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Abstract

Abstract

Malaria is a parasite with a complex lifecycle, and commonly used anti-

malarial agents from the artemisinin family have varied effectiveness

over different stages of this lifecycle. The pharmacokinetic profile of

the artemisinins is also strongly influenced by the parasite burden and

lifecycle stage. This work introduces a new pharmacokinetic and phar-

macodynamic model incorporating these interdependent drug and life-

cycle features, for orally administered artesunate and its principal meta-

bolite dihydroartemisinin.

This model, like the underlying system whose features it attempts to

capture, is quite complex and cannot be solved analytically like stand-

ard linear first-order compartmental models previously used for pharma-

cokinetic modelling of these drugs. Therefore, understanding, inference

and validity are explored through use of the modern statistical technique

of a Sequential Monte Carlo sampler. Structural, numerical and practical

identifiability are important concepts for all models, the latter two espe-

cially so in this case as the model structure does not admit an algebraic

structural identifiability analysis. Motivated by this, the above identifi-

ability concepts are also investigated in connection with the Sequential

Monte Carlo technique.

Sequential Monte Carlo is demonstrated to be a useful tool for gaining

insight into models whose structural identifiability is not known, just as

it is also shown to have significant advantages in parameter inference

over the classical approach.

xiv



Abstract

The coupled parasite lifecycle and artemisinin-derivative model is

built in stages, starting with an in vitro submodel capturing the dy-

namics of uptake of artemisinins into parasitised and non-parasitised red

blood cells. Next, the parasite lifecycle, or ‘ageing’ model, is introduced,

which uses a new concept of shadow compartments to achieve its aims

of describing ageing in continuous time and to exhibit sufficient con-

trol over the parasite population. Finally, these models are integrated

together into the full coupled pharmacokinetic and pharmacodynamic

model. More work is needed to fully assess the resultant model on clin-

ical datasets, but the building blocks upon which it was constructed

appear to fulfil their aims reasonably well.

xv



1. Introduction

Chapter 1

Introduction

1.1. Background

A brief overview of the background of this work is presented here, so that

the aims and objectives can be stated and understood. More details on

each aspect is given in the dedicated background and literature chapter

following this one, chapter 2.

Plasmodium falciparum malaria: Plasmodium falciparum is the

most deadly of the parasites that cause a severe blood disease known

as malaria in humans. Infection starts when an infected Anopheles mos-

quito carrying sporozoites injects those sporozoites into the subject while

taking a blood meal. Initially the sporozoites develop in the liver, and

after some time release merozoites to begin the blood stage of the life-

cycle. In this blood stage, which is the symptomatic stage, the parasite

has a complicated lifecycle of approximately 48 hours, beginning with

the invasion of red blood cells (RBCs) and ending when the RBCs burst

to release more morozoites into the blood stream ready to invade again.

Some merozoites develop into gametocytes, ready to picked up by another

mosquito taking a blood meal later, where they further develop and rep-

licate into sporozoites, from whence they can infect the next person. See

section 2.1 for more information.

1



1. Introduction

Artemisinins / artesunate and dihydroartemisinin: Arte-

sunate (ARS) and dihydroartemisinin (DHA) are from the artemisinin

class of anti-malarial compounds. These are important anti-malarials be-

cause they work rapidly and effectively, have good safety characteristics,

and limited resistance to these compounds has developed so far. ARS

is water-soluble and thus easy to administer, and is rapidly metabolised

into DHA, which is therefore responsible for most of the anti-malarial

action.

The pharmacokinetics and pharmacodynamics (defined next) of these

compounds are thought to vary significantly based on the stage of the

parasites within their lifecycle, and the resistance that the parasites have

developed to the medication is again thought to manifest most promin-

ently in a limited period of the lifecycle. The details of these stage-specific

effects are given in section 2.2.

Pharmacokinetics (PK): Pharmacokinetics is the study of the time

course of the movement and changes to a substance (typically a drug)

after it enters the body. This encompasses the absorption, distribution,

metabolism and elimination of the substance. In a quantitative sense,

pharmacokinetics of a substance are often described through a mathem-

atical model such as a compartmental model. In such a model, the body

is represented in a simplified manner as a number of connected functional

compartments, where the kinetic behaviour in each individual compart-

ment is considered identical for all molecules of the drug represented as

being lumped into that compartment.

Pharmacodynamics (PD): Pharmacodynamics, on the other

hand, is the study of the effect on the body resulting from a specific

substance. Pharmacodynamics is tightly coupled with the concept of

pharmacokinetics since the amount of substance in a particular location

in the body is the biggest influence on the effect that the substance has

in that location.

Details on the modelling techniques and assumptions present therein

2



1. Introduction

are described in section 2.4.

Pharmacometrics: The term pharmacometrics refers to pharma-

cokinetics, pharmacodynamics and other mathematical methods of ana-

lysis and interpretation of drug data.

Structural, numerical and practical identifiability: Once a

mathematical model has been developed, values need to be assigned to

its parameters. The goal is to find parameter values such that the model

does a good job of describing real data. However, this is not necessarily

a well-posed problem: even in a setting of perfect error-free data, there

may be multiple (even uncountably many) parameter values that provide

equivalent observable model behaviour, usually with quite different im-

plications for model predictions of unobserved behaviour. This situation

is known as structural unidentifiability if there are uncountably many

such values or structural local identifiability if there are countably many.

The converse is known as structural global identifiability. In the structur-

ally non-global situations, the data alone (even if perfect and error-free

as is assumed) is incapable of discriminating between the various pre-

dictions. This may mean that one or more desired outcomes from the

model may instead have to be applied as assumptions in the modelling

process, rather than informing on and providing evidence for those as-

pects. Alternatively, it may be necessary to modify the model and/or

the data collected so that parameters of interest are instead structurally

identifiable, which may then potentially permit collection of evidence for

or against the desired outcome.

However, even if a model is structurally (globally) identifiable — and

can be shown to be so (often this is very challenging to demonstrate) —

it does not necessarily follow that the parameters can be reliably determ-

ined under the non-perfect conditions of discrete observations, especially

where those observations are also made with uncertainty/error. The

terms numerical (un)identifiability have been adopted in this thesis to

describe the situation in this context, where it is known that the model

3
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is perfectly capable of describing the underlying data (e.g. because it has

been tested against synthetic data generated using the model).

Finally, when dealing with real data where the model is unlikely to be

a perfect description of the underlying experimental system, the problem

is known herein as the practical identifiability problem. More detail on

these identifiability aspects is provided in section 2.5.

1.2. Aims and objectives

The main aim of this work was to develop, analyse and validate a mechan-

istic model coupling artesunate and dihydroartemisinin pharmacokinetics

with the corresponding pharmacodynamics, that can account for effects

that are specific to certain stages of the malaria parasite lifecycle.

Such a model would ideally:

1. be capable of describing in vivo and (mutatis mutandi) in vitro

pharmacokinetics and pharmacodynamics on an individual level,

with the potential to do the same on a population level;

2. provide reasonable prediction of dynamics that cannot be measured

or observed;

3. be able to reproduce or confirm current knowledge or hypotheses

regarding stage specific action and the effect of resistance;

4. be suitable for estimating the effect of different dosing regimens;

5. be able to identify or confirm, and simulate the effect of, potential

improvements to treatments;

6. be relatively simple and easy to follow/use;

7. be free of jumps in the time course predictions and observations;

and the analysis would ideally include:

4
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1. showing the model to be structurally identifiable (preferably glob-

ally so), as well as numerically and practically identifiable;

2. obtaining Bayesian posterior distributions of model parameters, for

various subjects/in vitro studies and/or synthetic data;

3. determining the sensitivity of the model to the parameters.

