol of forward (5’-

GAA GAC GTT TCT GGA GGA TC-3’) and reverse (5’-GGA GGC ACC TGC AGA ATG AC-

3’) primers, a buffer (20 mM Tris-HCl pH 8.4, 50 mM KCl, 1.5 mM MgCl2), 0.5 mM dNTP 

solution, and 2.5 units of Taq polymerase (New England Biolabs, Ipswich, Massachusetts, 

USA). The amplification was performed on a XP Thermal Cycler Block (Bioer Technology 

Co, Middlesex, UK) according to the steps in table 3.3.3. The PCR products were run on 2% 

agarose gel to confirm the amplification.  
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Table 3.3.3 PCR conditions for the amplification of the 667 bp BstUI RFLP within the 3’ UTR of the 

COL5A1 gene 

  
Thermal Cycling 

 

 Initial 
Denaturation 

Cycling (35 cycles) 
Final 

Extension 
Final 

Incubation Stage/step Denature Anneal Extend 

Temperature 94 °C 94 °C 59 °C 72 °C 72 °C 4 °C 
Time 

(mm:ss) 03:00 01:00 01:00 01:30 08:00 ∞ 

 

Upon confirmation of amplification, the 667 bp PCR products were digested overnight at 60 

°C using BstUI (5 units) enzyme and NEB2 buffer (New England Biolabs, Ipswich, 

Massachusetts, USA) in a 25 μl reaction described in table 3.3.4. 

 

Table 3.3.4 list of reagents needed for BstUI  

digestion of the COL5A1 667 bp PCR product 

Reagents Volume 
(μl) 

BstUI Enzyme (5 units) 0.5 

NEB 2 Buffer 2.5 

Molecular Grade Water 2 

DNA (PCR product) 20 

  
Total volume 25 

 

The resulting digestion products and a 100 bp ladder (MBI Fermentas, UK) were stained 

using SYBR® Gold nucleic acid gel stain (Invitrogen Molecular ProbesTM, Oregon, USA) 

were separated on 6% non-denaturing polyacrylamide gels and visualised under UV light 

using Uvitec photodocumentation system (Uvitec Limited, Cambridge, UK). The genotypes 

were determined according to the size of fragments. The observation of 351 bp and 316 bp 

fragments is indicative of the presence of a T allele, where as the observation of 316 bp, 271 

bp, and 80 bp fragments is indicative of the presence of a C allele. 
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3.4 GENE EXPRESSION 

 
A two-step (reverse transcription and real-time PCR) gene expression experiment was 

conducted using TaqMan® Gene Expression Assay according to the manufacturer’s 

protocols (Applied Biosystems, Foster City, CA, USA). 

 

3.4.1 Reverse Transcription 

 
The preparation of cDNA from previously extracted RNA (section 3.3.4.2) was performed 

using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, 

CA, USA) in a 20 μl volume reaction as recommended by the manufacturer and described in 

table 3.4.1. 

 

Table 3.4.1 Volumes of reagents included in  

the reverse transcriptase reaction 

Reagents Volume 
(μl) 

10x RT Buffer 2 

25x dNTP Mix (100 mM) 0.8 

10x RT Random Primers 2 

MultiScribeTM Reverse 
Trancriptase 

1 

 
Nuclease-free Water 

 
4.2 

 
RNA Template (10 ng/μl) 10 

  

Total volume 
 

20 
 

The PCR reaction was conducted in a Techne TC-512 thermocycler (Bibby Scientific Ltd, 

Staffordshire, UK) according to the conditions recommended by Applied Biosystems and 

described in table 3.4.2. 
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Table 3.4.2 Reverse transcriptase conditions for the transcription of cDNA from RNA using the High 

Capacity cDNA Transcription Kit 

Stage/step Step 1 Step 2 Step 3 Step 4 

Temperature 25 °C 37 °C 85 °C 4 °C 

Time 10 min 120 min 5 min ∞ 
 

The generated cDNA was stored at -20 °C until the day of the real-time PCR quantification. 

 

3.4.2 Real-time PCR 

 
The gene expression analysis was conducted on the previously produced cDNA (section 

3.4.1) using TaqMan® Gene Expression Assay (Applied Biosystems, Foster City, CA, USA). 

 

The 20 μl RT-PCR reaction was prepared as described in table 3.4.3 with a slight 

modification to the manufacturer’s recommendations (Appendix IV).  

 

Table 3.4.3 Volumes of reagents included in  

the Real-time PCR reaction 

Reagents Volume 
(μl) 

TaqMan® Universal PCR 
Master Mix, No AmpErase® 
UNG 

10 

 
20x TaqMan® Gene 
Expression Assay 

1 

 
RNase-free Water 

 
7 

 
cDNA Template (10 ng/μl) 2 

  

Total volume 
 

20 
 

Gene expressions were conducted in triplicates for the gene of interest along with GAPDH 

gene as a housekeeping gene. The real-time PCR was conducted on an ABI StepOnePlus 
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(Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s cycling 

conditions recommendations described in table 3.4.4. 

 

Table 3.4.4 Real-time PCR cycling conditions for  

TaqMan® Gene Expression Assay. 

  
Thermal Cycling 

 Holding 
stage 

Cycling (40 cycles) 

Stage/step Denature Anneal& 
elongate 

Temperature 95 °C 95 °C 60 °C 

Time (mm:ss) 10:00 00:15 01:00 

 

The real-time PCR amplification plots were visualised on the StepOne Software v2.0 

(Applied Biosystems, Foster City, CA, USA). 

 

3.5 miRNA EXPRESSION 

 
Using a similar method to the gene expression work, miRNA expression was conducted 

using a two step (reverse transcription and real-time PCR) reaction. However, miRNA 

expression was performed using TaqMan® miRNA assay (Applied Biosystems, Foster City, 

CA, USA). 

 

3.5.1 Reverse Transcription 

 
The preparation of cDNA from previously extracted miRNA (section 3.2.4.2) was performed 

using the TaqMan® miRNA Assay (Applied Biosystems, Foster City, CA, USA) containing 

MuLV reverse transcriptase in a 15 μl volume reaction as recommended by the 

manufacturer and described in table 3.5.1. 
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Table 3.5.1 Volumes of reagents included in  

the reverse transcriptase reaction 

Reagents Volume 
(μl) 

10x RT Buffer 1.5 

25x dNTP Mix (100 mM) 0.15 

5x RT Primers 3 

MultiScribeTM Reverse 
Trancriptase (50 U/μl) 

1 

 
RNase Inhibitor (20 U/μl) 0.19 
 
Nuclease-free Water 

 
4.16 

 
RNA Template (1 ng/μl) 5 

  

Total volume 
 

15 
 
 
The PCR reaction was conducted in a Techne TC-512 thermocycler (Bibby Scientific Ltd, 

Staffordshire, UK) according to the conditions recommended by Applied Biosystems and 

described in table 3.5.2. 

 

Table 3.5.2 Reverse transcriptase conditions for the transcription of cDNA from miRNA using the 

TaqMan® miRNA Assay 

Stage/step Step 1 Step 2 Step 3 Step 4 

Temperature 16 °C 42 °C 85 °C 4 °C 

Time 30 min 30 min 5 min ∞ 
 

The generated cDNA was stored at -20 °C until the day of the real-time PCR experiment. 
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3.5.2 Real-Time PCR 

 
The miRNA expression analysis was conducted on the previously generated cDNA (section 

3.5.1) using TaqMan® miRNA Assay (Applied Biosystems, Foster City, CA, USA). 

 

The 20 μl RT-PCR reaction was prepared as described in table 3.5.3 according to the 

manufacturer’s recommendations.  

 

Table 3.5.3 Volumes of reagents included in  

the real-time PCR reaction 

Reagents Volume 
(μl) 

TaqMan® Universal PCR 
Master Mix, No AmpErase® 
UNG 

10 

 
20x TaqMan® miRNA Assay 1 

 
RNase-free Water 

 
7.67 

 
cDNA Template (1 ng/μl) 1.33 

  

Total volume 
 

20 
 

Micro-RNA expressions was conducted in triplicates for the miRNA of interest along with 

RNU6B gene as a housekeeping gene which is a widely used endogenous reference in 

miRNA quantification studies (Matera, Terns & Terns 2007). The real-time PCR was 

conducted on an ABI StepOnePlus (Applied Biosystems, Foster City, CA, USA) according to 

the manufacturer’s cycling conditions recommendations described in table 3.5.4. 
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Table 3.5.4 Real-time PCR cycling conditions for 

TaqMan® Gene Expression Assay. 

  
Thermal Cycling 

 Holding 
stage 

Cycling (40 cycles) 

Stage/step Denature Anneal& 
elongate 

Temperature 95 °C 95 °C 60 °C 

Time (mm:ss) 10:00 00:15 01:00 

 

The real-time PCR amplification plots were visualised on the StepOne Software v2.0 

(Applied Biosystems, Foster City, CA, USA). 

 

 
3.6 DNA METHYLATION AND PYROSEQUENCING 

 
Pyrosequencing consists of a series of cascade reactions where DNA is sequenced by 

synthesis (Ahmadian et al. 2000). This technique relies on the release of pyrophosphate 

(PPi) following the incorporation of each nucleotide and the formation of a base pair. With 

the help of ATP sulfurylase, the released PPi is converted to ATP which provides energy for 

luciferase to oxidise luciferin and generate light (Ronaghi 2001). The generated light is 

picked up by the CCD camera which indicates the incorporation of a new known nucleotide 

by showing a peak on the pyrogram (Huse et al. 2007) as shown in figure 3.6.1. The 

sequence of the template DNA can be determined because the added nucleotide is known. 

Pyrosequecing is a technology used to measure the level of DNA methylation within the 

promoter region of the gene of interest. Specifically, this procedure aims at quantifying the 

amount of methylated cytosine that were not converted to uracil during bisulfite conversion 

(Tost, Gut 2007).  
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Figure 3.6.1 Schematic representation of the pyrosequencing cascade reaction. The nucleotides are 

added to the sample according to a defined order. When the added nucleotide forms a base-pair, the 

PPi is released and is converted to ATP by ATP-sulfurylase. The energy from ATP is used by 

luciferase to oxidise luciferin and generate light. The light signal is picked up by the CCD camera and 

a peak is displayed on the pyrogram. Excess nucleotides are degraded by apyrase. Figure obtained 

from (Ronaghi 2001) with permission of the publisher. 

 

This experiment is divided into three steps: the bisulphite conversion, the PCR amplification 

of the target region within the promoter of the gene, and the pyrosequencing. 

 

3.6.1 Bisulphite Conversion 

 
Bisulphite conversion is a step during which all the unmethylated cytosines within the 

promoter region of genes are converted to uracil, leaving the methylated cytosine 

unchanged. 

 

Bisulphite conversion was performed using the EpiTect® fast DNA bisulphite Kit (Qiagen, 

Hilden, Germany) according to the manufacturer’s recommendations described in table 

3.6.1. All reactions were performed in 200 μl PCR tubes. 
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Table 3.6.1 Volumes of reagents included in a bisulfite conversion reaction. 

Reagents Volume 
(μl) 

DNA Protect Buffer 35 

Bisulfite Solution 85 
 
Nuclease-free Water 

 
18 

 
DNA (~50 ng) 2 

  

Total volume 
 

140 
 

A successful bisulfite conversion requires the maintenance of a low pH. The DNA Protect 

buffer behaves as a pH indicator as it changes colour from blue to green indicating that the 

acidity within the solution is adequate. Next, all reaction tubes were introduced into the 

thermal cycler Techne TC-512 (Bibby Scientific Ltd, Staffordshire, UK) for the conversion to 

proceed based on the cycling stages described in table 3.6.2. 

 
Table 3.6.2 Bisulfite conversion thermal cycler conditions 

Stage/step Denaturation Incubation Denaturation Incubation Hold 

Temperature 95 60 95 60 20 

Time 5 min 10 min 5 min 10 min ∞ 

 

Upon completion of the bisulfite conversion, the converted DNA underwent a series of clean 

up steps where 310 μl of BL buffer and 250 μl ethanol (95-100%) were allowed to mix with 

the reaction by briefly vortexing. Next, the entire content of the reaction was transferred to a 

MinElute® DNA spin column. The tube was centrifuged to separate the converted DNA from 

the reaction leftovers. Following that, 500 μl of BW and BD were passed, separately, through 

the column (1 min; ~9.5 x g). Also, 250 μl ethanol (95-100%) were added to the spin 

columns for a final wash step. To evaporate any remaining liquid in the spin columns, they 

were placed on a heating block for 5 minutes at 60 °C. Finally, the bisulfite converted DNA 

was eluted in 15 μl EB buffer and was quantified using the NanoDrop 2000 

spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA). 
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3.6.2 PCR Amplification of Target Region 

 
The amplification of the target of interest was performed using the PyroMark® PCR Kit 

(Qiagen, Hilden, Germany) in addition to pre-designed primers from the selection of 

PyroMark® CpG Assays (Qiagen, Hilden, Germany). PCR was performed on a Techne TC-

512 thermocycler (Bibby Scientific Ltd, Staffordshire, UK), according to the manufacturer 

recommendations and described in table 3.6.3. 

 
Table 3.6.3 PCR conditions for the amplification of gene promoter sites using PyroMark® CpG 

Assays primers 

  
Thermal Cycling 

 

 Initial 
Denaturation 

Cycling (45 cycles) 
Final 

Extension 
Final 

Incubation Stage/step Denature Anneal Extend 

Temperature 95 °C 94 °C 56 °C 72 °C 72 °C 4 °C 
Time 

(mm:ss) 15:00 00:30 00:30 00:30 10:00 ∞ 

 

Amplification of the target region was confirmed by running a 1% agarose gel stained with 

SYBR® Safe DNA gel stain dye (Invitrogen, Carlsbad, CA, USA) along with a 100 bp ladder 

(MBI Fermentas, UK) as demonstrated in Chapter 6. 

 

3.6.3 Pyrosequencing 

 
Pyrosequencing is the final stage of the DNA methylation experiment. At this stage, the PCR 

product has to be treated and prepared to be pyrosequenced.  

 

The first step of this stage involved immobilising the PCR product. This was performed by 

mixing the biotinylated PCR product with Streptavidin-coated Sepharose high-performance 

35 μm beads (GE Healthcare, Buckinghamshire, UK) in the presence of PyroMark® binding 

buffer according to the manufacturer’s recommendations described in table 3.6.4. 
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Table 3.6.4 List of reagents and their respective  

volumes required for the immobilisation of the  

PCR product 

Reagents Volume 
(μl) 

Streptavidin-coated 
Sepharose high-performance 
beads 

2 

PyroMark® binding buffer 40 
 
Nuclease-free Water 

 
31 

 
PCR Product (0.5 - 1 μg/μl) 7 

  

Total volume 
 

80 
 

The immobilised PCR product was captured using the PyroMark® Q24 vacuum workstation 

as described in table 3.6.5 

 

Table 3.6.5 Steps required for capturing the immobilised PCR product using PyroMark® Q24 vacuum 

workstation 

Stage/step 

70% 
(v/v) 

ethanol 
washing 

Denaturation 
in 

PyroMark® 
Denaturation 

solution 

Neutralisation 
in PyroMark® 
Wash Buffer 

Volume 50 ml 40 ml 50 ml 

Time 5 sec 5 sec 10 sec 

 

Following the multiple washing steps, the captured PCR product was released on a 24 well 

PyroMark® Q24 plate containing 2.5 μl sequencing primer (3 μM) diluted in 22.5 μl 

PyroMark® annealing buffer. For the sequencing primer to anneal onto the PCR product, the 

plate was incubated on a pre-heated 80 °C hot plate for 2 minutes. The Q24 plate was 

allowed to cool for 10 minutes and was loaded into the PyroMark® Q24 pyrosequencer. The 

PyroMark® Q24 software was used to generate the dispensation order and the appropriate 

amounts of enzyme, substrate, and dNTPs to load into the PyroMark® cartridge (Qiagen, 

Hilden, Germany) and into the pyrosequencer.  
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Upon the completion of the run, the PyroMark® Q24 software generated different pyrograms 

showing the percent methylation values for the various sequenced samples. 

 

3.7 STATISTICS 

3.7.1 Power Calculations 

 

The power calculation for this work was conducted on the power calculation software Quanto 

v1.2 (http://hydra.usc.edu/gxe) and the Power for Genetic Association Analyses (PGA) 

package (http://dceg.cancer.gov/bb/tools/pga) using a recessive model and a disease 

population prevalence of 10%. To detect an allelic OR of 2.0 at a power of 80% and a 

significance level of 5%, a 60% risk allele frequency was assumed. 

  

3.7.2 Data Analysis 

Data were analysed using SPSS Version 20 (SPSS Science Inc, Chicago, Ill, USA) 

statistical program and graphs were designed using Microsoft Office Excel 2007 and 

Graphpad InStat Version 5 (Graphpad Software, San Diego, California, USA). Allelic and 

genotypic group distribution differences were evaluated using Chi-squared (2) analysis or 

Fisher’s exact test if the expected count in a cell was less than 5% (Chapter 4 and 5). 

Independent t-tests were conducted to compare differences between means of continuous 

data between groups i.e. differences in mean biological data (age, height, weight, BMI, etc) 

or DNA methylation percentages between cases and controls (Chapter 4, 5, and 6). 

Furthermore, one way analysis of variance (ANOVA) was conducted to assess mean 

differences between groups when investigating interactions between genotypes and age or 

tendon width (Chapter 4 and 5). Moreover, tests of linear regression were conducted to look 

for interactions between two continuous data: tendon width vs biological data (age, height, 

weight, and BMI) (Chapter 5). A one-sample t-test was conducted to compare the mean Ct 

of the control group to the Ct value of the single subject in the case group (Chapter 7).  

 

http://hydra.usc.edu/gxe
http://dceg.cancer.gov/bb/tools/pga
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Adjustments for multiple testing were not conducted as it has been previously described 

(Posthumus et al. 2011) that no appropriate method exists. Furthermore, the Bonferroni 

adjustment was considered too conservative and inappropriate for the studies conducted in 

this thesis since prior evidence that the gene of interest is associated with a trait exist 

(Perneger 1998). Hardy-Weinberg equilibrium was determined using Michael H. Court's 

(2005–2008) online calculator 

(www.tufts.edu/~mcourt01/Documents/Court%20lab%20%20HW%20calculator.xls). 

Significance for all test was called at p<0.05.  

http://www.tufts.edu/~mcourt01/Documents/Court%20lab%20%20HW%20calculator.xls
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4 Chapter 4 Variants Within Genes Encoding Structural and 

Extra-Cellular Matrix Proteins as Risk Factors for Achilles 

Tendon Pathology 

 
Some of the findings in this chapter have been published in the International Journal of 

Sports Medicine 

L. El Khoury, M. Posthumus, M. Collins, W. van der Merwe, C.J. Handley, J. Cook and S.M. 

Raleigh 2014, " ELN and FBN2 Gene Variants as Risk Factors for Two Sports-related 

Musculoskeletal Injuries ", International Journal of Sports Medicine , no. Epub, ahead of 

print. 
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4.1 INTRODUCTION 

 

Achilles tendon pathologies (ATPs) such as Achilles tendinopathy and Achilles tendon 

ruptures have been identified as debilitating conditions resulting from either acute or 

repetitive overuse loading mechanisms (Kvist 1994). Intrinsic (including genetic) and 

extrinsic factors have been identified and have contributed towards a better understanding of 

the underlying aetiology of ATP (Collins, Raleigh 2009). As previously discussed in this 

thesis, genetic studies have been actively revealing the association of several gene variants 

(Collins, Raleigh 2009, Raleigh, Collins 2012) and have also discussed the potential 

biochemical roles played by the respective proteins in the predisposition to ATP (Foster et al. 

2012). 

 

Collagen is the most abundant structural protein in the extracellular matrix of tendons 

(Obrien 1992). In particular, type I collagen fibrils represent the majority of the hierarchical 

formation of tendons (Obrien 1992). They are also known to play a role in determining the 

strength of tendons (Hoffmann, Gross 2007). Gene variants within the COL1A1 have been 

associated with the reduction of the risk of ACL rupture (Posthumus et al. 2009, Ficek et al. 

2013). Furthermore, type V collagen is present on a smaller scale in tendons where, along 

with type I collagen, it regulates the size and shape of fibrils (Imamura, Scott & Greenspan 

2000, Wenstrup et al. 2011). It has been reported that an increase in the amount of type V 

collagen reduces the diameter of type I collagen fibrils in chick corneal stroma (Birk et al. 

1990). Furthermore, a reduction in the deposition of type V collagen results in the formation 

of large type I collagen fibrils (Birk 2001, Birk et al. 1990) as depicted in figure 4.1.1. It is 

worth noting that this experimental model was not tested in humans. As mentioned in 

Chapter 2, variants within the COL5A1 gene were associated with ATP in two Caucasian 

populations (Mokone et al. 2006, September et al. 2009, Abrahams et al. 2013). In specific, 

the CC genotype of the rs12722 variant was associated with a reduction in the risk of ATP 

unlike the II genotype of the rs71746744 variant which associates with an increased risk. 
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Figure 4.1.1 A cross-sectional view of collagen. The fibrils are represented by the circles in the 

middle, and the sub-fibrils are represented by the black dots. A) A healthy tendon with large and less 

densely packed fibrils. B) An injured tendon with small and densely packed fibrils. Adapted from 

(Ribbans, Collins 2013, Birk et al. 1990). 

 

In addition to collagen which accounts for 65% of the dry mass of a tendon, elastin and 

fibrillin are structural proteins which provide tissue with stretching and recoiling abilities 

(Rosenbloom, Abrams & Mecham 1993). The changes in the structural composition and 

protein density of the extracellular matrix (ECM) in tendons are likely to be reflected in the 

biomechanical properties of these connective tissues (Aoyama et al. 1994).  

 

Elastin (ELN) is an insoluble polymer composed of several tropoelastin molecules covalently 

bound to each other by cross-links. Individual ELN molecules are aligned on a scaffolding of 

microfibrils composed of fibrillin (Aoyama et al. 1994) where they are stabilised by 

Desmosine: intermolecular crosslinks known to stabilise microfibril alignments (Rosenbloom, 

Abrams & Mecham 1993). The widely accepted model is depicted in figure 4.1.2. 
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Figure 4.1.2 A schematic diagram of the assembly of fibrillin and elastin to form the elastic fibre. The 

large blue structure in the middle represents elastin. The red filaments surrounding elastin are the 

fibrillin microfibrils. Adapted from (Kielty 2006). 

 

ELN is composed predominantly of hydrophobic amino acids such as glycine, and proline 

(Debelle, Tamburro 1999). The individual polypeptide chains are linked with the rubberlike 

network through highly mobile lysine-derived crosslinks (Debelle, Tamburro 1999). Although 

its nature is hydrophobic, ELN is highly hydrated by solvent water which swells the polymer 

in vivo, enhancing the entropy of the molecule (Tamburro 1981). It is suggested that ELN 

can last for the entire life span of an individual because of its stability and its very slow 

turnover (Debelle, Tamburro 1999). 

 

ELN proteins provide tendons with the needed elasticity, allowing them to stretch and return 

to their original state (Kielty 2006). These proteins have an important load-bearing role in 

musculoskeletal tissues and are used in places where the storage of mechanical energy is 

required (Gosline et al. 2002). 
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The gene variant rs2071307 within the ELN gene was found to be associated with aortic 

stenosis, (Ellis et al. 2012) and aortic aneurysm (Saracini et al. 2012). The ELN rs2071307 

(G/A) variant located on exon 20 is a non-synonymous SNP that substitutes the hydrophobic 

amino acid glycine with a hydrophilic serine (http://www.ncbi.nlm.nih.gov/projects/SNP/). 

Such substitution may disrupt the integrity of the microfibrils rendering them more prone to 

damage (He et al. 2012). Therefore, the investigation of the role of this gene variant in the 

predisposition to ATP is empirical. 

 

Fibrillins are large, cysteine-rich glycoproteins present in the extracellular matrix of tendons 

(Sakai, Keene & Engvall 1986). The assembly of fibrillins contributes towards the assembly 

of microfibril structures. These structures act as architectural frameworks for the deposition 

of tropoelastin (a precursor of elastin) and the assembly of elastic fibres (Charbonneau et al. 

2004). There are two highly homologous fibrillin proteins involved in providing strength and 

flexibility to tendons: Fibrillin-1 (FBN1) and fibrillin-2 (FBN2). FBN2 is found preferentially in 

elastic tissues, such as tendons and ligaments, in addition to the tunica media layer of the 

aorta, and along the bronchial tree (Zhang, Hu & Ramirez 1995) where it plays a role in 

directing the assembly of elastic fibres (Rongish et al. 1998).  

 

Mutations within the FBN2 gene, located in chromosome 5q23, have been shown to cause 

congenital contractural arachnodactyly (CCA) also known as Beals Syndrome (Gupta et al. 

2002).  This suggests that gene variants within the FBN2 gene are suitable candidates to 

include in a genetic association study focused on the disruption of the ECM. The rs331079 

variant within intron 7 of FBN2 has been associated with the disruption of the ECM in 

intracranial aneurysms (Ruigrok et al. 2006) and would therefore be a suitable candidate 

gene to investigate in ATP.  

  

Tendon growth, differentiation, and maintenance are regulated by the TGF-β superfamily 

which includes growth differentiation factors (GDFs) proteins. A particular member of this 
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family, GDF5, is involved in the maintenance and repair of musculoskeletal structures (Settle 

Jr et al. 2003). Interestingly, the specific role of GDF5 in tendons is unknown. However, 

Wolfman et al. suggested that GDF5 plays a role in the formation of new collagen fibrils 

(Wolfman et al. 1997). This was confirmed when GDF5-deficient mice had a reduced 

concentration of collagen in their tendons (Mikic et al. 2001). Furthermore, mutations within 

the GDF5 gene underlie several genetic disorders such as Du Pan Syndrome (Szczaluba et 

al. 2005), brachydactyly type C (Schwabe et al. 2004), Grebe and Hunter-Thompson 

dysplasia (Basit et al. 2008). Interestingly, the GDF5 rs143383 promoter gene variant was 

associated with osteoarthritis (Southam et al. 2007), congenital hip dysplasia (Rouault et al. 

2010), lumbar disk degeneration (Williams et al. 2011), as well as with ATP in a combined 

Australian and South African Caucasian population (Posthumus et al. 2010). 

 

As described in this section, gene variants within the COL5A1, ELN, FBN2, and GDF5 

genes have been associated with different soft tissue pathologies. Accordingly, the aim of 

this study was to determine whether the FBN2 rs331079 and ELN rs2071307 variants were 

associated with ATP in Caucasian cohorts. Furthermore, this study aimed at replicating, in 

the UK cohort, the investigation previously conducted on the COL5A1 rs12722, COL5A1 

rs71746744 and GDF5 rs143883 variants in both AUS and SA cohorts. 
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4.2 MATERIAL AND METHODS 

4.2.1 Participants 

 

As described in Chapter 3, 136 (52 females and 84 males) participants diagnosed with 

Achilles tendon pathology (ATP group) and 131 (49 females and 82 males) asymptomatic 

healthy controls (CON group), were recruited for this case-control genetic association study. 

All participants gave written informed consent (Appendix II) and completed a medical 

questionnaire (Appendix III). Participants within the CON group were involved in high 

intensity physical activities and sports for a minimum period of 2 hours per week (Schneider 

et al. 2006, Lee, Paffenbarger 2000). The pathologies (non-insertional tendinopathy, 

insertional tendinopathy, or tendon rupture) of the participants within the ATP group were 

identified using MRI scans and ultra-sound imaging. 

