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The collaborative very light rail project involves the development of a novel railcar designed to revolutionise the

rail industry: a self-powered, very light rail vehicle. Each of the two bogies contains a complete diesel–electric

series-hybrid drive system, while the whole vehicle has undergone significant lightweighting activity to realise a

target weight of less than 18 t, or 1 t per linear metre. The target cost is £500 000, which is to be achieved through

the use of standardised, modular components, and appropriate materials and structural design methodologies.

The research covers several aspects of the GB Rail Technical Strategy chapter relating to rolling stock. Lightweighting

leads to a reduction in the propulsion requirements and reduces the infrastructure installation and maintenance costs.

The use of higher-efficiency drive systems achieved through on-board energy systems enables a reduction in carbon

dioxide emissions. These hybridisation activities improve the passenger experience through quieter operation,

decreased vibration and the possible elimination of exhaust emissions in stations. Combining new drive systems

with modular lightweight structures will lead to lower life-cycle costs and thus could enable the economical

reopening of lines.

1. Introduction
The GB Rail Technical Strategy (RTS) outlined several
objectives for rolling stock, based on the four Cs (RSSB,
2012): increasing capacity, reducing carbon footprint, lowering
costs and improving customer satisfaction. While constantly
reducing the cost of new vehicles, the energy efficiency must
be improved; the interfaces between rolling stock and other
systems pertaining to track wear, suspension and body fatigue
must be optimised; and the noise, vibration and waste-disposal
impacts on the environment must be reduced. Combining
lightweighting of vehicles with alternative propulsion systems
can fulfil many of these objectives, and thus is a highly impor-
tant topic of research.

To reduce carbon dioxide emissions and increase system
efficiency, there is a trend to develop battery-powered vehicles
(Jeong et al., 2011). However, the size and energy requirements
of batteries facilitating longer journey rail travel is not feasible
with existing technology (Jeong et al., 2011; Twort and Barrett,
2013). One alternative is to power vehicles using energy storage
hybrid drivetrains, which combine a prime mover with energy
storage devices. Furthermore, reducing the mass of vehicles
decreases the overall power requirements, facilitating the use of
lower powered engines and reducing energy storage device
requirements (RSSB, 2012). Lightweighting rail vehicles also

lowers track and wheel wear (Network Rail, 2015), and increases
capacity by enabling higher acceleration and braking rates, thus
reducing journey time and facilitating closer running of vehicles.

Environmental requirements, socio-economic and technical
developments and the increasing population size has recently
led to a demand to reopen some lines following the closures of
the 1960s (Woolmer, 2013). However, appropriate infrastruc-
ture and rolling stock are required to ensure that an economi-
cally viable solution is developed. Owing to the expected
reductions in the life-cycle costs of both the vehicles and infra-
structure (Rochard and Schmid, 2004), a lightweight vehicle
with a high-efficiency drivetrain has significant potential
within the rail industry.

It is the aim of the work presented here to describe the devel-
opment and potential application of a very light rail (VLR)
vehicle, with an emphasis on the implications it could have for
many currently disused railway lines. This vehicle incorporates
lightweighting of as many components of the vehicle as poss-
ible, and hybrid powertrain technologies, with batteries used as
energy storage devices. Furthermore, the manufacturing costs
can be reduced by utilising a modular construction of both the
bodyshell and bogie, thus enabling the mass production of
standardised components.
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2. The very light rail vehicle
Traditional light rail vehicles typically weigh around 40 t,
operate on special infrastructure designed for the reduced
mass of the vehicle compared to mainline railcars and usually
include wayside electrification to provide power to the vehicle
(Schmid and Connor, 2015). Meanwhile, the VLR vehicle will
weigh less than 18 t, and be self-powered. Furthermore, it is
primarily aimed for operation on new, light rail infrastructure,
although with the ability to interface with the mainline.

The vehicle has been designed as part of a new VLR concept
for a complete system that aims to potentially reopen disused
rural and suburban lines, and ensure the continued operation
of lines for which electrification is not economically viable.
Hence, the primary objective is to operate railcars with signifi-
cantly reduced life-cycle costs. This is to be achieved by redu-
cing the weight of the vehicle to lower energy requirements
(Ning et al., 2009), and by developing a hybrid powertrain
with regenerative braking to further reduce the fuel consump-
tion (Shiraki et al., 2010). Additionally, technology is being
transferred from the automotive sector to reduce the initial
costs of the vehicle (Ma and Lan, 2013; Wang et al., 2013),
where innovative solutions are regularly implemented with
minimal cost penalties.