This will therefore necessitate an exploration of the current methods

available for analysing models for structural identifiability and determin-

ation of their suitability for the developed non-linear model with switch-

ing behaviour. Such structural identifiability methods may need to be

adjusted and implemented.

As part of the statistical analysis and parameter inference, it will be

necessary to implement a Monte Carlo method to cope with the high-

dimensional situation and the complicated model. In particular, it is

intended to implement a Sequential Monte Carlo (SMC) sampler. This

class of samplers are still somewhat computationally demanding but have

the advantages that they can be tested for convergence in a simple way

and that the parameters do not need to be precisely tuned to behave

reasonably. Of course, there is an element of tuning but essentially,

given enough particles, enough iterations and enough runs, and a sensible

proposal distribution, a good approximation of the posterior distribution

will be obtained. Such samplers have apparently been used only rarely in

these situations to date, so it will also be helpful to use an SMC sampler

on simpler models to understand the behaviour and limitations of the

method and situations to be aware of.

1.3. Structure of this thesis

Chapter 2 introduces the application area of malaria and motivates in-

vestigation of the artemisinin class of anti-malarial drugs. Background

material is provided on the modelling and analysis techniques used later

5



1. Introduction

in the thesis, including the important concept of structural identifiab-

ility, and some methods for conducting such a structural identifiability

analysis, and a discussion of the difficulties that may arise in attempting

to carry out such an analysis. Related forms of analysis known as nu-

merical and practical identifiability analyses are also introduced, which

complement a structural identifiability analysis and can suggest different

angles for attacking the structural identifiability analysis if it has not

been possible or straightforward to solve directly.

The specific pharmacokinetic, in vitro, and pharmacokinetic/phar-

macodynamic datasets used in this thesis are introduced, as are existing

models with similar aims to this work in summarised format.The phar-

macokinetic model from Hall [1] is also presented again as it is revisited

here.

A Sequential Monte Carlo method is introduced in subsubsec-

tion 2.7.6.1 for the purposes of parameter inference and for determining

numerical and practical identifiability. This method is then applied to a

low-dimensional model with known posterior distribution, and the out-

put compared with that known posterior, and then also applied to the

pharmacokinetic model.

In section 4.2, a new pharmacokinetic/pharmacodynamic model is

then introduced, with some discussion on its behaviour and properties.

Finally, section 5.1 outlines the further work relevant to the model that

would ideally be conducted if time and funding permitted.

6



2. Background and literature review

Chapter 2

Background and literature

review

2.1. Malaria

Malaria is an extremely burdensome disease caused by micro-parasites

with asexual lifecycles, and is transmitted via Anopheles mosquitoes as

vectors. There are 5 malaria parasite species (Plasmodium) that can in-

fect humans, and together they continue to infect hundreds of millions of

people every year, with 3.2 billion people being considered “at risk” by

the World Health Organisation. It is still a major killer in parts of the

world, despite recent efforts having some success in reducing mortality

rates [4]. Even where malaria does not cause death it is still has a severe

effect on those infected, and on the health care systems and socioeco-

nomics of the countries and communities where the most vulnerable live

[5, 6].

Young children are the most severely affected, with malaria having

killed nearly half a million African children in 2013 before they turned

five (equivalent to approximately one death every minute) [7]. Indeed,

malaria is the cause of 15% of deaths of children under five in parts of

Africa [7].
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Malaria is (currently) an entirely preventable disease, with a single

bed net (if used appropriately) providing an effective barrier from mos-

quito bites for a few years, spraying indoor insecticide is effective for

many months, and prophylactic medicines are available. There are also

recent hopes concerning malaria vaccines [8]. Many treatments are also

available for malaria, which are often effective if they can be administered

to patients in reasonable time. However, resistance to malaria treatments

has been detected in many regions and is a major concern [9]. If new

treatments cannot be introduced, and current treatments rendered more

effective, both as a matter of urgency, then controlling malaria even to

the same extent as currently will cease to be possible, and the unpleasant

statistics presented above will only get worse.

The most deadly malaria species in humans is Plasmodium falciparum

[4], and is the species focussed on in this work. After an initial phase

in the liver, the parasites emerge into the blood stream and, from there,

undergo a 48 hour lifecycle, depicted in Figure 2.1. It is in the blood

stage that symptoms begin and this work concentrates on this blood

stage, which tends to synchronise in vivo, i.e. with the majority of para-

sites simultaneously at similar stages in their lifecycles [10]. The parasite

blood stage lifecycle starts with the invasion of red blood cells, from

whence maturation begins. The parasites are seen to have a ring-shape

for the first 12 hours or so, and these 12 hours are divided into “early”

and “late” ring stages. For the next 12 hours, the parasites are said

to be in the young trophozoite stage, and they begin to multiply into

around 5–32 (mean 20) new daughter parasites called merozoites [11, 12,

13]. After this 12 hour period, the parasites become mature trophozoites,

whereupon the infected red blood cells sequester in the organs to avoid

clearance by the spleen [14], meaning that they do not circulate around

the body with the remainder of the blood. Therefore, they cannot be

detected in blood drawn from patients in the usual way. After the next

12 hours, known as the schizont phase, the cells burst and release the

8
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merozoites into the blood stream to start the cycle afresh, but with po-

tentially fewer red blood cells available for re-invasion. It is this bursting

phase of the lifecycle that causes most symptoms [15], though the se-

questration in organs can also reduce blood flow to those organs which

can cause more severe symptoms [16].

The causes of transition from uncomplicated to severe malaria are not

well understood [12]; it is not as simple as developing a high parasitaemia

[17]. People in endemic areas are more likely to have gradually developed

resistance over repeated exposure [18] and so are not affected by high

parasitaemias in the same way as those from non-endemic areas [17].

Non-immune individuals might show symptoms with a parasite load of

10 per microlitre of blood, while partly immune individuals will not show

symptoms unless the load reaches 1,000 parasites per microlitre of blood

[19].

Plasmodium falciparum parasites are most metabolically active dur-

ing the mature ring stage of their lifecycle, and this explains why many

of the drugs for treating malaria are most effective against this stage [20].

The next subsection describes the class of anti-malarials of most interest

here, Artemisinins.
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merozoites∗,
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∼ 6 hours
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∼ 6 hours
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∼ 12 hours

mature
trophozoites,
∼ 12 hours

schizonts,
∼ 12 hours

from liver

the sum of the ring
and young trophozoite
forms is observed

= circulating, = sequestered.

∗Each red blood cell releases between 8 and 20 merozoites when
rupturing. These usually reinvade new red blood cells within minutes
and start to develop into ring forms, renewing the cycle.

Non-endorsed derivative of graphics © The Wellcome Trust; used under

license (Creative Commons Attribution 2.0 UK).

N Figure 2.1: Main blood stages of the Plasmodium fal-
ciparum malaria parasite lifecycle and their
durations

2.2. Artemisinins

Although also used for other species of malaria and even different pur-

poses altogether, the artemisinin class of compounds is highly effective

against at least parts of the blood stage of Plasmodium falciparum and

have been used with increasing frequency since the 1990s [21]. Artemisin-

ins are generally recommended to be administered together with a con-

comitant drug with a different mechanism and a longer duration of ac-

tion in an effort to delay resistance [9]. Such treatments are known as

10
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artemisinin-based combination therapies and are the most effective an-

timalarials available today [22, 23]. As such, they are the treatment

recommended by the World Health Organisation for many classes of pa-

tient [9].