 

4.2.2 DNA Extraction  

 

Approximately 2 ml of saliva was collected from each participant into OG-500 tubes 

(DNA Genotek, Inc, Ottawa, Ontario, Canada). The OG-500 tubes containing the saliva were 

stored at room temperature until the day of total DNA extraction. DNA was extracted using 

the manufacturer’s protocol as described in Chapter 3.  
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4.2.3 TaqMan® Genotyping 

 

SNP genotyping was performed using fluorescence-based custom-made TaqMan® SNP 

Genotyping Assays for the FBN2 rs331079 (figure 4.2.1), ELN rs2071307 (figure 4.2.2) and 

GDF5 rs143883 (figure 4.2.3) variants. Similarly to SNP genotyping, the DNA samples were 

genotyped for the insertion/deletion (AGGG) COL5A1 rs71746744 variant using a custom 

designed TaqMan® Assay (figure 4.2.4). PCR reactions were performed in a total volume of 

6 μl. Each reaction included primers and probes, and PCR mastermix containing AmpliTaq 

DNA Polymerase Gold (Applied Biosystems, Foster City, CA, USA). Furthermore, Rox was 

used as a passive reference, and each run contained repeat samples acting as positive 

controls in addition to no-template negative controls. qPCR reactions were conducted on an 

Applied Biosystems StepOnePlus platform (Applied Biosystems, Foster City, CA, USA) and 

genotypes were automatically called using the StepOne software v2.1 (Applied Biosystems, 

Foster City, CA, USA) as shown in figure 4.2.5. 
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FBN2 (5q23.3) ~ 280.1 kb 
5’              3’ 

 

 
Genomic sequence within intron 7 

gtctatggaa aaaggagatt accgtttcaa gttgttttac aagtggacta ggaaagtaag tcccatctta  70 

tccaaaagga tagtaattgt gtgtagatta aaatacagag actctttcta cagaacctcc gagagttaaa  140 

aaggtcagta gaaatcgtct gtgacttaac gttcttagta cacttaatga aatggtacga aaaaaaagta  210 

                                           F 

ttaaaatttt tttcttaaat ttgtatgtta ccgtgatccc tttgttgtaa ccaagagtcg taaacccttt  280 

     VIC-a atccatcaaa gtgcaatt  

aaaaaggact taggtagttt Sacgttaaag gactggtgac agaatacaat ttatttagtt cgggagaccc  350 

       FAM-atccatcaaa ctgcaatt                                          R 

agaattgaga ggtaacgaca ttaaatccac cttgacctcg tccccttatt tttgtccgac tctggtcagt  420 

ccttaattac ctatgggatc aaggtgtaaa agagtagagt actatctgaa ccccagtaaa gtaacggaca  490 

attatgaaag tagtctgatc cgtttatata cgagatcatt cagttgacac aataaaagtt ctaaaaacaa  560 

 tcgaaaaatt ttcttaaata aataatcttt gacatgattt                                   600 

 

Figure 4.2.1 a schematic representation of exons (vertical lines), and introns (thick horizontal line) within the FBN2 

gene as well as the 5’ and 3’ UTR (thin horizontal line). The genomic sequence consists of the 300 bp residing on both 

ends of the rs331079 variant. The letter “S” at position 301 is the IUPAC code for a G/C SNP. The forward and 

reverse primers are indicated with the arrows preceded by the letters “F” and “R” respectively. The sequences of the 

VIC and FAM probes are highlighted in red and blue respectively. Adapted from the National Center for Biotechnology 

Information: http://www.ncbi.nlm.nih.gov/projects/SNP/ 

http://www.ncbi.nlm.nih.gov/projects/SNP/
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ELN (7q11.23) ~ 42.1 kb 

5’              3’ 

 

 
Genomic sequence within intron 19, exon 20, and intron 20 

cggggtgtaa aaaaaatttc cgaagtacca cctccacgac ccctgggtcc gtagggtcaa aagacagaaa  70 

atacctgttc cggaccccct ttaaatgtag gagaaagggt taggtagtcg tagggagtct cgggcgggtc  140 

ggagagagtg actcgaagaa aagatgaacc gagggaaggg agacgtcCCC GGTCCGGGCC TCAGCCTCAA  210 

                                               F 

CCTCCGTAAG GATGAATGCC CCAACCTCGA CCCCCGAAAG GGCCGAAACC ACAGCCTCAG CCTCCATAGG  280 

       VIC-AGGTGTCCCT GGTGTCG 

GACCTCAGCG TCCACAGGGA RCACAGCCTC CACAAGGGCC TCAGCCTCCA CAGGGCCCTC AACCGTAAAG  350 

       FAM-AGGTGTCCCT AGTGTCG                       R 

GGcactcgga atcagtgtgg acccctgtac ccaactcttc cctacccccg aagaacagac gagccgagac  420 

gtccccgtca cccctgacat ctagcccgaa cttacacgag tccctcctca accccctctt cttccctcca  490 

gcataggtac ggaatgtccc gtcttctcga aatttgtgcc gagcctcctc tgggtccgtg ccgaagactc  560 

ccagagaaag aaagagcaaa ggaacatcgg cttcgagtcc                                   600 

 
Figure 4.2.2 a schematic representation of exons (vertical lines), and introns (thick horizontal line) within the ELN 

gene as well as the 5’ and 3’ UTR (thin horizontal line). The genomic sequence consists of the 300 bp residing on both 

ends of the rs2071307 variant. The sequences in small letters represent the intronic region, and the sequences in 

capital letters are the exonic regions. The letter “R” at position 301 is the IUPAC code for a G/A SNP. The forward and 

reverse primers are indicated with the arrows preceded by the letters “F” and “R” respectively. The sequences of the 

VIC and FAM probes are highlighted in red and blue respectively. Adapted from the National Center for Biotechnology 

Information: http://www.ncbi.nlm.nih.gov/projects/SNP/ 

 

 

http://www.ncbi.nlm.nih.gov/projects/SNP/
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GDF5 (20q11.2) ~ 5.2 kb 
5’              3’ 

 

 
Genomic sequence within the promoter region and exon 1 

 
 

gacatcagag agtaattaaa ttggtttggg ttggaattcc gtttccaatt cctgagttca ggtttgtaaa  70  

agatttttct gagcacctgc aggcctgtga gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt 140  

gtgtgaagta ttttcactgg aaaggattca aaactagggg gaaaaaaaaa ctggagcaca caggcagcat 210   

                                                             F 

tacgccattc ttccttcttg gaaaaatccc tcagccttat acaagcctcc ttcaagccct cagtcagttg 280  

          VIC-cccgcca gccgaa  

tgcaggagaa agggggcggt Yggctttctc ctttcaagaa cgagttattt tcagctgctg actggagacg 350  

         FAM-ccccgcca accgaaa                          R 

gtgcacgtct ggatacgaga gcatttccac tatgggactg gatacaaaca cacacccggc agacttcaag 420  

agtctcagac tgaggagaaa gcctttcctt ctgctgctac tgctgctgcc gctgcttttg aaagtccact 490  

cctttcatgg tttttcctgc caaaccagag gcacctttgc tgctgccgct gttctctttg gtgtcattca 560  

gcggctggcc agaggaTGAG ACTCCCCAAA CTCCTCACTT                                  600 

 

Figure 4.2.3 a schematic representation of exons (boxes), and introns (thick horizontal line) within the GDF5 gene as 

well as the 5’ and 3’ UTR (thin horizontal line). The genomic sequence consists of the 300 bp residing on both ends of 

the rs143833 variant. The sequences in small letters represent the intronic region, and the sequences in capital letters 

are the exonic regions. The letter “Y” at position 301 is the IUPAC code for a C/T SNP. The forward and reverse 

primers are indicated with the arrows preceded by the letters “F” and “R” respectively. The sequences of the VIC and 

FAM probes are highlighted in red and blue respectively. Adapted from the National Center for Biotechnology 

Information: http://www.ncbi.nlm.nih.gov/projects/SNP/ 

http://www.ncbi.nlm.nih.gov/projects/SNP/
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COL5A1 (9q34.2) ~ 203 kb 
5’              3’ 

 

 
 

Genomic sequence within the 3’ UTR 

tgagttttaa gtaaatattt gtattgtatt gttataaatg ttaagtgtgc ctggctttca atcatgcacg   70  

gaaacccagt ctcagtccca cggacagaat gggcgaggca tggattctgg gttgcagtac cgttctgatt  140  

agaaatagga agtctcccca cccccgccct ggccaagaac gtgcaataaa ttggaagttt gccccggggc  210 

                                    F  

agcaagaatt tatgctgcca ttgaaaagca ggtaccagtg ccccttttca gacagttttt gattcgctct  280 

          VIC-aaaatta tccctccctt t  

agactttttt tttttttaat agggaaaaaa tttgataatt ttcttttttc tacatgcact taagactaaa  350 

          FAM-aaaatta tccctttttt aaac                                        R 

acacaggttt ggattaattt tatttgcttc ctttttccgc ttttcttccc gcagagcctg atgggagaat  420 

            R 

gtccagggca gggaaaccac attttttgta ggtgataact caatgaaaat tggtgcttat tttttacact  490  

tctctcttgt ggctctcttg tggtgctatc tatctgtttt aaggtctcct tgaaggcgca ctggggaccc  560  

tggccatgcc tcgttctccc tgctttcttt atcctgttat                                   600 

 

 

Figure 4.2.4 a schematic representation of exons (vertical lines), and introns (thick horizontal line) within the COL5A1 

gene as well as the 5’ and 3’ UTR (thin horizontal line). The genomic sequence consists of the 300 bp residing on both 

ends of the rs71746744 variant. The (aggg) STR polymorphism is located at position 301 and is typed in bold 

characters. The forward and reverse primers are indicated with the arrows preceded by the letters “F” and “R” 

respectively. The sequences of the VIC and FAM probes are highlighted in red and blue respectively. Adapted from 

the National Center for Biotechnology Information: http://www.ncbi.nlm.nih.gov/projects/SNP/ 

  

http://www.ncbi.nlm.nih.gov/projects/SNP/
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Figure 4.2.5 A typical allelic discrimination plot on the StepOne software v2.1 (Applied Biosystems, 

Foster City, CA, USA) showing automatic genotypic calls for the ELN rs2071307 variant. Each dot 

corresponds to an individual’s genotype. The blue dots represent the homozygous AA genotypes, the 

green dots represent the heterozygous GA genotypes, and the red dots represent the GG genotype. 

The “X” signs at the bottom left represent the negative no template controls. 
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4.2.4 PAGE Genotyping 

 

All participants were genotyped for the COL5A1 rs12722 variant using the polyacrylamide 

gel electrophoresis (PAGE) method described in Chapter 3. The 667 bp fragment containing 

the BstUI RFLP rs12722 SNP within the 3’-UTR of the COL5A1 gene (figure 4.2.6) was 

amplified in a 60 μl PCR reaction based on the Greenspan and Pasquinelli (1994) protocol 

and modified by Mokone et al. (2006). 

 

As discussed in Chapter 3, the 667 bp PCR product was digested using 5 units of BstUI 

enzyme (New England Biolabs, Ipswich, Massachusetts, USA) in a 25 μl reaction containing 

NEB2 buffer (New England Biolabs, Ipswich, Massachusetts, USA) and incubated at 60 °C 

overnight. The digestion products were separated alongside a 100 bp DNA ladder on 6% 

PAGE gels stained with SYBR® Gold nucleic acid gel stain (Invitrogen Molecular ProbesTM, 

Oregon, USA). 
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COL5A1 (9q34.2) ~ 203 kb 

5’              3’ 

 
Genomic sequence within exon 66, and the 3’ UTR 

              F 

ACCAAGAAAG GCTACCAGAA GACGGTTCTG GAGATCGACA CCCCCAAAGT GGAGCAGGTG CCCATCGTGG   70 

ACATCATGTT CAATGACTTC GGTGAAGCGT CACAGAAATT TGGATTTGAA GTGGGGCCGG CTTGCTTCAT  140 

GGGCTAGgag ccgccgagcc cgggctcccg agagcaacct cgtgacctca gcatgccatt gcttcgtgag  210 

tgtcccgtgc acgtcctgac tctggacagt gaaggcttct ccctcccctc ccacctgact tcatctacgc  280 

ctcggcacca cggggtgtgg gaccccagcc cggagagaac agagggaagg agccgcgccc ccacctggag  350 

 BstUI 

ctgaatcaca tgacctagct gcaccccagc gcctgggccc gccccacgct ctgtccacac ccaYgcgccc  420 

BstUI 

cgggagcggg gccatgcctc cagcccccca gctcgcccga cccatcctgt tcgtgaatag gtctcagggg  490 

ttgggggagg gactgccaga tttggacact atattttttt ctaaattcaa cttgaagatg tgtatttccc  560 

ctgaccttca aaaaatgttc caaggtaagc ctcgtaaagg tcatcccacc atcaccaaag cctccgtttt  630 

taacaacctc caacacgatc catttagagg ccaaatgtca ttctgcaggt gccttcccga tggattaaag  700 

gtgcttatgt ttttgtgagt                                        R                720 

 
 
Figure 4.2.6 A schematic representation of exons (vertical lines), and introns (thick horizontal line) within the COL5A1 

gene as well as the 5’ and 3’ UTR (thin horizontal line). The genomic sequence consists of the 412 bp residing 

upstream and 306 pb residing downstream of the rs12722 variant. The sequences in small letters represent the 

intronic region, and the sequences in capital letters are the exonic regions. The letter “Y” at position 413 is the IUPAC 

code for a C/T SNP. The forward and reverse primers are indicated with the arrows preceded by the letters “F” and 

“R” respectively. Adapted from the National Center for Biotechnology Information: 

http://www.ncbi.nlm.nih.gov/projects/SNP/ 

 .

http://www.ncbi.nlm.nih.gov/projects/SNP/
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The C and T alleles were identified based on the sizes of fragments as indicated in figure 

4.2.7. DNA sequences carrying the T allele for the rs12722 variant would produce two 

fragments of varying sizes: 351 bp and 316 bp. On the other hand, DNA sequences carrying 

the C allele produce three fragments: 316 bp, 271 bp, and 80 bp. 

 

Figure 4.2.7 A typical 6% non-denaturing polyacrylamide gel showing the genotypes of the COL5A1 

BstUI RFLP. The digestion of the 667 bp PCR product with BstUI produced 351 bp and 316 bp 

fragments for the T allele, and 316 bp, 271 bp and 80 bp fragments for the C allele. The 80 bp 

fragments are very faint but are indicated by the arrow. The right lane contains the 100 bp molecular 

weight marker with the appropriate fragment sizes given in base pairs (bp). The second lane from the 

right contains the uncut (UC) 667 bp PCR product  

 

4.2.5 RNA Secondary Structure 

 

The secondary structures of exon 20 within the ELN gene were generated using the SFold 

online statistical algorithms (http://sfold.wadsworth.org) (Ding, Lawrence 2003, Ding, Chan & 

Lawrence 2005).  SFold generates the RNA secondary structures using statistical algorithms 

from the Boltsman ensemble of secondary structures. All structures were folded at 37 °C 

and 1 M NaCl in the absence of divalent ions. 

http://sfold.wadsworth.org/
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4.2.6 Statistical Analysis 

 

The power calculations for this study were conducted using Quanto v1.2 

(http://hydra.usc.edu/gxe) and the Power for Genetic Association Analyses (PGA) package 

(http://dceg.cancer.gov/bb/tools/pga). The initial calculations were done using a recessive 

model and a disease population prevalence of 10%.  

 

Data analysis was conducted using SPSS Version 20 (SPSS Science Inc, Chicago, Ill, USA) 

statistical program. Chi-squared (2) analysis or Fisher’s exact test were used to analyse 

differences in the genotype and allele frequencies, as well as other categorical data between 

the groups. Furthermore, a one-way analysis of variance was used to determine significant 

differences between the characteristics of the ATP and CON groups within all three cohorts. 

Deviation of groups from the Hardy-Weinberg equilibrium was tested for using Michael H. 

Court's (2005–2008) online calculator (www.tufts.edu). The significance of all statistical 

testing was accepted at p<0.05. 

http://hydra.usc.edu/gxe
http://dceg.cancer.gov/bb/tools/pga
http://www.tufts.edu/
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4.3 RESULTS 

4.3.1 Power Calculations 

 

The conducted power calculation reported that a case-control population of 136 matched 

individuals was adequate  to detect an allelic OR of 2.0 at a power of 80% and a significance 

level of 5% when the allele frequency is estimated at 60% (figure 4.3.1) (Appendix V). 

 

Figure 4.3.1 Graphical representation of the power calculations to detect OR= 1.8, 2, and 2.2. The 

minimum sample size was determined at a 10% prevalence of ATP with a power of 80%. 

 
 

4.3.2 Participants’ Characteristics 

 

In this study, the UK ATP and CON groups were matched for all characteristics except for 

age; the ATP group was significantly older (p=0.033) at the time of injury than the CON 

group at the time of recruitment. When stratified between genders, the female ATP and CON 

groups were matched for age, however, the male ATP group was significantly older 

(p=0.015) than the CON group. Furthermore, the male CON group was significantly 

(p=0.006) taller than the ATP group, and the female ATP had a significantly higher BMI 

(p=0.026) than then CON group (table 4.3.1).  
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The CON and ATP groups within the combined AUS and SA cohort were similarly matched 

for age and height. However, the ATP group was significantly heavier and larger (weight, 

p<0.001; BMI, p<0.001) than the CON group. There was a significantly (p<0.001) greater 

number of males in the ATP group than in the CON group. When split into gender, the CON 

and ATP groups were similarly matched for all characteristics except for weight in males 

(p=0.001) and BMI in females (p=0.016) (table 4.3.2). 

 

Interestingly, participants in the AUS TEN group carrying the ELN rs2071307 AA (53.1 ± 

11.6, n=10) genotype were significantly (p=0.005) older at the time of their initial Achilles 

tendon injury when compared to those with a GG (37.2 ± 12.6, n=16) or a GA (37.8 ± 13.6, 

n=32) genotype (figure 4.3.2 B).  There were, however, no significant differences in the 

average ages of the three genotype groups in the CON AUS group (GG: 40.7 ± 11.8, n=48; 

GA: 37.4 ± 12.2, n=68; AA: 40.1 ± 12.1, n=24; p=0.323) (figure 4.3.2 A). No age, height, 

weight or BMI interaction with genotype was detected in either the SA or the UK cohorts.
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Table 4.3.1 General characteristics of the UK Achilles tendon pathology group (ATP) and the respective  

asymptomatic control (CON) group 
 

        Female   Males 
 

  
CON 

(n=131) 
ATP 

(n=136) 
P-value 

CON 
(n=49) 

ATP 
(n=52) 

P-value 
CON 

(n=82) 
ATP 

(n=84) 
P-value 

Age 
(Years)

a
 

41.6  
± 11.6 
(124) 

45.1  
± 14.1 
(135) 

0.033 
44.2  

± 11.4 
(48) 

45.2  
± 14.2 
(51) 

0.716 40.2  
± 11.5 (77) 

45.1  
± 14.1 
(84) 

0.015 

Gender 
(% male) 

62.6 (82) 61.8 (84) 0.887       

Height 
(cm) 

174.9  
± 10.4 
(123) 

172.6  
± 9.4 
(133) 

0.062 
165.5  
± 7.1  
(48) 

164.1  
± 6.5  
(51) 

0.314 
180.9  
± 7.2  
(76) 

177.9  
± 6.7  
(82) 

0.006 

Weight 
(kg)

b
 

80.1  
± 19.6 
(124) 

78.1  
± 15.0 
(99) 

0.388 
63.7  

± 10.9 
(48) 

67.4  
± 11.1 
(40) 

0.122 
90.7  

± 16.4  
(77) 

85.4  
± 12.9 
(59) 

0.052 

BMI 
(kg/m

2
) 

25.9  
± 4.5 
(123) 

26.3  
± 4.1  
(98) 

0.665 
23.2  
± 3.5  
(48) 

25.2  
± 4.7  
(40) 

0.026 
27.6  
± 4.4  
(76) 

26.9  
± 3.4  
(59) 

0.532 

 

Values are expressed as mean ± SD or a frequency (%). The total number of participants (n).  

The maximum number (n) of participants in each category is also indicated. 

a age of the ATP group is at the age of initial injury, while the age of the CON group is at the age of recruitment.   

b weight of the ATP group is at the time of initial injury, while the weight of the CON groups is at the time of recruitment 

cm, centimetres; kg, kilograms; m, metres 
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Table 4.3.2 General characteristics of the combined AUS+SA Achilles tendon pathology group (ATP)  

and the respective asymptomatic control (CON) group 

        Female   Males   

  
CON 

(n=238) 
ATP 

(n=174) 
P-value 

CON 
(n=121) 

ATP 
(n=50) 

P-value 
CON 

(n=124) 
ATP 

(n=122) 
P-value 

Age 
(Years)

a
 

38.2 ± 
11.2  
(230) 

40.2  
± 13.6 
(166) 

0.112 
37.7  

± 11.1 
(119) 

38.5  
± 12.8 
(48) 

0.694 
38.2  

± 11.3 
(117) 

40.9  
± 13.8 
(119) 

0.095 

Gender 
(% male) 

50.6 (124)  70.9 (122) <0.001       

Height 
(cm) 

173.1 ± 
9.5 (235) 

175.0  
± 9.1 
(161) 

0.054 
166.9  
± 7.6 
(120) 

165.0  
± 6.2  
(46) 

0.135 
179.5  
± 6.7 
(121) 

179.2  
± 6.8 
(116) 

0.693 

Weight 
(kg) 

72.7 ± 
13.2 (238) 

80.6  
± 14.8 
(166) 

<0.001b 
65.4  

± 10.7 
(121) 

68.8  
± 12.1 
(47) 

0.073 
80.3  

± 11.3 
(123) 

85.6  
± 13.5 
(120) 

0.001 

BMI 
(kg/m

2
) 

24.2 ± 3.6 
(235) 

26.2  
± 4.0 
(161) 

<0.001b 
23.5  
± 3.9 
(120) 

25.3  
± 4.6  
(46) 

0.016 
24.9  
± 3.2 
(121) 

26.6  
± 3.8 
(116) 

0.532 

 

Values are expressed as mean ± SD or a frequency (%). The total number of participants (n).  

The maximum number (n) of participants in each category is also indicated. 

a age of the ATP group is at the age of initial injury, while the age of the CON group is at the age of recruitment.   

b co-varied for age of recruitment. 

cm, centimetres; kg, kilograms; m, metres
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Figure 4.3.2 Column scatter graph showing the mean and standard deviation of the age of 

recruitment of the CON group and the age of injury of the TEN group based on genotype at the ELN 

rs2071307 variant in the AUS cohort. A) There is no significant difference (p=0.323) in the age of 

recruitment of the CON group. B) Participants carrying the AA genotype were significantly older 

(p=0.005) than participants with GG and GA genotypes when they first developed the injury. 
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4.3.3 Genotype and Allele Frequencies 

 

No significant genotype distribution frequency was detected in the UK cohort between the 

CON and ATP for all investigated variants: FBN2 rs331079 (p=0.507), COL5A1 rs12722 

(p=0.658), COL5A1 rs71746744 (p=0.319) and GDF5 rs143383 (p=0.538). However, a 

significant allelic distribution difference of the FBN2 rs331079 variant was reported between 

the CON and the RUP group (p=0.033). The C allele was significantly (p=0.033; OR=2.09; 

95% CI 1.05-4.16) over-represented in the RUP group. Furthermore, when the data was split 

according to gender, a significant genotypic (p=0.004) and allelic (p<0.001) distribution 

difference of the FBN2 rs331079 variants was detected in females between the CON and 

the RUP groups. There was a significant over-representation of the CC genotype (p=0.004; 

OR=7.70; 95% CI 1.95-30.39) and the C allele (p<0.001; OR=6.76; 95% CI 2.02-22.68) in 

the RUP group (table 4.3.3). 

 

In addition to that, the genotype (p=0.009) and allele (p=0.031) distribution frequencies of 

the COL5A1 rs12722 variant were significantly different between the male CON and RUP 

groups. The TT genotype was significantly (p=0.004; OR=4.2; 95% CI 1.58-11.97) over-

represented in the RUP group, and the C allele was significantly (p=0.031; OR=2.07; 95% CI 

1.06-4.05) over-represented in the CON group. Likewise, within the male population, the 

results show an allelic association where the COL5A1 rs71746744 DEL allele was 

significantly over-represented (p=0.046; OR=1.61; 95% CI 1.01-2.56) in the CON group 

when compared to the ATP group. 

 

The genotype frequency distributions of FBN2 rs331079 and ELN rs2071307 within the SA 

and AUS CON and ATP groups were not significantly different and therefore the two cohorts 

were looked at collectively. The genotype frequencies for the independent AUS and SA 

cohorts can be found in appendix VI. There was no significant genotype distribution 

difference of the ELN rs2071307 variant between the CON and ATP groups in the combined 
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AUS+SA cohort. However, there was a significant genotypic (p=0.015) and allelic (p=0.026) 

distribution difference between the CON and the RUP group (table 4.3.4). In fact, both the 

AA genotype (p=0.005; OR=2.89; 95% CI 1.38-6.06) and the A allele (p=0.026; OR=1.73; 

95% CI 1.06-2.82) were significantly over-represented in the RUP group.  

 

On the other hand, there was a significant genotypic (p=0.044) and allelic (p=0.011) 

distribution difference for the FBN2 rs331079 variant between the CON and the ATP group 

in the AUS+SA cohort (table 4.3.4). Both the GG genotype (p=0.019; OR=1.88; 95% CI 

1.11-3.18) and the G allele (p=0.011; OR=1.86; 1.14-3.04) were over-represented in the 

ATP group. Furthermore, when the analysis was conducted between the CON and the TEN 

groups, both the genotypic (p=0.035) and allelic (p=0.017) distributions were significantly 

different. The GG genotype (p=0.035; OR=1.83; 95% CI 1.04 – 3.25) and the G (p=0.017; 

OR=1.90; 95% CI 1.11 – 3.27) allele were significantly over-represented in the TEN group. 

 

4.3.4 ELN RNA Secondary Structure 

 

To identify any structural differences between the G and A allele, the secondary structures of 

the ELN exon 20 were generated using SFold as illustrated in figure 4.3.3. There was a clear 

structural difference observed at position 114 (the location of the SNP). In the presence of 

the G allele, the nucleotides at positions 53, 54, 113, and 114 were not aligned with the 

neighbouring sequences. When the A allele was present however, the nucleotides at 

positions 53, 54, 113, and 114 were in line with the neighbouring sequences resulting in a 

different structure. Furthermore, the substitution of the G allele by the A allele resulted in a 

reduction of the free energy of the molecule: G allele, ΔG°=-70.6 kcal/mol; A allele,  

ΔG°=-71.6 kcal/mol. 
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Table 4.3.3 Genotype and allele frequency distribution of the FBN2 rs331079 the COL5A1 rs12722, and the COL5A1 rs74746744 variants within the UK control (CON) and 
Achilles tendon pathology (ATP), as well as the pathological sub-groups Achilles tendinopathy (TEN) and Achilles tendon rupture (RUP). The genotype and allele frequency 
distributions are also shown when the dataset was categorised into gender. 

