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Abstract: We demonstrate a miniaturized single beam fiber optical
trapping probe based on a high numerical aperture graded index (GRIN)
micro-objective lens. This enables optical trapping at a distance of 200µm
from the probe tip. The fiber trapping probe is characterized experimentally
using power spectral density analysis and an original approach based
on principal component analysis for accurate particle tracking. Its use
for biomedical microscopy is demonstrated through optically mediated
immunological synapse formation.
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1. Introduction

Optical manipulation and trapping of microscopic particles, single molecules and cells has al-
lowed for a wide range of powerful biophysics studies [1, 2]. There is now a burgeoning need
for simplifying the optical geometry of trapping to make it compatible with newly emerging
forms of microscopy platform. For example, optical traps have been combined with confocal
[3, 4], multiphoton [5], and STED [6] microscopes. However this generally requires a con-
vergence of optical paths and optical microscopes that may not always be easy to implement.
As a result, fiber based optical trapping geometries have come to the fore though due to their
reduced numerical aperture (NA) typically generate weakly focused two-dimensional optical
traps. There have been recent efforts to increase the NA of fiber optical traps by fabricating
tapered fibers [7, 8, 9]. While these fiber optical traps are compact and of relatively low cost,
they suffer from a very short manipulation distance, typically only able to trap particles directly
at the fiber tip. Graded index (GRIN) fibers have been presented as an alternative approach for
generating a tight focus near the fiber tip, allowing optical trapping at a distance between 3 and
10µm from the fiber tip [10], and have recently been utilized to extend the optical manipulation
length of the fiber probe to 40µm and even up to 60µm under certain environmental conditions
[11]. These approaches require fabrication of GRIN fibers with specially tuned geometric pa-
rameters which limits accessibility. More sophisticated approaches have used multimode fibers
as complex media which allow manipulation at arbitrary distances from the fiber, however the
trap strength decreases with increased manipulation length and these techniques require com-
plex optical systems to implement [12].
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The short manipulation length of many fiber optical traps results in the fiber probe itself
contributing strongly to images of trapped objects. This can interfere with measurements for
characterization of the optical trap. With careful design, the imaging system may be optimized
to minimize the influence of the probe on images of trapped objects. When trapping probes are
combined with sophisticated or specialized optical microscopes for biophysical studies, this
optimization may not be possible for characterization of the trap due to additional constraints
on the imaging system.

In terms of biophysical applications, understanding cell-cell interactions is becoming in-
creasingly important in, for example, the study of viral transfer [13] and the immune system
[14]. Presently, many such studies offer little spatio-temporal control of the sample and inter-
action events cannot be triggered on a cell selective basis. A full understanding is formed from
sampling many events at various stages of interaction and inference of the true evolution. As
such, optical traps can be employed to trigger interaction events and follow the full temporal
evolution of a single synapse in toto [15, 16]. Notably, two-dimensional optical traps often offer
sufficient manipulation for these studies.

In this paper we demonstrate the use of a fiber coupled GRIN lens geometry for an ultra-
facile and powerful two-dimensional optical trap. All optical components of the fiber trapping
probe are commercially available. By utilizing a fiber mounted micro-objective we combine the
advantages of a fiber probe based trapping system with a long working distance. A key attribute
of our system is the integration of our trap with sophisticated microscopes without the need to
access any port. The addition of the trapping probe does not inhibit the high quality fluores-
cence imaging capability of the microscope. The fiber optical trapping probe is characterized
by power spectral density analysis utilizing an original adaptive image filtering method based
on principal component analysis (PCA) to counteract deleterious image artifacts resulting from
reflections from the fiber probe and facilitate accurate tracking of the trapped particle. Finally,
the potential of our probe for biophysics applications is demonstrated by its use to selectively
and controllably induce the formation of an immunological synapse between a T-cell and a
polystyrene bead coated with activating antibodies. To the best of our knowledge, this is the
first demonstration of the use of an optical fiber trapping probe for the manipulation of immune
cells.

2. Experimental set-up

The experimental set-up is shown in Fig. 1. The fiber trapping probe consists of a GRIN micro-
objective lens (GRINtech, GT-MO-080-018-810, Fig. 1(a)). The GRIN lens was mounted at
the distal end of a single mode optical fiber (Thorlabs, 780HP-CUSTOM, NA=0.13, operating
wavelength 780-960nm) using a custom made SMA adapter as shown in the insert in Fig. 1(b).