Artemisinins alone are the most rapidly acting of all current antimal-

arial drugs [24] and are able to reduce the parasite biomass ∼10,000-fold

per asexual life cycle [25]. Combined with their wide tolerance, it is clear

to see that artemisinins are incredibly important to malaria control and

treatment efforts. However, this class of anti-malarials have also shown

waning efficiency in parts of South-East Asia [4], thought to be due to

malarial resistance to the compounds affecting the associated pharmaco-

dynamics in the early stages of the parasite lifecycle [26].

Artemisinin drugs distribute into red blood cells, primarily infected

ones, and this is where their anti-malarial action is thought to occur.

However, debate remains concerning the exact mechanism of action of

these compounds [27, 28, 29]. The general theory is that iron accumulates

in red blood cells which have been infected by malaria parasites, which

then react with the artemisinin compounds, forming free radicals which

in turn damage the parasites [30], although a number of unanswered

questions remain [31]. The accumulation of artemisinins in parasitised

red blood cells may therefore play an important part in their potency

[24]. This suggests that the pharmacokinetics of the drug will differ

vastly between healthy individuals and malaria patients, which is indeed

found to be the case [32], though the degree of severity of the malaria

infection appears to be less important [33]. However, the blood plasma

concentration–time profiles and thus the pharmacokinetics of artemisin-

ins have been shown to display high inter-individual variability in many

studies, even after accounting for many covariates such as baseline para-

sitaemia, age, body weight and gender [34], and this variability increases

in malaria patients compared to healthy volunteers [35].

Artemisinins are effective throughout a wide period of the parasite
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lifecycle [26], though the effectiveness varies throughout that lifecycle

[31, 36], especially where resistance has emerged [26, 37]. It is also likely

that different derivatives are affected by resistance to differing extents

[38].

Further understanding of the pharmacokinetics and pharmacodynam-

ics of artemisinins may assist in informing more effective dosing regimens,

discovering more about the effects of resistance, as well as in developing

new or complementary antimalarials or artemisinin derivatives with de-

sirable properties.

Artesunate (hereafter ARS) is the most frequently used artemisinin

derivative, and is rapidly and almost entirely converted to di-

hydroartemisinin (hereafter DHA) in vivo, mostly by plasma esterases

and liver cytochrome P450 CYP2A6 [39, 40, 41]. DHA is the most act-

ive of all major artemisinin derivatives, with activity approximately 1.4

times that of ARS [42].

ARS is water soluble, facilitating its absorption [43] (usually assumed

to be fast, efficient and first-order [39]). Although it is rapidly hydro-

lysed into DHA, it may still make a significant contribution to parasite

kill [44]. DHA is also rapidly eliminated from plasma, again either due

to accumulation in infected red blood cells or through further metabol-

ism (e.g. glucuronidation [45]), but the metabolites of DHA are inactive

[46]. Although ARS and DHA are rapidly eliminated from plasma, anti-

malarial effect is observed to continue for some time after decline of both

ARS and DHA plasma concentrations to ineffective levels [47].

2.3. Data

It is important when designing a model to consider the data that are

available to calibrate or otherwise verify the model. A model that is

too ambitious will not be supported by the data, while a model that

is too simplistic may not be able to relate to the data in full, or may

12
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not reproduce some of the observed features of the data. Therefore, an

overview of the available data is provided now, before any models or

modelling techniques are discussed.

Two in vivo datasets have been made available for use in this thesis.

One consists of pharmacokinetic data only, and will be referred to as

the Mahidol_PK dataset. This dataset was also used in Hall [1] and

Hall et al. [2]. The other, corresponding to a different study, contains

pharmacokinetic and pharmacodynamic data, and will be referred to as

the MORU_ARC3_PD dataset.

Additional data were extracted from Vyas et al. [48] and are also

presented here.

2.3.1. Mahidol_PK dataset

The Mahidol_PK dataset consists of 19 malaria patients from a study

carried out at the Department of Clinical Tropical Medicine, Faculty of

Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand. Pa-

tients were selected based on a diagnosis of adult non-severe P. falciparum

malaria with a parasite count less than 10,000 parasites per microlitre of

blood. The patients were each administered 2mg/kg artesunate in frac-

tions of 50mg oral tablets (body weights not part of the dataset provided

to the author) twice daily for three days, in combination with 1800mg

fosmidomycin and 750mg azithromycin which are antibiotics and not con-

sidered relevant to the modelling (described later). Food was restricted

for the first hour after dosing.

The data consist of ARS and DHA concentrations (provided in units

of ng/ml but converted to nmol/l prior to analysis) from assayed blood

plasma samples over a time course of 12 hours. Blood plasma samples

were drawn from the patients immediately after administration of the

first dose on the first day, 15 minutes after, 30 minutes after, 1 hour after,

1.5 hours after, 2 hours after, 3 hours after, 4 hours after, 6 hours after,

13
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8 hours after and 12 hours after administration of the first dose on the

first day. No samples were taken for subsequent doses or on subsequent

days and so cannot be included in the modelling.

Samples were analysed to determine their ARS and DHA concen-

trations using tandem liquid chromatography-mass spectrometry (on a

Thermo Fisher Quantum Access Triple Quad Mass Spectrometer) based

on the assay described in Hanpithakpong et al. [49]. (The individual

samples were analysed only once but assay robustness was confirmed by a

re-analysis of approximately 10% of all samples. Analytical runs included

a full calibration curve and three replicate quality control samples.) The

assay has an associated lower limit of quantification (LLOQ) for each

analyte and passed Food and Drug Administration (FDA) validation,

for which the requirement is to measure quality control samples and

standard curve samples with known concentrations above the respective

LLOQ to within ±15% of the nominal value. Specifically, the coefficient

of variation for the assay is 15% for both analytes. Values below the

respective LLOQ may have significantly greater relative uncertainty or

noise. The LLOQ for ARS was LLOQ1 = 3.9 nmol/l and that of DHA

was LLOQ2 = 22.9 nmol/l. The assumption is that values reported for

unknown samples above the respective LLOQ will also be within 15% of

the actual value. Observations below the respective LLOQ are felt to be

so unreliable that such values are not quantified; they are only reported

as being below the limit of quantification (BLQ). In this way, 41% of the

ARS data and 8% of the DHA data are censored.

Note that over the 12 hour time span for a single subject, a wide

range of drug concentrations was observed, most particularly for DHA.

Specifically, for DHA, concentrations smaller than the LLOQ and con-

centrations above 6, 000 nmol/l were recorded for some patients over the

course of the sampling interval. In common with other studies, there was

also wide variability between patients in terms of the concentration–time

profiles for both ARS and DHA.
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The majority of the patients had peak ARS concentrations within 1.5

hours after drug administration (74%), and peak DHA concentrations

within 2 hours (63%). However, it was already clear from the data that

over half of the patients experienced delayed or possibly double peaks

in the concentration–time profiles for both ARS and DHA. These are

not thought to be outliers due to the assay validation, and the pattern

is quite consistent in some individuals. There are no covariates with

these data to allow further analysis and the cause of this phenomenon is

not known, nor the frequency of incidence in other artesunate studies as

individual patient profiles are often not discernible. This issue does not

appear to be widespread or well known in relation to artemisinin drugs,

but has been reported with the derivative artemether, which was found

by Van Agtmael et al. [50] to have a biphasic absorption profile. As the

mechanistic cause of the phenomenon is unknown, the differences in the

absorption process have not been accounted for in the present model.

This indicates that the model is misspecified and will not be suitable

for all the patients, though it is hoped that it will still be applicable

for many of the patients. The patients were therefore divided into two

groups, one where the concentration–time profiles for both ARS and DHA

exhibited only a single peak each within the expected time after drug

administration, and the other group for the remaining patients where the

absorption profile was unexpected, e.g. being slower to reach the peak

concentrations, having multiple peaks and/or having delayed elimination.