 
    

Female 
  

Male 
  

  CON ATP TEN RUP CON ATP TEN RUP CON ATP TEN RUP 

FBN2 
rs331079 

n=129 n=131 n=94 n=37 n=49 n=50 n=38 n=12 n=80 n=81 n=56 n=25 

GG 78.3 (101) 74.8 (98) 78.7 (74) 64.9 (24) 89.8 (44) 82.0 (41) 86.8 (33) 66.7 (8) 71.2 (57) 70.4 (57) 73.2 (41) 64.0 (16) 

GC 21.7 (28) 22.9 (30) 20.2 (19) 29.7 (11) 10.2 (5) 16.0 (8) 13.2 (5) 25.0 (6) 28.8 (23) 27.2 (22) 25.0 (14) 32.0 (8) 

CC 0.0 (0) 2.3 (3) 1.1 (1) 5.4 (2) 0.0 (0) 2.0 (1) 0.0 (0) 8.3 (1) 0.0 (0) 2.5 (2) 1.8 (1) 4.0 (1) 
P Value 0.507a 0.939b 0.098c 0.271a 0.669b 0.004

c
 0.902a 0.802b 0.493c 

HWE 0.167 0.698 0.857 0.625 0.707 0.432 0.432 0.929 0.133 0.943 0.876 1.000 
C allele 10.9 (28) 13.7 (36) 11.2 (21) 20.3 (15) 5.1 (5) 10.0 (10) 6.6 (5) 26.7 (8) 14.4 (23) 16.0 (26) 14.3 (16) 20.0 (10) 

P Value 0.316a 0.171b 0.033
c
 0.193a 0.678b <0.001

c
 0.676a 0.983b 0.340c 

COL5A1 

rs12722 
n=125 n=127 n=93 n=34 n=47 n=48 n=38 n=10 n=78 n=79 n=55 n=24 

CC 21.6 (27) 22.8 (29) 21.5 (20) 26.5 (9) 14.9 (7) 25.0 (12) 21.1 (8) 40.0 (4) 25.6 (20) 21.5 (17) 21.8 (12) 20.8 (5) 
CT 51.2 (64) 45.7 (58) 50.5 (47) 32.4 (11) 44.7 (21) 52.1 (25) 55.3 (21) 40.0 (4) 55.1 (43) 41.8 (33) 47.3 (26) 29.2 (7) 
TT 27.2 (34) 31.5 (40) 28.0 (26) 41.2 (14) 40.4 (19) 22.9 (11) 23.7 (9) 20.0 (2) 19.2 (15) 36.7 (29) 30.9 (17) 50.0 (12) 

P Value 0.658a 0.992b 0.134c 0.151a 0.257b 0.365c 0.050
a
 0.299b 0.009

c
 

HWE 0.761 0.369 0.885 0.048 0.762 0.770 0.513 0.598 0.344 0.198 0.729 0.076 

C allele 47.2 (118) 45.7 
(116) 46.8 (87) 42.6 (29) 37.2 (35) 51.0 (49) 48.7 (37) 60.0 (12) 53.2 (83) 42.4 (67) 45.5 (50) 35.4 (17) 

P Value 0.730a 0.929b 0.504c 0.055a 0.133b 0.060c 0.055a 0.213b 0.031
c
 

COL5A1 

rs71746744 
n=126 n=125 n=90 n=35 n=46 n=48 n=36 n=12 n=80 n=77 n=54 n=23 

D/D 7.9 (10) 8.0 (10) 8.9 (8) 5.7 (2) 0.0 (0) 8.3 (4) 8.3 (3) 8.3 (1) 12.5 (10) 7.8 (6) 9.3 (5) 4.3 (1) 
D/I 52.4 (66) 43.2 (54) 44.4 (40) 40.0 (14) 45.7 (21) 41.7 (20) 50.0 (18) 16.7 (2) 56.2 (45) 44.2 (34) 40.7 (22) 52.2 (12) 
I/I 39.7 (50) 48.8 (61) 46.7 (42) 54.3 (19) 54.3 (25) 50.0 (24) 41.7 (15) 75.0 (9) 31.2 (25) 48.1 (37) 50.0 (27) 43.5 (10) 

P Value 0.319a 0.514b 0.303c 0.135a 0.256b 0.205c 0.091a 0.516b 0.636c 
HWE 0.064 0.683 0.726 0.781 0.045 0.953 0.453 0.166 0.138 0.636 0.866 0.266 
DEL allele 34.1 (86) 29.6 (74) 31.1 (56) 25.7 (18) 22.8 (21) 29.2 (28) 33.3 (24) 16.7 (4) 40.6 (65) 29.9 (46) 29.6 (32) 30.4 (14) 

P Value 0.276a 0.511b 0.183c 0.322a 0.134b 0.513c 0.046
a
 0.066b 0.210c 

The values are expressed as a frequency with the number of participants (n) in parenthesis.  
a CON vs ATP; b CON vs TEN; c CON vs RUP 
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Table 4.3.4 Genotype and allele frequency distribution of the FBN2 rs331079 and the ELN rs2071307 variants within the combined AUS+SA control (CON) and Achilles 
tendon pathology (ATP), as well as the pathological sub-groups Achilles tendinopathy (TEN) and Achilles tendon rupture (RUP). The genotype and allele frequency 
distributions are also shown when the dataset was categorised into gender. 

          
Female 

     
Male 

     

  CON ATP TEN RUP CON ATP TEN RUP CON ATP TEN RUP 

FBN2 

rs331079 
n=238 n=174 n=135 n=39 n=116 n=50 n=40 n=10 n=120 n=121 n=94 n=27 

GG 
76.9 
(183) 

86.2 
(150) 

85.9 
(116) 87.2 (34) 76.7 (89) 86.0 (43) 85.0 (34) 90.0 (9) 77.5 (93) 86.0 

(104) 86.2 (81) 85.2 (23) 

GC 21.0 (50) 13.2 (23) 14.1 (19) 10.3 (4) 20.7 (24) 14.0 (7) 15.0 (6) 10.0 (1) 20.8 (25) 12.2 (16) 13.8 (13) 11.1 (3) 

CC 2.1 (5) 0.6 (1) 0.0 (0) 2.6 (1) 2.6 (3) 0.0 (0) 0.0 (0) 0.0 (0) 1.7 (2) 0.8 (1) 0.0 (0) 3.7 (1) 

P Value 0.044a 0.035
b 0.225c 0.174a 0.269b 0.455c 0.214a 0.106b 0.445c 

HWE 0.473 0.907 0.379 0.083 0.382 0.595 0.608 0.868 0.831 0.662 0.471 0.078 

C allele 12.6 (60) 7.2 (25) 7.0 (19) 7.7 (6) 12.9 (30) 7.0 (7) 7.5 (6) 5.0 (1) 12.1 (29) 7.4 (18) 6.9 (13) 9.3 (5) 

P Value 0.011a 0.017
b
 0.214c 0.115a 0.189b 0.483c 0.086a 0.074b 0.558c 

ELN 

rs2071307 
n=238 n=171 n=133 n=38 n=117 n=47 n=38 n=9 n=119 n=121 n=94 n=27 

GG 36.1 (86) 34.5 (59) 36.1 (48) 28.9 (11) 38.5 (45) 34.0 (16) 36.8 (14) 22.2 (2) 33.6 (40) 34.7 (42) 36.2 (34) 29.6 (8) 

GA 
47.1 
(112) 46.2 (79) 49.6 (66) 34.2 (13) 45.3 (53) 40.4 (19) 44.7 (17) 22.2 (2) 48.7 (58) 48.8 (59) 52.1 (49) 37.0 (10) 

AA 16.8 (40) 19.3 (33) 14.3 (19) 36.8 (14) 16.2 (19) 25.5 (12) 18.4 (7) 55.6 (5) 17.6 (21) 16.5 (20) 11.7 (11) 33.3 (9) 

P Value 0.804a 0.795b 0.015
c
 0.389a 0.949b 0.032

c
 0.985a 0.483b 0.184c 

HWE 0.730 0.479 0.628 0.055 0.611 0.203 0.649 0.134 0.997 0.925 0.291 0.179 

A allele 
40.3 
(192) 

42.4 
(145) 

39.1 
(104) 53.9 (41) 38.9 (91) 45.7 (43) 40.8 (31) 66.7 (12) 42.0 

(100) 40.9 (99) 37.8 (71) 51.9 (28) 

P Value 0.555a 0.741b 0.026
c
 0.253a 0.768b 0.021

c
 0.805a 0.374b 0.188c 

The values are expressed as a frequency with the number of participants (n) in parenthesis. 
a CON vs ATP; b CON vs TEN; c CON vs RUP 
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Table 4.3.5 Genotype and allele frequency distribution of the GDF5 rs143383 variant within the UK control (CON) and Achilles tendon pathology (ATP), as well as the 

pathological sub-groups Achilles tendinopathy (TEN) and Achilles tendon rupture (RUP). The genotype and allele frequency distributions are also shown when the dataset 

was categorised into gender. 

 
    

Female 
  

Male 
  

  CON ATP TEN RUP CON ATP TEN RUP CON ATP TEN RUP 

GDF5 
rs143383 

n=131 n=119 n=84 n=35 n=48 n=47 n=35 n=12 n=83 n=72 n=49 n=23 

TT 37.4 (49) 37.8 (45) 36.1 (30) 42.9 (15) 49.6 (19) 31.9 (15) 25.7 (9) 50.0 (6) 31.6 (30) 41.7 (30) 42.9 (21) 39.1 (9) 

CT 50.4 (66) 45.4 (54) 45.8 (38) 45.7 (16) 43.8 (21) 48.9 (23) 58.6 (17) 50.0 (6) 54.2 (45) 43.1 (31) 42.9 (21) 43.5 (10) 

CC 12.2 (16) 16.8 (20) 19.0 (16) 11.4 (4) 16.7 (8) 19.1 (9) 25.7 (9) 0.0 (0) 9.6 (8) 15.3 (11) 14.3 (7) 17.4 (4) 

P Value 0.538a 0.381b 0.839c 0.737a 0.356b 0.512c 0.319a 0.419b 0.497c 

HWE 0.385 0.581 0.525 0.932 0.596 0.972 0.866 0.248 0.130 0.527 0.641 0.675 

C allele 37.4 (98) 39.5 (94) 41.7 (70) 34.3 (24) 38.5 (37) 43.6 (41) 50.0 (35) 25.0 (6) 36.7 (61) 36.8 (53) 35.7 (35) 39.1 (18) 

P Value 0.631a 0.377b 0.631c 0.477a 0.141b 0.216c 0.991a 0.866b 0.767c 

The values are expressed as a frequency with the number of participants (n) in parenthesis. 
a CON vs ATP; b CON vs TEN; c CON vs RUP  
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Figure 4.3.3 Comparison of the secondary structure of the RNA transcribed from exon 20 of the ELN gene. A) Secondary RNA structure when the G allele is present at the 

rs2071307 variant. B) Secondary structure when the A allele is present at the rs2071307 variant. The structural differences are magnified in the box, and the alleles are 

highlighted by a red circle. The secondary structures were generated using the Sfold online RNA folding tool (available at http://sfold.wadsworth.org). The algorithm generates 

RNA secondary structures using a statistical sample from the Boltzmann ensemble of secondary structures. All structures were folded at 37 °C and 1M NaCl in the absence 

of divalent ions. 

http://sfold.wadsworth.org/
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4.4 DISCUSSION 

 

This study found various associations between the investigated gene variants and the 

various Achilles tendon pathologies. The data report a genotypic and allelic association of 

the FBN2 rs331079 variant with Achilles tendinopathy in the combined Australian and South 

African population where the GG genotype and G allele were over-represented in the TEN 

group. Interestingly in the UK cohort, and unlike in the AUS+SA cohort, the FBN2 rs331079 

variant was associated with Achilles tendon rupture. This variant was previously shown to 

associate with the disruption of the extracellular matrix in intra-cranial aneurysms in a Dutch 

population (Ruigrok et al. 2006). However, in the Dutch study it was the C allele that was 

found to be the risk factor as opposed to the G allele.  FBN2 mRNA levels have been shown 

to be elevated in rat Achilles tendons undergoing repair with the expression of FBN2 

reported to be increased for ten days post injury (Jelinsky et al. 2011). Similarly, an increase 

in the expression of FBN2 has been found in other pathologies such as mitral valve prolapse 

(Radermecker et al. 2003). 

 

ELN and FBN-2 are known to form a network of microfibrils that maintains the tendon’s 

architecture (Rosenbloom, Abrams & Mecham 1993). An increase in FBN-2 levels might be 

expected to increase the density of the tendon and lead to an increase in tendon stiffness 

and rigidity possibly affecting the compliance of the tendon in response to muscle movement 

(Cook, McDonagh 1996). On the other hand, a decrease in FBN-2 levels could result in 

weaker tendons caused by structural deficiencies in the microfibril network (Robinson, 

Godfrey 2000). Any impairment of the function of FBN-2 is believed to be a major 

determinant of microfibrillopathy (Robinson, Godfrey 2000) which is speculated to precede a 

tendinopathy. Furthermore, the increase in FBN2 expression levels observed during tendon 

repair (Jelinsky et al. 2011) is consistent with an important role for FBN-2 in maintaining the 

tendon’s architectural integrity.  
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Mutations such as the G3532T and G3590A substitutions have been found within the FBN2 

gene and lead to the development of connective tissue disorders such as congenital 

contractural arachnodactyly (Gupta et al. 2002).  The rs331079 variant that was investigated 

in this study resides within an intronic region of the FBN2 gene (www.snpper.chip.org).  

Although intronic variants do not determine the primary sequence of a protein molecule 

(Berget, Moore & Sharp 1977), they may have other, hitherto, undiscovered roles that are 

necessary for appropriate expression of protein molecules. However, at present it is 

unknown why this variant predisposes individuals to ATP. The rs331079 variant is known to 

be part of a linkage block in Caucasians and is in high linkage disequilibrium (D'=1) with the 

FBN2 rs331081, rs331082, and rs331085 variants (www.ensembl.com). All three of these 

additional variants are also located within intron 7 of the FBN2 gene (www.snpper.chip.org). 

The linkage disequilibrium between the investigated rs331079 variant and rs331081, 

rs331082, and rs331085 means that it is conceivable that one of these linked variants may 

also have a role in predisposing to ATP. 

 

Furthermore, the data shows an association of the ELN rs2071307 variants with Achilles 

tendon rupture in the UK cohort. This variant was also found to be associated with the 

disruption of the extracellular matrix of other medical conditions such as intracranial 

aneurysms (Yang et al. 2013), (Saracini et al. 2012) and abdominal aortic aneurysms 

(Saracini et al. 2012). ELN is known to show little turnover and shows remarkable durability 

following enormous stretch and recoil cycles. Therefore it could be suggested that the non-

synonymous polymorphism rs2071307, known to cause a change of amino acid from 

hydrophobic glycine to hydrophilic serine (www.snpper.chip.org), could alter the architecture 

of elastic fibres rendering them more prone to failure (He et al. 2012). He et al. (2012) report 

an alteration of the mechanical properties of ELN following the glycine to serine substitution. 

Specifically, they suggest that such amino acid substitution could reduce the entropy of the 

protein structure upon extension.  

 

http://www.snpper.chip.org/
http://www.ensembl.com/
http://www.snpper.chip.org/
http://www.snpper.chip.org/
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Furthermore, as indicated in figure 4.3.3 the substitution of the G allele with the A allele 

resulted in the generation of a different secondary RNA structure with alternative molecular 

properties. The difference in free energy change (ΔG°) suggests that there is a greater force 

driving the spontaneous forward reaction of the A allele RNA than that of the G allele RNA 

(Alberts et al. 2002). These thermodynamic properties could explain an over-expression of 

ELN mRNA as observed in post-injury Achilles tendons of mice (Guerquin et al. 2013). 

 

It is important to note however that the A allele is present in Caucasian populations in a 

frequency as high as 40%. The elevated abundance of this allele could be suggestive of a 

positive role it plays in improving the performance of elastin fibres (He et al. 2012).  This 

could explain the reported age genotype interaction where individuals in the AUS population 

carrying the AA genotype at the ELN rs2071307 locus developed an Achilles tendinopathy at 

a significantly later age than those with the GG and GA genotype. 

 

The results obtained from the investigation of the role of two genetic variants within the 

3’UTR of the COL5A1 gene partly agree with previous findings (Mokone et al. 2006, 

September et al. 2009, Abrahams et al. 2013). Unlike previous studies where the TT 

genotype within the COL5A1 rs12722 variant was associated with ATP in the SA cohort 

(Mokone et al. 2006), or Achilles tendonipathy in both AUS and SA (September et al. 2009), 

the TT genotype was associated with Achilles tendon rupture, strictly, in the UK male 

participants. Furthermore, the data suggest that individuals carrying the T allele are twice at 

risk of sustaining a rupture than those carrying the C allele. In addition to that, the results of 

the UK cohort found a significant association of the insertion (I) allele with an increased risk 

of ATP among male participants. This variant however, was previously reported to be 

associated with Achilles tendinopathy in the combined AUS and SA cohort (Abrahams et al. 

2013). The findings of functional analysis studies suggest that the presence of the T allele at 

the rs12722 locus and the insertion allele at the rs71746744 locus significantly increase the 

stability of the transcribed mRNA (Laguette et al. 2011). It has not been confirmed however 
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whether the T and I alleles play a role in increasing the risk of injury by increasing the 

synthesis of COL5A1 (Laguette et al. 2011) which could lead to the production of smaller 

and densely packed collagen fibrils (Ribbans, Collins 2013) as demonstrated in figure 4.1.1. 

Interestingly, a recent study showed no association of the COL5A1 rs12722 variant with the 

volume of the patellar tendon (Foster et al. 2014). One might think that these findings 

contradict the suggestion put forward by Collins and Posthumus (2011) about fibril 

arrangement and density, but no findings have described a relationship between tendon 

properties and risk of damage (Foster et al. 2014). Furthermore, the COL5A1 rs12722 T 

allele was also associated with other musculoskeletal soft tissue phenotypes such as: 

increased sit and reach range of motion (Brown et al. 2011), and increased risk of ACL 

rupture among females (Posthumus et al. 2009).  

 

The GDF5 rs143383 variant was not found to be associated with ATP in the UK cohort. This 

finding agrees with a previously published study where the rs143383 variant was not 

associated with ATP in a Caucasian South African population (Posthumus et al. 2010). The 

rs143383 variant is functional and exerts a reduction in the expression of GDF5 in cartilage 

when the T allele is carried, relative to the C allele (Egli et al. 2009). The reduction in 

expression of GDF5 is believed to increase the risk of osteoarthritis (Reynard et al. 2011). In 

fact, females carrying the CC genotype are 28% less likely of developing osteoarthritis when 

compared to females with the TT genotype (Vaes et al. 2009). Posthumus et al. (2010) 

report an increased risk of acquiring ATP when carrying the TT genotype. In fact, the 

observed reduction in the expression of GDF5 caused by the T allele at the rs143383 locus, 

reported by Egli et al. (2009), and the reduction in the concentration of collagen fibrils in 

tendons of GDF5-deficient mice, reported by Mikic et al. (2001), could explain the elevated 

risk of developing an ATP in carriers of the TT genotype. However, the results obtained from 

the UK population did not match those from the AUS+SA population. It is important to note 

that the transcriptional effect of the rs143383 variant is influenced by a neighbouring C/T 

SNP, rs143384, whose T allele also contributes towards a reduced expression of GDF5 
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(Dodd, Syddall & Loughlin 2013). Therefore it is important to conduct genetic association 

studies on the rs143384 variant and assess whether genotype combinations between both 

variants (rs143383 and rs143384) could contribute towards an increase in the risks of 

developing ATP. 

 

Finally, it is recognised that data from genetic association studies should be replicated in 

different cohorts. This study was conducted on Caucasian cohorts and it is therefore 

imperative to replicate it in cohorts of other ethnicities. A limitation of the present study is the 

relatively small sample size. However, the relatively elevated OR reported suggest a large 

effect. Furthermore, since the number of cases in the RUP group is very small (n=38) and 

indicates a reduced study power for the association, it is important to treat all findings related 

to Achilles tendon rupture with care.  
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5 Chapter 5 Polymorphic Variations within Metalloproteinases 

and Metalloproteinase Inhibitors and the Risk of Achilles 

Tendon Pathology 

 

Some of the findings in this chapter have been published in the Journal of Science and 

Medicine in Sports 

El Khoury, L., Posthumus, M., Collins, M., Handley, C.J., Cook, J. & Raleigh, S.M. 2013, 

"Polymorphic variation within the ADAMTS2, ADAMTS14, ADAMTS5, ADAM12 and TIMP2 

genes and the risk of Achilles tendon pathology: A genetic association study", Journal of 

science and medicine in sport, vol. 16, no. 6, pp. 493-498. 
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5.1 INTRODUCTION 

 

Achilles tendon pathology (ATP), consisting of chronic Achilles tendinopathy and acute 

Achilles tendon ruptures, typically occurs as a result of acute or repetitive mechanical 

loading during occupational and sporting activities (Kvist 1994, Rees, Dent & Caterson 

2009). Although the exact underlying aetiology of ATP remains to be defined, a number of 

intrinsic (including genetic) and extrinsic risk factors have been identified (Riley 2004).  

Previous studies have identified variants within the TNC (Mokone et al. 2005), COL5A1 

(Mokone et al. 2006, September et al. 2009), MMP3 (Raleigh et al. 2009), GDF5 

(Posthumus et al. 2010) and CASP8 (Nell et al. 2012) genes which independently associate 

with risk of ATP.  Since ATP is a multifactorial condition, its development is likely to have a 

complex genetic component and additional candidate genes should be investigated (Collins, 

Raleigh 2009).  

 

All genes, which have been shown to associate with Achilles tendinopathy encode for 

proteins that are either structural and/or regulatory in function (Collins, Raleigh 2009). 

Therefore additional genes encoding for extracellular matrix (ECM) specific proteinases and 

their inhibitors are suitable candidates for further investigation. In addition to the MMP 

(matrix metalloproteinase) family of proteins, the ADAM (a disintegrin and 

metalloproteinase), ADAMTS (a disintegrin and metalloproteinase with thrombospondin 

motifs), and the TIMP (tissue inhibitor metalloproteinase) family of proteins are all involved in 

the regulation of tendon and other connective tissues (Jones, Riley 2005).    

 

Metalloproteinases (MMPs, ADAMs, and ADAMTSs) are enzymes with a catalytic 

mechanism involving a metal, predominantly zinc. Metalloproteinases are structurally and 

evolutionarily related. Therefore they exhibit common domain designs that enable them to 

degrade various components of the ECM (figure 5.1.1). 
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Figure 5.1.1 A schematic representation of the domain organisation of MMP, ADAM, and ADAMTS. 

Figure obtained from (Jones, Riley 2005) with permission of the publisher. 

 
The MMP family made of 23 different matrix proteins, plays a major role in the proteolytic 

processing of the ECM (Flannery 2006). In specific, MMP3 is known to degrade various 

structural components such as: types II, IV, IX, X collagens, as well as fibronectin, decorin 

and aggrecan (Somerville, Oblander & Apte 2003, Birkedal-Hansen et al. 1993). 

Interestingly, a decrease in the expression of MMP3 has been reported in damaged Achilles 

tendons (Ireland et al. 2001). Furthermore, the MMP3 rs679620 was previously associated 

with ATP in a Caucasian South African cohort (Raleigh et al. 2009). 

 

The ADAM family of trans-membrane proteins belong to the super-family of zinc proteases 

(Seals, Courtneidge 2003). There are 19 different ADAM genes, which are involved in 

various functions such as: cell-cell interaction, fertilization, and muscle development (Iba et 

al. 2000, Evans 2001, Eto et al. 2000). The mRNA expression of ADAM12 was shown to be 

significantly elevated within painful (Achilles tendinopathy) compared to normal tendons 

(Jones et al. 2006). Interestingly, the ADAM12 rs3740199 variant has recently been shown 

to co-segregate with osteoarthritis (OA) in a Caucasian cohort (Kerna et al. 2009).  
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The ADAMTS proteinases are a group of secreted enzymes known to influence 

development, angiogenesis, and coagulation, as well as maintaining homeostasis in the 

ECM (Kevorkian et al. 2004). ADAMTS genes can be divided into four categories according 

to their function: hyalectanases, procollagen N-propeptidases, von Willebrand factor cleaving 

protease, and other ADAMTS which as yet have an unclassified role (Jones, Riley 2005).  

Procollagen N-propeptidases plays an important regulatory role by cleaving the N-terminal 

propeptides of types I, type II, and type III procollagens to yield mature collagen molecules 

(Fernandes et al. 2001). A major tendon procollagen N-propeptidase, ADAMTS2, is reported 

to be highly expressed in pathologic compared with healthy tendons (Jones et al. 2006). 

Also, mutations within the ADAMTS2 gene have shown to be associated with other soft 

tissue pathologies such as Ehlers-Danlos syndrome VIIC (Colige et al. 1999).  Furthermore, 

ADAMTS14 is a homologue of ADAMTS2 (Colige et al. 2002) and a major type I procollagen 

N-propeptidase in tendons (Jones, Riley 2005, Jones et al. 2006). The ADAMTS14 

rs4747096 variant, a putative deleterious non-synonymous SNP has been associated with 

osteoarthritis (Rodriguez-Lopez et al. 2009). The ADAMTS2 rs1054480, also a non-

synonymous SNP, is predicted to be deleterious (Ng, Henikoff 2003).   

 

Hyalectanases are known to cleave hyalectan as well as aggrecan, versican, fibromudilin, 

decorin, and COMP (cartilage oligomatrix protein) in order to maintain homeostasis within 

the ECM (Jones, Riley 2005). Previous studies reported a decrease in the expression level 

of ADAMTS5, a hyalectanase, in Achilles tendinopanthy samples compared to healthy 

controls obtained from cadavers (Jones et al. 2006). ADAMTS5 has been implicated in 

aggrecan degradation in OA (Malfait et al. 2002). Although genetic variations in the 

ADAMTS5 gene have not been associated with osteoarthritis, a putative deleterious non-

synonymous variant, ADAMTS5 rs226794, showed a tendency to be over-represented within 

a European Caucasian cohort with osteoarthritis (Rodriguez-Lopez et al. 2008). 
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The TIMP (tissue inhibitor metalloproteinase) genes encode proteins that inhibit the action of 

MMPs, ADAMs and ADAMTSs (Seals, Courtneidge 2003, Nagase, Visse & Murphy 2006). 

Among the TIMP proteins, TIMP2 is responsible for inhibiting ADAMTS1 (Kevorkian et al. 

2004) as well as the collagenolytic activity of type IV procollagenase (Stetler-Stevenson, 

Krutzsch & Liotta 1989).   In mice, TIMP2 is required for the successful activation of pro-

MMP2 (Wang, Juttermann & Soloway 2000). Elevated expression of TIMP2 RNA was found 

in ruptured Achilles tendon samples compared to healthy controls (Karousou et al. 2008). In 

contrast an earlier study reported lower levels of TIMP2 RNA in ruptured Achilles tendon 

relative to corresponding healthy tissue (Jones et al. 2006). In addition to transcript levels, 

serum TIMP2 protein has been documented to remain high even as long as three years post 

Achilles tendon injury (Pasternak et al. 2010). The TIMP2 rs4789932 variant is a promoter 

SNP that has been previously investigated for its role in the development of different 

cancers. Although it was not significantly associated with breast cancer, there was a 

tendency towards association (Peterson et al. 2009).  

 

According to the previous description of the role played by metalloproteases and their 

inhibitors in the Achilles tendon, the aim of this study was to determine whether the 

ADAMTS2 rs1054480, ADAMTS5 rs226794, ADAMTS14 rs4747096, ADAM12 rs3740199, 

and TIMP2 rs4789932 variants were associated with ATP in Caucasians. Furthermore, this 

study aimed at determining whether there was any association between MMP3 rs679620 

and ATP in the British cohort. 
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5.2  MATERIALS AND METHODS 

 
5.2.1 Participants 

 

One hundred and seventy-three (59 Australian (AUS) and 114 South African (SA)) self-

reported Caucasian participants diagnosed with Achilles tendon pathology (ATP) and 248 

(145 AUS and 96 SA) asymptomatic Caucasian controls (CON) were recruited for this case-

control genetic association study as previously described (Mokone et al. 2006, September et 

al. 2009). Furthermore, a British cohort (UK) made of 121 ATP cases and 131 physically 

active asymptomatic controls individuals were recruited as described in Chapter 3. The 

diagnosis of all participants was performed using specific clinical criteria based on the 

descriptions of (Kader et al. 2002, Paavola et al. 2002, Schepsis, Jones & Haas 2002) and 

adapted by (Mokone et al. 2006, September et al. 2009) as described in Chapter 3. 

 

5.2.2 DNA Collection and Genotyping 

 
For the Australian cohort, DNA was extracted from whole blood using the Flexigene DNA 

Extraction Kit (Qiagen P/L, Valencia, California, USA) as per the manufacturer’s 

recommendations. DNA for the South African cohort was extracted from whole blood using 

the procedure described by Lahiri and Nurnberg (1991) and modified by Mokone et al. 

(2005, 2006). Furthermore, DNA from the UK cohort was extracted from saliva collected in 

OG-500 (DNA Genotek, Inc., Ottawa, Canada) tubes and extracted as per the 

manufacturer’s recommendations described in Chapter 3. 

