

#### **Original citation:**

Breeman, Linda D., van der Pal, Sylvia, Verrips, Gijsbert H. W., Baumann, Nicole, Bartmann, Peter and Wolke, Dieter. (2016) Neonatal treatment philosophy in Dutch and German NICUs : health-related quality of life in adulthood of VP/VLBW infants. Quality of Life Research. doi: 10.1007/s11136-016-1410-7

#### Permanent WRAP URL:

http://wrap.warwick.ac.uk/82012

#### **Copyright and reuse:**

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

#### **Publisher's statement:**

The final publication is available at Springer via <u>http://dx.doi.org/10.1007/s11136-016-1410-</u>

#### A note on versions:

The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP url' above for details on accessing the published version and note that access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

# Neonatal treatment philosophy in Dutch and German NICUs: Health-Related Quality of Life in Adulthood of VP/VLBW infants

Over the last two decades, survival after very preterm birth (VP; gestational age at birth <32 weeks) and very low birth weight (VLBW; <1500 grams) has improved considerably [1]. Still, more VP/VLBW infants develop major cognitive impairments and physical disabilities such as cerebral palsy (CP), blindness, and deafness than full-term comparisons [2-3]. However, objective health states of chronic illnesses may only show a weak relationship to health related quality of life (HRQoL) [4] and may also depend on the informant of an individual's HRQoL. Parents of preterm adolescents, but not the adolescents themselves, generally report a lower HRQoL than those of term-born children, especially in areas of motor, social, and emotional functioning [5]. Currently, only a few studies have examined VP/VLBW infants' HRQoL longitudinally in adolescence [6] and in adulthood [4, 7-8]. It is important to follow-up VP/VLBW infants' HRQoL from adolescence into adulthood as it relates to real life implications such as job success, wealth, level of living independently, and social functioning such as dating a romantic partner and having friends [9-11]. To our knowledge, no study has yet compared HRQoL in VP/VLBW adults from different countries and has examined how different neonatal treatment and rates of disability affect HRQoL.

In the early 1980s, the neonatal treatment policy in The Netherlands could be described as "wait until certain" and intensive treatment for preterm children was initiated only when these infants showed a range of vital signs [6]. In contrast, neonatal treatment in Germany was given to infants of lower gestation than in The Netherlands and consisted of more intensive treatment such as initiating and maintaining mechanical ventilation for longer periods [6]. In recent years, there has been a move towards less intensive treatment including reduction of mechanical ventilation [12]. A comparison between countries with different

neonatal treatment philosophy provides a natural experiment to study potential effects on HRQoL. Previously, we reported that in early adolescence, extremely preterm Dutch adolescents scored higher on HRQoL than German adolescents [6]. These results were independent of birth weight, gestational age, and cerebral palsy, and were tentatively attributed to a better developing nervous system of Dutch VP/VLBW adolescents compared with German VP/VLBW adolescents, as a result of neonatal treatment differences. This study aimed to answer two research questions. First, do German and Dutch VP/VLBW still differ in HRQoL in adulthood? We expected Dutch VP/VLBW adults to score higher than German VP/VLBW adults on HRQoL, based on higher survival rates of German VP/VLBW infants with higher neonatal morbidity. Second, can differences between Dutch and German VP/VLBW adults' HRQoL be explained by neonatal health and treatment, social environment, and/or individual characteristics such as intelligence? We expected that neonatal health and treatment, social environment and intelligence would explain differences in HRQoL between Dutch and German VP/VLBW adults.

## Methods

# **Participants**

HRQoL was assessed in VP/VLBW infants from two large prospective cohort studies in the Netherlands and Germany. Data from the Netherlands encompassed the national cohort of the Project On Preterm and Small-for-gestational-age infants (POPS). This cohort consists of 1338 Dutch infants born premature in 133 obstetric departments between January 1983 and December 1983 in the Netherlands, 94% of all children born in 1983 in The Netherlands [13]. Of this cohort, 928 surviving VP/VLBW adults were eligible to participate in the follow-up data collection in adulthood between July and August 2011 at 28 years of age and 314 (33.8%) participated. German data came from the Bavarian Longitudinal Study (BLS) of 682 VP/VLBW infants born in a geographically defined area of Southern Bavaria between January 1985 and March 1986 who required admission to one of 16 children's hospitals within the first 10 days after birth [14]. Of this cohort, 411 surviving adults were eligible for inclusion and 260 (63%) participated in the adulthood data collection between September 2010 and February 2014 (mean age 26.5 years (*SD*: 0.81), age range: 25.3-29.1 years). Figure 1 presents the flow diagram of participants of both cohorts through the study. More information on these two cohorts can be found elsewhere [7, 15-16].