The specification for the VLR vehicle has been developed by a
consortium of partners, led by Transport Design International
(TDI) Europe Ltd, and including Unipart Rail, Prose Ltd,
and WMG. Briefly, a lightweight railcar will be designed with
a reduced cost compared to current vehicles for similar ser-
vices. As such, the complete 18 m long concept vehicle will
weigh no more than 18 t and is being developed towards an
ambitious target cost of £500 000, depending on production
volumes and sales margins, akin to that seen for a similar
sized bus (BusToCoach, 2015). A conventionally designed
rail vehicle costs up to £2 million (Mott Macdonald, 2012),
with the Stadler Regio Shuttle RS1 a representative example
designed to operate in similar situations to the VLR vehicle.
This regional railcar is 25 m in length, has a mass of 42 t and
a capacity of up to 180 passengers (Stadler Pankow, 2012)
depending on the internal configuration, at 2·45 passengers
per m2. Thus, the vehicle mass and cost is 233 kg and
£11 100 per passenger, respectively. Comparatively, the VLR
vehicle will have space inside for 120 passengers, 60 of whom
would be seated; thus, the mass will be 150 kg and the cost
£4200 per passenger, with 2·47 passengers per m2. Finally, it
should have a maximum service speed of 80 km/h, and be
designed for initial use in the GB market.

In general, any new railway vehicle should provide the
same performance characteristics as in-service trains of the
same type as a minimum, and should usually exceed the char-
acteristics of commercially available vehicles. The performance
benchmarks for VLR as a new concept were developed from
regional trains, such as the Class 150, or Stadler Regio Shuttle

RS1, and light rail vehicles, such as the Bombardier Flexity 2
and Siemens’ SD160.

The VLR railcar should be self-powered to eliminate the cost
of continuous wayside electrification. Additionally, the vehicle
should have the capability of full electric operation in sensitive
areas, such as in station environments. These requirements can
be satisfied by a diesel–electric hybrid propulsion system with
batteries as energy storage devices. Diesel fuel is considered a
suitable option with an internal combustion engine as a prime
mover, even though the exhaust resulting from diesel combustion
contains regulated emissions such as particulate matter (PM),
nitrogen oxide (NOX) (EC, 1997) and carbon dioxide (CO2), a
recognised greenhouse gas. Diesel is currently extensively used in
self-propelled railcars, thus the VLR system would benefit from
utilisation of existing refuelling capabilities, lowering system
specific infrastructure costs. Furthermore, the regulated emis-
sions will be reduced by way of technology transfer from the
automotive sector and dedicated emission after-treatment,
whereas carbon dioxide will be reduced through lower fuel con-
sumption compared to current operation. Specifically, as one of
the main concepts behind VLR is to not operate the engine in
and in close proximity to stations, the hybrid solution will
enable a significant reduction in total emissions.

2.1 Powertrain requirements
The performance requirements for the drive system were devel-
oped through benchmarking.

(a) The tare mass (AW0) target of the proposed VLR
railcar is 18 t, less than 1 t per linear metre (t/m),
which is approximately half of a modern regional railway
vehicle (Marsden, 2014; Stadler Pankow, 2012) and
approximately 25% lower than light rail vehicles per
linear metre (Bombardier Transportation, 2014).

(b) The target for maximum service speed is 80 km/h,
selected to be similar to light rail vehicles (Bombardier
Transportation, 2014; Schmid and Connor, 2015;
Siemens Industry, 2015).

(c) The maximum acceleration target is 1 m/s2 and the
average acceleration from standstill to the maximum
service speed is 0·5 m/s2; both values are similar to
modern light rail and regional trains (Bombardier
Transportation, 2014; Schmid and Connor, 2015;
Siemens Industry, 2015; Stadler Rail AG, 2012).