 

All subjects were genotyped for the TIMP2 rs4789932 (figure 5.2.1) gene variant. The AUS 

and SA groups were genotyped for the ADAMTS2 rs1054480 (figure 5.2.2), ADAMTS14 

rs4747096 (figure 5.2.3) and ADAM12 rs3740199 (figure 5.2.4) and ADAMTS5 rs226794 

(figure 5.2.5) variants while the MMP3 rs679620 (figure 5.2.6) was used to genotype the UK 

group. These gene variants were carefully selected on the basis that they should meet at 
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least one of the selection criteria: (1) they are known to be located within an exon with a 

deleterious or non-synonymous attribute; or (2) are located in either an intron or an exon and 

have been found to be associated with a medical condition, preferably a musculoskeletal soft 

tissue pathology. All gene variants were genotyped using custom-designed TaqMan® 

Assays (Applied Biosystems, Foster City, CA, USA). Each PCR reaction contained probes 

and primers in a PCR mastermix containing AmpliTaq DNA Polymerase Gold (Applied 

Biosystems, Foster City, CA, USA) in a reaction volume of 6 μL. PCR was performed on an 

Applied Biosystems StepOnePlusTM Real-Time PCR system (Applied Biosystems, Foster 

City, CA, USA). Genotypes were automatically called using Applied Biosystems 

StepOnePlusTM real-time PCR software Version 2.1 (Applied Biosystems, Foster City, CA, 

USA).  Rox was used as a passive reference and each PCR run included both positive 

(known genotype) and negative (water) controls for quality control. 
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TIMP2 (17q25) ~ 72.4 kb 

 

 

Genomic sequence within the promoter region 

cttcgacgcc accctcctag cgaactcgga ccccttcaac tcagacgtca ctcggctcta gtgtggtgac  70 

gtgaggtcgg aaccactgtc tcactctggg acagagtttt tttttttttt tttagagagg ggagttaagg  140 

gggtggtctc tcatgagatg aaaagacaag ggagatggta atagaggagg tttgtccaga gatttggtct  210 

                                                        F 

tcaaaggtcg aaagaaaagg agggaaaaga gaaccaagag agagagaggg aggagggagg taggtagttg  280 

    VIC-at ttgagtatct gctgtagcc  

tttatgagta aactcataga Ygacatcgga cctgtggcag gattctcact ctgtaagtcg cagatgtctt  350 

   FAM-cat ttgagtatct actgtagcc                                      R 

gtctccttgt agggaccttg tcgtccacct ttgtgcgttc cggggttcca acctgctacg acctggacca  420 

cctcgggtac cacaccgctc ctcactctcc ttcctcccga ctccgtcctc cggtcctcgt ccccgaccct  490 

cccctgtgcc gcctcccgtc ggtccgatgg ccctcctaca cgtaaaacaa gactcactcc accctcggaa  560 

acctcccaag actcgtctcc ccgtcctagc ctgcgtaggg                                   600  

 

Figure 5.2.1 a schematic representation of exons (vertical lines), and introns (thick horizontal line) within the TIMP2 

gene as well as the 5’ and 3’ UTR (thin horizontal line). The genomic sequence consists of the 300 bp residing on both 

ends of the rs4789932 variant. The letter “Y” at position 301 is the IUPAC code for a C/T SNP. The forward and 

reverse primers are indicated with the arrows preceded by the letters “F” and “R” respectively. The sequences of the 

VIC and FAM probes are highlighted in red and blue respectively. Adapted from the National Center for Biotechnology 

Information: http://www.ncbi.nlm.nih.gov/projects/SNP/ . 

http://www.ncbi.nlm.nih.gov/projects/SNP/
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Genomic sequence within intron 21 and  exon 22 

 
acccttcgtg tgcacgattg gatcaatggt gtacgagtac ggatagaaag aatgcagtaa ggggagaaa  70 

caaaagagtt ttggaaaacc ttagtcctta aaactgaagt agaggtactg tgtcctaaac atagggtac  140 

cttatagaga tattcgttct ttttttacga tccctacgat agaaaggtaa aataATCTTG AAGGCTCGT  210 

                         F 

AGAGAAAGAA GGCGTAGAGT AGTTACTCGA GAACCTAAGA AACCAAAGAC CAGAAAAGTA CCCCGAGCC  280 

        VIC-TTAGGTTGG GTGGCTGG 

AGCAGCTCCC TAATCCAACC YACCGACCTG AAGTAGAAGG TCCGGTACCT AAAACATCCC AGTAGATGC  350 

       FAM-ATTAGGTTGG ATGGCTGG                       R 

CGTAACCAAA GACCCACTAG GAGACACCGT AACCACGACC TCCGTAACTC TCCCTGGAGG CCCCCCACG  420 

AACCACTACC GGCGTGGAGG TACCGATGTC ACCCGTGACC CTCCCATCCG TACTTGTGCA TTACAGCAA  490 

CACGAAGGGT CCGCCACCGA GATAGGACGG GAGGTGCAAC CACTCCAACA ACATGTCCAA GTCCTGAAC  560 

GTCGTGTCGA ACAACATCGG ACCCTACCTC GTTATCGCC                                   600 

 
 
Figure 5.2.2 a schematic representation of exons (vertical lines), and introns (thick horizontal line) within the 

ADAMTS2 gene as well as the 5’ and 3’ UTR (thin horizontal line). The genomic sequence consists of the 300 bp 

residing on both ends of the rs1054480 variant. The sequences in small letters represent the intronic regions, and the 

sequences in capital letters are the exonic regions. The letter “Y” at position 301 is the IUPAC code for a C/T SNP. 

The forward and reverse primers are indicated with the arrows preceded by the letters “F” and “R” respectively. The 

sequences of the VIC and FAM probes are highlighted in red and blue respectively. Adapted from the National Center 

for Biotechnology Information: http://www.ncbi.nlm.nih.gov/projects/SNP/ . 

 
 
 

http://www.ncbi.nlm.nih.gov/projects/SNP/
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Genomic sequence within intron 19, exon 20, intron 20, exon 21, and intron 21 

ccacggcagT GCTCTGCCAC CTGTGGAGAG GGCATCCAGC AGCGGCAGGT GGTGTGCAGG CCAACGCCA  70  

ACAGCCTCGG GCATTGCGAG GGGGATAGGC CAGACACTGT CCAGGTCTGC AGCCTGCCCG CTGTGGAGg  140 

tgagccagag gggatgggga ggccaggtcc agtcccttgg gccaaagtcc caaatactag attgcttct  210 

                                            F 

tcctgctcac agGAAATCAC CAGAACTCCA CGGTGAGGGC CGATGTCTGG GAACTTGGGA GCCAGAGGG  280 

           VIC-TTAGAC TTGGGGATGT A            

GCAGTGGGTG CCACAATCTG RACCCCTACA TCCCATTAAC AAGATATCAT CAAgtaagta agtctatgg  350 

           FAM-TTAGAC CTGGGGATG               

accctaccct gctccccaga cctttcagtg gccctggtgt tgcagcatgg gccactcagt gagcaaacc  420 

                                          R 

cagcttgtag ctgtctgtgt gaccttcacc tccctgagcc tcagatacct cagttatgaa tggggagga  490 

ggctctactg gtccatgagc cgttacctgc aattccaaaa tgtttatttc taagtttggt caaacttac  560 

ctggcagcaa aatctgacct gaactaatga gatcatttat                                  600 

 
 
Figure 5.2.3 a schematic representation of exons (vertical lines), and introns (thick horizontal line) within the 

ADAMTS14 gene as well as the 5’ and 3’ UTR (thin horizontal line). The genomic sequence consists of the 300 bp 

residing on both ends of the rs4747096 variant. The sequences in small letters represent the intronic regions, and the 

sequences in capital letters are the exonic regions. The letter “R” at position 301 is the IUPAC code for a G/A SNP. 

The forward and reverse primers are indicated with the arrows preceded by the letters “F” and “R” respectively. The 

sequences of the VIC and FAM probes are highlighted in red and blue respectively. Adapted from the National Center 

for Biotechnology Information: http://www.ncbi.nlm.nih.gov/projects/SNP/ . 

http://www.ncbi.nlm.nih.gov/projects/SNP/
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ADAM12 (10q26) ~ 376.2 kb 
 
5’              3’ 

 
 

Genomic sequence within intron 1, exon 2, and intron 2 

atctgggact gtaacccctg gtttttgttc aaaaactaat tttcagtaga tgcaaataat ttggatccc  70  

tcatcagcac tgtcacatca aaattggttt gcatattttt ggcttaagaa taaagcttcc ttctctaag  140 

gatagagtta gcattaaagt gagtagagac aacccttgaa tgagagaata ccaaagcagc aatgtgatt  210 

                                                     F 

taaaagcttc ggcagtctca aagctgagaa aaggagaGGA ACTCACCTTG GAGTCGAAGC CTTCACTGG  280 

F          VIC-GTGAGG GTTGTCTCCG T 

GATCCAGAGG TCCCCACTCC SAACAGAGGC ACTGACAACT TCATCAGCTC TTCCTTGGTT CATAAgctc  350 

           FAM-GTGAGG CTTGTCTCCG T                            R 

acccctgaat caaaaggaaa acagccctat atttcactct agtcaggaag agtttggcat agaagctta  420 

ttacataaat gacacagtga aaatatttgg aagttaaata agcccaggga aacactagaa ccattaagt  490 

catgaaaagt gttaaaactg ctgaattctc tgtcaatcta accatgaaaa ttttgtaact aaagaaaac  560 

aaaagttaat taatttgttc cttcaagacc tgtaacatgt 

 
Figure 5.2.4 a schematic representation of exons (vertical lines), and introns (thick horizontal line) within the ADAM12 

gene as well as the 5’ and 3’ UTR (thin horizontal line). The genomic sequence consists of the 300 bp residing on both 

ends of the rs3740199 variant. The sequences in small letters represent the intronic regions, and the sequences in 

capital letters are the exonic regions. The letter “S” at position 301 is the IUPAC code for a G/C SNP. The forward and 

reverse primers are indicated with the arrows preceded by the letters “F” and “R” respectively. The sequences of the 

VIC and FAM probes are highlighted in red and blue respectively. Adapted from the National Center for Biotechnology 

Information: http://www.ncbi.nlm.nih.gov/projects/SNP/ . 

http://www.ncbi.nlm.nih.gov/projects/SNP/
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ADAMTS5 (21q21.3) ~ 49.2 kb 
 
5’              3’ 

 
Genomic sequence within intron 6, exon 7, and intron 7 

aggaagagta taaattttac acaaagatct cggtgcaatc tggaggagta tgtctatcga tactacatt  70 

atacttagga ggaaatagtt aagacgttct cagatttcga aacaagttaa gtgtatttct tttccaaga  140 

tagtataatg GAAAAGAATA ATTTCCAAGG TTGTTAGAAA CATGTCGACC TCAACAGAGG GGTGTATGA  210 

                                        F 

GGCGTGAACA GTATGACGTC GAAACTCGGT TACTACGGCA GTGTCGGTCA AGAGTGTGTG AGGGGGCCT  280 

VC-AGACGGA ATTACTGTAC AGCCTA 

GCGTCTGCCT TAATGACATG RCGGATGTAA GTCACGGTAG CCAGTGgact tagtaccgtt acgtaatcc  350 

FM-AGACGGA ATTACTGTAC GGCCTA                       R 

tcacccttta caaacgtagt cataaacgag gaaaccagtt gatcattcaa gagtaaacac aaaaaactc  420 

aaactaacca tacctgtcag gtaacttttt tttttttcgg tttttttgta tcaaaggtct catcgattg  490 

actttttagg aacagtataa cggtctttcg tctaaaacct attcggatcc aatgtgtaaa gagagaatt  560 

ggaatggaga cttacacaat tctctgtgtt ccatgagtag                                  600 

 
 
Figure 5.2.5 a schematic representation of exons (vertical lines), and introns (thick horizontal line) within the 

ADAMTS5 gene as well as the 5’ and 3’ UTR (thin horizontal line). The genomic sequence consists of the 300 bp 

residing on both ends of the rs226794 variant. The sequences in small letters represent the intronic regions, and the 

sequences in capital letters are the exonic regions. The letter “R” at position 301 is the IUPAC code for a G/A SNP. 

The forward and reverse primers are indicated with the arrows preceded by the letters “F” and “R” respectively. The 

sequences of the VIC and FAM probes are highlighted in red and blue respectively. Adapted from the National Center 

for Biotechnology Information: http://www.ncbi.nlm.nih.gov/projects/SNP/ . 

http://www.ncbi.nlm.nih.gov/projects/SNP/
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MMP3 (11q23) ~ 7.8 kb 
 
5’              3’ 

 
Genomic sequence within intron 1, exon 2, and intron 3 

aaaaattgaa gcagatgcta ttttctccta tgatatagtt tataaaattc caatcttatg tgaaaacccc  70 

tctgaaccat TACCTGTATG TAAGGTGGGT TTTCCTCCAC TTCGGGATGC CAGGAAAGGT TCTGAAGTGA  140 

CCAACATCAG GAACTCCACA CCTGGGCTTG CGCATCACCT CCAGAGTGTC GGAGTCCAGC TTCCCCGTCA  210 

                                                 F 

CCTCCAATCC AAGGAACTTC TGCATTTCTC GGATTTTTTT AACAACAGGA CCACTGTCCT TTCTCCTAAC  280 

   F           VIC-AAAA ACTCCAGCAT CATCAA 

AAACTGTTTC ACATCTTTTT RGAGGTCGTA GTAGTTTTCT AGATATTTct aacagaataa gtatagtttt  350 

       FAM-AAAA GCTCCAGCAT CATCAA                                     R 

taggtcactc ttacaatttt tactatagct tgcagttgct cacttcttaa tctatttgga gtatttctct  420 

agcttgctga aataatggca aattttataa tatgatacta gcaacacaaa tatttagcta aaattacgtt  490 

gcattaaaaa aaaaactgaa gctgttccaa agcaagatat ggttcatcca ctctccactt gttactcatg  560 

tgccttaagc cccagtgctg                                                         600 

 
 
Figure 5.2.6 a schematic representation of exons (vertical lines), and introns (thick horizontal line) within the MMP3 

gene as well as the 5’ and 3’ UTR (thin horizontal line). The genomic sequence consists of the 300 bp residing on both 

ends of the rs679620 variant. The sequences in small letters represent the intronic regions, and the sequences in 

capital letters are the exonic regions. The letter “R” at position 301 is the IUPAC code for a G/A SNP. The forward and 

reverse primers are indicated with the arrows preceded by the letters “F” and “R” respectively. The sequences of the 

VIC and FAM probes are highlighted in red and blue respectively. Adapted from the National Center for Biotechnology 

Information: http://www.ncbi.nlm.nih.gov/projects/SNP/ . 

 

http://www.ncbi.nlm.nih.gov/projects/SNP/
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5.2.3 Statistical Analyses 

 
Data were analysed using SPSS Version 20 (SPSS Science Inc, Chicago, Ill, USA) and 

Graphpad InStat Version 5 (Graphpad Software, San Diego, California, USA) statistical 

programs. Sample sizes for this study were based on those calculated in Chapter 3 as well 

as those previously published by Mokone et al. (2005, 2006). A one-way analysis of variance 

was used to determine significant differences between the characteristics of the ATP and 

CON groups within all three cohorts.  A chi-squared (2) analysis or Fisher’s exact test was 

used to analyse differences in the genotype and allele frequencies, as well as other 

categorical data between the groups. The significance was accepted when p<0.05. Hardy-

Weinberg equilibrium was established using Michael H. Court's (2005–2008) online 

calculator (www.tufts.edu).  

 

5.3 RESULTS 

 
5.3.1 Participant Characteristics 

 
The SA CON, AUS CON, SA ATP and AUS ATP groups were similarly matched for age and 

country of birth (table 5.3.1).  There was however significantly more females in the AUS 

CON group (p<0.001) when compared to the other three groups. When co-varied for sex, 

the four groups were similarly matched for height. The AUS ATP and SA ATP groups were 

recruited on average 8.8 ± 10.0 (58) and 8.0 ± 9.0 (107) years, respectively, after their initial 

injury. Even when co-varied for sex and age of recruitment both the AUS and SA TEN 

groups were significantly heavier (p<0.001) with larger BMIs (p<0.016) than the AUS and SA 

CON groups (table 5.3.1). Except for the AUS CON group, which had a significantly higher 

BMI than the SA CON group (p=0.006), the TEN and CON groups were matched for BMI 

and weight.  

http://www.tufts.edu/
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Furthermore, the UK CON and ATP groups were similarly matched for gender, weight, and 

BMI. However, participants within the ATP group were significantly smaller in height 

(p=0.049) at the time of recruitment and older (p=0.013) at the time of injury when compared 

to the mean height and age of the CON group at the time of recruitment (table 5.3.2). 

 

Interestingly, participants in the (AUS+SA) ATP group with a ADAMTS14 GG genotype (55.0 

± 7.2, n=6) were significantly (p=0.024) older at their initial Achilles tendon injury in 

comparison with those with either an AA (39.6 ± 14.1 years, n=114) or AG (39.4 ± 11.7 

years, n=37) genotype (figure 5.3.1 B).  There were no significant differences in the average 

ages of the three genotype groups in the CON groups (AA: 37.4 ± 11.1 years, n=163; AG: 

39.2 ± 11.5 years, n=51; GG: 41.5 ± 11.7 years, n=6; p=0.437) (figure 5.3.1 A).
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Table 5.3.1 General characteristics of the Australian Achilles tendon pathology (AUS ATP) and the South African Achilles tendon pathology (SA ATP) groups, as well as their 

respective control (AUS CON and SA CON) groups 

 
AUS CON 
(n=152) 

AUS ATP 
(n=59) 

SA CON 
(n=96) 

SA ATP  
(n=114) 

P-Value 

Age (years) a 38.5 ± 11.9 
(149) 

40.3 ± 14.1 
(58) 

37.1 ± 10.0 
(91) 

40.2 ± 12.3 
(107) 0.266 

Gender (% male) b 39.7 (151) c,d 67.8 (59) c 66.3 (95) d 73.0 (111)  <0.001 b 

Height (cm) 171.7 ± 9.3 
(150) 

173.8 ± 9.5 
(57) 

175.4 ± 9.7 
(93) 

175.9 ± 8.7 
(103) 0.345 c 

Weight (kg) 73.3 ± 13.9 
(151) 

80.4 ± 15.0 
(59) 

72.0 ± 12.3 
(95) 

80.8 ± 14.9 
(106) <0.001 d 

BMI (kg/m2) 24.8 ± 4.0 
(150) 

26.6 ± 4.1 
(57) 

23.3 ± 2.8 
(93) 

26.0 ± 3.9 
(103) <0.001 d 

Country of Birth  
(% Australian) 84.4 (138) 75.9 (58) n.a. n.a. 0.163 

Country of Birth  
(% South African) n.a. n.a. 75.8 (95) 75.0 (108) 1.000 

Values are expressed as mean ± SD or a frequency (%). The total number of participants (n) with non-missing data is in parentheses. The maximum number (n) of 

participants in each category is also indicated. 
a age of the ATP groups is the age of initial injury, while of age of the CON groups is the age of recruitment; b  AUS ATP vs SA CON vs SA ATP, P=0.559; c co-varied for sex; 
d co-varied for sex and age of recruitment.  Both the ATP groups were significantly heavier (p<0.001) and had larger BMIs (p<0.016) than the CON groups. The AUS CON 

group also had a significantly higher BMI than the SA CON group (p=0.006). cm, centimetres; kg, kilograms; m, metres; n.a., non-applicable 
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Table 5.3.2 General biological characteristics of the British Achilles tendon pathology (ATP) group and the  

asymptomatic control (CON) group, as well as the gender sub-groupings 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Values are expressed as mean ± SD or a frequency (%). The total number of participants (n) with non-missing  

data is in parentheses. The maximum number (n) of participants in each category is also indicated. 

a age of the ATP group is the age at the initial injury, while of age of the CON groups is the age of recruitment.   

b weight of the ATP group is at the time of the initial injury, while the weight of the CON is at the age of recruitment 

cm, centimetres; kg, kilograms; m, meters

        Female   Males   

  
CON 

(n=131) 
ATP 

(n=121) 
P-value 

CON 
(n=47) 

ATP 
(n=47) 

P-value 
CON 

(n=81) 
ATP 

(n=74) 
P-Value 

Age 
(Years)

a
 

41.4  
± 11.3 
(123) 

45.6  
± 14.5 
(117) 

0.013 
43.4  

± 10.7 
(46) 

44.9  
± 14.4 
(44) 

0.559 
40.2  

± 11.5 
(77) 

45.9  
± 14.7 
(73) 

0.008 

Gender 
(% male) 

67.8 
(81) 

61.1 
(74) 0.730       

Height 
(cm) 

175.0  
± 10.4 
(122) 

172.4  
± 9.6 
(118) 

0.049 
165.3  
± 7.2 
(46) 

163.9  
± 6.5 
(45) 

0.340 
180.9  
± 7.1 
(76) 

 
177.9  
± 6.9 
(72) 

 

0.011 

Weight 
(kg) 

80.3  
± 19.5 
(123) 

77.9  
± 14.8 
(84) 

0.315 
63.7  

± 11.1 
(46) 

66.4  
± 9.1 
(34) 

0.260 
90.3  

± 16.5 
(77) 

 
85.8  

± 12.6 
(50) 

 

0.090 

BMI 
(kg/m

2
) 

25.9 ± 
4.5 

(122) 

26.2  
± 3.7 
(84) 

0.665 
23.3  
± 3.5 
(46) 

24.8  
± 4.1 
(34) 

0.076 
27.5  
± 4.3 
(76) 

27.1  
± 3.2 
(50) 

0.532 
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Figure 5.3.1 Column scatter graph showing the standard deviation of genotypes of the ADAMTS14 

rs4747096 SNP in the combined AUS+SA control (CON) and Achilles tendon pathology (ATP). 

Obtained from El Khoury et al. (2013) with permission of the publisher. 

 

Also, there was a relationship between the MMP3 rs679620 variant and Achilles tendon 

width among males within the UK cohort showing signs of tendinosis with severely enlarged 

tendons (>10 mm). Specifically, males with the GG genotype had significantly (p=0.003) 

thicker tendons at the mid-portion (15.3 ± 1.6, n=4) when compared to men with either the 

GA (11.7 ± 0.8, n=7) or AA (12.6 ± 1.7, n=6) genotypes (figure 5.3.2 and figure 5.3.3). 

Tendon thickness was not significantly correlated with age (r=-0.044; p=0.867), height 

(r=0.332; p=0.209), weight (r=0.057; p=0.868), and BMI (r=-0.019; p=0.956), and was 

therefore not co-varied for these variables. 
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Figure 5.3.2 Column scatter graph showing the mean and standard deviation of tendon widths for 

genotypes of MMP3 rs679620 in males suffering from tendinosis and presenting with thick tendons (> 

10 mm). 

 

 

Figure 5.3.3 MRI of the lower leg showing the measurements of enlarged Achilles tendons  

(>10 mm) with A) the AA genotype B) the AG genotype and C) the GG genotype. The double sided 

arrows indicate the widest point in the tendon and the measurements are reported in millimetres 

(mm). Courtesy of Prof William Ribbans, The County Clinic, Northampton, UK 
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5.3.2 Genotype and Allele Frequencies 

 
The genotype frequency distributions of ADAMTS2 rs1054480, ADAMTS5 rs226794, 

ADAMTS14 rs4747096, ADAM12 rs3740199 and TIMP2 rs4789932 within the AUS and SA 

CON and ATP groups were not significantly different and therefore the two cohorts were 

looked at collectively. The genotype frequencies for the independent AUS and SA cohorts 

can be found in appendix VI.  

 

There were no significant genotype frequency differences for the ADAMTS2 rs1054480 

(p=0.316) ADAMTS5 rs226794 (p=0.323), ADAMTS14 rs4747096 (p=0.849), and ADAM12 

rs3740199 (p=0.633) gene variants between the (AUS+SA) CON and ATP groups (table 

5.3.3). However, the TIMP2 rs4789932 genotype frequency was significantly different 

(p=0.016) between the CON (86 CC, 36%; 100 CT, 42%, 50 TT, 21%) and ATP (46 CC, 

27%; 98 CT, 57%, 29 TT, 17%) groups. When combined, the CC genotype was significantly 

over-represented within the CON group (p=0.042; OR=1.58; 95% CI 1.03 - 2.43) and the CT 

genotype was significantly over-represented within the ATP group (p=0.004; OR=1.77; 95% 

CI 1.20 - 2.64) (table 5.3.3). There were no significant differences in allele frequency for any 

of the investigated variants (table 5.3.3).  
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Table 5.3.3 The genotype and allele frequency distribution of four selected candidate variants within 

the combined AUS+SA control (CON) and Achilles tendon pathology (ATP) groups, as well as, the 

chronic Achilles tendinopathy (TEN) and Achilles rupture (RUP) sub-groups. 

 CON ATP TEN RUP 

ADAM12 rs3740199 n=238 n=172 n=133 n=39 

GG 30.7 (73) 29.7 (51) 30.8 (41) 25.6 (10) 

GC 47.5 (113) 51.7 (89) 50.4 (67) 56.4 (22) 

CC 21.9 (52) 18.6 (32) 18.8 (25) 18.0 (7) 

P-Value 0.633 0.767a 0.585b 

C allele 45.6 (217) 44.4 (153) 43.9 (117) 46.1 (36) 

P-Value 0.816 0.674a 0.926b 

ADAMTS2 rs1054480 n=214 n=160 n=125 n=35 

GG 50.5 (108) 53.1 (85) 52.8 (66) 54.3 (19) 

GA 38.8 (83) 40.6 (65) 40.8 (51) 40.0 (14) 

AA 10.8 (23) 6.3 (10) 6.4(8) 5.7 (2) 

P-Value 0.316 0.407a 0.652b 

A allele 30 (129) 26.5 (85) 26.8 (67) 25.7 (18) 

P-Value 0.284 0.355a 0.452b 

ADAMTS5 rs226794 n=236 n=173 n=134 n=39 

GG 79.2 (187) 80.9 (140) 79.9 (107) 84.6 (33) 

GA 20.3 (48) 17.3 (30) 17.9 (24) 15.4 (6) 

AA 0.4 (1) 1.7 (3) 2.2 (3) 0.0 (0) 

P-Value 0.342 0.247a 0.437b, c 

A allele 10.6 (50) 10.4 (36) 11.2 (30) 7.7 (6) 

P-Value 0.752 0.800a 0.433b 

ADAMTS14 rs4747096 n=228 n=165 n=127 n=38 

AA 74.1 (169) 73.3 (121) 73.2 (93) 73.7 (28) 

AG 23.3 (53) 23.0 (38) 22.1 (28) 26.3 (10) 

GG 2.6 (6) 3.6 (6) 4.7 (6) 0.0 (0) 

P-Value 0.849 0.572a 0.956b, c 

G allele 14 (65) 15 (50) 15 (40) 13 (10) 

P-Value 0.724 0.591a 0.799b 

Values are expressed as a frequency with the number of participants (n) in parentheses. 
a CON vs TEN; b CON vs RUP; c Major homozygote vs heterozygote and minor homozygote 
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Table 5.3.4 The genotype and allele frequency distribution of the TIMP2 rs4789932 candidate variant 

within the combined AUS+SA control (CON) and Achilles tendon pathology (ATP) groups, as well as, 

the chronic Achilles tendinopathy (TEN) and Achilles rupture (RUP) sub-groups 

 CON ATP TEN RUP 

TIMP2 rs4789932 n=236 n=173 n=134 n=39 

CC 36.4 (86) 26.6 (46) 26.9 (36) 25.6 (10) 

CT 42.4 (100) 56.7 (98)  56.7 (76) 56.4 (22) 

TT 21.2 (50) 16.8 (29) 16.4 (22) 18.0 (7) 

P-Value 0.016 0.029a 0.249b 

T allele 42.4 (200) 45.1 (156) 44.8 (120) 46.2 (36) 

P-Value 0.439 0.525a 0.532b 

Values are expressed as a frequency with the number of participants (n) in parentheses. 

a CON vs TEN; b CON vs RUP 

 

Interestingly, when investigated in the UK cohort, the TIMP2 rs4789932 gene variant was 

also associated with ATP, however strictly among males. The genotype frequencies were 

significantly different (p=0.043) between the CON (CC, 20.5%; CT, 60.2%; TT, 19.3%) and 

ATP (CC, 37.8%; CT, 43.2%; TT, 18.9%) groups. Furthermore, the CT genotype was over 

represented among the CON group (p=0.033; OR=1.99; 95% CI 1.05 – 3.76) whereas the 

CC genotype was over represented in the ATP group (p=0.016; OR=2.36; 95% CI 1.16 – 

5.81). No significant genotypic distribution difference was found for the TIMP2 rs4789932 

variant between the CON and ATP groups within female participants (p=0.700), or in the 

combined male + female group (p=0.279). 
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The MMP3 rs679620 gene variant was not associated with ATP in either the female group 

(p=0.253), the male group (p=0.735), or the combined female + male UK cohort (p=0.349). 

Nevertheless, there was a significant (p=0.029) genotype distribution difference between the 

UK CON (AA, 26.7%; AG, 54.2%; GG, 19.1%) and RUP (AA, 31.4%; AG, 31.4%; GG, 

37.1%). Specifically, the GG genotype was significantly over represented among the RUP 

group (p=0.027; OR=2.51; 95% CI 1.11 – 5.64), whereas the AG genotype was significantly 

over represented among the CON group (p=0.019; OR=2.6; 95% CI 1.17 – 5.70). 