Ethical approval for these studies was obtained from the medical ethics committee of the Leiden University Medical Centre, the University of Munich Children's Hospital, the Landesärztekammer Bayern, and the Ethical Board of the University Hospital Bonn. All participants gave fully informed written consent to participate in the study prior to the assessments in adulthood. In case of severe impairment of the adult participant, consent was provided by an assigned guardian (usually the parents).

## Measures

Self-ratings were used to assess adults' HRQoL. Assessments in adulthood were conducted at comparable ages; at age 28 years for the Dutch and at age 26 for the German cohort. Methods of data collection varied between cohorts. In the Netherlands, most VP/VLBW adults completed the HRQoL questionnaire online (n = 305, 97.1%), yet a small group completed the questionnaire on paper send by mail on request (n = 9, 2.9%). All questionnaires were completed by the VP/VLBW adults themselves. In Germany, most participants completed the questionnaires (paper version) during the follow-up visit in a quiet room (n = 202, 77.7%). Some respondents preferred a telephone interview (n = 21, 8.1%), while others preferred to complete questionnaires on paper send by mail (n = 13, 5.0%). For 14 (5.4%) German VP/VLBW adults, parents were used as proxy informants to rate their child's HRQoL, due to

severe impairments of these VP/VLBW adults (i.e., having a major handicap, such as severe CP, mental retardation, blindness or deafness).

*The Health Utilities Index 3* (HUI3) is a widely used, comprehensive, multiplicative, multi-attribute approach to assess health status and HRQoL, encompassing eight attributes – vision, hearing, speech, ambulation, dexterity, emotion, cognition, and pain – with five to six levels of functioning per attribute. A utility score is determined based on population preferences derived from a Canadian normative sample that allows to convert the health-state description into a continuous multiple-attribute utility (MAU) score, ranging from 0 (dead) to 1 (perfect health), although it is possible to have a score < 0, indicating health states worse than death [17]. The HUI3 is a holistic approach which provides a comprehensive yet compact way to describe the health status of an individual, which has been shown both reliable and valid [17-18], and has been used in a variety of clinical studies [4, 6-7].

*The London Handicap Scale* (LHS) also assesses HRQoL, focusing on six dimensions of disability: Mobility, physical independence (self-care), occupation (daily activities), social integration, orientation, and economic self-sufficiency. Every dimension consists of a six-point hierarchical scale of disadvantages. To provide a generic measure of disability (scale 0 to 1, where 1 is perfect health), each dimension of disability was recoded into a weighted score and the resulting six scores were summed into one generic measure of HRQoL [19].

*The WHO Quality of Life instrument*, short edition (WHOQOL-BREF) was developed to provide a cross-culturally validated measure of HRQoL. It provides a quality of life profile focusing on four domains: Physical health, psychological health, social relationships, and environment. Domain scores from the WHOQOL-BREF were transformed into weighted scores on a scale between 0-100, where 100 is perfect health [20].

*Covariates:* Very preterm birth (gestational age at birth <32 weeks) was determined from the date of the last menstrual period and serial ultrasounds during pregnancy in both

cohorts. Birth weight and sex were recorded at the time of birth. Duration of ventilator support (continuous positive airway pressure (CPAP) and/or mechanical ventilation) and duration of hospitalisation were recorded in both cohorts. Education of the parents was assessed at birth for the German sample and at age 5 years for the Dutch sample. For the Dutch cohort, when information about parent education at 5 years was unknown (8.7% missing data), parent education data at 10 years was used when available (26.4% of missing education data were replaced, resulting in 6.4% missing parent education data). The highest educational level of the parents in both cohorts was grouped as low (up to ten years of basic education), middle (vocational education), or high (professional education or university education). Adult intelligence (IQ) was assessed at different ages in both cohorts, yet IQ is highly stable in preterms from childhood onwards [21]. In the Dutch sample, adult IQ was assessed at 19 years with the use of the computer version of the Multicultural Capacity Test-Intermediate Level, which provided full-scale IQ scores based on a broad spectrum of intelligence domains such as verbal and numerical factors, appreciation of spatial dimensions, fluent speech, memory, reasoning, and speed of perception [22]. IQ was assessed in the German sample at 26 years with the short version of the Wechsler Adult Intelligence Scale (WAIS III), which provided a full-scale IQ score based on six subtests: Vocabulary, similarities, letter-number-sequence, block design, matrix reasoning, and digit symbol coding [23-24].