In addition to these requirements, the design specifies that
the entire drive system should fit within the bogie, with the excep-
tion of the main fuel tank. Service braking should be electro-
dynamic, and the diesel engine should not operate in station
environments and at speeds below 32 km/h (20 mph) when close
to stops. Full acceleration should also be possible if the energy
storage device cannot be used as a power source; for example, if
the state-of-charge of the batteries were too low. For service
reliability reasons, the drive system should be fully redundant so
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that the vehicle can self-recover to the next station should one
drive system fail, which will require two motor bogies per railcar.

A modular approach should be adopted for the drive system,
which can be achieved using a self-powered bogie. This will allow
a higher number of standardised units and enable the sale of the
bogie as a product in its own right. The McKeen motorcar
railway vehicles from the early 1900s used self-powered bogies
which were distillate-powered (petrol engine) and propelled one
of the bogie axles by way of a chain drive (Heimburger and
Byron, 1996; Zeitler, 1921). However, the space required above
the bogie reduced the passenger-carrying capacity, leading to
the preference to install the propulsion equipment under the
floor of railcars, which is still the most popular solution for
diesel multiple units today (Marsden, 2014). The development
of more compact engines and traction motors could enable a
self-powered bogie that does not encroach on the passenger
space. Nevertheless, one of the main challenges of the VLR
bogie design is the integration of all the necessary subsystems
within the limited bogie mounting space, while maintaining
a balanced axle load and suitable dynamic behaviour of the
complete vehicle.

2.2 Powertrain development
A diesel–electric hybrid drive system with battery energy stor-
age can meet the requirements of full electric operation at
low speeds and ensure that the power for the passenger saloon
in stations, such as lighting and air conditioning, is supplied

without operation of the engine. An example of such a railcar
is the Ki-Ha E200, which entered commercial operation in
Japan in 2007 and does not operate the diesel engine at speeds
below 25 km/h (Shiraki et al., 2010). The hybrid propulsion
system of the Japanese train is distributed throughout the
railcar; for example, the storage battery is on the roof, whereas
most of the other drive system components are under the floor
(Shiraki et al., 2010). VLR employs a similar drive system, but
all the equipment is installed in the bogie. Figure 1 illustrates
the series-hybrid drive system of one self-powered bogie.

All axles in the bogie are powered to ensure sufficient tractive
effort, owing to the low weight of the vehicle, and guarantee
the required acceleration even in lower adhesion conditions. A
single traction motor has a power of 50 kW and provides 9 kN
of tractive effort at the wheel. Figure 2 illustrates the simulated
tractive, acceleration and resistance force of a VLR railcar.
The traction motor is connected to the wheelset through a
direct drive, where the wheelset axle forms the rotor of the
electric machine. This design was popular at the beginning of
electric traction around the 1900s and very reliable with low
maintenance (Hollingsworth and Cook, 1996). However, the
maximum power at a single axle was limited by the material
properties and the bi-polar construction of the motors, leading
to locomotives with 12 powered axles (Hollingsworth and
Cook, 1996; Middleton, 2002). The constraints of direct-drive
traction motors for railway vehicle propulsion led to alternative
designs, such as nose-suspended motors and quill drives

Body-
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Power plant
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Figure 1. Block diagram of the drive system in a VLR bogie, with

the body-mounted fuel tank also included
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(Duffy, 2003; Middleton, 2002). Advances in materials, par-
ticularly those used in new permanent magnets, have led to a
direct drive option, which eliminates losses and maintenance
requirements associated with mechanical gearing being chosen
for the VLR project.

To provide full acceleration without engine operation, 120 kW
of battery power is required; this accounts for losses in the
drive system while including a safety margin. Initial vehicle
simulations have shown that the battery has to provide a
minimum of 5 kWh of useable energy storage. The battery
chemistry is lithium-titanate, owing to the relatively safe chem-
istry in case of a malfunction or accident, the high cycle life
required by the rail industry and the favourable performance
characteristics (JMBS, 2015). The nominal DC-Bus voltage
of the bogie is 400 V and has been selected as the drive system
components are available at this voltage.