Interestingly, the UK RUP group was not in HWE (p=0.029). The remaining investigated 

groups were all in HWE. 
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Table 5.3.5 The genotype and allele frequency distribution of MMP3 rs679620 and TIMP2 rs4789932 variants within the British control (CON) and Achilles tendon pathology 
(ATP) groups, as well as the chronic Achilles tendinopathy (TEN) and Achilles tendon rupture (RUP) sub-groups. 

       

Female 
 

Male 

  CON ATP   TEN RUP   CON ATP   TEN RUP   CON ATP   TEN RUP 

MMP3 

rs679620 
n=131 n=121  n=86 n=35  n=48 n=47  n=35 n=12  n=83 n=74  n=51 n=23 

AA 
26.7 
(35) 

29.8 
(36)  

29.1 
(25) 

31.4 
(11)  

25.0 
(12) 

25.5 
(12)  25.7 (9) 25.0 (3)  

27.7 
(23) 

32.4 
(24)  

31.4 
(16) 34.8 (8) 

AG 
54.2 
(71) 

45.5 
(55)  

51.2 
(44) 

31.4 
(11)  

60.4 
(29) 

46.8 
(22)  

51.4 
(18) 33.3 (4)  

50.6 
(42) 

44.6 
(33)  

51.0 
(26) 30.4 (7) 

GG 
19.1 
(25) 

24.8 
(30)  

19.8 
(17) 

37.1 
(13)  

14.6  
(7) 

27.7 
(13)  22.9 (8) 41.7 (5)  

21.7 
(18) 

23.0 
(17)  17.6 (9) 34.8 (8) 

P-Value 0.349a  0.902b 0.029
c
 

 0.253a  0.589b 0.113c  0.735a  0.818b 0.207c 

HWE 0.301 0.329  0.765 0.029 
 0.125 0.663  0.862 0.276  0.886 0.389  0.780 0.061 

                  

G allele 
46.2 
(121) 

47.5 
(115)  

45.3 
(78) 

52.9 
(37)  

44.8 
(43) 

51.1 
(48)  

48.6 
(34) 

58.3 
(14)  

47.0 
(78) 

45.3 
(67)  

43.1 
(44) 

50.0 
(23) 

P-Value 0.764a   0.864b 0.320c   0.387a   0.503b 0.235c   0.760a   0.539b 0.717c 

TIMP2 
rs4789932 

n=131 n=121  n=86 n=35  n=48 n=47  n=35 n=12  n=83 n=74  n=51 n=23 

CC 
26.7 
(35) 

34.7 
(42)  

36.0 
(31) 

31.4 
(11)  

37.5 
(18) 

29.8 
(14)  

31.4 
(11) 25.0 (3)  

20.5 
(17) 

37.8 
(28)  

39.2 
(20) 34.8 (8) 

CT 
54.2 
(71) 

44.6 
(54)  

46.5 
(40) 

40.0 
(14)  

43.8 
(21) 

46.8 
(22)  

45.7 
(16) 50.0 (6)  

60.2 
(50) 

43.2 
(32)  

47.1 
(24) 34.8 (8) 

TT 
19.1 
(25) 

20.7 
(25)  

17.4 
(15) 

28.6 
(10)  18.8 (9) 23.4 

(11)  22.9 (8) 25.0 (3)  
19.3 
(16) 

18.9 
(14)  13.7 (7) 30.4 (7) 

P-Value 0.279a  0.339b 0.288c  0.700a  0.820b 0.763c  
0.043

a
 

 0.062b 0.094c 

HWE 0.301 0.325  0.735 0.238  0.519 0.681  0.640 1.000  0.062 0.375  0.962 0.146 

               
   

T allele 
46.2 
(121) 

43.0 
(104)  

40.7 
(70) 

48.6 
(34)  

40.6 
(39) 

46.8 
(44)  

45.7 
(32) 

50.0 
(12)  

49.4 
(82) 

40.5 
(60) 

 

37.3 
(38) 

47.8 
(22) 

P-Value 0.469a   0.260b 0.722c   0.390a   0.513b 0.406c   0.116a   0.052b 0.850c 

Values are expressed as a frequency with the number of participants (n) in parentheses 
a CON vs ATP; b CON vs TEN; c CON vs RUP 
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5.4 DISCUSSION 

 
This study reports for the first time that the TIMP2 rs4789932 variant was significantly 

associated with the risk of ATP. The CC genotype of this variant was significantly over-

represented within asymptomatic controls, whereas the CT genotype was over-represented 

in the ATP group when the South African and the Australian population were collectively 

analysed. In contrast, the CT genotype was over represented in the CON group and the CC 

genotype in the ATP group among the male UK participants. These findings might appear 

initially to be perplexing as they are contradictory to each other. However, although the 

direction of the genetic association found in the UK male cohort is opposite to the 

association in the AUS+SA cohort it is still true to say that the TIMP2 rs4789932 variant 

does in some way modify the risk of ATP.  It has recently been noted that such reverse 

effects in genetic association studies may reveal additional information about a susceptibility 

locus that was previously unknown. For example minor alterations in allele frequency 

between populations, differences in interacting loci gene-gene and gene-environment 

interactions may all contribute to a reverse effect, even in populations of the same ethnicity 

but separated geographically (Greene et al. 2009).  

 

TIMP2 mRNA and enzyme levels have previously been shown to be elevated in ruptured 

Achilles tendon samples compared to healthy controls (Karousou et al. 2008). In addition to 

transcript levels, serum TIMP2 protein has been documented to remain high even as long as 

three years post Achilles tendon rupture (Pasternak et al. 2010). Within degenerate human 

Achilles tendons, TIMP2 mRNA expression has been shown to be reduced (Jones et al. 

2006). Similarly, a decrease in TIMP2 mRNA levels has also been reported in torn rotator 

cuff tendons compared with healthy cadaveric controls (Lo et al. 2004). The discrepancy in 

mRNA expression levels in the studies described above might be attributed to the fact that in 

the Jones et al. (2006) study control specimens were from cadavers while in the Karousou et 

al. (2008) study control samples were harvested from living individuals undergoing surgical 
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repair of an Achilles tendon rupture (Karousou et al. 2008). It is known that TIMP2 is an 

inhibitor of MMP (Karousou et al. 2008) and disruption to the TIMP/MMP balance has been 

suggested as a plausible determinant of tendon injury (Pasternak et al. 2010). An increase in 

TIMP2 levels would be expected to limit the activity of MMPs which, in turn, would repress 

the degradation of the ECM. Such activity might result in tendon stiffness and rigidity.  On 

the other hand, a decrease in TIMP2 levels could result in higher levels of MMPs with a 

commensurate increase in the degradation of collagen and other structural proteins in the 

tendon (Pasternak et al. 2010). 

 

At present a precise mechanism of how the rs4789932 variant within the TIMP2 gene 

increases the risk of ATP is unknown. However, as the rs4789932 locus resides within the 

promoter region of the TIMP2 gene (Peterson et al. 2009), one may consider that this variant 

alters the binding affinity of transcription factors and would therefore influence the 

expression of the gene. The rs4789932 variant is located -2803 bp from the starting point of 

exon 1 on the TIMP2 gene (www.snpper.chip.org). TIMP2 expression is under complex 

control with regulatory cis-acting elements, including an AP-1, two AP-2s, five SP-1s and 

three PEA 3 sites located within a region spanning approximately -2600 bp upstream of the 

gene (Hammani et al. 1996). PEA-3 is known to a member of the Ets transcription factors, 

capable of activating transcription (Bojović, Hassell 2001). Therefore it can be speculated 

that a possible interaction between the CT genotype of TIMP2 rs4789932 and PEA-3 could 

alter the transcription of the gene. Subsequent exposure of the Achilles tendon to an 

excessive or prolonged loading force might exacerbate the genetic predisposition by causing 

localised musculoskeletal tissue maladaptations resulting in ATP.  Although this hypothesis 

is unproven it is consistent with the literature in which gene-environment interactions are 

thought to play a major role in the development of musculoskeletal soft tissue injuries 

(Collins, Raleigh 2009, September et al. 2006). 
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However, further work is required to determine if the rs4789932 variant itself, or a 

neighbouring variant, is responsible for the risk reported in this study. The rs4789932 variant 

forms part of a linkage block in Caucasians and is in high linkage disequilibrium with 

rs9894526 (D'= 1) and rs4789855 (D'= 0.94) (www.ensembl.com). Both these C/T SNPs are 

located in the promoter region and are 2811 bp and 6767 bp away from the rs4789932 SNP 

respectively. The TIMP2 rs9894526 variant has been investigated for its role in the 

development of periodontitis (Letra et al. 2012b) and nonsyndromic oral cleft (Letra et al. 

2012a) but was not found to be associated with either condition. The rs4789855 variant, on 

the other hand, has not previously been investigated for a role in the development of a 

disease.  Hence it is possible that any of the linked loci might underlie the risk of 

tendinopathy.  

 

Another finding of this study was the significant association (p=0.029) between the MMP3 

rs679620 variant and Achilles tendon rupture, where the GG genotype was over represented 

in the RUP group when compared to the CON group in the UK population. In an earlier study 

the GG genotype at the rs679620 locus was found to be a risk factor for Achilles 

tendinopathy in Caucasian South Africans (Raleigh et al. 2009). However, in that study no 

association was found in individuals who had a Achilles tendon rupture. In addition to that, 

the genotypes for the MMP3 rs679620 within the UK RUP group were not in HWE (p=0.029) 

whereas those within the UK CON group did not violate the HWE assumption (p=0.301). 

Participants in the UK cohort were carefully selected to exclude any possibility of biases 

caused by assortative mating, or sampling from different ethnic groups. Based on that, it is 

fair to say that the results of the UK cohort suggest a true association between MMP3 

rs679620 and Achilles tendon rupture (Schaid, Jacobsen 1999).   Moreover, it is important to 

note that the data revealed a preliminary association between the MMP3 rs679620 variant 

and the width of Achilles tendons in UK males presenting with signs of tendinosis who had 

severely enlarged tendons (> 10 mm). Specifically, subjects with the GG genotype appeared 

to have a thicker Achilles tendon when compared to subjects with either a GA, or AA 
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genotype.  However, it would be prudent to treat this result as a preliminary finding due to 

the small number of affected males in the dataset with a severely thick Achilles tendon. The 

G allele of the rs679620 locus was previously believed to increase the levels of MMP3 

expression (Foster et al. 2012). Over-expression of MMP3 might contribute towards tendon 

degeneration since MMP3 plays a role in the degradation of ECM substrates such as 

proteoglycan, decorin, and laminin (Birkedal-Hansen et al. 1993). In healthy tendons, Type 

III collagen is present in small amounts (Ippolito et al. 1980). However, in response to tendon 

damage, the production of type III collagen is induced (Maffulli et al. 2000) which could 

explain the difference in tendon thickness for male participants carrying the GG genotype for 

the rs679620 locus. As type III collagen is less resistant to tensile force, degenerate tendons 

with greater amounts of type III collagen are at greater risk of rupture (Maffulli et al. 2000). 

This could explain the association of the GG genotype of the MMP3 rs679620 variant with 

Achilles tendon rupture.  Furthermore, there were no significant effects of the MMP3 

rs679620 variant on tendon width in females (p=0.408) or when both genders were 

combined (p=0.276). 

 

Furthermore, there was no significant association between the ADAM12 rs3740199, 

ADAMTS2 rs1054480, ADAMTS5 rs226794 and ADAMTS14 rs4747096 variants and ATP in 

the AUS+SA cohort. Indeed, association was not detected when either the SA or AUS 

cohorts were analysed as separate datasets or when they were combined.  Although no 

relationship was found between the above variants and the risk of ATP; altered mRNA levels 

of ADAM12 were detected in a recent study on tendinopathy using array technology 

(Jelinsky et al. 2008). Altered levels of ADAM12, ADAMTS2 and ADAMTS5 have been 

detected in tendinopathic tissue compared to controls (Riley 2008).  The mechanism that 

underlies these transcriptional changes is still not fully understood and requires clarification. 

As previously mentioned, the investigated variants ADAM12 rs3740199 (Kerna et al. 2009), 

ADAMTS5 rs226794 (Rodriguez-Lopez et al. 2008), and ADAMTS14 rs4747096 (Rodriguez-
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Lopez et al. 2009), have all been shown to play a role in osteoarthritis. Therefore, it cannot 

be excluded that other variants within these genes are associated with ATP. 

 

 In summary, this study identified that the rs4789932 SNP within the TIMP2 gene is a risk 

factor for ATP and that MMP3 rs679620 is a risk factor for Achilles tendon rupture.  It is also 

necessary to repeat these studies in cohorts of different countries and ethnicities since it was 

shown in this study that geographic locations could contribute towards genetic differences in 

populations. Furthermore, the MMP3 rs679620 GG genotype might be related to increased 

tendon width in individuals presenting with tendinosis with severely enlarged tendons. Also 

the ADAMTS14 rs4747096 GG genotype might be playing a role in delaying the onset of 

ATP. In terms of limitations, this study would have greater power if conducted on a larger 

sample size. This is particularly true for the preliminary work reported with respect to the 

MMP3 rs679620 variant and tendon thickness where only 17 males were included. Finally, 

although this study has shown that the TIMP2 rs4789932 and the MMP3 rs679620 are risk 

variants, the pathological phenotype is only likely to manifest as a result of a complex 

interaction between other genetic variants and environmental factors.  
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6 Chapter 6 DNA Methylation and Human Patellar Tendinopathy  

 



148 
 

6.1 INTRODUCTION 

 
Patellar tendinopathy (PT), also known as jumper’s knee, is a degenerative condition 

characterised by activity-dependant anterior pain to the knee (Lian, Engebretsen & Bahr 

2005). Injuries at the level of the patellar tendon have been reported to be one of the most 

common knee related injuries (~26%) (Kujala, Kvist & Österman 1986, Bollen 2000). Cases 

of PT are highly reported among elite volleyball and basketball players, with a prevalence of 

45% and 32% respectively (Lian, Engebretsen & Bahr 2005). Degeneration and 

disorganisation have been reported within tendinopathic patellar tendon tissue (Karlsson et 

al. 1992, Yu et al. 1995). The degree of disorganisation of the collagen fibres and the 

presence of necrotic tissue observed in PT was similarly observed in Achilles tendinopathy 

(Khan, Cook & Maffulli 2005). 

 

Gene variants within the promoter regions of the TIMP2 and the GDF5 genes have been 

investigated in musculoskeletal soft tissue pathologies. The TIMP2 rs4789932 C/T variant 

was associated with Achilles tendon pathology, as reported in Chapter 5 and published by 

(El Khoury et al. 2013) and other soft tissue pathologies such as intracranial aneurisms 

(Ruigrok et al. 2006). The TIMP2 protein is known to inhibit the activity of metalloproteinases 

(Nagase, Visse & Murphy 2006); however, the functionality of the rs4789932 variant has not 

been described yet. Interestingly, there is a discrepancy in describing the level of expression 

of the TIMP2 gene in healthy versus diseased Achilles tendons; Jones et al. (2006) reported 

a decrease in TIMP2 expression where as Karousou el al (2010) reported an increase in 

TIMP2 expression in diseased compared to healthy tendons. Furthermore, a decrease in 

TIMP2 mRNA level was detected in ruptured rotator cuff tendons (Lo et al. 2004). 

 

Conversely, the GDF5 rs143383 C/T variant was found to be associated with a range of 

musculoskeletal conditions including, Achilles tendon pathology (Posthumus et al. 2010), 

congenital hip dysplasia (Rouault et al. 2010), hip fractures (Vaes et al. 2009), lumbar disc 
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degeneration (Williams et al. 2011) and osteoarthritis (Chapman et al. 2008, Valdes et al. 

2011). The rs143383 variant was found to be functional where it affects the expression of the 

GDF5 gene. The T allele was found to cause a significant decrease in gene expression 

when compared with the C allele in cartilage and joint tissue (Reynard et al. 2011). 

 

The role played by epigenetic factors in musculoskeletal conditions is a relatively new 

avenue of research. Different DNA methylation patterns have been revealed between 

fibroblast-like synoviocytes obtained from rheumatoid arthritis cases and healthy control 

(Nakano et al. 2013). On the other hand, the role of DNA methylation as a predisposing 

factor for human tendinopathy was first presented in detail at the 4th meeting for Clinical 

Sports Medicine in 2010 by S. Raleigh.  A review by Collins and Raleigh (2009) highlighted 

the importance of investigating the potential association of epigenetic mechanisms with the 

development of musculoskeletal pathologies, but as yet research in this area has not been 

forthcoming. 

 

DNA methylation is an epigenetic modification where a methyl group binds to a cytosine 

base converting it to 5-methylcytosine (Robertson 2005). In particular, a cytosine followed by 

a guanine forming a CpG site, could potentially attract a methyl group and become 

methylated (Golbabapour, Abdulla & Hajrezaei 2011). Stretches of DNA with high 

concentrations of CpG sites are called CpG islands (Bock et al. 2007). CpG islands are 

assessed according to the criteria discussed by Gardiner-Garden and Frommer (1987): 1) 

the island should be greater than 200 bp, 2) the GC contents should be greater than 50%, 

and 3) the ratio of observed/expected (obs/exp) CpG sites should be greater than 0.6. The 

obs/exp ratio is calculated as shown in the formula below (Bock et al. 2007, Gardiner-

Garden, Frommer 1987): 

 

(Obs/exp) CpG sites = N x [number of CpG sites / (number of C x number of G)] 

N = number of nucleotides in the sequence of interest. 
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The methylation is promoted by DNA methyltransferase (DNMT) enzymes which are 

believed to transfer a methyl group from S-adenosylmethionine (SAM) to the cytosine on 

CpG sites (Golbabapour, Abdulla & Hajrezaei 2011). CpG islands are associated with the 

promoter region of genes since they can be used to regulate gene activity. In specific, DNA 

methylation serves to down regulate gene expression (Reynard et al. 2011). The down 

regulation of genes is caused by different factors: 1) cytosine methylation could prevent the 

binding of transcription factors; or 2) CpG methylation could indirectly interfere with 

chromatin/histone interaction (Weber, Schübeler 2007).  

 

In view of the above, the aim of this study was to investigate the role of DNA methylation as 

an epigenetic factor contributing to the risk of patellar tendinopathy. Primarily, the study 

explored the DNA methylation profiles within selected regions of the TIMP2 and GDF5 

promoter and assessed any significant difference in the methylation pattern of these two 

genes between healthy and PT tissue samples.  
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6.2 MATERIAL AND METHODS 

6.2.1 Participants 

 

Tendon tissue samples were obtained from 10 male participants with healthy patellar 

tendons (CON) undergoing ACL reconstruction surgeries using a patellar tendon graft. In 

addition to that, 10 tendinopathic (PT) samples were obtained from male individuals 

undergoing surgical debridement for recalcitrant overuse patellar tendinopathy as previously 

described (Parkinson et al. 2010). All obtained samples were harvested from the patellar 

enthesis and were 15 mm in length.  

 

All participants gave written informed consent. In addition to the approval obtained, for the 

use of DNA samples by the University of Northampton’s School of Health Research Ethics 

Committee approval was also obtained by the La Trobe University Human Ethics 

Committee. 

 

6.2.2 DNA Collection and Bisulfite Conversion 

 

The patella tissue samples were homogenised and the DNA was isolated by staff at La 

Trobe University using the PureLink® Genomic DNA Kit (Invitrogen, Carlsbad, CA, USA) 

according to the manufacturer’s recommendations. 

 

The isolated DNA in addition to an unmethylated human DNA control from the EpiTect® 

PCR Control DNA Set (Qiagen, Hilden, Germany) were bisulfite converted at the University 

of Northampton using the EpiTect® fast DNA bisulphite Kit (Qiagen, Hilden, Germany) 

according to the manufacturer’s recommendation and as described in Chapter 3. The 

quantity of DNA that was bisulfite converted for each sample was ~50 ng. 
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6.2.3 Loci Selection and Assay Design 

 

As indicated in the introduction of this chapter, single nucleotide polymorphisms (SNPs) 

within the promoter region of the TIMP2 (El Khoury et al. 2013) and GDF5 genes 

(Posthumus et al. 2010) have been associated with musculoskeletal soft tissue pathologies. 

Furthermore, CpG islands within the promoter regions of the two stated genes were reported 

to show a variation in methylation profiles when comparing the cases to the control groups 

(Reynard et al. 2011, Pulukuri et al. 2007).  

 

The CpG assays used in this study were selected from the pre-designed PyroMark® CpG 

Assay selection offered by Qiagen (Qiagen, Hilden, Germany). Assay details were obtained 

using the online GeneGlobe Web Portal from Qiagen (http://www.qiagen.com/geneglobe/). 

There was only a single assay designed for the CpG islands within the TIMP2 promoter 

region (table 6.2.1). On the other hand, the assay chosen for the CpG islands within the 

promoter region of GDF5 was selected to cover a wider area of the promoter region and to 

include a greater number of CpG sites (table 6.2.1). 

 

http://www.qiagen.com/geneglobe/
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Table 6.2.1 Pyromark® CpG assays specifications as provided by the GeneGlobe Web Portal 

  
TIMP2 

 
Gene location Chr 17q25 (76921897 – 76922051) 

GeneGlobe cat. no. PM00177765 

Amplicon length 154 

Location of the sequence to 

analyse 

Chromosome 17 

76 921 927 – 76 921 960 

Number of CpG sites 4 

Sequence to analyse GCCGTTCCCTGTCGCCACCTCCCCGTTTCTGTGGGCGGGT 

Bisulfite converted sequence GTYGTTTTTTGTYGTTATTTTTTYGTTTTTGTGGGYGGGT 

Dispensation order TGTCGTTGATCGTAGTTCGCTTCTGTGTCG 

  
GDF5 

 

Gene location Chr 20q11.2 (34043229 – 34043468) 

GeneGlobe cat. no. PM00196861 

Amplicon length 239 

Location of the sequence to 

analyse 

Chromosome 20 

34 043 345 – 34 043 373 

Number of CpG sites 6 

Sequence to analyse GGGAGCGAGGGGCGGGGGGGCGGCAGAGCGCGGCGC 

Bisulfite converted sequence GGGAGYGAGGGGYGGGGGGGYGGTAGAGYGYGGYGT 

Dispensation order TGAGTCGTATGGTCGGTCGTCAGAGTCGTCGTCG 

The C bases in bold characters in the sequence to analyse represent the CpG sites. 

The letter Y in the bisulfite converted sequence represents the cytosine of the CpG site. 

The PCR primer sequences are proprietary and are therefore not provided by Qiagen. 
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6.2.4 Template Preparation for Pyrosequencing 

 

All 21 (20 samples and 1 human hypomethylated control) bisulfite converted DNA samples 

in addition to 2 additional controls (1 hypermethylated and 1 hypomethylated bisulfite 

converted by the manufacturer) from the EpiTect PCR Control DNA Set (Qiagen, Hilden, 

Germany) were amplified using the pre-designed primer sets of the PyroMark® CpG Assays 

(Qiagen, Hilden, Germany). The target sequences were amplified using the PyroMark® PCR 

Kit in a Techne TC-512 thermocycler (Bibby Scientific Ltd, Staffordshire, UK) as described in 

Chapter 3. To confirm the success of the PCR amplification of the target region, PCR 

products were run on a 1x agarose gel alongside a GeneRulerTM 100 bp DNA ladder 

(MBI Fermentas, UK) (figure 6.3.1 and figure 6.3.2).  

 

6.2.5 Pyrosequencing Reactions 

 

As described in Chapter 3, the biotinylated PCR products were immobilised to Streptavidin-

coated Sepharose high-performance beads (GE Healthcare, Buckinghamshire, UK) 

according to the PyroMark® Q24 manufacturer’s recommendations (Qiagen, Hilden, 

Germany). The immobilised PCR products were captured using the PyroMark® Q24 vacuum 

(Qiagen, Hilden, Germany). The captured DNA was later released into a 24 well PyroMark® 

Q24 plate containing 1x sequencing primer diluted in 25 μl PyroMark® Annealing Buffer. 

Before placing the Q24 plate into the pyrosequencer, the annealing of the sequencing primer 

was conducted on a preheated hot-plate at 80 °C for 2 min followed by room temperature 

incubation for 10 min. 
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6.2.6 Data Analysis 

 

Upon completion of the pyrosequencing reactions, pyrogrammes were visualised and 

percentage methylation of the CpG islands was automatically called by the PyroMark® Q24 

v2.0.6 software as shown in figures 6.3.3 and 6.3.4. Statistical data analysis was performed 

using SPSS Version 20 program (SPSS Science Inc, Chicago, Ill, USA). A t-test analysis 

was performed to compare the mean percentage methylation of each CpG site between the 

CON and the PT samples. Significant difference in methylation was called when p<0.05. 

 

6.3 RESULTS 

 

In this study, the CON and PT groups were similarly matched for age (p=0.449) and gender. 

It was not possible however to obtain additional characteristic data such as the height, 

weight, and BMI of participants. 

 

The PCR reaction conducted to amplify the target regions using the PyroMark® Assay 

primer sets was successful as shown in figures 6.3.1 and 6.3.2. 

 

As mentioned in the previous section, the selected TIMP2 assay spanned over 4 CpG sites. 

There was no significant difference (p=0.885) in the average methylation percentages 

across the 4 sites between the CON and the PT groups. Furthermore, there was no 

significant difference in methylation for any of the 4 CpG sites when analysed independently 

between the CON and the PT groups as shown in table 6.3.1 and figure 6.3.5 A.  

 

The GDF5 assay extended over 6 CpG sites. The data analysis show no significant 

difference for the mean percentages of methylation across the 6 sites between the CON and 

the PT groups (p=0.333). There was no significant difference in the methylation of any of the 

6 CpG sites within the GDF5 promoter region when analysed independently between CON 

and PT as shown in table 6.3.1 and figure 6.3.5 B. 
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Figure 6.3.1 A 1% agarose gel electrophoresis used to confirm the amplification of the PCR reaction 

using the PyroMark® CpG Assay PCR primers for the TIMP2 gene. Well 1, 100 bp ladder; well 2, 

blank; well 3, CON sample 1; well 4, CON sample 2; well 5, PT sample 1; well 6, PT sample 2; well 7, 

hypermethylated control; well 8, hypomethylated control; well 9, no template (negative control); well 

10, bisulfite converted hypomethylated control. 

 

 

 

 

 

 

 

 

Figure 6.3.2 A 1% agarose gel electrophoresis used to confirm the amplification of the PCR reaction 

using the PyroMark® CpG Assay PCR primers for the GDF5 gene. Well 1, 100 bp ladder; well 2, 

blank; well 3, PT sample; well 4, no template (negative control); well 5, PT sample. 

   1     2     3     4     5     6      7     8      9     10 

 

500 bp 

200 bp 

1000 bp 

500 bp 
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Figure 6.3.3 Typical pyrogram of the TIMP2 assay showing the CpG sites in the shaded area, and the methylation percentage indicated above the CpG sites’ 

peaks. A) PT sample, B) Hypermethylated control, C) hypomethylated control. 

A 

B 

C 

1% 5% 9% 2% 

61% 75% 94% 57% 

4% 6% 16% 2% 
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Figure 6.3.4 Typical pyrogram of the GDF5 assay showing the CpG sites in the shaded area, and the methylation percentage indicated above the CpG sites’ 

peaks. A) PT sample, B) Hypermethylated control, C) Hypomethylated control. 

A 

B 

C 

65% 62% 49% 73% 66% 69% 

1% 1% 1% 0% 2% 1% 

0% 0% 3% 2% 1% 0% 
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Table 6.3.1 Comparison of the mean methylation percentages of CpG islands between the 

asymptomatic controls (CON) and the patellar tendinopathy (PT) groups.  