## Data analysis

Statistical significance was set at p < .05 and all tests were two-tailed. Selective attrition into adulthood was related to lower socioeconomic environment and/or more severe disabilities [7, 25]. Therefore, all analyses were run on both the adulthood samples (Dutch: n = 314; German: n = 260) and the full eligible samples with missing data imputed (Dutch: n = 928;

German: n = 411), to help interpret findings. Missing data were imputed in SPSS using predictive mean matching. Ten datasets were generated using ten iteration procedures. Imputed values were based on all variables in the model (HRQoL self-reports in adulthood and covariates). Additional predictors in the imputation model consisted of the HUI3 selfreports in childhood (at 13 years for the German cohort, at 14 years for the Dutch cohort), HUI3 self-reports in adolescence (at 19 years, only available for the Dutch cohort), HUI3 parent reports in adulthood (at 26 years for the German cohort, at 28 years for the Dutch cohort), LHS self-reports in adolescence (at 19 years, only available for Dutch cohort), and latest available childhood IQ score.

To analyse whether cohorts differed in HRQoL in adulthood, linear regression analyses were performed for all three general HRQoL measures (HUI3, LHS, WHOQOL-BREF) with cohort as a dummy variable. Cohort differences in HRQoL were interpreted using norms for clinical relevance (i.e. >.03) [18] as well as using Cohen's *d* effect size [26]. To test whether cohorts differed in objective health states, logistic regression analyses were performed for the dichotomized health states representing optimal and suboptimal functioning (i.e., HUI3 attributes level 2 or above were recorded as suboptimal function) [6, 25]. These cohort differences were interpreted using odds ratios.

To test whether neonatal physical health and treatment, social environment, and intelligence are related to VP/VLBW adults' HRQoL and cohort differences, we used hierarchical linear regression on the eligible sample with missing data imputed. To predict each of the three HRQoL scores (HUI3, LHS, WHOQOL-BREF) we included the following predictors in a stepwise fashion: First the neonatal predictors (cohort, gestational age, birth weight, gender, duration of continuous positive airway pressure (CPAP) / mechanical ventilation, duration of neonatal hospitalisation), and second, social environment assessed in childhood (parents' education), and cognitive function assessed in adulthood (IQ scores). In a

third step, interactions of these predictors with cohort were also examined. Finally, we performed two additional checks on our data-analyses. First, we also run the same analyses on the adulthood sample, without missing data imputed. Second, because the HRQoL measures were highly skewed as most individuals report a good to optimal quality of life (ceiling effect) and as the assumption of homoscedasticity was not met, we rerun the analyses on the three outcome variables using logistic regression with (nearly) perfect health (HUI3 cut-off: .95; LHS cut-off: .95; WHOQOL-BREF cut-off: 87) versus no perfect health.

# Results

# **Dutch and German VP/VLBW cohorts**

Background characteristics of both Dutch and German VP/VLBW samples are presented in Table 1. German VP/VLBW survivors had a lower mean gestational age than Dutch VP/VLBW survivors. In addition, 7.1% (Dutch cohort, total *n* = 928) and 8.5% (German cohort, total *n* = 411) of the infants were born before 28 weeks of gestation. Both groups had approximately the same birth weight. German VP/VLBW survivors more often received ventilator support, spent more days on ventilator support, and spent more days in hospital than Dutch VP/VLBW survivors. In both cohorts, participants in adulthood did not differ from dropouts in terms of gestational age, birth weight, days of ventilation and days of neonatal hospitalization. Only in the Dutch cohort, more males dropped out, resulting in significantly more females in the Dutch compared with the German sample in adulthood. More Dutch VP/VLBW had parents with either lower or higher education than German VP/VLBW individuals, who more often came from families with educational backgrounds classified as "middle". In both cohorts, VP/VLBW adults from lower educated families more often dropped out. Next to neonatal predictors, intelligence of Dutch and German VP/VLBW individuals was assessed in adulthood. IQ scores were significantly higher for Dutch (mean IQ = 103.8; n = 251) than German (mean IQ = 89.2; n = 202; p < .001) VP/VLBW adults. To impute missing adulthood IQ values for the full eligible sample, the latest available childhood IQ score was included as a predictor in the imputation model. Yet, even in the full eligible sample with missing data imputed, Dutch (mean IQ = 98.0; n = 928) had higher mean IQ scores than German (mean IQ = 88.4; n = 411; p < .001) VP/VLBW adults.