The diesel engine generator-set should also provide 120 kW of
power in case the battery packs are not available and to pro-
vide the primary means of motion to drive the vehicle above
32 km/h, while recharging the batteries. An ISF3·8 l road-
sector diesel engine built by Cummins (2015) has been selected
as the prime mover. This enables the transfer of components
from a sector with higher production numbers to reduce costs,
while being of a higher robustness than conventional auto-
mobile engines. In addition, the engine can achieve Euro 6
emission regulation with the appropriate after-treatment
system, which is included in the bogie. The resulting exhaust

emissions are lower than stipulated in the non-road mobile
machinery directive (EC, 1997), which is applicable to railcars;
therefore, VLR will be less environmentally damaging than
current diesel rail vehicles. A full life-cycle analysis will be per-
formed to confirm this, accurately assessing the carbon
footprints.

Figure 3 illustrates the component integration in the self-
powered bogie. The diesel engine will primarily operate at its
optimal operating point, leading to reduced fuel consumption,
while regenerative braking will be employed as the standard
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service brake, reducing fuel consumption further. As a direct
consequence of lower fuel consumption, carbon dioxide emis-
sions will decrease accordingly, both parts contributing to two
of the four Cs. Quieter operation and avoidance of exhaust
emissions in station environments contribute to a more plea-
sant customer experience.

2.3 Structural development
There are currently no standards in the UK for very light
vehicles. As such, the structural requirements have been devel-
oped using GM/RT2100 (RSSB, 1997) for the bogie and BS
EN 12663-1 (CEN, 2010) for the body. It should be noted that
the implementation of the vehicle on newly laid track could
mean that these over-specify the vehicle; however, they will
ensure it can also be used on existing lines.

The initial concept design for the car body is shown in
Figure 4. To facilitate a low-cost, high-performance product,
relatively short standardised body panels are interconnected
along the length of the vehicle. The potential for alternative
materials is increased with the use of interchangeable panels
that can be independently replaced. Thus, composites, high-
strength metals, sandwich structures or combinations could be
implemented with reasonable cost efficiency, while also offer-
ing significant gains in lightweighting.

The preliminary bogie design, shown in Figure 3, consists of
an inside frame, to minimise the unsprung, primary suspended
and rotating masses as well as the moments of inertia about
the z-axis. The current design is reasonably conventional: steel
components manufactured using traditional techniques for rail
applications. Weight reductions have been obtained by editing
structural analysis parameters to account for the reduced mass
of the vehicle with the application of alternative materials and
structures under ongoing research.

3. Implications of very light rail for
low-carbon dioxide rail transport

3.1 Vehicle
Welsh stated that ‘Weight is the principal enemy of a railroad.
It costs more money in fuel and locomotives to pull a heavy

train, and the slower the train operates due to its weight the
longer it takes to get to its destination’ (Welsh, 2008: p. 64).
The railways are aware of the mass implications, and hence
there has been a longstanding tradition to lightweight vehicles
for specific services. The McKeen gasoline railway car was
the lightest weight mass transportation vehicle per passenger
carried in the early twentieth century (Solomon, 2015); the
weight was reduced owing to the economic advantages of
powering a lighter and more aerodynamic vehicle. Further-
more, weighing as little as 1·4 t/m, it is significantly lighter
than many vehicles in operation today. To overcome a substan-
tial decline in passenger numbers in the early 1930s, railways
introduced new, streamlined, lightweight self-powered trains
attempting to reduce costs, increase speeds and raise passenger
appeal (Heimburger and Byron, 1996; Wegman, 2008).

Since the mid-1980s, however, the mass of rail vehicles has
been increasing. The design of safety critical features is highly
conservative and is done regardless of any additional mass
they contribute (Forsberg and Björnstig, 2011). Features
designed to assist the operation of the complete railway system
are added regularly, constituting a small, but consistent mass
(Antelo et al., 2004; Shafiullah et al., 2007). Increasing the
maximum tractive effort obtainable requires a high vehicle
mass, as well as large power generation, conversion and appli-
cation units (Hillmansen and Roberts, 2006), particularly on
traction vehicles such as locomotives. Finally, additional com-
ponents to improve passenger comfort each have a mass
penalty (Connor, 2011). This combination of factors has led to
similar trends in the automotive industry. For example, there
has been an annual increase in the average new vehicle weight
within the USA of 1·0% between 1981 and 2004 leading to a
total difference of 23%, although since then it has remained
relatively constant (EPA, 2015).