2.3.2. In vitro uptake data

Vyas et al. [48] have conducted radio-labelled in vitro experiments to

assess the rate, extent and reversibility of uptake of artemisinin into

Plasmodium falciparum parasitised and non-parasitised red blood cells.

They incubated radio-labelled artemisinin in blood for set times under

controlled experimental conditions, varying these conditions to invest-
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igate the effect of haematocrit, parasitaemia, temperature, artemisinin

concentration and incubation time on the extent of uptake into red blood

cells. After incubation, they separated (centrifuged) the red blood cells

(precipitate/pellent) from the plasma (supernatant) and counted the dis-

integrations per minute from each. The partitioning fraction was then

calculated as the ratio of the number of disintegrations per minute from

the pellent compared to the total number of disintegrations per minute,

and thus shows the degree of uptake of the artemisinin into the red blood

cells.

They used their results to conclude that artemisinin diffused passively

and reversibly across the red blood cell membrane for uninfected cells,

but that uptake was higher, saturable and irreversible in infected red

blood cells, supporting the belief that the process is carrier mediated.

Their quantitative experimental results were presented in graphical

format, showing the uptake into the red blood cells under the various

experimental conditions. Some of these results have been extracted from

the graphs to facilitate use in models in this work, and are presented in

Table 2.1. Results obtained below body temperature (37°C) are not of

interest here and have not been extracted.

Although these results concern artemisinin itself, rather than arte-

sunate or dihydroartemisinin which are of interest here, there are no

known available data for the latter two derivatives, and because they are

from the same family, it will be assumed that they behave similarly.

16



2. Background and literature review

Experimental conditions Observation
initial

artemisinin
concentra-

tion
(nM)

parasitaemia
(fraction)

hematocrit
(fraction)

incubation
time

(hours)

partition in
pellet

(fraction)

880 0 0.1 2 0.20
880 0 0.2 2 0.28
880 0 0.33 2 0.39
880 0 0.44 2 0.48
880 0.06 0.1 2 0.38
880 0.06 0.2 2 0.52
880 0.06 0.33 2 0.62
880 0.06 0.44 2 0.67

1,410 0.07 0.33 0.083 0.33
1,410 0.07 0.33 0.167 0.36
1,410 0.07 0.33 0.333 0.39
1,410 0.07 0.33 0.5 0.46
1,410 0.07 0.33 0.75 0.50
1,410 0.07 0.33 1 0.54
1,410 0.07 0.33 2 0.55
1,410 0.07 0.33 3 0.54
1,410 0 0.33 0.083 0.30
1,410 0 0.33 0.167 0.30
1,410 0 0.33 0.333 0.32
1,410 0 0.33 0.5 0.32
1,410 0 0.33 0.75 0.33
1,410 0 0.33 1 0.31
1,410 0 0.33 2 0.34
1,410 0 0.33 3 0.33
880 0.06 0.33 2 0.61

1,060 0.06 0.33 2 0.63
1,230 0.06 0.33 2 0.52
1,410 0.06 0.33 2 0.49
1,760 0.06 0.33 2 0.49
2,110 0.06 0.33 2 0.44
2,820 0.06 0.33 2 0.40
3,520 0.06 0.33 2 0.37
880 0 0.33 2 0.37

1,060 0 0.33 2 0.36
1,230 0 0.33 2 0.35
1,760 0 0.33 2 0.33
2,110 0 0.33 2 0.35
2,820 0 0.33 2 0.36
3,520 0 0.33 2 0.36

Table 2.1: Table of artemisinin in vitro red blood cell up-
take data extracted from Vyas et al. [48]
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2.3.3. MORU_ARC3_PD dataset

A pharmacokinetic, pharmacodynamic dataset including ARS and DHA

concentration-time courses, and parasitaemia and haematocrit time

courses was provided for 80 Plasmodium falciparum patients across two

study sites, 40 patients from each of Wang Pha (Thailand) and Pailin

(Cambodia), which are areas of low transmission intensity. Half of the

patients from each site were randomly assigned to receive 2 mg/kg oral

artesunate every 24 hours for seven days, and the other half received

4 mg/kg oral artesunate for 3 days together with mefloquine (another

anti-malarial agent) on days 3 and 4. The (anonymised) data consist of

artesunate and dihydroartemisinin concentrations (ng/ml converted to

nmol/l, “<LLOQ” or “No Peak”) in blood plasma (not whole blood con-

centrations) and timings thereof (date, hours, mins) at various intervals

over the treatment period, together with parasite counts (per mm3 whole

blood, decimal with varying degrees of accuracy) and timings thereof

(decimal relative to first dose) and haematocrit levels (%, decimal with

varying degrees of accuracy, same timings as parasite counts) during both

the treatment (every 4–8 hours) and follow-up periods. The exact time

and dates (date, hours, mins) and amounts (mg) of artesunate doses were

recorded, as were any adverse events that the patients experienced (e.g. if

patient vomited and needed the drug to be re-administered), symptoms,

concomitant diseases and medications, and previous relevant medication

and comprehensive admission data, including age at time of enrolment,

height, weight, biochemistry, haematology and daily clinical observations

(heart rate, respiratory rate, temperature, etc).

These data were previously used by Dondorp et al. [51] and Saralamba

et al. [37]. Dondorp et al. [51] used these data to conclude that the mal-

aria has reduced in vivo susceptibility to artesunate in Pailin compared to

Wang Pha, corresponding to slower parasite clearance. Saralamba et al.

[37] used these data to support a hypothesis that the resistance mainly
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reduces ring-stage susceptibility, and suggests doubling the frequency of

artesunate dosing to restore the higher parasite clearance rate.

Mefloquine was not described earlier since it is not a focus of this

work, but it is an anti-malarial compound mostly affecting schizonts,

and reaches its peak concentration following a single dose in 17.6 hours

and has a mean elimination half-life of 18.1 days [52]. This is therefore a

much longer-acting compound when compared to the artemisinins and so

is a suitable partner drug for artemisinin combination therapy. However,

unlike the artemisinins, a single dose of mefloquine does not provide

sufficient blood concentrations to achieve a reasonable efficacy, and so

it is normally dosed with a high dose daily for 3 days, and lower doses

thereafter, to reach such a suitable concentration during the third or

forth days [52]. The data for the later days where mefloquine has been

used as a concomitant cannot therefore be directly used to determine the

efficacy of the the artemisinins to schizonts, but it may be possible to

estimate the contribution that the mefloquine made to parasite kill.

2.4. Modelling techniques

In order to extract the most information out of a model, sufficient in-

formation must be incorporated in the design of the model. Namely, in

order to use a model for predictive purposes, knowledge (or predictions)

of the mechanisms used by the system being modelled should be incor-

porated into the model. This is preferable to purely data-driven models,

which lack the same kind of predictive power to answer questions about

what might happen at times beyond the observed range, or with different

inputs or input sites, for example. While a mechanistic model is more

likely to suffer from model mis-specification, data can help discrimin-

ate between candidate mechanistic models and to provide evidence for

or against specific mechanisms. The modelling techniques used in this

work are mechanistic and include a combination of compartmental and
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receptor-ligand type models. For simplicity, all randomness is assumed

to arise from a non-systematic error on the observations; the models

themselves are deterministic.

2.4.1. Compartmental models

(Note that much of the material in this section is adjusted from Hall [1].)