 

 
CON PT P-Value 

TIMP2 
CpG 1 

2.4 ± 1.2 
(10) 

2.5 ± 1.6 
(10) 0.878 

TIMP2 
CpG  2 

5.3 ± 2.1 
(10) 

5.3 ± 1.6 
(10) 1.000 

TIMP2 
CpG 3 

8.0 ± 3.2 
(10) 

8.4 ± 2.2 
(10) 0.747 

TIMP2 
CpG  4 

2.3 ± 1.8 
(10) 

2.2 ± 1.2 
(9) 0.915 

TIMP2 
Avg 

4.5 ± 1.7 
(10) 

4.6 ± 1.4 
(10) 0.885 

GDF5  
CpG 1  

4.1 ± 6.4 
(10) 

1.0 ± 1.1 
(10) 0.149 

GDF5  
CpG 2 

3.2 ± 6.3 
(10) 

1.9 ± 1.9 
(10) 0.540 

GDF5  
CpG 3 

3.5 ± 5.8 
(10) 

1.6 ± 1.2 
(10) 0.326 

GDF5  
CpG 4 

3.9 ± 5.8 
(10) 

2.4 ± 1.6 
(10) 0.443 

GDF5  
CpG 5 

3.3 ± 6.3 
(9) 

1.9 ± 1.3 
(10) 0.490 

GDF5 
CpG 6 

4.1 ± 7.2 
(9) 

1.5 ± 2.3 
(10) 0.293 

GDF5  
Avg 

3.6 ± 6.2 
(10) 

1.7 ± 0.4 
(10) 0.333 

Values are expressed as the mean, followed by the standard deviation and the number of participants 

(n) in parenthesis.  
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Figure 6.3.5 Bar chart showing the mean and SD of methylation percentages for the CpG sites 

investigated in addition to the average (AVG) methylation in the A) TIMP2 and B) GDF5 genes. 
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6.4 DISCUSSION 

 
The initial aim of this study was to investigate whether different TIMP2 and GDF5 

methylation profiles could be observed between healthy and damaged patellar tendons. 

 

Pulukuri at al (2007) identified a CpG island on the promoter region of the TIMP2 gene 

extending from the transcription initiation site upstream for approximately 900 bp. The 

methylation of the CpG sites located between positions -295 and -145 bp was found to 

reduce the expression of TIMP2 in prostate cancer samples (Pulukuri et al. 2007). Likewise, 

the overlapping region ranging from -350 to -240 bp was also found to be hypermethylated in 

cervical cancer (Ivanova et al. 2004). As observed, the CpG island within the first 1 kb region 

upstream of the TIMP2 gene was hyper-methylated in medical conditions such as cancer; 

however, this chapter study showed that the region investigated within the same CpG island 

ranging from position -488 to -455 bp did not show a different methylation pattern between 

the CON and PT tissue samples. In fact, all analysed samples showed very low methylation 

suggesting a limited role played by DNA methylation at the 4 investigated CpG sites in 

moderating the expression of the TIMP2 gene in human patellar tendinopathy. 

 

The DNA methylation pattern within the promoter region of the GDF5 gene was not 

significantly different between the CON and the PT group. In particular, the studied region 

between position -805 and -777 showed hypomethylation. Interestingly, this methylation 

pattern is similar to the one observed between -1081 and -755 bp in osteoarthritis synovial 

join tissue (Reynard et al. 2011). However, the CpG islands located at position -1344 to  

-1208 and in the proximal promoter between -453 and +301 were reported to show 

hypermethylation in osteoarthritis (Reynard et al. 2011). Interestingly, the rs143383 C/T 

variant, which was associated with a range of multi-factorial conditions discussed in the 

introduction of this chapter, is located at position -275 bp and forms a CpG site which was 

also found to be hypermethylated in osteoarthritis (Reynard et al. 2011). It is important to 
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note that a reduction in the expression of GDF5 increases the risk of OA. In that respect, 

carrying a T allele or a methylated C allele increase the risk of OA by decreasing the 

expression of GDF5. Such statement could be applicable in human tendinopathy but 

remains to be tested and proven. 

 

This study has revealed a common hypomethylation pattern between OA and PT samples. 

This similarity justifies conducting additional work on the PT samples with focus on the 

regions showing hypermethylation of the GDF5 promoter in OA. Furthermore, additional 

DNA methylation studies within the TIMP2 promoter could be conducted on the CpG sites 

proximal to the transcription starting site showing hypermethylation in prostate (Pulukuri et 

al. 2007) and cervical cancer (Ivanova et al. 2004). 
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7 Chapter 7 DNA Methylation and miRNA Expression Profiles in 

Achilles Tendon Pathology: A Case Study 
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7.1 INTRODUCTION 

 

Recent studies have been associating epigenetic mechanisms and susceptibility to disease 

in humans (Jirtle, Skinner 2007). As previously described, ATP results from intra-tendinous 

degeneration following the disruption of homeostasis within the extra-cellular matrix (ECM) 

(Józsa, Kannus 1997). A normal tendon is made up of straight parallel packed collagen 

fibres with tenocytes, blood vessels and nerve endings located between the bundles (Jones 

et al. 2006). In contrast, a degenerate tendon contains irregular alignment of collagen fibres, 

an alteration in the amount of non-collagenous matrix, and a variation in vascularisation 

(Movin et al. 1997). The intra-tendinous disruption of the ECM could be attributed in part to 

the activity of metalloproteinases (MMPs, ADAMs, and ADAMTSs) and the 

metalloproteinase inhibitors (TIMPs) (Jones et al. 2006). Gene variants within the MMP3 

(Raleigh et al. 2009) and TIMP2 (El Khoury et al. 2013) genes have been associated with 

the risk of ATP. Furthermore, variations in gene expression have been reported where 

MMP3 is down-regulated in pathologic tendons when compared to controls (Ireland et al. 

2001). Variations in the expression of TIMP2 have been reported; however there have been 

contradicting reports as to the direction of the variation. Jones et al. (2006) reported a down 

regulation of TIMP2 in pathologic tendons where as Karousou et al. (2008) reported an up-

regulation. 

 

Metalloproteinases regulate homeostasis within the ECM by degrading and preventing 

abnormal build-ups of structural proteins in the tendon (Jones et al. 2006). A reduction in the 

production of metalloproteinases or their inhibition by TIMPs could result in the accumulation 

of collagenous and non-collagenous proteins (Jones et al. 2006) which could result in stiffer 

and more rigid tendons.  

 

Epigenetic mechanisms and their role as risk factors in human tendinopathy were discussed 

(Collins, Raleigh 2009) but never investigated prior to this thesis. The previous chapter 
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investigated the role of DNA methylation profiles as epigenetic factors predisposing to 

patellar tendinopathy. A second epigenetic mechanism reported to contribute towards 

human pathologies is micro-RNA (miRNA) activity.  

 

Micro-RNAs are small (~20 nucleotide) non-protein-coding transcription products formed 

endogenously (Güller, Russell 2010). They are known to repress gene expression post-

transcriptionally by blocking translation or by degrading target mRNA (Hamilton, Baulcombe 

1999, Reinhart et al. 2000). Approximately one third of genes could be regulated by miRNAs 

(Lewis, Burge & Bartel 2005). In fact, a single miRNA could target several genes (Vella et al. 

2004), and a gene could be targeted by several miRNAs (Doench, Sharp 2004).  

 

The biogenesis of miRNA initiates in the nucleus when RNA polymerase II transcribes 

miRNA genes into primary miRNAs (pri-miRNA) which are several kb in length (Bartel 2004). 

The Drosha / DGCR8 (Digeorge syndrome Critical Region Gene 8) complex then cleaves 

the pri-miRNA into a hairpin-like ~70 nt premature miRNA (pre-miRNA) (Lee et al. 2003). 

The pre-miRNA is then exported to the cytoplasm for the final maturation steps where the 

Dicer enzyme will remove the hairpin by cleaving the pre-miRNA into a ~20 nt double 

stranded molecule (Lee et al. 2003). The resulting RNA complex associates with the miRNA-

induced silencing complex (RISC) where one strand is degraded while the remaining one 

turns into mature miRNA (Schwarz et al. 2002). An overview of the biogenesis is illustrated 

in figure 7.1.1. 
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Figure 7.1.1 Biosynthesis of miRNA. The miRNAs are transcribed from the genome using RNA 

Polymerase II which produces the pri-miRNAs. The pri-miRNAs are converted into pre-miRNAs with 

the help of the Drosha/DGCR8 complex. The pre-miRNAs are then exported to the cytoplasm where 

they are cleaved by the Dicer to produce mature miRNAs that will bind to the RISC complex to 

become active. The image is reproduced from (Lu, Barca 2012) with the permission of the publisher. 
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Micro-RNAs are expressed in normal tissue to moderate gene expression. There are several 

potential ways in which miRNAs could lose their normal function and therefore contribute to 

the onset of pathologies: 1) miRNA could acquire a mutation that would result in the loss of 

gain of a function, 2) a target site could acquire a mutation and the miRNA could no longer 

be able to bind (Mills, Cowin 2013). Various miRNA have been associated with human 

diseases by repressing the expression of genes needed for the normal functioning of a 

tissue (Alvarez-Garcia, Miska 2005). For instance, miR-21 (miRNA-21) was found to be up-

regulated in cardiac hypertrophy (van Rooij et al. 2006), skin cancer (Zhu et al. 2008), and 

psoriasis (Bostjancic, Glavac 2008). It is believed that miR-21 predisposes to pathologies by 

inhibiting the production of type I collagen (Li et al. 2011). Furthermore, the activity of miR-

155 was associated with cardiovascular conditions where it targets the expression of 

angiotensin I receptor gene and thus interrupts the rennin angiotensin system (Elton, 

Sansom & Martin 2010). In addition to cardiovascular conditions, miR-155 was found to be 

up-regulated in synovial fluid collected from rheumatoid arthritis patients where it is believed 

to target the expression MMP3 (Stanczyk et al. 2008). On the other hand, miR-191 was 

predicted to play a role in the tumorigenesis of breast cancer by targeting the expression of 

TIMP2 (Shen, Ambrosone & Zhao 2009). The three miRNA discussed are believed to target 

the synthesis of proteins playing crucial roles in the maintenance of homeostasis in the 

ECM. Furthermore, these proteins are expressed by genes previously associated with 

musculoskeletal soft tissue pathologies (Raleigh et al. 2009, El Khoury et al. 2013, 

Posthumus et al. 2009).  

 

With the above in mind, the objectives of this study were: 1) to explore the DNA methylation 

patterns within the promoter regions of the TIMP2 and GDF5 genes in ATP, 2) to investigate 

whether the expression of miR-21, miR-155, and miR-191 varies in ATP, and 3) to identify 

the variation in gene expression of TIMP2 in ATP. 
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7.2 MATERIALS AND METHODS 

7.2.1 Participants 

 

Achilles tendon tissue samples were obtained from the Royal National Orthopaedic Hospital 

under the approval of the National Research Ethics Service Committee within the National 

Health Services and in accordance with the Human Tissue Authority guidelines as described 

in Chapter 3. One damaged tendon tissue sample (ATP) was obtained from a male 

individual undergoing a repair surgery for a degenerative Achilles tendon and 4 healthy (3 

males and 1 female) Achilles tendon samples (CON) were obtained from individuals 

undergoing surgery in their lower limb for medical conditions not involving the Achilles 

tendon. The collected samples were cut into sections of 4x4x4 mm and were submerged 

and stored in microcentrifuge tubes containing Allprotect Tissue Reagent ® (Qiagen, Hilden, 

Germany) to preserve DNA, RNA and miRNA as described in Chapter 3. 

 

7.2.2 Extraction of DNA, RNA and miRNA 

 

Tissue samples were mashed, lysed, and homogenised using the TissueLyser LT (Qiagen, 

Hilden, Germany) as described in Chapter 3. DNA was extracted from sections not 

exceeding 25 mg in weight using the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) 

according to the manufacturer’s recommendations. RNA and miRNA were extracted 

together from tissue sections not exceeding 30 mg in weight using the miRNeasy Mini Kit 

(Qiagen, Hilden, Germany) according to the manufacturer’s protocol. All extracted genetic 

material was quantified using the NanoDrop 2000 spectrophotometer (Thermo Fisher 

Scientific, Wilmington, DE, USA) and were stored at -20 °C until the day of analysis. 

 



169 
 

7.2.3 Bisulfite Conversion, DNA Methylation, and Pyrosequencing 

 

All 5 samples (1 ATP and 4 CON) were bisulfite converted using the method described in 

Chapter 3. Following that, PCR amplification using the PyroMark® CpG assays for the 

regions within TIMP2 and GDF5 genes used in Chapter 6 was performed. Upon completion 

of the PCR reaction all samples were prepared and run through the PyroMark® Q24 to 

assess the DNA methylation patterns.  

 

7.2.4 Gene Expression 

 

A two step gene expression experiment was conducted using the High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA) as described in 

Chapter 3. A TIMP2 pre-designed TaqMan® Gene Expression Assay (Applied Biosystems, 

Foster City, CA, USA) was selected for this study. The expression of TIMP2 was normalised 

against the GAPDH housekeeping gene. Furthermore, miRNA expression was assessed 

using predesigned TaqMan® miRNA Assays (Applied Biosystems, Foster City, CA, USA) for 

mir-21, mir-155, and mir-191. All miRNA expression experiments were normalised against 

the RNU6B gene which is a widely used endogenous reference in miRNA quantification 

studies (Matera, Terns & Terns 2007). The data was visualised on the StepOne Software 

v2.1 (Applied Biosystems, Foster City, CA, USA). A comparative Ct analysis was performed 

and fold-changes in expression were calculated according to the formula: 2 (-∆∆Ct) (Livark, 

Schmittgen 2001). In both, gene and miRNA expression, experiments the CON sample with 

the highest mean Ct value was used as the calibrator. 

 

7.2.5 Data Analysis 

 

Statistical data analysis was performed for in this chapter as it is a case study with only one 

ATP participant.  
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7.3 RESULTS 

 

In this study, the mean age of the CON group (45.75 ± 16.5) was lower than that of the 

single ATP case (63 years old). It was not possible however to obtain additional 

characteristic data such as the height, weight, and BMI of the participants. 

 

As mentioned in Chapter 6 the PyroMark® CpG assays used for the TIMP2 and GDF5 

genes spanned over 4 and 6 CpG sites respectively. In correspondence with the study 

conducted on patellar tendons, this study on Achilles tendons showed no significant 

difference in methylation for any of the 4 CpG sites within TIMP2 or the 6 CpG sites within 

GDF5 when analysed independently between the CON group and the single ATP case as 

shown in table 7.3.1 and figure 7.3.1. Furthermore, there was no difference in average DNA 

methylation percentages for TIMP2 between the CON group and the ATP individual. 

However, there was an observed difference in average methylation of the GDF5 CpG sites 

between the CON group and the ATP participant (table 7.3.1 and figure 7.3.1 B). 

 

The gene expression analysis showed interesting results where TIMP2 within the ATP 

sample was up-regulated 42.31 fold relative to the mean of the CON group (figure 7.3.2 A). 

Furthermore, the miRNA expression of all three selected miRNA showed a down-regulation 

in the ATP sample relative to the mean miRNA expression within the CON group with miR-

191 displaying the greatest reduction in expression (3.42 fold) followed by miR-155 (2.31 

fold) and miR-21 (1.15 fold) (figure 7.3.2 B, C and D). 
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Table 7.3.1 Comparison of the mean methylation percentages of CpG islands between the 

asymptomatic controls (CON) group and the single Achilles tendon pathology (ATP) sample. 

 
CON ATP 

TIMP2 
CpG 1 

1.5 ± 1.3 

(4) 
1.0 (1) 

TIMP2 
CpG  2 

3.0 ± 1.4 

(4) 
3.0 (1) 

TIMP2 
CpG 3 

7.5 ± 4.0 

(4) 
7.0 (1) 

TIMP2 
CpG  4 

1.2 ± 1.9 

(4) 
1.0 (1) 

TIMP2 
Avg 

3.3 ± 1.1 

(4) 
3.0 (1) 

GDF5  
CpG 1  

1.0 ± 1.4 

(4) 
0.0 (1) 

GDF5  
CpG 2 

0.5 ± 1.0 

(4) 
1.0 (1) 

GDF5  
CpG 3 

2.7 ± 2.5 

(4) 
0.0 (1) 

GDF5  
CpG 4 

3.5 ± 4.1 

(4) 
0.0 (1) 

GDF5  
CpG 5 

0.2 ± 0.5 

(4) 
0.0 (1) 

GDF5 
CpG 6 

2.5 ± 3.8 

(4) 
1.0 (1) 

GDF5  
Avg 

1.7 ± 0.9 

(4) 
0.3 (1) 

Values are expressed as the mean, followed by the standard deviation and the number of participants 

(n) in parenthesis. 
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Figure 7.3.1 Bar chart showing the mean and SD of methylation percentages for the CpG sites 

investigated in addition to the average (AVG) methylation in the A) TIMP2 and B) GDF5 genes.  
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Figure 7.3.2 Bar chart showing the change in expression folds between the CON group and the ATP 

sample. The relative quantity of mRNA or miRNA is calculated using the 2 (-∆∆Ct) formula. The data is 

displayed as the mean and standard deviation of the relative quantity of the CON group and the single 

ATP sample. A) A 42.31 fold up-regulation in gene expression of TIMP2 in the ATP sample compared 

to the CON group. B) A 3.42 fold down regulation in the miRNA expression of miR-191 in the ATP 

sample compared to the CON group. C) A 1.15 fold down regulation in the miRNA expression of miR-

21 in the ATP sample compared to the CON group. D) A 2.31 fold down regulation in the miRNA 

expression of miR-155 in the ATP sample compared to the CON group. 
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7.4 DISCUSSION 

 

This study has, for the first time, combined gene expression and epigenetic investigations on 

Achilles tendon tissue samples. This combined investigation has helped draw an image of 

the factors and mechanisms involved in the expression of the TIMP2 gene in the Achilles 

tendon. As observed in figure 7.3.1-A the results of this study show an up-regulation of 

TIMP2 expression in the ATP sample when compared to the CON group. It is important to 

note however that this study was conducted with a single ATP sample which is not 

representative of the ATP population. Nevertheless, these findings correlate with Karousou 

et al. (2008) who reported an up-regulation of TIMP2 in damaged Achilles tendons. The DNA 

methylation experiment showed hypomethylation patterns of the investigated region (-488 to 

-455 bp) within the TIMP2 promoter. Although these results suggest the absence of 

methylation in the investigated region, DNA methylation as a whole cannot be excluded as a 

mechanism affecting gene expression without, at least, investigating the methylation pattern 

of the whole CpG island residing within the first kb of the promoter region. This is important 

because the CpG sites residing within the regions -295 to -145 bp and -350 to -240 bp were 

found to be hypermethylated in prostate (Pulukuri et al. 2007) and cervical cancer (Ivanova 

et al. 2004) respectively.  

 

Another finding of this study was the difference in mean DNA methylation percentage for the 

GDF5 gene between the ATP sample and the CON group. The exact role played by GDF5 in 

tendons is not fully explained (Eliasson, Fahlgren & Aspenberg 2008); however it is believed 

to be involved in the maintenance and repair of musculoskeletal soft tissues (Eliasson, 

Fahlgren & Aspenberg 2008, Mikic 2004). It has been proposed that a GDF5 deficiency 

could increase the risk of osteoarthritis (Reynard et al. 2011). Although a difference in DNA 

methylation levels was observed between the ATP and CON group, any deficiency of GDF5 

cannot be attributed to the methylation of the 6 investigated CpG sites as those were very 

low for all participants. 
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In addition to DNA methylation, the second epigenetic mechanism investigated in this study 

was the activity of miRNAs. The results have shown a 3.7 fold down-regulation of the miR-

191 in the ATP sample when compared to the mean expression level of the CON group. 

Since TIMP2 is a target for the binding of miR-191 (Shen, Ambrosone & Zhao 2009), it can 

be speculated that the sharp decrease in the expression of miR-191 observed in the ATP 

case would facilitate the opportunity for TIMP2 to be expressed and could therefore explain 

the observed over-expression. Furthermore, serum levels of TIMP2 have been documented 

to remain elevated as high as three years post Achilles tendon injury (Pasternak et al. 2010). 

Assuming that the tested ATP sample is not an outlier, then the Pasternak et al. (2010) 

observation could be explained by the up-regulation of the gene. 

 

As described in Chapter 5, TIMP2 plays a role in inhibiting the activation of MMP2 (Wang, 

Juttermann & Soloway 2000) and also suppresses the activity of ADAMTS1 (Kevorkian et al. 

2004). With this in mind, it could be postulated that the over-expression of TIMP2 would 

compromise the TIMP/MMP balance within the ECM which could ultimately result in over-

accumulation of structural proteins leading to stiffer and more rigid tendons. On the other 

hand, it could be argued that the up-regulation of TIMP2 was a protective response to 

regulate the activity of metalloproteinases which were over-degrading structural proteins in 

the ECM (Stanczyk et al. 2008, Aoki et al. 2007). 

 

This study showed minimal variation in the expression of miR-21 between the ATP sample 

and the CON group. Although miR-21 targets the expression of COL1A1 (Li et al. 2011), and 

was found to be up-regulated in dermal (Bostjancic, Glavac 2008) and cardiac conditions 

(van Rooij et al. 2006), its expression did not vary in the ATP sample.  

 

A tendinopathy is believed to occur following the failure of fibroblasts in regenerating from 

mechanical loadings which induced damage within the ECM (Khan, Cook 2003). In such a 

situation, TGF-β is released to induce tendon development (Pryce et al. 2009). Interestingly, 
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miRNA levels can be regulated by exercise, and reports have shown an up-regulation of 

miR-21 when mice were treated with TGF-β after exercise (Mendias, Gumucio & Lynch 

2012). Moreover, Aoi et al. (2010) report an increase in miR-21 extracted from the 

gastrocnemius of mice after 4 weeks of treadmill exercise. Given the small number of ATP 

cases, and the lack of information related to the physical activity of the participant in this 

thesis study, it is not possible to ascertain whether this person is physically active and would 

therefore be stimulating the activity of TGF-β and miR-21.  

 

In addition to miR-21 and miR-191, this study shows a 2.31 down-regulation in the 

expression of miR-155 between the single ATP sample and the CON group. An up-

regulation of miR-155 has been reported in rheumatoid arthritis where it suppresses the 

production of MMP3 and MMP1 (Stanczyk et al. 2008). The activity of miR-155 has been 

discussed in various inflammatory situations especially that its expression is up-regulated in 

murine macrophages after exposure to TNF-α (O'Connell et al. 2007). This mechanism has 

not been confirmed in humans and would therefore require additional investigation. It could 

be hypothesised that miR-155 plays a protective role by reducing the expression of MMPs 

following inflammation, and thereby limiting tissue damage (Stanczyk et al. 2008). It is 

unclear how the tissue would balance between the expression of TIMPs and miR-155 to 

control the activity of MMPs. Nevertheless, the results of this chapter study show a 42.31 up-

regulation of TIMP2 and a much smaller change in the expression of miR-155 in the ATP 

sample. It could be suggested that TIMPs are the primary agents released to control the 

activity of MMPs followed by miRNAs. Moreover, the elucidation of the functional role of 

miR-155 in tendinopathy requires further studies. 

 

The introduction of this chapter discussed potential ways in which miRNAs can contribute to 

disease. However, it is not clear yet whether a variation in miRNA expression between the 

tendinopathy and control samples is causative of the disease, or on the other hand could be 

a normal response to the disease. Answering this question will help a lot in designing 



177 
 

interventions to deal with tendinopathy. If mutations are acquired, it would be ideal to adopt a 

gene therapy approach to rectify sequence changes. Additionally, miRNAs are being used 

as blood markers for several diseases such as asthma (Garbacki et al. 2011) and coronary 

artery disease (Hoekstra et al. 2010). The spectrum of release of miRNA by tenocytes into 

the blood stream is still unknown. However, once a clearer image of tendinopathy is 

established, miRNA blood levels could be indicative of an ongoing damage.  
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8 Chapter 8 Summary and Perspectives 

The number of musculoskeletal soft tissue pathologies such as tendinopathies in humans is 

considered to be increasing in a population who is becoming more aware of the need to 

incorporate sport and physical activity in their daily life to reduce the risks of acquiring 

chronic medical conditions such as cardiovascular diseases and cancer (Jarvinen et al. 

2005).  Achilles tendon pathology (ATP) and patellar tendon pathology (PTP) are two 

conditions highly reported in sports involving the lower limbs such as running, football, 

basketball, and volleyball (Jarvinen et al. 2005, Bollen 2000). The clinical, imaging, and 

histological diagnostic criteria for both pathologies have been elucidated (Khan, Cook & 

Maffulli 2005). However, the underlying biochemical aetiologies remain unclear. The 

literature has classified human tendinopathy as a multi-factorial condition to which intrinsic 

and extrinsic factors have been described (Riley 2004). Chapter 2 displayed evidence that 

show indeed the role of genetic variations as a major intrinsic factor. Genetic variations 

within genes coding for structural proteins in addition to enzymes involved in the 

maintenance of homeostasis within the extra-cellular matrix (ECM) have been associated 

with ATP (Raleigh, Collins 2012). The number of associated gene variants in addition to the 

different biological pathways they are involved in emphasises the polygenic nature of the 

pathology and understates the role of a single gene. Indeed, it seems more likely that many 

polymorphisms with small or moderate effect contribute collectively to the onset of human 

tendinopathy. The primary aim of this thesis was to identify novel genetic variations 

associated with ATP and to propose biological mechanisms underlying the genetic risks.  

Furthermore, the secondary aim was to identify the potential roles played by different 

epigenetic factors in ATP and PTP.  

 

In Chapter 4 and 5, polymorphic variations within genes coding for ECM components and 

regulatory enzymes have been identified as suitable candidate genetic variants based on: 1) 

their location within genes, 2) their minor allele frequency, 3) the polymorphic change that 
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can be implicated in a modification of a crucial biological function, and 4) any previous 

association with musculoskeletal soft tissue pathologies, or medical conditions involving the 

disruption of the ECM. The most suitable study design was a case-control genetic 

association study where differences in the distribution of genotypes between the two groups 

would be assessed. 

 

In Chapter 4 of this thesis, gene variants within the COL5A1 gene which were previously 

associated with ATP in an Australian and South African population (Mokone et al. 2006, 

Abrahams et al. 2013) were investigated for a potential association with ATP in a UK 

population. Specifically, the functional variant rs12722 would, in addition to the rs71746744 

variant, alter the secondary structure of the 3’ UTR of the COL5A1 gene and subsequently, 

affect the mRNA’s stability (Laguette et al. 2011). However, the results of the studies 

conducted in Chapter 4 showed no association of either the rs12722 or the rs71746744 

variants with ATP in the UK cohort. Nevertheless, when looking at male participants, the 

COL5A1 rs12722 variant was associated with Achilles tendon rupture, and the COL5A1 

rs71746744 was associated with ATP. These results are different to what was previously 

described by Mokone et al. (2006) and Abrahams et al. (2013) who found both variants to be 

associated with Achilles tendinopathy in the combined AUS+SA cohort. It is not clear 

however, why the COL5A1 variants showed different associations.  

 

Additional and novel genes coding for structural proteins were investigated in Chapter 4. The 

gene variants FBN2 rs331079 and the ELN rs2071307 which have previously been 

associated with medical conditions involving the disruption of the ECM (Ruigrok et al. 2006, 

Yang et al. 2013), have been investigated in all three cohorts except for the ELN rs2071307 

variant which was only investigated in the AUS and SA population. Within the combined 

AUS+SA population, the FBN2 rs331079 was found to be associated with Achilles 

tendinopathy, and the ELN rs2071307 variant was associated with Achilles tendon rupture. 

The mechanism by which the FBN2 rs331079 variant predisposes to the injury is not clear 
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and requires further investigation. It was possible however to suggest a possible role played 

by the ELN rs2071307 in the predisposition to injury. The G/A substitution at the rs2071307 

locus that results in the alteration of the secondary structure of the mRNA coded for by exon 

20 could lead to a variation of the characteristics of the elastic fibres rendering them more 

prone to injury. 

 

In addition to structural proteins, Chapter 4 investigated the potential association of the gene 

coding for GDF5, a protein involved in maintenance and repair or tendons, with ATP in the 

UK population. The GDF5 rs143383 variant was previously associated with ATP in a 

combined AUS+SA cohort (Posthumus et al. 2010). However, these findings did not 

replicate in the UK population. Lack of replication in this study could have resulted from 

differences in heterogeneity between studies which lead to different conclusions about the 

role of a particular variant in the risk of disease. For instance, Lewis and Knight (2012) 

discuss that different ages of diagnosis could contribute towards a difference in 

heterogeneity. In fact, the mean age of onset of ATP was significantly different (p=0.002) 

between the UK (45.1 ± 14.1, n=135) and AUS+SA (40.2 ± 13.6 n=166) cohorts. 

Furthermore, a small change in allele frequency (<0.1) can reduce the power drastically, and 

consequently result in a failure to replicate (Greene et al. 2009). 