A laser beam (TuiOptics, TA 100, wavelength 785nm, maximum output power 300mW) was
coupled into the single-mode fiber. The divergent beam emitted from the fiber output facet
was collected and focused by the GRIN micro-objective lens. The GRIN micro-objective lens
comprises two GRIN lenses of 1mm diameter with a high NA, 1mm diameter plano-convex
lens. The refractive index profile of the GRIN lenses are tuned to minimize spherical aberration
induced by the plano-convex lens. The GRIN micro-objective is capped at the tip with a 120µm
thick BK7 cover-glass and elements are fixed in place within a stainless steel sheath of 1.4mm
outer diameter. This lens is optimized for a wavelength of 800nm and has a NA of 0.8, the
specified NA of 0.8 is only achieved when the beam input into the GRIN lens has an NA of
0.18, as our fiber has an NA of 0.13 the NA of the trap beam was 0.58. A tight beam focus is
formed approximately 200µm from the GRIN lens tip allowing optical manipulation at a large
distance, more than 20 times greater than for most traditional fiber traps and 5 times greater than
achieved with a GRIN fiber [11]. The coupling efficiency through the combined single-mode
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Fig. 1. Schematic of the GRIN microlens (a) and the fiber optical trapping probe integrated
into a commercial fluorescence microscopy platform (b). In (a) dashed lines denote rays
propagating through the GRIN lens and theoretical image and object working distances
(w.d.). (b) shows the fiber probe mounted on an inverted microscope. The insert shows
detail of fiber-GRIN lens adapter. SMF: single-mode fiber, Obj: objective lens, FCx: filter
cubes, M: mirror, EMCCD: electron multiplied charge coupled device, SMA: SMA fiber
connector.

fiber and GRIN lens system was (37±1)%.
The fiber trapping probe was mounted on an inverted microscope (Nikon, Eclipse Ti) above

the sample as shown in Fig. 1(b), by attaching onto the mount traditionally reserved for a
condenser lens when using brightfield illumination. The probe was positioned using the xyz
positioning screws which move the condenser lens mount and a z-axis micrometer positioning
stage (Thorlabs, SM1Z) was used for fine adjustment to ensure the trap focus was in the image
plane of the microscope. Fluorescence excitation is provided through the top tier of microscope
ports and appropriate choice of excitation and emission filters in filter cube 1, fluorescence was
collected by a 0.8 NA, 60X objective lens (Nikon, CFI 60X) onto an electron multiplied charge
coupled device (EMCCD, Andor, iXon+). The only modification to the microscope required to
use the probe is the addition of a filter which protects the camera from the high intensity trap
beam (Semrock, FF01-650/SP-25). A fast CCD camera (Basler, piA640-201gm) mounted in a
secondary microscope camera port enabled characterization of the particle motion.

To evaluate the focusing ability of the GRIN micro-objective lens, the tip of the probe was
immersed in water and an image stack was acquired around beam focus. The optic axis of the
trap beam was offset from the optic axis of the microscope by 10◦. Intensity profiles were taken
through the focus. Full width at half maximum (FWHM) values gave the lateral beam widths
along the x- and y-axes to be (1.3± 0.1)µm and (1.9± 0.1)µm respectively. The axial beam
width was (6.4± 0.3)µm. We attribute the tilt and the x− y asymmetry of the trap beam to a
minor misalignment between the fiber tip and the GRIN lens.

3. Results and discussion

3.1. Characterization of the optical trap

As the trap geometry does not permit brightfield illumination, and to avoid any artifacts from
using trapped fluorescent particles [17], we resorted to an alternative approach for imaging. As
such, we place a half mirror in filter cube 1 to facilitate reflection imaging of non-fluorescent
microspheres. Imaging and tracking of the trapped particles was performed using the fast CCD
camera which facilitated 400Hz acquisition rates with a 60x60 pixel region of interest. The trap
stiffness was determined through the power spectral density method. For our probe, 400Hz is
above the Nyquist sampling rate for observing the trap corner frequency. Movies of 100s dura-
tion were recorded for polystyrene beads of (3.00± 0.02)µm, and (4.17± 0.03)µm diameter
(Polysciences Inc., 64060, 64070 respectively) and for a range of powers. The temperature of
the microscope stage was kept constant at (25.6±0.2)◦C during the experiment.
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Although the fiber tip is 200µm away from the trapped particle, reflections from the fiber tip
contribute significantly to the image resulting in noise (see Fig. 2(a)) that requires very specific
image manipulation and thresholding before accurate tracking can be achieved. To aid image
processing, we incorporate an adaptive filter based upon principal component analysis (PCA)
into our image filtering procedure to remove strong stochastic noise. The adaptive nature of the
filter reduces the reliance on subjective, user specified filtering procedures. Our image filtering
procedure is exemplified in Fig. 2(a)-2(d).