A compartmental system model is made up of a finite number of

• compartments — kinetically homogeneous amounts of material [53,

p. 3] (homogeneous, well-mixed, lumped subsystems [54, p. 1])

(with associated quantities);

• flows — material transfer between compartments and to and from

the environment, including inputs to the system (with associated

flow rates),

• observations — functions of the compartments defining quantities

of which measurements are to be made at least once,

such that the quantities of material within each of the compartments may

be described by a set of coupled first-order ordinary differential equations

[54, p. 1].

By employing compartmental modelling, some key assumptions/sim-

plifications are made:

• mixing of the substance within each compartment is complete (if

not, the flow rates will not always be proportional to the present

value of the concentration [55, p. 60])

• mixing of the substance within each compartment is instantaneous

[55, p. 60].

Note that these assumptions are unlikely to hold in practice, but they

are simplifications which allow easy model formulation and often result

in models which are successful [54].
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Only deterministic compartmental models are considered here. Com-

partmental models involve mass-balance and can be succinctly described

by diagrams, though rate functions and initial conditions usually also

need to be specified, and depending on the number and length of such

expressions, it can be clearer to do so separately from the diagram.

The compartments are typically represented by circles or rectangles,

flows between compartments are represented by simple arrows, and out-

flows from the system which are a special case of flows (elimination flows)

are represented by arrows similarly to flows, but without a receiving

compartment at the end of the arrows. Flows which are linear will be

represented in this thesis by having a single arrowhead, while non-linear

flows will be represented with a double arrowhead. Non-linear flows will

generally be given by the flow rate rather than the flow rate constant.

Inputs to the system will be represented by double-stroke arrows, and

finally, observations will be represented by an eye connected by dashed

lines to any compartments whose quantity or concentration of material

directly forms part of the observation function, unless it would be too

visually distracting to do so.

Throughout, T will denote the time domain of interest, and without

loss of generality will be assumed to start at initial time 0. The quant-

ity of material in compartment i at time t ∈ T is often denoted qi(t)

[56, p. 260] (which therefore has the constraint of being non-negative),

and the flow rate from compartment i to compartment j is denoted by

kj,i(t) (note that conventions for the order of indices of flows rates differ

between the pharmacokinetic literature and elsewhere [54, p. 2]), while

the environment — representing anything external to the system model

— will be denoted by e (some authors use 0 [56, p. 260]).

For linear time-invariant flows, rate constants kj,i are generally shown

instead of flow rates because they simplify the presentation (and in par-

ticular it is easier to fit the information on the model diagram). However,

the notation for rate constants is somewhat abusive: the corresponding
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flow rate at time t is the rate constant times the quantity of material

in the donor compartment at time t, i.e. kj,i(t) = kj,iqi(t), where kj,i(t)

represents an (instantaneous) flow rate, and the constant kj,i in the right

hand side of the equation is a flow rate constant.

This work will use flow rates which are donor-controlled, as well as

flow rates which are not. Donor controlled means that the flow rate is a

function only of the quantity of material in the donor compartment, not

of any other compartments, i.e. the flow rate kj,i(t) from compartment i

to compartment j is a function of qi(t) only: kj,i(t) = f(qi(t)) for some

function f . In the linear flow case, this f is linear, and so admits a

description by a flow rate constant as above. For flow rates that are not

purely donor-controlled, it can be helpful to draw some connection (e.g.

a dashed line) between the flow rate and the controlling quantities, but

in practice this can overwhelm the diagrams.

The most general form of equation for the quantity of material in

compartment i in a non-linear compartmental system, which is derived

on the basis of mass-balance principles, is:

q′i(t) = ki,e(t) +
∑
j

ki,j(t)−

ke,i(t) +
∑
j

kj,i(t)

 ,
where the sums are taken over all compartments j 6= i, and any flows

which do not occur have rate function identically 0.

These equations, together with equations for the observation function

y:T → Rm and initial conditions q(0) ∈ Rn, make up the general form

of a compartmental model:


q′(t) = f(q,p,u, t)

q(0) = q0(p)

y(t) = h(q,p, t),

(2.1)

where t ∈ T. f has special properties due to the model’s compartmental
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structure. Here, p ∈ Rd denotes the collection of system parameters and

u ∈ Rs denotes the input. h is called the observation function. From a

classical systems perspective, h might be referred to as the output of the

system, especially when considering input-output structure, but during

the modelling stage, it is helpful to be lucid about the distinction between

material outflow and observations.

2.4.2. Non-compartmental models

A model similar to a receptor-ligand binding model will be assumed for

the active uptake of artemisinins by red blood cells. Red blood cells

are treated as having a varying number of receptors based on whether

the cell is infected by malarial parasites, and the stage within the li-

fecycle of those parasites. Artemisinins are treated as ligands, which

form receptor-ligand complexes when bound to receptors in the red blood

cells. Compartmental models cannot conveniently be applied to model

receptor-ligand binding, because unless each complex compartment is

duplicated (for each species involved in the complex), the principle of

mass-balance is violated. Certain assumptions could generally be made

which can enable use of approximation by Michaelis-Menten kinetics, but

these assumptions are not valid in the particular receptor-ligand context

used here, and so this concept is not discussed.

The approach taken here is to relax the assumptions of “compart-

mental mass-balance”, which also means that simple model diagrams are

no longer sufficient to fully describe a model, because the concept of

“flow” is altered: a receptor and a ligand need to bind (i.e. a donation

needs to be made from 2 source compartments) in order for there to a be

a flow into the receptor-ligand complex compartment. Of course, mass-

balance equations still apply to such reactions but strictly compartmental

models require no merging or splitting of molecules. The other assump-

tions for compartmental models are carried forward to receptor-ligand
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models: flows are first-order and receptors and ligands are well-mixed

(equally accessible). It is also assumed that partial binding is not pos-

sible, and if the dissociation rate constant is non-zero, that binding does

not alter the ligand or receptor so each can again participate in a future

binding reaction.

Denoting the molar concentration of receptors by [R], the molar con-

centration of ligands by [L], the molar concentration of receptor-ligand

complex by [RL], the association rate constant by kon and the dissoci-

ation rate constant by koff, the equations describing the system are given

by the law of mass action:

d
dt [R] = −kon[R][L] + koff[RL],

d
dt [L] = −kon[R][L] + koff[RL],

d
dt [RL] = kon[R][L]− koff[RL].

It can therefore be seen that [R] + [RL] and [L] + [RL] are conserved

(constant) quantities.

Generally if such models are discussed on their own, they are depicted

similar to Figure 2.2. However, in this work, they will be incorporated

into a more complicated model that would otherwise be compartmental,

so the receptors will be shown as disconnected from the ligand and com-

plex compartments, and molecular quantities will be shown instead of

molar concentrations, as in Figure 2.3. It is noted that this does not

show all required details, but is felt to be clearer than diagrams where

such details are attempted to be shown, especially where the same re-

ceptor pool can bind to ligands from multiple different compartments.
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[R] [L] [RL]+
kon

koff

N Figure 2.2: Diagram representing receptor-ligand bind-
ing and associated rate constants

R

L RL
kon(t)

koff(t)

N Figure 2.3: Diagram representing receptor-ligand bind-
ing and associated non-linear rate flow rates
when used as a component in an otherwise
compartmental model

The general form of system model equations that will be considered

here is: 
q′(t) = f(q,p,u, t)

q(0) = q0(p)

y(t) = h(q,p, t),

(2.2)

(t ∈ T) which is very similar to (2.1) except that the compartmental

structure of f is no longer assumed (though the positivity constraint

still applies).
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2.5. Structural identifiability

2.5.1. Overview and importance

Once a structural model has been designed, it will very often have a

number of unknown parameters that might be particular to a certain pa-

tient or population, rather than having a value derived from a universal

physical law. In order for a model to have maximal utility, it is necessary

to estimate those unknown parameters and to specify the degree of cer-

tainty to which those estimates are valid. It may be the case that multiple

parameter sets have indistinguishable input/output (stimulus/response)

behaviour. In such cases, model utility may be limited since any inform-

ation extrapolated from the model may have a wide range of equally

plausible values, without there necessarily being any way to filter those

values into a meaningful or manageable range.