# Differences across VP/VLBW cohorts in HRQoL and health states

Test of differences in HRQoL scores across German and Dutch VP/VLBW adults are presented in Table 2. Analyses on both the adult samples and full eligible samples (with missing data imputed) showed that the Dutch VP/VLBW adults reported a significantly higher HRQoL for all three general HRQoL measures (HUI3, LHS, WHOQOL-BREF) than German VP/VLBW adults. These differences were, however, small according to Cohen, yet clinically relevant according to the HUI3 scale developers (>.03 points) [18, 26]. Specifically, more optimal health states were reported for Dutch than for German VP/VLBW adults in areas of vision and cognitive ability. Also, more Dutch than German VP/VLBW adults reported high emotional health, however, this difference disappeared when missing data were imputed.

## **Explaining cohort differences in HRQoL**

Table 3 shows that cohort differences in HRQoL scores were either partially (WHOQOL-BREF) or fully (HUI3, LHS) explained when taking into account other important predictors of HRQoL. For all three HRQoL measures (HUI3, LHS, WHOQOL-BREF), adult IQ was the main predictor. Duration of neonatal ventilation also predicted differences in LHS, but this effect disappeared when taking into account adult IQ. Hospitalisation length also tended to be related to HUI3 (p = .061), but this small effect also disappeared when adult IQ was included. These results suggests an overlap in explained variance by the functional measure of IQ. Interaction effects of cohort with other predictors including intelligence (eight interactions for three outcome variables) did not significantly add to the prediction of HRQoL scores and are therefore not included in Table 3.

The results of the linear regression analyses for the eligible sample with missing data imputed presented in Table 3 are relatively similar to both the results for the adulthood sample (no imputation of missing data) and the logistic regression analyses. Therefore, we only present the results of these additional data checks online in Supplement Table S1 and S2.

## Discussion

This study examined HRQoL in adults born VP/VLBW, by comparing VP/VLBW cohorts from two European countries: The Netherlands and Germany. These countries differed in neonatal treatment policies in the 1980's with the Dutch policy initiating intensive treatment only if VP/VLBW infants' survival was highly likely. We found differences in German and Dutch VP/VLBW adults' HRQoL scores across all three different measures of HRQL. These differences reduced – but remained significant – once accounted for selective attrition in the imputed samples. Our findings on HRQoL in VP/VLBW adults concur with previous findings for extremely low birthweight (<1000g) adolescents [6] and imply that country differences in treatment policy relate to VP/VLBW cohort differences in HRQoL. This study adds to previous work by including neonatal factors, SES, and cognitive function as predictors of adults' HRQoL to help explain differences in HRQoL between VP/VLBW adults from different countries. In both cohorts, functional cognitive ability (IQ) was found to be the main independent predictor of HRQoL in VP/VLBW adults, independent of the specific measure used. In general, our results indicate that lower HRQoL in German VP/VLBW survivors in adulthood is mainly related to their lower IQ after VP/VLBW birth compared to Dutch VP/VLBW. In addition, the effect of treatment factors such as ventilation or hospitalisation length reduced once the functional outcome IQ was considered as predictor of HRQoL. These results implicate that IQ may mediate the pathway from early VP/VLBW treatment to HRQoL in adulthood, consistent with previous research showing that both ventilation and length of hospitalisation are strong predictors of childhood IQ in VP/VLBW children [12] and that objective functioning is related to HRQoL in VP/VLBW adolescents [25].

Our findings stress the impact of cognitive function in VP/VLBW adults' life. IQ is an important marker of VP/VLBW brain health [27]. First, VP/VLBW birth is related to brain injuries that affect brain organization [28-29] and second, neonatal complications and mechanical ventilation in particular have been shown to lead to alterations in brain structure with adverse effects on cognitive functioning [30]. Even small IQ differences are important as they are not only related – as shown here – to HRQoL, but also to socioeconomic status and even reduced survival and health into old age [31-32].