 

In Chapter 5 an investigation into metalloproteases enzymes (MMPs, ADAMs, and 

ADAMTSs) and their inhibitors, the TIMPs, was undertaken. The work detailed in this 

chapter showed that the CT genotype for the TIMP2 rs4789932 variant was associated with 

an increased risk of ATP in the combined AUS+SA cohort. Interestingly, in the UK 

population the CC genotype of the rs4789932 variant was associated with ATP only in the 

male participants.  As discussed in Chapter 5, these findings might appear perplexing as it 

infers a reverse effect. However it has been suggested that reverse effects in genetic 

association studies may reveal further information about a susceptibility locus that was 

previously unknown such as an interaction with one or more functional variants through 
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epistasis (Greene et al. 2009). Furthermore, It is not clear whether this promoter variant is 

functional and therefore the mechanism by which it predisposes to the injury is yet to be 

described. Furthermore, the non-synonymous MMP3 rs679620 variant which was previously 

associated with Achilles tendinopathy in the South African population (Raleigh et al. 2009), 

was associated with Achilles tendon rupture among the UK population. Although the 

association is not with the identical pathology, it is however the same GG genotype that 

associates with the risk. It is not clear why the same genotype is associated with the risk of 

tendinopathy in one cohort, and the risk of rupture in another. However it could be possible 

that another gene variant involved in a protective mechanism is showing a reverse effect 

between the two populations; such as protecting the SA population from rupture but not the 

UK. Furthermore, the A/G substitution at the rs679620 locus results in substituting the polar 

basic amino acid lysine with the polar acidic amino acid glutamic acid 

(http://www.ncbi.nlm.nih.gov/projects/SNP). Interestingly, this substitution does not lead to 

changes in Achilles tendon’s mechanical properties (Kubo, Yata & Tsunoda 2013) and 

therefore the functional significance of the amino acid change remains unknown. Therefore, 

it is wise to consider MMP3 rs679620 to be a risk predisposing variant. Non-synonymous 

gene variants such as the ADAMTS2 rs1054480, ADAMTS5 rs226794, ADAMTS14 

rs4747096, and the ADAM12 rs3740199 were not associated with ATP although they were 

independently associated with other soft tissue pathologies.  

 

The fact that the variants named above (FBN2 rs331079, ELN rs2071307, COL5A1 rs12722, 

COL5A1 rs71746744, MMP3 rs679620, and TIMP2 rs4789932) have been associated with 

ATP opens the door to their possible incorporation into a clinical risk model. For example, 

Nell et al. (2012) have designed a risk assessment model for Achilles tendinopathy where 

they have included gene variants involved in with the inflammatory response. They report 

that the genetic markers used were collectively able to discriminate between CON and TEN 

individuals. Furthermore, they added that the effectiveness of this model increases as 

additional biomarkers are added to it (Nell et al. 2012). However, it becomes challenging to 

http://www.ncbi.nlm.nih.gov/projects/SNP
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allocate the correct genotype risk score in a situation where two different genotypes for the 

same variant show reverse effects such as in the TIMP2 rs4789932 example, where the CC 

genotype was associated with increasing the risk of ATP in the UK cohort, and the CT 

genotype was associated with increasing the risk of ATP in the AUS+SA cohort. 

Furthermore, these models assume the risk causing genotype to be homozygous. Since the 

heterozygous CT genotype for the rs4789932 variant was associated with ATP, the 

suitability of such model must be challenged. Moreover, these models assume an equal 

effect size of the associated gene variants. Such an assumption may not be valid as some 

variations can result in greater gene expressions than other variants and could possibly lead 

to detrimental structural effects which cannot be equated with minor effects of small 

contributors to the pathology. For instance, a recently designed ATP total genotype score 

genetic risk assessment model looking at 6 gene variants successfully assessed control 

participants as not being at risk with 90% accuracy, but showed an accuracy of 37% when 

assessing the ATP participants as at risk (Saunders 2013). Therefore it is best to include the 

associated gene variants in the risk models once the effect sizes have been assessed. The 

total genotype score approach has also been used to assess other polygenic phenotypes 

such as muscle strength and power where the results showed an elevated similarity between 

profiles (Hughes et al. 2011). Genetic tests may be beneficial in predicting the risk of injury 

to put in place personalised preventive measures. However, genetic risk assessments are 

time dependent and are likely to miss some predictions at the time when the tests are 

conducted (Williams, Wackerhage 2009). 

 

Moreover, Chapter 5 reports for the first time a relationship between genetics and 

clinicopathological characteristics of ATP. Specifically, male individuals suffering from 

tendinosis and carrying the GG genotype for the MMP3 rs679620 variant, developed thicker 

Achilles tendons in comparison to those carrying the GA and AA genotypes. As described in 

the discussion of Chapter 5, there was no correlation between tendon width and biometric 

characteristics (age, height, weight and BMI), and were therefore not co-varied for. Although 
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the numbers included in the analysis were small and the results should be treated as 

preliminary data, these findings provide valuable information on the potential use of genetics 

in predicting the grade of pathology.  

 

Both chapters 4 and 5 reported a novel age vs genotype interaction where it was found that 

the AA genotype for the ELN rs2071307 variant and the GG genotype for the ADAMTS14 

rs4747096 variant might play a protective role by delaying the onset of injury. This is the first 

time genotypes have been reported to associate with a delay in the onset of a 

musculoskeletal soft tissue injury. These findings need to be replicated and confirmed by 

other studies before these genotypes could be used as genetic predictors of the time of 

injury. However, the prediction of the risk of injury is also dependent on other gene variants. 

The reason that the ADAMTS14 rs4747096 GG genotype and the ELN rs2071307 AA 

genotype are protective until a certain point is not clear. Nonetheless, it is worth noting that 

both genotypes are the minor genotypes for their respective variants. Evolutionary speaking, 

it would be thought that a protective genotype should be preserved by natural selection and 

therefore would be expected to be the most common. However, it could also be suggested 

that the benefits of these genotypes have only recently been showing, and therefore they 

are steadily increasing in the population (Bamshad, Wooding 2003). This cannot be 

confirmed without conducting a population wide evolutionary genetic study. Interestingly, 

epigenetic studies have shown that global DNA methylation increases with age (Christensen 

et al. 2009). With this in mind, it could be suggested that the elevation in DNA methylation 

has altered the level of gene expression which resulted in a biochemical change within the 

ECM, and therefore contributed towards the onset of the pathology. 

 

In Chapter 6 and 7 preliminary studies were conducted on epigenetic factors (DNA 

methylation) contributors to the risk of ATP and PTP. DNA methylation profiles of selected 

CpG region were investigated, within the promoter region of the TIMP2 (33 bp) and GDF5 

(28 bp) genes in both PTP and ATP using pyrosequencing technology. The two genes were 
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selected on the basis of the previous association of promoter variants with ATP (Posthumus 

et al. 2010, El Khoury et al. 2013). The results of the investigation conducted in Chapter 6 

showed that the investigated CpG sites in both genes were hypo-methylated with no 

significant methylation difference between the PTP cases and control samples. This is rather 

interesting because the CpG sites located 324 bp downstream of the GDF5 investigated 

region and 100 bp downstream of the TIMP2 investigated CpG sites within the promoter 

regions were hyper-methylated in osteoarthritis (GDF5) (Reynard et al. 2011) and in a range 

of cancers (TIMP2) (Ivanova et al. 2004, Pulukuri et al. 2007). Similarly, the results in 

Chapter 7 reported no difference in DNA methylation between a single ATP case and four 

controls for the investigated CpG sites within the TIMP2 gene. Interestingly, there was an 

average DNA methylation difference between the single ATP case (0.3, n=1) and four 

controls (1.7 ± 0.9, n=4) for the GDF5 gene. It is important not to assume that the decrease 

in GDF5 methylation in the single ATP sample that we observed could result in an increased 

gene expression of GDF5. In fact, from previous research it seems that musculoskeletal 

pathologies are more likely to occur when the expression of GDF5 is reduced (Reynard et al. 

2011). Therefore the findings in Chapter 7 should be treated with caution due to the fact that 

there was only one ATP sample. 

 

In addition to DNA methylation, the experiments outlined in Chapter 7 looked at miRNAs (an 

additional epigenetic factor). MicroRNAs are small non-coding RNAs that can repress gene 

expression by blocking translation or by degrading target mRNA (Hamilton, Baulcombe 

1999, Reinhart et al. 2000). The purpose of this study was to explore the potential 

differences in miRNA expression between ATP cases and controls. The miRNAs were 

selected on the basis of their target genes which are known to be involved in maintaining the 

integrity of tendons (Rutnam, Wight & Yang 2013). The data showed that miR-191, was 3.4 

fold down regulated in the single ATP sample relatively to the control samples. Interestingly, 

the expression of TIMP2 in that same sample was up-regulated (43 fold) when compared to 

the control group. This observation is consistent with a previous study by Karousou et al. 
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(2008). The observed inverse expression between TIMP2 and miR-191 can be expected 

since TIMP2 mRNA is negatively regulated by MiR-191 (Shen, Ambrosone & Zhao 2009). 

However the magnitude of up-regulation of TIMP2 does not match the magnitude of down-

regulation of miR-191. This could indicate the involvement of additional factors, along with 

miR-191, in the regulation of TIMP2. Furthermore, the expression of miR-21 and miR-155, 

which target COL1A1 (Li et al. 2011) and MMP3 (Stanczyk et al. 2008) respectively, was not 

altered in the ATP sample relatively to the control samples. This could indicate a limited role 

played by these two miRNAs in regulating the expression of COL1A1 and MMP3 in ATP. 

Although these data were conducted on small numbers of clinically resected tissue it must 

be noted that they are the first experiments that address a possible role for miRNA in human 

tendinopathy. 

 

The work outlined in this thesis has a number of strengths and some limitations. Firstly, a 

major strength of this study lies in the in the fact that genotyping was conducted on three 

geographically distinct populations and hence our association data are not isolated to a 

single cohort. Secondly, studies conducted on the combined cohorts had good statistical 

power. Furthermore, successful attempts were made to match the height, weight, BMI and 

gender distribution of participants within the UK case and control groups however, there 

were differences in the mean age of participants. On the other hand, the AUS+SA cohort 

was matched for age and height but not for weight and BMI. There were differences in the 

amount of information collected from the three cohorts: for instance, the weight and BMI at 

the time of injury could not be obtained for the AUS or the SA cohorts. Another limitation of 

this thesis was the modest sample size of participants in the genetic association studies, as 

well as the epigenetic studies. Specifically, this thesis did not primarily aim at investigating 

gender specific genetic risk factors, therefore some of the gender specific associations were 

under powered due to the reduced numbers. Furthermore, there were four control Achilles 

tendon tissue samples and a single ATP sample to conduct DNA methylation, gene 

expression, and miRNA expression studies. The medical and familial history of the tissue 
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donors could not be obtained therefore it was not possible to assess the type or level of 

exposure to physical activity.  

 

8.1 Future Directions 

 

The work conducted in this thesis has opened a number of interesting lines for future 

research. Firstly, it has shed the light on the identification of additional biological pathways 

involved in the regulation and maintenance of the extracellular matrix within tendons. The 

identification of these pathways will contribute towards the expansion of the list of target 

genes which should consequently be tested for association with ATP. The gene variants 

identified as having an association with ATP, namely FBN2 rs331079, ELN rs2071307, 

COL5A1 rs12722, COL5A1 rs71746744, MMP3 rs679620, and TIMP2 rs4789932 are likely 

to interact with other genetic and environmental factors that might also predispose to the 

pathology. Understanding the nature of such interactions is important in building risk 

assessment models. Furthermore, the current studies were conducted on a population size 

which provided a sufficient power of 80%. Obtaining a larger sample size will guarantee a 

greater confidence in the results and reduces the likelihood of an association due to error. A 

larger population size would allow population stratification without reducing the power to a 

level beneath 80%. Moreover, the replication of these studies in populations of different 

ethnicities is empirical as those have got different allelic and genotypic distribution 

frequencies which could reveal different associations with different effect sizes. 

 

The functionality of the TIMP2 rs4789932 and the FBN2 rs2071307 has not been described. 

Therefore to understand the potential role played those variants in ATP, cloning experiments 

where DNA fragments holding the variant of interest are inserted into reporter plasmids, as 

performed by Laguette et al. (2011), could be conducted. Furthermore, conducting haplotype 

and pseudo-haplotype studies would add valuable information to our understanding of the 

linkage blocks associated with elevated risk since they have been successful in the mapping 
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of complex-disease genes (Niu et al. 2002). In fact, variants associated with disease could 

occur independently but share a common background haplotype. This would suggest that 

the associated variants have a common origin and raises the possibility of an undiscovered 

strongly predisposing variant (Croucher et al. 2003).  

 

This thesis has for the first time investigated epigenetic factors in human tendinopathy. 

Differences in DNA methylation profiles between cases and controls have only been 

investigated in selected CpG sites. Future studies should widen the investigation to include 

additional genes, and assess the methylation profile of the whole promoter region. 

 

Other epigenetic factors such as miRNAs have been investigated in relation to human 

tendinopathy for the first time in this thesis. However, this study was limited since there was 

only one ATP case with scarce information about the mode of injury, the age at the onset of 

symptoms, and the grade of damage in the tendon. Therefore, it would be highly advisable 

to repeat this study on a larger number of samples, and in tissue from patients from different 

ethnic populations. Furthermore, Chapter 7 discusses potential ways in which miRNAs can 

contribute to the pathology. However, it is not clear yet whether variation in miRNA 

expression between the tendinopathy and control samples is causative of the pathology, or 

on the other hand could be a normal response to the onset of the pathology. Answering this 

question will improve our understanding of the biochemical interactions within tendons 

before, during, and after the injury. Interestingly, if mutations in miRNA coding sequences 

are acquired, then it would be possible, for future studies, of thinking about designing gene 

therapy interventions. Moreover, miRNAs represent potentially good blood markers for 

several diseases such as asthma (Garbacki et al. 2011) and coronary artery disease 

(Hoekstra et al. 2010). Moreover, it has been described that exercise regulates miRNA 

expression tendon fibroblasts (Mendias, Gumucio & Lynch 2012) but the amount of miRNA 

released from tendons into the blood stream has not been established. Therefore, 

investigating exercise induced pathogenesis through miRNA alterations represents a good 
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field for future research. Once a better understanding of the expression and release of 

miRNA from tendon cells into the blood has been obtained, it would be possible to discuss 

the possibility of using serum miRNA levels as a screening tool for the risk of tendinopathy 

along with genetic risk assessment models.  
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PARTICIPANT INFORMATION  
 

Background 
Thank you for showing an interest in this new study that is going to be conducted at 
The University of Northampton.  The study is being carried out by Dr Stuart Raleigh 
who is a Reader and a researcher in Molecular Biology, Professor William Ribbans 
who is a consultant orthopaedic surgeon and Mr Louis El Khoury who is a researcher 
and PhD student.  All three are based at the University of Northampton’s School of 
Health and Professor Ribbans is also based at the County Clinic, Northampton.  The 
contact details of the team are found towards the end of this leaflet. Please feel free 
to contact them at any time if you require any additional information.  
 
What is the study about?  
We are trying to establish whether certain individuals carry particular versions of 
genes (known as alleles) that may increase their risk of Achilles tendon problems.  
We are particularly interested to learn more about the types of Achilles tendon 
problems called Achilles tendinopathy (swollen, painful tendon) and Achilles tendon 
rupture.  The study is about Achilles tendon problems in humans – we never use 
animals – and we would greatly value you as a volunteer.  
 
Why are we interested? 
We are interested because many people with relatively active lifestyles as well as 
professional athletes experience Achilles tendon problems during or after sports 
activities.  This can sometimes lead to long term disability.  In some cases the injury 
needs surgery and some individuals are reluctant, or have difficulty returning to a 
sport, or physical activity, they once enjoyed.  This research might eventually lead to 
a way of reducing the number of people who get tendon problems in the future or to 
better treatment for those already affected. 
 
What’s involved if I participate? 
We would like individuals to donate a small sample of their spit (saliva) for DNA 
analysis.  We only want about 2 ml of your saliva (the same as one teaspoonful!) 
which can be taken from simply spitting into a tube.  The procedure would take about 
3 minutes to perform.  You don’t even have to attend a clinic. We can send you the 
tube to spit into.  We would also like you to answer some background questions and 
details about your health and any exercise that you do.  If you would like to take part, 
please complete, sign, and return the consent from in the paid post envelope and we 
will send you a questionnaire and a saliva collection tube. The total time taken to 
collect the saliva sample and complete the questionnaire is about 10-15 minutes.   
 
What will happen to my saliva sample? 
Your saliva sample will ONLY be used for Achilles tendon studies. Once we receive 
your sample, it will be labelled with a unique number only and stored in a secure 
freezer at the University of Northampton’s Park campus.  We will isolate DNA from 
your saliva sample.  We will then compare the genes between various groups of 
individuals to establish whether samples from people who have had Achilles tendon 
problems contain different versions compared to people who don’t have tendon 
problems.  We would like to investigate many genes from your sample and in order 
for us to do this we would like to retain your sample indefinitely.  There may be 
occasions when we might want to send a small amount of your sample to scientists 
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that we do joint studies with.  This would only be done if they could help us with our 
study.  However, if this does happen the sample they receive will only have the 
number on it and it would not be possible for you to be identified.   
 
Will my sample be used for studies investigating any other disease? 
No. The genes that we are interested in analysing are only relevant to 
musculoskeletal soft tissue injuries (tendon injuries). It will not be possible for us to 
investigate other illnesses such as: cancer and cardiovascular diseases.  
 
Will the information I provide be kept private? 
Yes. We will not send any of your private contact details to any other party. Your 
personal contact details will only be seen by the three members of the study team.  
Indeed your personal contact details will be stored securely in a locked filing cabinet 
at the university and on a password protected computer. The data will not be on any 
networked computer drives.  To make things even more secure your saliva sample 
and the DNA that we isolate from it will only be labelled with a number.  It would not 
be possible for any person, other than the study team, to identify you from the 
number that your sample will be allocated. 
 
How long will you be keeping my personal information? 
We would like to retain you personal information for an indefinite amount of time. 
Nevertheless, if you want to end your participation in this project at any time we will 
immediately destroy your personal information as well as your DNA sample. 
However any data obtained from the analysis of your sample up until that point will 
remain part of the research and will be included in any published work. 
 
Why do you need information about my previous medical history? 
We need to ask these questions because certain ailments that you may have had in 
the past might be important to Achilles tendon studies. If we don’t have the data we 
could make a false conclusion in our study.  
 
Why do you need to know about my lifestyle? 
This is because it may be lifestyle factors that are most important in causing people 
to have Achilles problems.  Providing this information will help us to establish 
whether this is true or not. 
 
Why do you need to know about my ethnicity? 
This is because certain genetic factors might be different in people of different 
ethnicity.  Having details about a person’s ethnicity can help us build a more 
accurate assessment of the role of genes in causing any Achilles tendon problems.  
Without details on ethnicity the data we generate might be flawed.   
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Why do you need my name and contact details? 
This is for two main reasons.  Firstly we may want to invite you to be part of some 
future study and might send you a letter.  Of course, it would be entirely up to you 
whether or not you replied to any future invites. You can always send us a request 
not contact you for any future studies. Secondly, very rarely, samples that are 
provided for a study can be accidently damaged during the laboratory procedure. If 
this does happen we would like to think that we could contact you again for a 
replacement sample.  If we were not able to contact you then the valuable sample 
that you kindly donated would have been lost from the investigation and this might 
lead to less accurate scientific results. 
 
What happens if I want to be involved but later change my mind? 
You simply contact us and let us know.  We will then immediately destroy any 
sample and information that you have donated to us. 
 
Will I be able to obtain information about my own DNA sample? 
The study that we are conducting is aimed at understanding how genetic factors 
affect the Achilles tendon by studying a group of people. It will be difficult to predict 
any risk on an individual basis. This is why this study is not designed to test 
individual genetic status. For this reason we do not plan to give back individual 
results to participants. If you require addition information about this, please contact 
us on the numbers or e-mails provided on the last page.  
  
How can I obtain information about the progress of the research? 
After roughly 18 months, information about the preliminary results of the study will be 
posted on the University of Northampton School of Health website. For more 
information please visit:  
(www.northampton.ac.uk/info/20038/school-of-health)  
 
What will happen to the data obtained from this study? 
We would like to publish this in scientific journals.  The publications would never 
reveal any participant identity or contact details.  
 
What benefit do I get from being involved in this study? 
Many scientific studies rely on sample donations from the general population.  By 
taking part in this study you will help to further our understanding of why some 
people, particularly active sportspeople, develop Achilles tendon problems.  
Eventually the findings may help people to be treated for the condition.  Furthermore, 
it might be possible that in the future we could identify those most at risk of 
developing the problem.  If this is the case we could educate people about the 
suitability of sports that they do and advise them on their risk.  The finding may also 
be used to enhance our understanding of how human tendons work under stressed 
conditions.   
 

http://www.northampton.ac.uk/info/20038/school-of-health
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We thank you for reading the above information.  If you feel that you would like to be 
involved then please complete and return the consent form on the next page.  
Please remember that if you have any questions then please contact the study team 
who will be very pleased to talk you through any aspect of this study. 
 
 
Contact Details 
 

Louis El Khoury 
MX – 05  
University of Northampton 
Boughton Green Road 
Northampton – UK 
NN2 7AL 
Tel: 01604 892512 
louis.elkhoury@northampton.ac.uk        
 
 

Dr Stuart Raleigh 
School of Health 
Brampton Building 
Boughton Green Road 
Northampton – UK 
NN2 7AL 
Tel: 01640 892306 
stuart.raleigh@northampton.ac.uk  
 

Prof William Ribbans 
The County Clinic 
57 Billing Road 
Northampton – UK  
NN1 5DB 
Tel: 01604 795414 
wjribbans@uk-consultants.co.uk 

mailto:Louis.elkhoury@northampton.ac.uk
mailto:Stuart.raleigh@northampton.ac.uk
mailto:wjribbans@uk-consultants.co.uk
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CONSENT FORM 

 
If you would like to participate in this study then please complete the consent 
form below.  If you have any further questions relating to the study, or if there 
is something that you wish to discuss with us then please contact us at the 
addresses provided above. 
  
Please tick the box that corresponds to your choice. 
 
          Yes No 
I have read the study information sheet and 
understand what is involved. 
 
I understand that my sample will be analysed 
anonymously and my contact details kept confidential.  
My contact details will only be used by the researcher 
if my sample is accidently damaged.  It would be up to 
me whether I provided another sample. 
 
I understand that I can withdraw my participation at 
any time and that my sample and information would be 
destroyed upon my request. 
 
 
I am willing to participate in this project. 
 
 
I would be interested in receiving information about future    
studies. My agreement to this would mean my contact details 
would be retained securely and for this purpose alone.   
           
 
 
 
Signed:       Date:  
 
 
 
Name (Print) 
Address 
 
 
Phone Number     E-mail: 
  
We appreciate your time and your willingness to participate in this 
study. 
Participant number (to be entered by the research team) 
 

http://www.northampton.ac.uk/
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Questionnaires  
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Achilles Tendon Datasheet 

 
We greatly appreciate your interest in participating in this project. Please complete as 

much of this questionnaire as possible keeping in mind the following points: 

1. This questionnaire is printed on both sides of every sheet. Please pay 

attention at answering the questions on the back of each sheet. 

2. Throughout the questionnaire you might come across scientific terms followed 

by small numbers such as: ACL5. These terms are explained in the glossary 

on the last page of this questionnaire. 

3. Please feel free to skip any question you are having difficulty with.  

4. Please mail us back the questionnaire and a team member will contact you to 

go over any question you are having difficulty with.  

5. If you have any concern about the aspect of this project please feel free to 

contact us on the numbers or e-mails below..  

 
 
Louis El Khoury 
Tel: 01604 892512 
louis.elkhoury@northampton.ac.uk  
 
Dr Stuart Raleigh 
Tel: 01604 892306 
stuart.raleigh@northampton.ac.uk  
 
Prof William Ribbans 
Tel: 01604 795414 
wjribbans@uk-consultants.co.uk  
 

mailto:Louis.elkhoury@northampton.ac.uk
mailto:Stuart.raleigh@northampton.ac.uk
mailto:wjribbans@uk-consultants.co.uk
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ACHILLES TENDON STUDY – Control 

 

We would greatly appreciate you providing us with your personal details. 

However if you prefer not to fill in this section, please proceed to the next 

page. 

 

SECTION 1: PERSONAL DETAILS 

Study 
Number 

To be completed 
by research team 

so leave blank 

 

Surname 
 

First Name 
 

 
Address 

 

 
 
 
 
 
 

Contact 
Telephone 

Number 

 

e-mail 
 
 Occupation 
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Date of birth 
Age 

D D / M M / Y e a r           Years and months 
 

Height 
Cms: Ft and Ins: 

Gender male female 

Weight 
(in 

underwear) 

Kgs: Stone & Lbs: BMI 
To be 

completed by 
the research 

team so leave 
blank. 

 

Ethnic group 
Black/African White Asian 

Mixed Ancestry Chinese Other 

Nationality 
 Dominant 

Hand Left Right 

Country of 
Birth 

 

Smoker 

Yes (Current) Yes (Ex smoker) No, never 

If yes, Number of years 
_________ If stopped, when _______________ 

If yes, number per day __________ 

Do you know 
your blood 

group? 

Yes A B AB O 

No Rh Pos Rh Neg 
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If you participate or have participated in different sports or physical activities, 
please complete section 2 on Sporting and Recreational Details. 
 

SECTION 2: SPORTING AND RECREATIONAL DETAILS 

Type of sport/ physical activity you 
have participated in 

Sport 1 Sport 2 Sport 3 

   

Current or past participation Current Past Current Past Current Past 

Year started participation 
   

Years involved in the sport 
   

Years in competitive sport 
   

Have you been involved in the sport at a 
professional level? If so, please state how 
many years. 

   

Level of Participation: 
e.g. Leisure/Club/Regional/International 

   

Average hours of training per week   
- in the last 12 months 

   

Type of sport/ physical activity you 
have participated in 

Sport 4 Sport 5 Sport 6 

   

Current or past participation Current Past Current Past Current Past 

Year started participation 
   

Years involved in the sport 
   

Years in competitive sport 
   

Have you been involved in the sport at a 
professional level? If so, please state how 
many years. 

   

Level of Participation: 
e.g. Leisure/Club/Regional/International 

   

Average hours of training per week   
- in the last 12 months 

   

 
If you Run/Jog, please specify the distance crossed every week: ..........................
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SECTION 3: GENERAL MEDICAL DETAILS 

Do you suffer from any Connective Tissue and Rheumatological Diseases and Disorders1? 

฀ Ankylosing Spondylitis 

฀ Aspartylglycosaminuria (AGU) 

฀ Behcet’s Syndrome 

฀ Crohn’s Disease 

฀ Discoid Lupus Erythematosus 

฀ Ehlers-Danlos syndrome (EDS) 

฀ Eosinophilic Fascitis 

฀ Giant Cell (Temporal) Arthritis 

฀ Gout 

฀ Hypersentive Vasculitis 

฀ Lipid Storage Diseases  

฀ Marfan Syndrome 

฀ Menkes Kinky Hair Syndrome 

฀ Mucopolysaccharidoses 

฀ Myopathies and Dystrophies  
฀ Ochronosis (Homocystinuria) 

฀ Osteoarthritis 

฀ Osteogenesis imperfecta (OI) 

฀ Polyarteritis Nodosa 

฀ Polymyalgia Rheumatica 

฀ Polymyositis & Dermatomyositis 

 

฀ Pseudogout 

฀ Reactive Arthritis 

฀ Reiter’s Syndrome 

฀ Relapsing Polychrondritis 
฀ Rheumatoid Arthrits 

฀ Scleroderma 

฀ Sjogren’s Syndrome 

฀ Systemic Lupus Erythematosus (SLE) 

฀ Systemic Sclerosis 

฀ Wegener’s Granulomatosis 

 

Has any member of your 
family (Blood relatives) 
suffered from any Achilles 
tendon injury/problem? 

Yes           ฀ 
No             ฀ 
Unknown ฀ 

If Yes, please specify the family member (eg 
Mother, Son) and type of injury 
_________________  
       
 
Rupture    ฀ 

Swelling    ฀ 

Other               ฀ 

Do you suffer from elevated 
blood cholesterol? 

Yes ฀ 
No   ฀ 

Do any other members of 
your family suffer from 
elevated blood cholesterol? 