Once a candidate model and its input-output behaviour have been

selected, it becomes possible to ask the theoretical question of whether

that observable input/output behaviour (together with any relevant prior

knowledge) is sufficient to determine the necessary information for a par-

ticular application of the model, even before considering the issue of data

error or sampling frequency. Indeed (except for in certain machine learn-

ing situations where the parameters themselves are not of interest), the

question should be asked before attempting to collect or analyse data,

and where possible, attempts should be made to answer it. This question

is known as the structural identifiability question.

It is possible that the input/output behaviour is not influenced by

some of the system parameters, or that the influence is only in combina-

tions that do not allow to distinguish the parameters’ effects separately,

and these are the cases when a model is not structurally identifiable.

Structural identifiability is considered under the ideal assumptions of

having both a “perfect model and perfect data”, and (unless the situation

is altered by use of a prior distribution) is a prerequisite for the related
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questions of numerical and practical identifiability, where these assump-

tions are relaxed (though only partially so in the case of numerical identi-

fiability). A “perfect model” means that the model and the system being

modelled are identical [57, p. 20], while “perfect data” involves having

data available over a continuum of times (or less paradoxically, arbitrar-

ily dense data), for any time period of interest, and with no observation

error [58]. Structural identifiability is therefore a property of a structural

model, where that structure is taken to include the controls and observ-

ables. It is independent of any specific datasets, data sampling schemes

or data quantification methods. It is generally of interest to know not

only whether a model is structurally identifiable or not, but which para-

meters are structurally identifiable or structurally unidentifiable, and to

know the complete functional form of other parameter sets that are indis-

tinguishable from the input/output behaviour of the model. Depending

on the structure of the model, it can sometimes be easier to solve the

structural identifiability problem, involving an algebraic analysis, while

for other models, the algebra may be too difficult even for computational

algebra systems to solve, and so answering the numerical and/or practical

identifiability questions may be easier in those situations, though these

cannot directly give the same level of information. However, to determ-

ine the structural unidentifiability of the system, one only needs to find

one generically indistinguishable alternative parameter set, rather than

finding all such indistinguishable parameter sets which most structural

identifiability methods unavoidably attempt to do. Note that the related

problem of structural distinguishability between two or more models is

not considered in this work.

If the result of the structural identifiability analysis is that important

parameters are not structurally identifiable, then it may be necessary

to modify the model structure (including the observable input-output

behaviour) and restart the modelling procedure with a modified model.

Such an analysis is therefore ideally conducted before doing any experi-
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ments to determine whether those experiments are capable of producing

meaningful results, and/or to gain insights on how to improve such ex-

periments, for example by suggesting to make observations of another

state variable or variables (or functions thereof). However, it may also

be possible to re-parameterise the model in such a way that it becomes at

least structurally locally identifiable. It is for this reason that structural

unidentifiability is also termed parameter redundancy by some authors

[59].

Once it has been established that a model is structurally identifiable,

numerical and practical identifiability analyses can suggest specific times

at which it might be optimal to collect data samples from the system

being modelled, and can also be used to give an indication of how many

samples it might be appropriate to collect, or might provide the informa-

tion that, while the model might be structurally identifiable, estimation

of the parameters from the data it is planned to collect will still not be

practically possible.

Only after conducting these analyses should one proceed to actu-

ally attempt to collect real data of interest, or to use already collected

data for parameter inference. Attempting to estimate parameters from

a model whose structural, numerical and practical identifiability has not

been considered is to invite significant and severe problems, to which a

researcher may sometimes remain unaware; at best, they would be unable

to obtain any parameter estimates at all. At worst, incorrect conclusions

could be reached, and with false confidence.

2.5.2. Definitions

There are a number of subtly incompatible definitions in the literature for

structural identifiability, and even more so when expanding to differently

named concepts of identifiability. These differences and incompatibilities

are often perhaps (though certainly not always) unintentional.
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Fix a parameterised system modelM(p) of the form (2.2), and denote

by p = (p1, . . . , pd) a parameter vector parameterising the model. Let

Ω ⊆ Rd denote the space of feasible parameter values. Inequality con-

straints should be incorporated into the feasible parameter space. Only

those parameters which are to be considered unknown should be part of

the model parameterisation p in this section. Any parameters which are

to be considered as known functions of other parameters should also be

eliminated from the parameterisation. If a particular value for a para-

meter is known, it can sometimes be helpful to use that particular value

during the structural identifiability analysis, though equally the converse

can also be true: that using a generic parameter value makes the analysis

easier, and it is therefore wise to try both generic and specific situations.

Any other prior beliefs about the parameters can be considered in a

practical identifiability analysis through a prior distribution, rather than

being considered at this stage.

Note that a model in the above form includes specified initial condi-

tions, possibly in terms of unknown parameters. Though this setup is

intended here, it is worth noting that other authors advocate different

approaches and use different terms to describe the setup here [60].

• Let U ⊆ Rs be the space of admissible inputs to the system.

If the system is uncontrolled then take U = {∅} (i.e. the only

admissible input is the empty function). It is common to simply

refer to an output equation instead of an input/output equation in

such circumstances, without needing to involve the empty function.

• Let Σ̂(p):U → F(T;Rm) denote the input/output map for the

model M(p). This is the map such that Σ̂(p)(u) = y where

y:T → Rm are the observations from the model M(p) when its

input is u. This map plays a key role in structural identifiability,

but it is not always straightforward to obtain an algebraic form of

the input/output map for models of interest. A “structural identi-
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fiability method” generally refers to a method for either generating

such (generic) algebraic input/output maps, or generating exhaust-

ive summaries, which generically capture all the same information

as the input/output map.

Here, F(T;Rm) denotes the space of functions defined on the time

domain T with co-domain Rm.

Definition 1 (Parameter indistinguishability). Parameters p and p are

said to be indistinguishable underM iff Σ̂(p) = Σ̂(p).

Definition 2 (Exhaustive (parameter) summary). A function Σ: Ω →

RdΣ is called an exhaustive summary (or a structural invariant vector

[61]) forM iff for almost all values of p ∈ Ω,

Σ(p) = Σ(p) ⇐⇒ Σ̂(p) = Σ̂(p).

dΣ is allowed to be infinite in this definition, so an exhaustive sum-

mary may consist of a countably infinite sequence (e.g. as is the case for

Taylor series coefficients — see subsection 2.5.5).

Note that Σ̂ is trivially an exhaustive summary. Exhaustive sum-

maries generically capture all the information that is available from the

observable input/output behaviour of the system model. Identifiabil-

ity and structural identifiability are concerned with whether or not the

information from the observable input/output behaviour of the model

is sufficient to distinguish one parameter set from another, i.e. whether

there exist distinct (and possibly arbitrarily close) parameters p,p with

the same observable behaviour Σ̂(p) = Σ̂(p).

Formally:

Definition 3 (Identifiability of parameter combinations at fixed p). Fix

p ∈ Ω. With respect toM, a parameter combination c(p) is said to be:
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• globally identifiable at p iff

if p ∈ Ω and Σ̂(p) = Σ̂(p) then c(p) = c(p); (2.3)

• (at least) locally identifiable at p iff there exists a neighbourhood

N(p) ⊆ Ω of vectors around p such that

if p ∈ N(p) and Σ̂(p) = Σ̂(p) then c(p) = c(p); (2.4)

• unidentifiable at p otherwise.