While the mass of rail vehicles has increased, lightweighting
has been advancing in other transport sectors; for example, the
aerospace industry incorporates alternative metals and compo-
site materials (Immarigeon et al., 1995), and the recent trend
for reduced carbon dioxide emissions has led to the road indus-
try using alternative materials and topological optimisation
(Ning et al., 2009) to minimise mass. However, the rail indus-
try has been relatively slow to incorporate the developments of
these industries. Although one of the safest modes of transport
(Kumar et al., 2014), any incident involving rail vehicles domi-
nates newspaper headlines (Høj and Kroger, 2002). Hence, a
highly risk-averse attitude is adopted by vehicle manufacturers
(Jeffcott et al., 2006).

Technology transfer from the aerospace sector in the 1930s led
to the lightweighting of rail vehicles using alternative materials
(Schafer et al., 2001). Aluminium has been used to reduce the
weight of railcars; for example, duralumin, an age-hardenable
aluminium alloy, was implemented on the Union Pacific
Railroad M-10 000 (Wegman, 2008; Welsh, 2008; Welsh and

Figure 4. Concept design for VLR vehicle (TDI Europe Ltd, 2016)
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Howes, 2004) resulting in a vehicle with a mass of 1·2 t/m.
Another new lightweight train of the same period, the Zephyr
of Chicago, Burlington & Quincy, used new construction tech-
niques to reduce the mass of the train so that a diesel engine
of the time could provide the power for propulsion (Wegman,
2008). The mass of the Zephyr also reached 1·2 t/m (Wegman,
2008), leading to three car trains weighing 85 t, less than a
single standard passenger car of the time (Welsh, 2008; Welsh
andHowes, 2004). Currently available commercial light rail vehi-
cles (Bombardier Transportation, 2014) have a similar mass
to length ratio. Presently, aluminium is widely used in intercity
and high-speed trains (Skillinberg, 2007), metro vehicles,
such as the Washington metro (Skillinberg, 2007) or passenger
cars, such as the Turkish State Railways N-13 Type railcar
(Baykasoglu et al., 2012), enabling weight savings of up to
33% compared to steel (Kara and Erdogan, 2013).

Composites have also been used in the rail industry for several
decades (Ingleton et al., 2000); for example, glass fibre rein-
forced plastics (GFRP) were used for the cabs of the high-
speed train (HST) Intercity 125 (Ingleton et al., 2002), which
entered service in 1977 and the Korean Tilting Train Express
(Jang et al., 2012) constructed in 2007. Furthermore, fibre
reinforced plastics offer the possibility of manufacturing differ-
ent geometries in a single assembly. As such, Carruthers et al.
(2011) constructed a composite carbon fibre-reinforced plastic
(CFRP) cab to obtain significant reductions, of up to 40%,
60% and 20% in the weight, part number and cost, respectively
(Robinson et al., 2012).

Kawasaki (Kawasaki Heavy Industries, 2014) have reduced the
mass of the bogie by 40% by integrating CFRP leaf springs
combining the primary suspension and longitudinal beams.
This was commercialised in 2014 on Kumamoto Electric
Railway vehicles. Owing to the advantages of vehicles with
reduced mass (Rochard and Schmid, 2004), the development
of lightweight trains using alternative materials and structures
is expected to be particularly important for the future of the
rail industry.

One of the major barriers to composite use is the high cost
penalty. However, low-cost methods of producing composite
components are being developed (Wulfsberg et al., 2014).
Furthermore, the VLR vehicle is designed to incorporate batch
production of similar components. As such, it is thought that
the VLR vehicle will be manufacturable at a lower cost than
existing trains.

3.2 Infrastructure
The VLR vehicle has been developed for operation on GB
lines; hence it is designed to operate within the new passenger
gauge (P1) outlined by RSSB (2015). As the VLR is developed
for the GB railway network, which has the most restrictive
loading gauge compared to other EU and worldwide networks,
it is expected that the vehicle will also be suitable for use

on these lines. Furthermore, the generation of a low-cost,
high-performance railcar by implementing a modular con-
struction is expected to be of interest for international markets,
particularly if no modifications to existing infrastructure are
required.