Although IQ explained most differences in HRQoL between Dutch and German VP/VLBW adults, the differences were nevertheless real and clinically relevant. Dutch and German HRQoL as measured with HUI3 MAU scores differed by approximately .03 points, a difference previously considered to be clinically important [18]. Analyses on the health states showed that in addition to differences in cognition, more German than Dutch VP/VLBW adults had problems with vision and lower emotional health (although this effect disappeared when missing data were imputed). In addition, Dutch VP/VLBW adults still indicated higher HRQoL than German VP/VLBW adults on the physical WHOQOL-BREF HRQoL measure

when corrected for neonatal treatment, SES, and IQ. Cohort differences in WHOQOL-BREF may thus be related to country differences such as social-economic differences and/or cultural differences in attitudes regarding disabilities and handicaps not measured in this study or to general differences in experienced wellbeing between countries, not related to preterm birth. For example, UNICEF reported that from the 29 countries with most advanced economies, The Netherlands were the leader for child wellbeing, measured both objectively and with self-reports. In comparison, Germany occupied 6<sup>th</sup> place according to objective measures of wellbeing, but dropped to 22<sup>nd</sup> place when children themselves were asked to evaluate their life satisfaction.

Because of the found country differences in neonatal treatment and HRQoL, findings on VP/VLBW adult HRQoL may be quite country specific and thus not generalizable to other VP/VLBW populations. In contrast, our results indicate that the impact of cognitive function on adult HRQoL may be robust. Regarding the current population of VP/VLBW infants, future research must demonstrate whether the improvement of neonatal treatments and especially the development of less invasive treatments may lead to better cognitive development and thereby improved HRQoL or whether any gains through improved neonatal treatment will be nullified by more infants of smaller gestation surviving. Prospective cohort studies are essential in providing this information.

This study has a range of strengths. Most important among these are the long-term follow-up into adulthood of two large whole population samples of VP/VLBW individuals from two different European countries that had different neonatal treatment policies in the 1980's and the assessment of HRQoL in adulthood with multiple identical instruments. There are also limitations. First, adulthood response rates between the two countries differed largely and the dropout was not random. VP/VLBW with lower educated parents were less likely to continue participation, which is in line with previous reports that participants at social

disadvantage are more likely to drop out of longitudinal studies than those more socioeconomically advantaged [33]. In addition, for the Dutch VP/VLBW, gender also impacted dropout with females more likely to participate in adulthood. This finding again stresses the need to report on findings that are corrected for selective attrition. Thus, we report on the adult sample with available data and on the full eligible sample with imputed missing data to control for possible bias. Yet, the findings were generally consistent, independent of the chosen sample. Second, because studies were performed in two countries under the guidance of two research teams, not all predictor variables were measured identically or could be measured identically. For example, adulthood IQ was assessed with different measures in both cohorts and different measures show different secular trends (i.e., Flynn effect) [34]. Nevertheless, additional analyses done separately for each country showed similar effects of IQ on HRQoL, indicating a true effect independent of how and when IQ was measured. Also, Dutch and German educational systems differ and are thus not exactly comparable, which was why parent education was categorized in three general, more comparable, classes (i.e., low, middle, high).

# Conclusion

The present study showed that German VP/VLBW adults had lower quality of life compared with Dutch VP/VLBW adults. These differences were related to German VP/VLBW adults having higher levels of cognitive impairment than Dutch VP/VLBW adults, which was in turn related to German VP/VLBW infants receiving more intensive neonatal treatment while the Dutch policy initiated intensive treatment only if VP/VLBW infants' survival was highly likely. Thus, intensive neonatal treatment may reduce cognitive abilities which in turn increases VP/VLBW adults' vulnerability to a lower HRQoL with long-lasting consequences

into adulthood. Our findings stress the importance of examining effects of cross-cultural differences in neonatal treatment policies and their consequences for VP/VLBW adults' life.

## **Compliance with Ethical Standards**

**Funding:** The Dutch POPS study was supported by grant HS-08385 from the Agency for Health Care Policy and Research, USA. The German BLS study was supported by grants PKE24, JUG14, 01EP9504 and 01ER0801 from the German Federal Ministry of Education and Science.

Conflict of interest: The authors declare that they have no conflicts of interest.