The adaptive filter determines the first few principal components (PCs) in the spatial domain
taking into account all the individual frames of the movie. These PCs are akin to the eigenfaces
used in facial recognition [18] and describe the main variations between individual frames.
As these variations are due to the motion of the particle in a trap, we have a direct relationship
between the images of the first few PCs (3 in the case of Fig. 2) and the position of the particles.
Each PC is, in a way, associated with a specific degree of freedom of the particle. In this case,
the first PC contains the positional offset while the next two PCs are related to movements in
the x− y plane. Higher order PCs typically account for random image fluctuations that do not
contain any relevant data but occasionally some structure is observed most likely originating
from minute particle asymmetries or motion of the particle beyond the first order linear image
regime.

More precisely, we define the covariance matrix as

Ci j = ∑
n

∑
m

Mi
nmM j

nm (1)

where Mi
nm corresponds to the pixel value of the i−th frame of the tracking movie with the

subscripts m and n defining the two dimensional pixel position. In this context, the covariance
matrix describes the correlations between frames i and j. The covariance matrix is a symmetric,
positive, semi-definite matrix and can be represented by a set of real positive eigenvalues and
corresponding eigenvectors

λ
(k)V (k)

i = ∑
j

Ci jV
(k)
j (2)

where λ (k) defines the k−th eigenvalue and V (k)
i the associated eigenvector. The different eigen-

vectors are orthogonal to each other and the eigenvector associated with the largest eigenvalue
defines the largest variation described by the frames of the movie. Usually the eigenvectors and
eigenvalues are ordered in decreasing order and the largest eigenvalue corresponds then with
the first eigenvalue. The image reconstructed using the first eigenvector defines the first PC in
the frame space

M(1)
i j =

1√
λ (k) ∑

m
Mm

i jV
(k)
m . (3)

The second or higher order PCs are defined using the second or higher order eigenvectors.
Typically, the first few PCs account for most inter-frame variations.

The adaptive filter consists of projecting each individual frame onto the PCs of the movie

c j
k = ∑

n
∑
m

M j
nmM(k)

nm . (4)

The inverse process is then performed to reconstruct the individual frames using the first few
PCs only.

M̃ j
nm =

kmax

∑
k=1

c j
kM(k)

nm (5)
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Fig. 2. Illustration of the image filtering process and force characterization. (a) shows an
original frame from a movie of a 3.00µm diameter bead trapped with 60mW. (b) shows the
same frame as in (a) after application of the adaptive filter. The bottom row of images shows
the first six PCs for the movie of which the first three are used in the adaptive filter. In this
example, all PCs after the third contain only random noise. In (c) an additional bandpass
filter has removed dead pixels and other small stationary objects. (d) shows the thresholded
image, used for tracking. (e) shows force constants as a function of laser power along the
x-axis for 3.00 and 4.17µm diameter polystyrene beads. The force constants have a power
dependence given by fx,3.00µm = (0.63±0.01)pN · µm−1 ·mW−1, and fx,4.17µm = (0.39±
0.01)pN · µm−1 ·mW−1 for the x-axis, for 3.00 and 4.17µm diameter beads respectively.
Similar trends, fy,3.00µm = (0.522± 0.006)pN · µm−1 ·mW−1, and fy,4.17µm = (0.35±
0.006)pN · µm−1 ·mW−1 were determined for the y-axis.

where the index kmax defines the number of PCs considered which is restricted to the number of
important components accounting for most of the variations. The resulting images M̃ j

nm are free
of inter-frame fluctuations and contain only variations relevant to the motion of the particle.
The number of PCs used in our experiments for the reconstruction contain (95±2)% of all the
variations, typically only the first 3 PCs were used but when higher order PCs were utilized
the first 3 PCs still contained (91± 1)% of all variation. Figure 2(b) shows the effect of this
filter. Subsequently, a spatial band-pass filter is applied in the Fourier domain of each frame
to remove the effect of small stationary objects such as dead pixels which are not removed by
the adaptive filter as shown in Fig. 2(c). Finally, a simple threshold filter is used to remove
remaining background noise as illustrated in the example frame in Fig. 2(d).

We validated the use of the adaptive filter in our image processing by tracking particles where
the particle position was precisely known. Particles were immobilized on a glass coverslip un-
der imaging conditions identical to those for the trap stiffness measurements and moved along
known trajectories using a nanopositioning stage (PI, P-733.3DD). The trajectories determined
by the tracking method were compared to the known trajectories. The standard deviation of the
difference between the actual position and the result of tracking was 12nm.