Despite the efforts of Network Rail, the existing track of
many GB lines has been subjected to many years of use and
in places is in a poor condition (Bourn, 2000; ORR, 2015b).
However, due to the costs associated with relaying track (MM,
2005), vehicles must be able to run on existing track forms.
Thus, the VLR vehicle has been developed with consideration
of such conditions. The primary and secondary suspensions
reduce the shock accelerations felt by passengers, while struc-
tural analysis indicates that the intermediate components
can be subjected to the relevant shock loads. For example, the
powertrain components are all rated to shock acceleration
levels that they may be subjected to depending on their
location within the bogie. Finally, the damage caused by the
wheels to the track is expected to be minimised due to the
lightweight vehicle they carry (RSSB, 2012).

However, the major application that is planned for this vehicle
is on new tracks, which are in better condition. Shock accelera-
tions are expected to be significantly lower due to the use of
a newly laid continuously welded rail (Hay, 1982). While it is
thus likely that the vehicle will be over-engineered for the pro-
posed application, this is essential to ensure interoperability
throughout the GB network.

The VLR vehicle has been developed to potentially enable
the economically viable reopening of lines previously closed.
This is expected to be achievable through the use of new track
systems. The lightweight nature of the vehicles places fewer
requirements on the track and track support, hence reducing
installation costs (Bonnett, 1991; Rochard and Schmid, 2004).
Furthermore, it is expected that there will be less track and
wheel wear (Rochard and Schmid, 2004), reducing mainten-
ance costs (Network Rail, 2015). Finally, the diesel–electric
hybrid powertrain removes any electrification requirements.

Further electrification of the GB network is currently seen as
essential, with several projects underway (Network Rail, 2009).
Electric traction vehicles can have a lower mass, reduced
reliance on single fuel sources, no emissions at the point of
use and improved customer experiences owing to reduced
noise and vibration (Graham-White, 2007; Hoffrichter et al.,
2012; Hollingsworth and Cook, 1996). However, the energy
supply network is complicated and expensive (Duffy, 2008;
Hoffrichter et al., 2012; Middleton, 2001), with additional
costs compared to a non-electrified line of £300 000 per single
track kilometre (stkm) and of up to £1 M per substation
for light rail systems (MM, 2012). Additionally, existing lines
may be significantly more complicated and expensive, with
reports of the 192 km Great Western Line electrification costing
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£1·1 billion (ca. £6 million per track km) (Sigrist, 2013).
As such, several lines in GB are not economically suitable for
electrification. Thus, the VLR vehicle is self-powered, enabling
it to be used on as many routes as possible while avoiding high
capital investment costs.

Although a suitable battery for long-distance rail travel is
currently unavailable, battery-powered railcars are under devel-
opment. For example, a recent project by Bombardier and
Network Rail is the independently powered electric multiple
unit (IPEMU), which has a range of up to 50 km on battery
power (Twort and Barrett, 2013). Alternatively, to realise longer
distance travel, diesel–electric hybrid drives can be used, such as
the Ki-Ha E200 (Furuta et al., 2010; Shiraki et al., 2010). Such
drive systems reduce the vehicle emissions and improve the effi-
ciency of services operating on non-electrified lines.

The VLR vehicle is to be predominantly used on lines
where electrification is not an economically viable solution. To
improve the total journey fuel consumption, and hence reduce
emissions, and enable emission-free operation of the vehicle in
close proximity to stations, the VLR has been equipped with
a hybrid powertrain, consisting of an engine, generator and
batteries. As such, it can be operated on all parts of the GB
network without any electrification being required.

3.3 System costs
Self-powered lightweight railcars were introduced by various
railways in the early 1900s, often with the objective to reduce
operating costs on branch lines, which would otherwise not
be profitable (Zeitler, 1921). Later these types of vehicles were
often referred to as Railbus and were usually introduced with
the same objective of reducing cost on low passenger density
lines, often with technologies transferred from the road sector
(Hollingsworth and Cook, 1996; Marsden, 2014). VLR builds
on that tradition in providing a lower-cost solution compared
to off-the-shelf railway alternatives to enable re-opening of
branch lines and the possibility of reduced-cost construction of
new railways.

The most significant cost considerations lie with the infra-
structure; use of a lightweight vehicle is expected to reduce
these due to the lower axle loads. As an example, the Looe
Valley line linking Looe to Liskeard in Cornwall operates as a
feeder line to the Cornish Main Line, which ultimately links
Penzance with London. The 14 km single track line is serviced
by one vehicle, which completes the route in 30 min (DCRP,
2010), i.e. approximately one train per hour per direction. In
2014–15, the Office of Rail and Road (ORR, 2015a) statistics
showed 124 914 passengers passed through Looe with most
(119 046) passengers travelling at least as far as Liskeard.