**Ethical approval:** All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

**Informed consent:** Informed consent was obtained from all individual participants included in the study.

# **Figure Caption**

Fig. 1 Flow diagram of participants of both cohorts through the study

# References

- 1. Rüegger, C., Hegglin, M., Adams, M., & Bucher, H. U., for the Swiss Neonatal Network. (2012). Population based trends in mortality, morbidity and treatment for very preterm- and very low birth weight infants over 12 years. *BMC Pediatrics*, *12*(17), 2-12.
- Veen, S., Ens-Dokkum, M. H., Schreuder, A. M., Verloove-Vanhorick, S. P., Brand, R., & Ruys, J. H. (1991). Impairments, disabilities, and handicaps of very preterm and very-low-birthweight infants at five years of age. The Collaborative Project on Preterm and Small for Gestational Age Infants (POPS) in The Netherlands. *The Lancet*, 338(6), 33-36.
- 3. Msall, M. E., & Tremont, M. R. (2002). Measuring functional outcomes after prematurity: Developmental impact of very low birth weight and extremely low birth weight status on childhood disability. *Mental Retardation & Developmental Disabilities Research Reviews*, 8(4), 258-272.
- Saigal, S., Stoskopf, B., Pinelli, J., Streiner, D., Hoult, L., Paneth, N., & Goddeeris, J. (2006). Self- perceived health-related quality of life of former extremely low birth weight infants at young adulthood. *Pediatrics*, 118(3), 1140-1148.
- 5. Zwicker, J. G., & Harris, S. R. (2008). Quality of life of formerly preterm and very low birth weight infants from preschool age to adulthood: A systematic review. *Pediatrics*, *121*(2), e366-e376.
- 6. Verrips, E., Vogels, T., Saigal, S., Wolke, D., Meyer, R., Hoult, L., & Verloove-Vanhorick, S. P. (2008). Health-related quality of life for extremely low birth weight adolescents in Canada, Germany, and The Netherlands. *Pediatrics*, *122*(3), 556-561.
- 7. Van Lunenburg, A., Van der Pal, S., Van Dommelen, P., Van der Pal De Bruin, K., Bennebroek Gravenhorst, J., & Verrips, G. (2013). Changes in quality of life into adulthood after very preterm birth and/or very low birth weight in The Netherlands. *Health and Quality of Life Outcomes*, 11(51), 2-8.
- 8. Roberts, G., Burnett, A. C., Lee, K. J., Cheong, J., Wood, S. J., Anderson, P. J., & Doyle, L. W. (2013). Quality of life at age 18 years after extremely preterm birth in the post-surfactant era. *The Journal of Pediatrics*, *163*(4), 1008-1013.e1.
- Hack, M., Flannery, D. J., Schluchter, M., Cartar, L., Borawski, E., & Klein, N. (2002). Outcomes in young adulthood for very-low-birth-weight infants. *New England Journal of Medicine*, 346(3), 149-157.
- Mathiasen, R., Hansen, B. M., Nybo Anderson, A. M., & Greisen, G. (2009). Socioeconomic achievements of individuals born very preterm at the age of 27 to 29 years: A nationwide cohort study. *Developmental Medicine & Child Neurology*, 51(11), 901-908.
- 11. Baumann, N., Bartmann, P., Wolke, D. (2016). Health-related quality of life into adulthood after very preterm birth. *Pediatrics*, *137*(4), 1-10.
- Göpel, W., Kribs, A., Ziegler, A., Laux, R., Hoehn, T., Wieg, C., ... Herting, E. (2011). Avoidance of mechanical ventilation by surfactant treatment of spontaneously breathing preterm infants (AMV): An open-label, randomised, controlled trial. *The Lancet*, 378(9803), 1627-1634.
- Verloove-Vanhorick, S., Verwey, R., Brand, R., Bennebroek Gravenhorst, J., Keirse, M., & Ruys, J. (1986). Neonatal mortality risk in relation to gestational age and birth weight. Results of a national survey of preterm and very-low-birth weight infants in The Netherlands. *Lancet*, 1(8472), 55-57.