Note that the qualifier “at least” is replaced with the qualifier “non-

uniquely” when it is known that the parameter is not also globally identi-

fiable. These qualifiers remove the ambiguity that would otherwise arise

when referring to an (unqualified) “locally identifiable” parameter com-

bination.

In practice, one might assess the number of solutions to Σ̂(p) = Σ̂(p)

as follows. Write Sc(Σ, c(p)) to denote the set of all c(p) values within

such solutions, i.e.

Sc(Σ,p) :=
{
c(p): Σ̂(p) = Σ̂(p) for some p ∈ Ω

}
.

The condition of the parameter combination c being globally identifiable

(2.3) is equivalent to Sc(Σ,p) being a singleton set. If the cardinality of

the set Sc(Σ,p) is finite but distinct from (i.e. greater than) one, then

clearly c(p) is non-uniquely locally identifiable. It is common to take

c to be c(p) = pi (a scalar), to determine the identifiability of the i-

th component parameter of p, where the abbreviated notation Si will

be used here for the corresponding Sc. If Si(Σ,p) contains a closed

interval containing pi then clearly the model is unidentifiable at pi. With

more assumptions on the exhaustive summary and/or parameter space,

stronger statements can be made.
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If it is intended to only use a model with a single fixed input, then

it is better to move that input into the model equations directly and to

consider the model as an uncontrolled system. This is because, as can be

seen from the definition, structural identifiability uses information from

all permissible inputs, not a single fixed input. Some authors refer to

the concept of a “persistently exciting input” in an attempt to simplify

matters as they then need to consider only one input.

Now suppose that p is not fixed. The above definitions become their

structural counterparts when the conditions are required to hold for al-

most every p ∈ Ω:

Definition 4 (Structural identifiability of parameter combinations). A

parameter combination c(p) of p is said to be

• structurally globally identifiable (SGI) iff for almost every p ∈ Ω,

if p ∈ Ω and Σ̂(p) = Σ̂(p) then c(p) = c(p); (2.5)

• (at least) structurally locally identifiable (SLI) iff for almost every

p ∈ Ω, there exists a neighbourhood N(p) ⊆ Ω of vectors around

p such that

if p ∈ N(p) and Σ̂(p) = Σ̂(p) then c(p) = c(p); (2.6)

• structurally unidentifiable (SUI) otherwise.

Definition 5 (Identifiability and structural identifiability of models).

The identifiability status of the whole model at p is defined to be the

identifiability status of the identity parameter combination (c = identity

in Definition 3) at p.

Similarly, the structural identifiability status of the whole model is

defined to be the structural identifiability status of the identity parameter

combination in Definition 4.
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Equivalently, this can be expressed in terms of the identifiability of

the component parameters as follows (phrased only for structural iden-

tifiability for brevity):

• If all the component parameters in the model are structurally glob-

ally identifiable then the model itself is said to be structurally glob-

ally identifiable;

• The model is (at least) structurally locally identifiable iff all com-

ponent parameters of p are (at least) structurally locally identifi-

able;

• The model is structurally unidentifiable iff any of the component

parameters of p are structurally unidentifiable.

(Some authors prefer the term partially structurally identifiable iff

some but not all of the component parameters of p are structurally

unidentifiable.)

A model is therefore structurally globally (locally) identifiable iff there

exists a null set E with Σ̂ (locally) injective when restricted to Ω \ E.

By the definition of exhaustive summaries, the input/output map in the

definitions of identifiability and structural identifiability can be replaced

with any exhaustive summary for the model. Most structural identifi-

ability methods work by producing a simpler exhaustive summary than

the original input/output map, upon which simpler methods (such as the

direct test method) can often be used to determine the generic injectivity

and thus structural identifiability.

Instead of solving Σ(p) = Σ(p) for p, it may sometimes be algebra-

ically simpler to solve

φ = Σ(p) for p when φ is in the range of Σ. (2.7)

This alternative formulation is just another way of checking the injectiv-

ity of the exhaustive summary, and so the number of generic solutions
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for c(p) still determines the structural identifiability of c(p).

Note that structural identifiability depends on each of the feasible

parameter space (and the a priori information incorporated into it), the

system model structure, the observations, the initial conditions, and the

admissible inputs.

2.5.3. Example to illustrate definitions

It will of course aid the reader to see examples of how the above defini-

tions work in practice. This subsection will illustrate those definitions in

the context of the well-known [54] two-compartment model depicted in

Figure 2.4.

1 2

y = αq2

bu(t)

k2,1

ke,1 ke,2

N Figure 2.4: Two compartment model used to illustrate
structural identifiability concepts and for
testing SMC sampler

This model is described by the following equations:



q′1(t) = bu(t)− (ke,1 + k2,1)q1(t)

q′2(t) = k2,1q1(t)− ke,2q2(t)

q1(0) = 0

q2(0) = 0

y(t) = αq2(t)

(2.8)
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for t ∈ T := R+.

Write p = (α, b, k2,1, ke,1, ke,2) so the input/output equation is given

by :

Σ̂(p) =
t 7→ αbk2,1

e−ke,2t − e−(k2,1+ke,1)t

k2,1 + ke,1 − ke,2

⊗ u, (2.9)

where ⊗ is the convolution operator.

The Laplace transform of the above expression is

s 7→ αbk2,1
1

(s+ k2,1 + ke,1)(s+ ke,2)
u(s), (2.10)

and so the Laplace transfer function is

s 7→ αbk2,1
1

(s+ k2,1 + ke,1)(s+ ke,2)
. (2.11)

Noting that there is never any pole-zero cancellation, the coefficients of

the Laplace transfer function (i.e. with the denominator expanded) are

αbk2,1, 1, k2,1 + ke,1 + ke,2, (k2,1 + ke,1)ke,2. (2.12)

Indistinguishability of the parameters under the input/output equation is

equivalent to indistinguishability of the coefficients of the Laplace trans-

fer function, within the meaning of Definition 1. Hence, the coefficients

form an exhaustive parameter summary for the model according to Defin-

ition 2. Call the coefficients Σ(p) and write p = (α, b, k2,1, ke,1, ke,2).

From the exhaustive parameter summary, note that if r > 0 and

p = (αr, b
r
, k2,1, ke,1, ke,2) then Σ(p) = Σ(p). As ∀ N(p), ∃ r >

0 such that (αr, b
r
, k2,1, ke,1, ke,2) ∈ N(p), this means (through Defini-

tion 4) that component parameters α and b are unidentifiable at any

p, and so in the more generic sense of structural identifiability, are also

structurally unidentifiable.
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Now note that

Σ(p) = Σ(p) =⇒ ke,1 = r and either
αb = αb k2,1

k2,1+ke,1−r , k2,1 = k2,1 + ke,1 − r, ke,2 = ke,2 or

αb = αb k2,1
ke,2−r , k2,1 = ke,2 − r, ke,2 = k2,1 + ke,1

for some r > 0. In particular, if Ω = (0,∞)5,

Sα = Sb = Sk2,1 = Ske,1 = (0,∞)

Ske,2 =
{
ke,2, k2,1 + ke,1

}

so the only component parameter of the model that is identifiable is

ke,2, which is locally identifiable at p (non-uniquely unless ke,2 = k2,1 +

ke,1) and is non-uniquely structurally locally identifiable. The remaining

parameters are (structurally) unidentifiable.