Network Rail (2009) suggested that to enable economic
viability of electrification, a minimum of three trains per hour
per direction were required. Furthermore, the location of the

presently analysed route makes it unlikely that a second track
would be laid to increase the possible number of trains. As
such, the Looe to Liskeard line is unlikely to be electrified,
although battery electric trains are suggested for similar routes
with fast charging stations (Network Rail, 2009).

Nevertheless, if the route were to be electrified, it would cost
approximately £4·2 M with up to £2 M also required for sub-
stations (Mott Macdonald, 2012). With the current timetable
of 12 journeys per direction per day, 165 km are travelled by
the vehicle each day. With diesel trains operating at an
additional expense detailed in Table 1, an electrified system,
including vehicle hire, would cost approximately £98 less to
run per day. Assuming all tickets were sold at the full value of
£4·30 per day for the Looe Valley Line, and that all revenue
from ticket sales is coupled with running cost savings, it would
take approximately 20 years to repay the initial investment. It
should be noted that this does not consider effects of inflation
or deflation on individual costs, nor the time-value of money
which will further impact the payback period.

If the target cost of £500 000 per railcar were to be realised,
purchasing two VLR vehicles, to account for any redundancy,
would cost £1M for this service; there would be no wayside
infrastructure related costs. Initial calculations and simulations
of the VLR vehicle indicated that it required approximately
0·24 l/km of diesel. Therefore, for a single journey on that
route, 3·3 l of diesel are required. This value has been obtained
through single train simulation (Hoffrichter et al., 2015;
Walker et al., 2009) and linear scaling from the full power of
the Cummins diesel engine (Cummins, 2015) to the power
required in the hybrid drive system. The engine will operate for
approximately 41% of the time, as it is not running when the
vehicle is travelling at speeds below 32 km/h and at stops.
Additionally, regenerative braking is considered in this calcu-
lation and the control strategy is ensuring the state-of-charge
of the batteries is the same at the beginning and end of the
journey. It is important to note that these are preliminary
indicative values. Further research, such as drive system labora-
tory and railcar tests, will enable evaluation and revision of
these estimates.

Assuming current red diesel prices of 43·12 pence/l (AHDB,
2015), and using the estimated fuel consumption from the
simulations, the fuel cost for the journey would be £1·42.
Furthermore, it is assumed that the maintenance costs are the
same as for a conventional diesel vehicle (Network Rail, 2009),
and track wear and tear costs are estimated to be the lowest
possible (Network Rail, 2015) owing to the low axle load, as
also detailed in Table 1. Finally, instead of a lease-hire agree-
ment, the vehicle is expected to be bought outright and as
such depreciation of the vehicle over the designed service life
of 20 years is considered. Hence, the payback time for this
scenario would be approximately 2·7 years. One further point
of note is that these calculations do not consider the possible
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replacement of any major components that have an estimated
useful life less than that of the vehicle, such as the engine or
battery packs.

Although the economic viability analysis has only been carried
out over one specific route, it demonstrates the potential of
utilising the VLR vehicle for rural/feeder lines. With significant
annual savings and a relatively quick payback time, it is expected
that the vehicle will revolutionise the economics of reopening
many routes. Finally, once the initial cost for the vehicle has
been recovered, the operating costs of the VLR vehicle are ca.
£270 less per day than currently used diesel vehicles, leading to
an approximate annual saving of £96 000 assuming an operation
of the railcar for 356 d/year. Thus, fewer paying passengers are
required to cover the operating costs of the vehicle.

It is important to note that the costs and benefits of using
such a vehicle are dependent on multiple factors, including
route topography, current/desired timetables and estimated pas-
senger number; therefore, not all vehicles are equally suitable
for all service provision. A main factor contributing to the via-
bility of a hybrid drive system is the distance between station
stops, where frequent stops with short distances between them
offer a higher energy recovery potential than routes with fewer
stops and longer inter-station distances (Lu et al., 2008). For
example, an intercity type operation with relatively few stops
and long distances between stations may lead to as little as an
estimated 3% reduction in fuel and directly attributable cost
with the utilisation of hybrid technologies, resulting in payback
periods exceeding 30 years (Bower et al., 2012). Nevertheless,

there are many lines with more favourable duty cycles for
hybridisation and VLR is being developed for routes with rela-
tively frequent stops.