Tracking of the trapped beads was achieved using a cross-correlation based sub-pixel image
registration algorithm [19]. The power spectral density of each trace was determined and fitted
with the Langevin equation [20] to obtain the corner frequency. An exponential distribution of
the data was assumed [21] since low corner frequencies were observed which made windowing
of the data impractical [20].

Faxen’s correction was included in the calculation of the drag coefficient for each trapped
bead [22] where the height of the bead center, h, is defined as h = d/2 + s, d is the bead
diameter and s is the distance between the chamber floor and the bottom of the bead. Trapping
occurred in close proximity to the sample chamber floor and we estimated s = (0.25±0.2)µm.

The resulting force constants are shown in Fig. 2(e) for the x-axis. Similar force constants
were determined for the y-axis.
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Fig. 3. Selected video frames (a-c) showing an optically trapped T-cell (Signal), pre-loaded
with Fluo-4, being positioned to form an immune synapse with an antibody coated bead.
Frames show the image before (a), shortly after (b), and longer after (c) initial contact. Scale
bar in (c) is 10µm. An adjacent cell (Control) is used to correct for photobleaching. (d)
shows the increase in fluorescence signal from the trapped cell indicating increased calcium
signaling and the formation of an immune synapse. An exponential curve (Exp. Fit) was
fitted to Control to confirm the decrease in intensity can be attributed to photobleaching.

3.2. Optically mediated immunosynapse formation

Cellular studies of the immune system have benefited from the addition of optical trapping due
to the ability to control cell-cell interactions and follow the full temporal evolution of an indi-
vidual synapse [15, 16]. Here we demonstrate the applicability of our probe to these studies by
selectively inducing the formation of an immunological synapse. Synapse formation was trig-
gered in B3Z cells, a murine hybridoma cell line, by contact with a polystyrene bead conjugated
to the mouse antibodies; anti-CD3, which bypasses the T cell receptor (TCR) mechanism for
direct activation of the T cell [16, 23], and anti-CD28, a co-receptor which ensures sustained
synapse induction [24]. Immune synapse activity was detected by monitoring calcium signaling
within the T cell.

Prior to the experiment, B3Z cells were loaded with the calcium indicator Fluo-4 (Life
Technologies, Fluo-4, AM, cell permeant, F-14201) as per manufacturer’s instructions. The
cells were resuspended in phenol-red free Dulbecco’s modified Eagle’s medium and plated out
into a 35mm fluorodish (World Precision Instruments, FD3510-100) and the antibody coated
polystyrene beads added. Antibody conjugated beads were prepared by passive adsorption of
3.1µm polystyrene beads coated with protein G (0.5% (w/v), Spherotech, PGP-30-5) with
mouse anti-CD3 (1mg/mL, eBioscience, 16-0032) and anti-CD28 (1mg/mL, eBioscience, 16-
0281) antibodies.

The fiber probe was used to trap a cell and hold it in contact with a single antibody coated
bead which was immobilized on the surface of the dish through contact. A green emission
filter cube (Nikon, 49002 ET-GFP) was placed in filter cube 1. Figures 3(a)-3(c) show selected
frames from a recorded movie and Fig. 3(d) shows the increase in fluorescence signal from the
trapped cell, an indication of the initial stages of an immune synapse. Another cell in the field
of view showed strong fluorescence throughout the video and this is attributed to an already
fully activated cell. The fluorescence from this cell was used to correct for photobleaching in
the signal from the trapped cell.
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4. Summary and conclusions

A novel miniaturized single beam fiber optical trapping probe based on a GRIN micro-objective
lens has been demonstrated. It has been characterized by power spectral density analysis based
upon a novel adaptive image filtering method based on principal component analysis. The appli-
cability of the fiber probe has been shown through its integration into a commercial fluorescence
microscope, and the potential impact for biophysics studies has been highlighted by using the
fiber probe for controlled, optically mediated immune synapse formation.

At present a static optical trap is produced however, more sophisticated beam launch mech-
anisms may exploit the GRIN micro-objective to deliver multiple and dynamic optical traps.
Higher NA launch mechanisms, such as complex beam shaping through a multi-mode fiber,
may also facilitate full three-dimensional optical trapping which would be beneficial for a num-
ber of applications.

The adaptive nature of the PCA image filter reduces the effect of user-subjectivity when
processing data for determination of optical trap strength. Although this technique is most ef-
fective in a high noise environment as found near the tip of a fiber probe, image filtering by
PCA may be applied to any image based method for particle tracking or optical trap strength
determination.

We foresee the integration of the fiber probe with more sophisticated microscope platforms,
for example super-resolution microscopes, which would enable more advanced studies of the
immunological synapse and other cell-cell interactions.
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