Yes ฀ No ฀ 
Unknown ฀ 

Have you been diagnosed 
with any of the following 
diseases? 

   
฀ Diabetes mellitus 

฀ Adrenal disorders 

฀ Thyroid disorders 

฀ Amyloidosis 

฀ Renal disease 

฀ Other endocrine and metabolic disease (Specify) 
_______________________________________________ 
________________________________________________
______________________________________________ 
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Drug and Allergy History 
If yes, how long ago (or how many times, where applicable) 
did you use the medication? 

Have you ever used oral 
corticosteroids2  
(cortisone tablets)? 

Yes ฀ No ฀ 
Unknown ฀ 

฀ 3 months ฀ 6 months 

฀ 12 months ฀ 24 or more months 

Have you ever been given an 
injection with corticosteroids? 

Yes ฀ No ฀ 
Unknown ฀ 

฀ 3 months ฀ 6 months 

฀ 12 months ฀ 24 or more months 

Have you ever been given an 
injection of corticosteroids in or 
around a tendon? 

Yes ฀  No ฀ 
Unknown ฀ 

฀ Once ฀ Twice 

฀ 3 times ฀ >3 times 

Have you ever used anabolic 
steroids3? 

Yes ฀  No ฀ 
Unknown ฀ 

฀ 3 months ฀ 6 months 

฀ 12 months ฀ 24 or more months 

Have you ever used fluoroquinolone 
antibiotics?  
(see list below) 

Yes ฀  No ฀ 
Unknown ฀ 

฀ 3 months       ฀ 6 months 

฀ 12 months     ฀ 24 or more months 

If yes, please select from the list below: 

฀ CIPROFLOXACIN 

฀ CIPROXIN 

฀ LEVOFLOXACIN 

฀ TAVANIC 

฀ MOXIFLOXACIN 
฀ AVELOX 

฀ NALIDIXIC ACID 

฀ URIBEN 

฀ NORFLOXACIN 

฀ UTINOR 

฀ OFLOXACIN 

฀ TARVID 
 
What medication, if any, are you 
currently using? (please list) 
 

 

Do you suffer from any allergy? 
(please list) 

Yes ฀  No ฀ 
Unknown ฀ 
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SECTION 4: HISTORY OF LIGAMENT AND TENDON INJURIES/PROBLEMS 

Have you ever had a ligament4 
injury/problem in the past? Yes ฀ No ฀    Unknown ฀         

 
If yes, please specify which 
ligaments? 
(You may tick more than one block, 
please select either L (left) or R 
(right)) 
 
The Abreviated medical terms are 
explained in the glossary on the last page. 

                                       L   R                                          L   R 

Knee (ACL)5              ฀ ฀ Knee (PCL)7    ฀ ฀ 

Knee (MCL)6              ฀ ฀ Knee (LCL)8                     ฀ ฀ 

Ankle lateral ligaments  ฀ ฀ Ankle medial ligaments    ฀ ฀ 

Spinal  ligaments           ฀ ฀ Finger ligaments               ฀ ฀ 

Shoulder ligaments        ฀ ฀ Wrist ligaments                 ฀ ฀ 

Elbow ligaments             ฀ ฀ Other ligaments                ฀ ฀ 

To your knowledge, have any other 
members of your family suffered 
from any ligament injury/problem? 

Yes ฀ No ฀ 
 
Unknown ฀ 

If Yes, please specify the family 
member  
฀ Mother 
฀ Father 

฀ Sibling 

฀ Son / daughter 

฀ Other family member 
………………….……………….. 
and condition: Please choose ligament 
injury from the list above  
……………………………………………
……. 

Have you ever injured a tendon9 in 
the past? Yes ฀ No ฀   Unknown ฀         

If yes, please specify which 
tendon? 
(You may tick more than one block, 
please select either L (left) or R 
(right)) 

Foot and ankle: 

                                       L   R 

Achilles tendon  ฀ ฀ 

Tibialis posterior             ฀ ฀ 

Plantar fascia                 ฀ ฀ 

Knee: Patellar tendon  ฀ ฀ 

Elbow and wrist: Wrist extensor tendons ฀ ฀ 

Shoulder: 

Subscapularis      ฀ ฀ 

Supraspinatus              ฀ ฀ 

Infraspinatus              ฀ ฀ 

Teres minor              ฀ ฀ 
Other:…………………………………………………………
….. 
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To your knowledge, have any other 
members of your family suffered 
from any tendon injury/problem? 

Yes ฀ No ฀ 
 
Unknown ฀ 

 
If Yes, please specify the family member  
฀ Mother 
฀ Father 

฀ Sibling 

฀ Son / daughter 

฀ Other family 
member:…….………………. 
 
Condition: Please choose tendon injury from 
the list above 
…….…………………………………………
…. 

Have you ever suffered from any of 
the following injuries? 

฀ Acute shoulder dislocation 

฀ Chronic shoulder instability 

฀ Chronic ankle instability 
_______________________________________ 
              
________________________________________ 

 
 
 
 
Thank you for taking time to complete this questionnaire.  Your 
participation is greatly appreciated.  Please go on to sign the 
consent document that you have been sent.  
 
Please return your saliva sample, completed questionnaire and 
consent form to us as described in the “participant information” 
sheet. 
 
If you are unsure about any aspect of this project or require further 
information please contact the study team using the contact 
numbers, or emails, found on the front page of this questionnaire. 
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Glossary 
 

1. Rheumatologic disease:  A type of disease involving inflammation of 
muscles, joints, and other tissues 

2. Corticosteroid: a group of steroid hormones used to treat inflammation 

3. Anabolic steroid: a synthetic steroid hormone that resembles testosterone in 
promoting the growth of muscle. Such hormones are used medicinally to treat 
some forms of weight loss and, by some athletes and others to enhance 
physical performance 

4. Ligament: A short band of tough, flexible, fibrous connective tissue that 
connects two bones or cartilages or holds together a joint 

5. ACL: Anterior cruciate ligament 

6. MCL: medial collateral ligament 

7. PCL: Posterior cruciate ligament 

8. LCL: Lateral collateral ligament  

9. Tendon: A flexible but inelastic cord of strong fibrous collagen tissue 
attaching a muscle to a bone 
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Achilles Tendon Datasheet 

 
We greatly appreciate your interest in participating in this project. Please complete as 

much of this questionnaire as possible keeping in mind the following points: 

6. This questionnaire is printed on both sides of every sheet. Please pay 

attention at answering the questions on the back of each sheet.  

7. Throughout the questionnaire you might come across scientific terms followed 

by small numbers such as: ACL5. These terms are explained in the glossary 

on the last page of this questionnaire. 

8. Please feel free to skip any question you are having difficulty with.  

9. Please mail us back the questionnaire and a team member will contact you to 

go over any question you are having difficulty with.  

10. If you have any concern about the aspect of this project please feel free to 

contact us on the numbers or e-mails below. 

 
 
Louis El Khoury 
Tel: 01604 892512 
louis.elkhoury@northampton.ac.uk  
 
Dr Stuart Raleigh 
Tel: 01604 892306 
stuart.raleigh@northampton.ac.uk  
 
Prof William Ribbans 
Tel: 01604 795414 
wjribbans@uk-consultants.co.uk  
 

mailto:Louis.elkhoury@northampton.ac.uk
mailto:Stuart.raleigh@northampton.ac.uk
mailto:wjribbans@uk-consultants.co.uk
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ACHILLES TENDON DATASHEET – Case 

 

We would greatly appreciate you providing us with your personal details. 

However if you prefer not to fill in this section, please proceed to the next 

page. 

 

SECTION 1: PERSONAL DETAILS 

Study 
Number 

To be completed 
by research team 

so leave blank 

 

Surname 
 

First Name 
 

 
Address 

 

 
 
 
 
 
 

Contact 
Telephone 

Number 

 

e-mail 
 
 Occupation 
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Date of birth 
Age 

DD/MM/Year          Years and months 
 

Height 
Cms: Ft and Ins: 

Gender male female 

Weight 
(currently and 
at first injury) 

Kgs: Stone & Lbs: BMI 
To be 

completed by 
the research 

team so leave 
blank. 

 

Ethnic group 
Black/African White Asian 

Mixed Ancestry Chinese Other 

Nationality  Dominant 
Hand Left Right 

Country of 
Birth 

 

Smoker 

Yes (Current) Yes (Ex smoker) No, never 

If yes, Number of years 
_________ If stopped, when _______________ 

If yes, number per day __________ 

Do you know 
your blood 

group? 

Yes A B AB O 

No Rh Pos Rh Neg 

 



 

University of Northampton Genetics Achilles Tendon Datasheet. Cases.  Study Number: 

If you participate or have participated in different sports, please complete 
section 2 on Sporting and Recreational Details. 
 

SECTION 2: SPORTING AND RECREATIONAL DETAILS 

Type of sport(s) you have participated 
in 

Sport 1 Sport 2 Sport 3 

   

Current or past participation Current     Past Current     Past Current     Past 

Year started participation 
   

Years involved in the sport 
   

Years in competitive sport 
   

Have you been involved in the sport at a 
professional level? If so, please state how 
many years. 

   

Level of Participation: 
e.g. Leisure/Club/Regional/International 

   

Average hours of training per week   
- in the last 12 months 

   

Type of sport(s) you have participated 
in 

Sport 4 Sport 5 Sport 6 

   

Current or past participation Current     Past Current     Past Current     Past 

Year started participation 
   

Years involved in the sport 
   

Years in competitive sport 
   

Have you been involved in the sport at a 
professional level? If so, please state how 
many years. 

   

Level of Participation: 
e.g. Leisure/Club/Regional/International 

   

Average hours of training per week   
- in the last 12 months 

   

 
If you Run/Jog, please specify the distance crossed every week: ..........................
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SECTION 3: GENERAL MEDICAL DETAILS 

Do you suffer from any Connective Tissue and Rheumatological Diseases and Disorders1? 

฀ Ankylosing Spondylitis 

฀ Aspartylglycosaminuria (AGU) 

฀ Behcet’s Syndrome 

฀ Crohn’s Disease 

฀ Discoid Lupus Erythematosus 

฀ Ehlers-Danlos syndrome (EDS) 

฀ Eosinophilic Fascitis 

฀ Giant Cell (Temporal) Arthritis 

฀ Gout 

฀ Hypertensive Vasculitis 

฀ Lipid Storage Diseases  

฀ Marfan Syndrome 

฀ Menkes Kinky Hair Syndrome 

฀ Mucopolysaccharidoses 

฀ Myopathies and Dystrophies  

฀ Ochronosis (Homocystinuria) 

฀ Osteoarthritis 

฀ Osteogenesis imperfecta (OI) 

฀ Polyarteritis Nodosa 

฀ Polymyalgia Rheumatica 

฀ Polymyositis & Dermatomyositis 
 

฀ Pseudogout 

฀ Reactive Arthritis 

฀ Reiter’s Syndrome 

฀ Relapsing Polychrondritis 

฀ Rheumatoid Arthrits 

฀ Scleroderma 

฀ Sjogren’s Syndrome 

฀ Systemic Lupus Erythematosus 
(SLE) 

฀ Systemic Sclerosis 

฀ Wegener’s Granulomatosis 

฀ No, I don’t suffer of any of these 
diseases 

Have any other members of 
your family (Blood relatives) 
suffered from any Achilles 
tendon injury/problem? 

Yes        ฀ 

No        ฀ 

Unknown ฀ 

If Yes, please specify the family member (eg 
Mother, Son) and type of injury 
_________________  
       
 
Rupture    ฀ 

Swelling    ฀ 

Other     ฀ 

Do you suffer from elevated 
blood cholesterol? 

Yes ฀ 

No   ฀ 

Do any other members of 
your family suffer from 
elevated blood cholesterol? 

Yes ฀ No ฀ 

Unknown ฀ 

Have you been diagnosed 
with any of the following 
diseases? 

   
฀ Diabetes mellitus 

฀ Adrenal disorders 

฀ Thyroid disorders 

฀ Amyloidosis 

฀ Renal disease 

฀ Other endocrine and metabolic disease (Specify) 
_______________________________________________ 
________________________________________________
______________________________________________ 
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Drug and Allergy History 
If yes, how long ago (or how many times, where applicable) 
did you use the medication? 

Have you ever used oral 
corticosteroids2  
(cortisone tablets)? 

Yes ฀ No ฀ 

Unknown ฀ 

฀ 3 months ฀ 6 months 

฀ 12 months ฀ 24 or more months 

Have you ever been given an 
injection with corticosteroids? 

Yes ฀ No ฀ 

Unknown ฀ 

฀ 3 months ฀ 6 months 

฀ 12 months ฀ 24 or more months 

Have you ever been given an 
injection of corticosteroids in or 
around a tendon? 

Yes ฀  No ฀ 

Unknown ฀ 

฀ Once ฀ Twice 

฀ 3 times ฀ >3 times 

Have you ever used anabolic 
steroids3? 

Yes ฀  No ฀ 

Unknown ฀ 

฀ 3 months ฀ 6 months 

฀ 12 months ฀ 24 or more months 

Have you ever used fluoroquinolone 
antibiotics?  
(see list below) 

Yes ฀  No ฀ 

Unknown ฀ 

฀ 3 months       ฀ 6 months 

฀ 12 months     ฀ 24 or more months 

If yes, please select from the list below: 

฀ CIPROFLOXACIN 

฀ CIPROXIN 

฀ LEVOFLOXACIN 

฀ TAVANIC 

฀ MOXIFLOXACIN 

฀ AVELOX 

฀ NALIDIXIC ACID 

฀ URIBEN 

฀ NORFLOXACIN 

฀ UTINOR 

฀ OFLOXACIN 

฀ TARVID 

 
What medication, if any, are you 
currently using? (please list) 
 

 

Do you suffer from any allergy? 
(please list) 

Yes ฀  No ฀ 

Unknown ฀ 
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SECTION 4: HISTORY OF LIGAMENT AND TENDON INJURIES/ PROBLEMS  

Have you ever had a ligament4 
injury/problem in the past? Yes ฀ No ฀    Unknown ฀        

 
If yes, please specify which 
ligaments? 
(You may tick more than one block, 
please select either L (left) or R 
(right)) 
 
The abbreviated medical terms are 
explained in the glossary on the last page. 

                                       L   R                                          L   R 

Knee (ACL)5  ฀ ฀ Knee (PCL)7   ฀ ฀ 

Knee (MCL)6  ฀ ฀ Knee (LCL)8                    ฀ ฀ 

Ankle lateral ligaments   ฀ ฀ Ankle medial ligaments   ฀ ฀ 

Spinal  ligaments            ฀ ฀ Finger ligaments             ฀ ฀ 

Shoulder ligaments        ฀ ฀ Wrist ligaments               ฀ ฀ 

Elbow ligaments             ฀ ฀ Other ligaments              ฀ ฀ 

To your knowledge, have any other 
members of your family suffered 
from any ligament injury/problem? 

Yes ฀ No ฀ 
 
Unknown ฀ 

If Yes, please specify the family 
member  
฀ Mother 

฀Father 

฀ Sibling 

฀ Son / daughter 

฀ Other family member 
………………….……………….. 
and condition: Please choose ligament 
injury from the list above  
……………………………………………
……. 

Have you ever had a tendon9 
injury/problem in the past? Yes ฀ No ฀   Unknown ฀         

If yes, please specify which 
tendon? 
(You may tick more than one block, 
please select either L (left) or R 
(right)) 

Foot and ankle: 

                                 L  R 

Achilles tendon  ฀ ฀ 

Tibialis posterior ฀ ฀ 

Plantar fascia                 ฀ ฀ 

Knee: Patellar tendon  ฀ ฀ 

Elbow and wrist: Wrist extensor tendons ฀ ฀ 

Shoulder: 

Subscapularis      ฀ ฀ 

Supraspinatus              ฀ ฀ 

Infraspinatus              ฀ ฀ 

Teres minor                ฀ ฀ 

Other:…………………………………………………………
….. 
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To your knowledge, have any other 
members of your family suffered 
from any tendon injury/problem? 

Yes ฀ No ฀ 
 
Unknown ฀ 

 
If Yes, please specify the family member  
฀ Mother 

฀ Father 

฀ Sibling 

฀ Son / daughter 

฀ Other family 
member:…….………………. 
 
Condition: Please choose tendon injury from 
the list above 
…….……………………………………. 

Have you ever suffered from any of 
the following injuries? 

฀ Acute shoulder dislocation 

฀ Chronic shoulder instability 

฀ Chronic ankle instability 
_______________________________________ 
              
________________________________________ 



 

University of Northampton Genetics Achilles Tendon Datasheet. Cases.  Study Number: 

SECTION 5: DETAILS OF ACHILLES TENDON INJURY 

How many times 
have you had 
tendon 
injuries/problems? 
*Sudden onset is within 
a few seconds or 
minutes 
^Gradual onset is over 
days or weeks 

Event Date 
Right  
or 
Left 

Acute or 
Chronic 
Injury 

Sudden* or 
Gradual^ 
Onset 

Effect of injury in first month 
following injury 

Grade of injury currently 

1. 
 
 
 
 
 

    ฀Pain only after exercise 

฀Pain during exercise, but did not 
cause you to alter training 

฀Pain during exercise, which 
causes you to alter training 

฀Pain which causes you to stop 
training 

฀None of the above 

฀Not sure 

฀Pain only after exercise 

฀Pain during exercise, but did not 
cause you to alter training 

฀Pain during exercise, which causes 
you to alter training 

฀Pain which causes you to stop 
training 

฀None of the above 

฀Not sure 
2. 
 
 
 
 
 

    ฀Pain only after exercise 

฀Pain during exercise, but did not 
cause you to alter training 

฀Pain during exercise, which 
causes you to alter training 

฀Pain which causes you to stop 
training 

฀None of the above 

฀Not sure 

฀Pain only after exercise 

฀Pain during exercise, but did not 
cause you to alter training 

฀Pain during exercise, which causes 
you to alter training 

฀Pain which causes you to stop 
training 

฀None of the above 

฀Not sure 
3. 
 
 
 
 
 

    ฀Pain only after exercise 

฀Pain during exercise, but did not 
cause you to alter training 

฀Pain during exercise, which 
causes you to alter training 

฀Pain which causes you to stop 
training 

฀None of the above 

฀Not sure 

฀Pain only after exercise 

฀Pain during exercise, but did not 
cause you to alter training 

฀Pain during exercise, which causes 
you to alter training 

฀Pain which causes you to stop 
training 

฀None of the above 

฀Not sure 
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4. 
 
 
 
 
 

    ฀Pain only after exercise 

฀Pain during exercise, but did not 
cause you to alter training 

฀Pain during exercise, which 
causes you to alter training 

฀Pain which causes you to stop 
training 

฀None of the above 

฀Not sure 

฀Pain only after exercise 

฀Pain during exercise, but did not 
cause you to alter training 

฀Pain during exercise, which causes 
you to alter training 

฀Pain which causes you to stop 
training 

฀None of the above 

฀Not sure 
5. 
 
 
 
 
 

    ฀Pain only after exercise 

฀Pain during exercise, but did not 
cause you to alter training 

฀Pain during exercise, which 
causes you to alter training 

฀Pain which causes you to stop 
training 

฀None of the above 

฀Not sure 

฀Pain only after exercise 

฀Pain during exercise, but did not 
cause you to alter training 

฀Pain during exercise, which causes 
you to alter training 

฀Pain which causes you to stop 
training 

฀None of the above 

฀Not sure 
 
 
 
Thank you for taking time to complete this questionnaire.  Your participation is greatly appreciated.   
 
Please can you return your saliva sample, and the completed questionnaire to us as described in the ‘participant 
information’ sheet. 
 
If you are unsure about any aspect of this project or require further information please contact the study team using the 
contact numbers, or emails, found on the front page of this questionnaire. 
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Glossary 
 

10. Rheumatologic disease:  A type of disease involving inflammation of 
muscles, joints, and other tissues 

11. Corticosteroid: a group of steroid hormones used to treat inflammation 

12. Anabolic steroid: a synthetic steroid hormone that resembles testosterone in 
promoting the growth of muscle. Such hormones are used medicinally to treat 
some forms of weight loss and, by some athletes and others to enhance 
physical performance 

13. Ligament: A short band of tough, flexible, fibrous connective tissue that 
connects two bones or cartilages or holds together a joint 

14. ACL: Anterior cruciate ligament 

15. MCL: medial collateral ligament 

16. PCL: Posterior Cruciate Ligament 

17. LCL: Lateral collateral ligament  

18. Tendon: A flexible but inelastic cord of strong fibrous collagen tissue 
attaching a muscle to a bone 
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SECTIONS 7, 8, 9 AND 10 TO BE FILLED OUT BY CLINICIAN 
 

SECTION 7: ASSESSMENT OF ACHILLES TENDON INJURY BY CLINICIAN 

Event Number (1,2,3,4,or 5)  
FINDING YES NO 

 
Symptoms > 6/12 
 
 

  

Early morning pain over the Achilles area 
 
 

  

Early morning stiffness over the Achilles area 
 
 

  

History of swelling over the Achilles area 
 
 

  

Tenderness to palpation over the Achilles area 
 
 

  

Palpable nodular thickening over the Achilles 
tendon 
 

  

Positive Shift test: 
Movement of painful/swollen area with DF/PF of 
ankle 

  

Other comments: 
 
 

  

 
 



 

University of Northampton Genetics Achilles Tendon Datasheet. Cases.  Study Number: 

 
SECTION 8: DESCRIPTION OF ACHILLES TENDON INJURY 
Please complete a separate form for each Tendon Injury  
 

Event Number: 

 Right Left 
Rupture: 
 Full   
 Partial   
 Insertional avulsion   
Tendinopathy: 
 Non-insertional: 

 Peritendonitis 
 

  

Tendinosis 
 

  

Peritendonitis + 
Tendinosis 

  

Other 
 

  

Unknown 
 

  

Insertional: 
 Haglund’s 

 
  

Lateral Calcaneal 
Ridge 

  

Intra-tendinous 
calcification 

  

Achilles Bursitis - 
superficial 

  

 Achilles Bursitis 
-deep 

  

 Tendinosis 
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SECTION 9: IMAGING OF ACHILLES TENDON INJURY 
Please complete a separate form for each Tendon Injury 
 

Event Number: 

Type Date Location Details 
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SECTION  10: DETAILS O F TREATMENT 
Please complete a separate form for each Tendon Injury 
 

Event Number: 

Date Type Location Duration Outcome 
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Experimental Protocols 
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14 APPENDIX V 

Power Calculations 
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Figure A-V 1 Graphical representation of the power calculations conducted on the PGA package to 

detect OR=1.8. The minimum sample size was determined at a 10% prevalence of ATP with a power 

of 80%. Each coloured line corresponds to a different allele frequency (AF). 
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Figure A-V 2 Graphical representation of the power calculations conducted on the PGA package to 

detect OR=2.0. The minimum sample size was determined at a 10% prevalence of ATP with a power 

of 80%. Each coloured line corresponds to a different allele frequency (AF). 
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Figure A-V 3 Graphical representation of the power calculations conducted on the PGA package to 

detect OR=2.2. The minimum sample size was determined at a 10% prevalence of ATP with a power 

of 80%. Each coloured line corresponds to a different allele frequency (AF). 
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Supplementary Genotyping Tables 
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Table A-VI 1 The genotype and allele frequency distribution of the ELN rs2071307 and FBN2 

rs331079 gene variants within the Australian (AUS) and South African (SA) control (CON) and 

Achilles tendinopathy (TEN) groups.  

 

ELN rs2071307 

AUS CON 
(n= 143) 

AUS TEN 
(n= 59) 

  

SA CON 
(n= 95) 

SA TEN 
(n= 74) 

GG 35.0 (50) 28.8 (17) 

 

37.9 (36) 41.9 (31) 

GA 47.6 (68) 54.2 (32) 

 

46.3 (44) 45.9 (34) 

AA 17.5 (25) 16.9 (10) 

 

15.8 (15) 12.2 (9) 

  
  

 
  

P-Value 0.650 
 

0.758 

  
  

 
  

A allele 41.3 (118) 44.1 (52) 

 

38.9 (74) 35.1 (52) 

P-Value 0.603 
 

0.472 

HWE 
 

0.820 0.441 
 

0.799 0.945 

  
  

 
  

FBN2 rs331079 

AUS CON 
(n= 142) 

AUS TEN 
(n= 60) 

  

SA CON 
(n= 96) 

SA TEN 
(n= 75) 

GG 74.6 (106) 85.0 (51) 

 

80.2 (77) 86.7 (65) 

GC 21.8 (31) 15.0 (9) 

 

19.8 (19) 13.3 (10) 

CC 3.5 (5) 0.0 (0) 
 

0.0 (0) 0.0 (0) 

  
  

 
  

C allele 
14.4 (41) 7.5 (9) 

 

9.9 (19) 6.7 (10) 

P-Value 0.053 
 

0.287 

HWE 
 

0.166 0.529 
 

0.281 0.536 

  
  

 
  

GG 74.6 (106) 85.0 (51) 

 

80.2 (77) 86.7 (65) 

GC + CC 25.4 (36) 15.0 (9) 

 

19.8 (19) 13.3 (10) 

P-Value 0.106   0.264 
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Table A-VI 2 The genotype and allele frequency distribution of the ADAMTS14 rs4747096, ADAMTS2 rs1054480, 

ADAM12 3740199, and ADAMTS5 226794 gene variants within the Australian (AUS) and South African (SA) control 

(CON) and Achilles tendon pathology (ATP) groups 

 AUS CON AUS ATP SA CON SA ATP 

ADAMTS14 rs4747096 n=133 n=55 n=94 n=110 

AA 76.7 (102) 67.3 (37) 70.2 (66) 76.4 (84) 

AG 20.3 (27) 23.6 (13) 27.7 (26) 22.7 (25) 

GG 3.0 (4) 9.1 (5) 2.1 (2) 0.9 (1) 

P-Value 0.159 0.531 

HWE 0.198 0.034 0.762 0.561 

G allele 13.2 (35) 20.9 (23) 15.9 (30) 12.3 (27) 

P-Value 0.058 0.285 

ADAMTS2 rs1054480 n=137 n=56 n=75 n=104 

GG 49.6 (68) 55.4 (31) 52.0 (39) 52.9 (55) 

GA 40.1 (55) 37.5 (21) 36.0 (27) 41.3 (43) 

AA 10.2 (14) 7.1 (4) 12.0 (9) 5.8 (6) 

P-Value 0.695 0.310 

HWE 0.563 0.864 0.216 0.521 

A allele 30.3 (83) 25.9 (29) 30.0 (45) 26.4 (55) 

P-Value 0.387 0.459 

ADAM12 rs3740199 n=140 n=58 n=96 n=114 

GG 26.4 (37) 29.3 (17) 37.5 (36) 29.8 (34) 

GC 50.0 (70) 53.4 (31) 42.7 (41) 50.9 (58) 

CC 23.6 (33) 17.2 (10) 19.8 (19) 19.3 (22) 

P-Value 0.614 0.425 

HWE 0.992 0.518 0.247 0.757 

C allele 48.6 (136) 43.9 (51) 41.1 (79) 44.7 (102) 

P-Value 0.448 0.459 

ADAMTS5 rs226794 n=138 n=59 n=96 n=114 

GG 76.8 (106) 74.6 (44) 84.4 (81) 84.2 (96) 

GA 23.2 (32) 23.7 (14) 14.6 (14) 14.0 (16) 

AA 0.0 (0) 1.7 (1) 1.0 (1) 1.8 (2) 

P-Value 0.306 0.906 

HWE 0.123 0.925 0.656 0.189 

A allele 11.6 (32) 13.6 (16) 8.3 (16) 8.8 (20) 

P-Value 0.585 0.873 
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Table A-VI 3 The genotype and allele frequency distribution of the TIMP2 rs4789932 gene variant 

within the Australian (AUS) and South African (SA) control (CON) and Achilles tendon pathology 

(ATP) groups 

 AUS CON AUS ATP SA CON SA ATP 

TIMP2 rs4789932 n=140 n=59 n=96 n=114 

CC 32.9 (46) 22.0 (13) 41.7 (40) 28.9 (33) 

CT 45.0 (63) 59.3 (35) 38.5 (37) 55.3 (63) 

TT 22.1 (31) 18.6 (11) 19.8 (19) 15.8 (18) 

P-Value 0.165 0.051 

HWE 0.289 0.149 0.062 0.183 

T allele 44.6 (125) 48.3 (57) 39.1 (75) 43.4 (99) 

P-Value 0.503 0.366 

 

 