A major variable operating cost results from energy usage,
with diesel prices more volatile than the cost of electricity in
the longer term. To account for potential fluctuations in fuel
cost and the associated impact on operating cost, a sensitivity
analysis has been undertaken. The results show that the
running costs of the VLR vehicle are still significantly lower
than that of an electric vehicle in the event of diesel prices
doubling while electricity prices halve, as shown in Table 2.
Of more significance is the variability of the vehicle cost, par-
ticularly as the VLR railcar is currently a concept with a target
cost. However, assuming the lease costs of current vehicles
do not change, it would still be significantly cheaper to operate
the new VLR railcar with a doubling in vehicle cost.
Furthermore, the payback period for any of the described scen-
arios with increased VLR running costs does not exceed 6
years.

4. Conclusions
In response to the 4Cs outlined in the RTS that are designed
to enable the long-term viability of the GB rail network, the
VLR vehicle is being developed. This railcar operates with a
diesel–electric hybrid drive system to decrease fuel consump-
tion and corresponding carbon dioxide emissions. Operating
solely on electric power at speeds below 32 km/h eliminates
emissions and reduces noise and vibration in stations, thereby
enhancing the customer experience. The reduced mass of the

Typical value for
diesel vehiclea

Typical value for
electric vehiclea

Estimated value
for VLR vehicle

Maintenance cost (per km) 38 p 25 p 38 pa

Fuel cost (per km) 29 p 16 pb 10 p
Track wear and tear cost (per km) 6·1 p 5·3 p 1·3 pc

Lease cost (per day) £301 £247 £70d

CO2 emissions (per day) 296 kge 167 kgf 102 kge

Total (per day) £423 £325 £153

a(NR, 2009)
bBased on data from Network Rail (NR, 2009), excluding any potential reductions due to regenerative braking
cCalculated using (NR, 2015)
dBased on depreciation calculated by:

Capital investment cost
Operational days� Vehicle lifetime

, assuming 7 d/week operation (DCRP, 2010) excluding bank holidays.

Refurbishment costs such as potential engine or battery pack replacement have been neglected from this calculation whilst may be included in

lease cost
eCalculated using

Fuel cost per dayð Þ
Price per litreð Þ � Conversion factor, where the conversion factor is 2·67 kg(CO2-eq)/l (AEA, 2012)

fCalculated using 1·01 kg/km of CO2 (Atkins, 2007)

Table 1. Typical costs of running diesel and electric vehicles, and

estimated costs for VLR vehicle over Looe to Liskeard route

(at 2015 prices)
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vehicle facilitates improved acceleration and braking rates,
hence increasing the network capacity. Finally, a modular con-
struction enables mass production of standardised components,
thereby reducing costs.

The use of a hybrid drive system increases the interoperability
of the vehicle throughout the GB network compared to electric
traction. Although electrification is planned to increase the
efficiency of the GB network, it is not suitable for all lines due
to the high initial costs, and economically precludes the
opening of new lines.

Civil infrastructure requirements are reduced through the
lower axle loads of the VLR vehicle, enabling the implemen-
tation of a system more similar to that used for light rail net-
works. As the bogie is designed according to mainline
standards, the railcar can not only operate on light rail infra-
structure, but also on heavy rail infrastructure of the mainline
network.

The VLR vehicle currently operates using a diesel–electric
hybrid. However, it should be noted that alternatives to the
diesel engine could further reduce the operating costs and
carbon dioxide emissions. Although variations to the design
of the VLR vehicle to incorporate alternatives have not been
investigated in this paper, the modular bogie design allows for
relatively simple incorporation of alternative prime mover tech-
nologies, including natural gas combustion engines, hydrogen
fuel cells or fast charging battery systems.

The VLR vehicle is expected to operate at significantly reduced
costs compared to existing diesel vehicles, with estimated
annual savings of approximately £96 000. Furthermore, the
reduced installation and operating costs compared to electrifi-
cation facilitate a significantly reduced payback time.
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