- Riegel, K., Ohrt, B., Wolke, D., & Österlund, K. (1995). *Die Entwicklung gef\u00e4hrdet geborener kinder bis zum f\u00fcnften lebensjahr*. [The development of children born at risk until their fifth year of life]. Stuttgart, Germany: Ferdinand Enke Verlag.
- 15. Verrips, G. H. W., Stuifbergen, M. C., Den Ouden, A. L., Bonsel, G. J., Gemke, R., Paneth, N., & Verloove-Vanhorick, S. P. (2001). Measuring health status using the Health Utilities Index: Agreement between raters and between modalities of administration. *Journal of Clinical Epidemiology*, 54(5), 475-481.
- Eryigit Madzwamuse, S., Baumann, N., Jaekel, J., Bartmann, P., & Wolke, D. (2014). Neuro-cognitive performance of very preterm or very low birth weight adults at 26 years. *Journal of Child Psychology and Psychiatry*, 56(8), 857-864.
- 17. Feeny, D., Furlong, W., & Barr, R. D. (1998). Multiattribute approach to the assessment of health-related quality of life: Health Utilities Index. *Medical and Pediatric Oncology*, *30*(S1), 54-59.
- 18. Horsman, J., Furlong, W., Feeny, D., & Torrance, G. (2003). The Health Utilities Index (HUI): Concepts, measurement properties and applications. *Health and Quality of Life Outcomes*, *1*(54), 1-13.
- 19. Harwood, R., Rogers, A., Dickinson, E., & Ebrahim, S. (1994). Measuring handicap: The London Handicap Scale, a new outcome measure for chronic disease. *Quality in Health Care*, *3*(1), 11-16.
- 20. The WHOQOL group. (1996). WHOQOL-BREF: Introduction, administration, scoring and generic version of the assessment. Geneva, Switzerland: World Health Organization.
- 21. Breeman, L. D., Jaekel, J., Baumann, N., Bartmann, P., & Wolke, D. (2015). Preterm cognitive function into adulthood. *Pediatrics*, *36*(3), 415-423.
- 22. Bleichrodt, N., & Berg, R. H. (2000). *Multicultural Capacity Test: Intermediate Level* (*MCT-M*). *User manual*. Amsterdam, The Netherlands: NOA.
- Von Aster, M., Neubauer, A., & Horn, R. (2006). Wechsler Intelligenztest für Erwachsene (WIE) [Wechsler Adult Intelligence Scale (WAIS III)]. Frankfurt/Main, Germany: Harcourt Test Services.
- 24. Wechsler, D. (1997). Wechsler Adult Intelligence Scale Third Edition (WAIS III): Administration and scoring manual. San Antonio, TX: The Psychological Corporation.
- 25. Wolke, D., Chernova, J., Eryigit-Madzwamuse, S., Samara, M., Zwierzynska, K., & Petrou, S. (2013). Self and parent perspectives on health-related quality of life of adolescents born very preterm. *Journal of Pediatrics*, *163*(4), 1020-1026.
- 26. Cohen, J. (1988). *Statistical power analysis for the behavioral sciences, 2nd ed.* Hillsdale, NJ: Erlbaum.
- 27. Deary, J. J. (2010). Cognitive epidemiology: Its rise, its current issues, and its challenges. *Personality and Individual Differences*, 49(4), 337-343.
- Bäuml, J. G., Daamen, M., Meng, C., Neitzel, J., Scheef, L., Jaekel, J., ... Sorg, C. (2015). Correspondence between aberrant intrinsic network connectivity and gray-matter volume in the ventral brain of preterm born adults. *Cerebral Cortex*, 25(11), 4135-4145.
- 29. Meng, C., Bauml, J. G., Daamen, M., Jaekel, J., Neitzel, J., Scheef, L., ... Sorg, C. (2015). Extensive and interrelated subcortical white and gray matter alterations in preterm-born adults. *Brain Structure and Functioning*, Epub ahead of print.
- 30. Jaekel, J., Bartmann, P., Schneider, W., & Wolke, D. (2014). Neurodevelopmental pathways to preterm children's specific and general mathematic abilities. *Early Human Development*, *90*(10), 639-644.

- Deary, I. J., Whiteman, M. C., Starr, J. M., Whalley, L. J., & Fox, H. C. (2004). The impact of childhood intelligence on later life: Following up the scottish mental surveys of 1932 and 1947. *Journal of Personality and Social Psychology*, 86(1), 130-147.
- 32. McGurn, B., Deary, I. J., & Starr, J. M. (2008). Childhood cognitive ability and risk of late-onset Alzheimer and vascular dementia. *Neurology*, *71*(14), 1051-1056.
- Hille, E. T. M., Elbertse, L., Gravenhorst, J. B., Brand, R., & Verloove-Vanhorick, S. P. (2005). Nonresponse bias in a follow-up study of 19-year-old adolescents born as preterm infants. *Pediatrics 116*(5), e662-e666.
- 34. Flynn, J. R. (1987). Massive IQ gains in 14 nations: What IQ tests really measure. *Psychological Bulletin, 101*(2), 171-191.