If instead ke,1 = 0 is known, then the indistinguishability conditions

reduce to

αb = αb, k2,1 = k2,1, ke,2 = ke,2 or

αb = αbk2,1
ke,2

, k2,1 = ke,2, ke,2 = k2,1,

(2.13)

and so

Sα = Sb = (0,∞)

Sαb =
αb, αbk2,1

ke,2


Sk2,1 =

{
k2,1, ke,2

}
Ske,2 =

{
ke,2, k2,1

}
.

So, consider in turn the parameter combinations c(p) = αb, c(p) = k2,1,
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and c(p) = ke,2. If k2,1 = ke,2 then each of these parameter combinations

are globally identifiable at p, else they are only non-uniquely locally iden-

tifiable at p. Considering now the structural sense, where almost every

parameter has to be considered rather than a specific p, all the above

parameter combinations are non-uniquely structurally locally identifi-

able.

The model (with or without the assumption that ke,1 = 0) is struc-

turally unidentifiable (Definition 5) because the component parameters

α and b are structurally unidentifiable. Properly, in order to consider the

model (with the assumption that ke,1 = 0) to be identifiable, the model

ought first to be re-parameterised so that its state equations involve α

and b only through the product αb rather than through α and b separ-

ately, but this re-parameterisation step is not of interest in this thesis:

here it is enough to say that some parameters are considered to be com-

bined, and under this assumption, to treat the model as non-uniquely

structurally locally identifiable.

2.5.4. Abridged summary of available methods

There are a number of techniques available for determining the structural

identifiability of linear systems. The Laplace transform approach was

already introduced by way of the example in the previous subsection.

This, and other approaches, were discussed in more detail in Hall [1], and

are not repeated here. Techniques that are applicable to the more general

case of non-linear systems (and thus also to linear systems) are of interest

in this work. Such techniques include differential algebra approaches [62,

63, 64, 65], the similarity transformation approach (for compartmental

models) [66], the Taylor series approach [67] (discussed in more detail

in the next section), and local methods such as the Pohjanpalo rank

test [68], the Exact Arithmetic Rank (EAR) approach [69]. Many of

these approaches have been tried by the author but only the Taylor
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series approach is discussed in this work as it is the simplest of the few

approaches that were tractable for the models presented herein.

2.5.5. Taylor series coefficient approach

The Taylor series coefficients technique for structural identifiability can

be used for both linear and non-linear systems. It is relatively easy to cal-

culate the Taylor series coefficients for most models, though using these

coefficients to solve the structural identifiability problem can sometimes

prove to be computationally intractable even when other methods are

tractable.

Clearly, for given t∗,u,p,p, the following implication holds:

(
∀ t,y(t,u,p) = y(t,u,p)

)
=⇒

for all k ∈ N0 s.t. y(k) is defined,y(k)(t∗,u,p) = y(k)(t∗,u,p).
(2.14)

If y is analytic at t∗ then the reverse implication is also true. There-

fore, if y is analytic at t∗, the collection of Taylor series coefficients

(y(k)(t∗,u,p))k form an exhaustive summary.

If t∗ = 0 then the corresponding Taylor series coefficients of a model

in the form (2.2) can (in principle) be determined algebraically in terms

of the (symbolic) parameters and the initial value of the input functions.

If y is not analytic at 0 then the Taylor series coefficients can be

used to give a sufficient but not necessary method for determining struc-

tural identifiability [67, p. 23]: generic injectivity of the Taylor series

coefficients are sufficient but not necessary for structural identifiability.

Of course the Taylor series coefficients are in general an infinite series

which would not be practical to work with, but injectivity when restricted

to any n components implies injectivity for the whole series. Therefore,

truncating the Taylor series coefficients again gives a sufficient but not

generally necessary method for determining structural identifiability.

In certain settings, it can be shown that truncation to a certain num-
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ber of coefficients does again give a necessary and sufficient criterion.

2.5.6. Non-structural identifiability

Although structural identifiability is a necessary prerequisite to conduct

well-posed parameter inference on a model, it is not sufficient. It is also

often the case that the structural model is too complicated or cannot be

expressed in one of the required algebraic forms in order to conduct a

complete structural identifiability analysis. Clearly in these situations,

some evaluation of the identifiability of the model would be useful.

There are methods known as numerical identifiability and practical

(aka data-based [70]) identifiability methods that can be applied to a

wider class of models, though they are only able to produce local out-

comes. Instead of an algebraic or structural analysis of the model equa-

tions, a numerical or practical identifiability analysis uses numerical

methods to analyse the model, at specific numerical instances or collec-

tions of parameter values. There is no known agreed distinction between

the terms “numerical identifiability” and “practical identifiability”, but

the following convention will be used here: numerical identifiability will

be used to refer to identifiability using arbitrarily dense and noise-free

data generated from simulating the model under study, while practical

identifiability will refer to the situation where the data are not arbitrarily

dense, and/or not noise-free, and/or not simulated data. When simulated

data are used, the recovered parameters can be compared against the ori-

ginal parameter values that were used to generate the simulated data. It

is generally a good idea to conduct both numerical and practical identi-

fiability analyses: the numerical analysis with dense noise-free data and

the practical analysis with data sampling times and signal to noise ratio

corresponding to what one expects to see from a real data set, as well as

later with an actual real data set. Of course, if practical identifiability

is confirmed for a number of distinct parameter sets and model inputs,
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then it may not be necessary to consider numerical identifiability as well,

but a failure of practical identifiability may be caused by a failure of

numerical identifiability rather than the data simply being too sparse or

too noisy.

These types of analysis can provide insight to the kind of identifi-

ability problems in the sense of Definition 3, but not in the structural

sense of Definition 4, because the “almost everywhere” condition within

the definition of structural identifiability cannot be carried over to the

numeric case (specific instances of parameters always lie within a set

of zero measure). However, numerical and practical identifiability have

to be considered with respect to fixed inputs, and cannot be applied to

all inputs as is required by Definition 3, unless the set of inputs is a

singletonr finite set (though a persistently exciting input may be of use

here if available). Numerical and practical identifiability will together be

referred to as “non-structural identifiability” here. Usefully, numerical

and practical identifiability can often allow recovery of functional equa-

tions along which the likelihood stays constant [71], and it may then be

possible to use those functional equations to test the identifiability of the

model in a structural sense. As mentioned previously, it is much easier to

see if two given generic parameter sets are indistinguishable than to find

all indistinguishable parameter sets, and these identifiability methods can

help construct candidate parameter sets to test for indistinguishability.

For systems that are structurally globally identifiable, a failure of nu-

merical or practical identifiability will be due to limitations on the data

and/or the relationship between the data and the model, not the struc-

ture of the model itself. For systems that are not known to be structurally

globally identifiable, a failure of numerical or practical identifiability may

be due to lack of structural global identifiability in addition to or instead

of the above reasons.

Practical and numerical identifiability generally involve studying the

shape of the likelihood surface. Raue et al. [71] defines these kinds of iden-

40



2. Background and literature review

tifiability in relation to a parameter in terms of the size of a likelihood-

based confidence interval for that parameter: the confidence interval for

a numerically unidentifiable parameter (in log space) is the whole of R,

and extends to infinity in one direction for a practically unidentifiable

parameter.

One widely used approach for considering numerical or practical iden-

tifiability is the profile likelihood approach [71]. In case a Bayesian ana-

lysis is conducted, this can be replaced with a “profile posterior”. This

approach can be computationally costly, since it involves solving high-

dimensional optimisation problems on a fine mesh of points, but can be

parallelised and the resultant information is easy to interpret. Unfortu-

nately, it is difficult to reuse information from solving one optimisation

problem when solving an adjacent problem (where one of the parameters

has changed by a small value). Of course, in this case, another mode

of the likelihood may become dominant. A potentially more efficient

method for calculating profile likelihoods is proposed later in Section 3.2.

Practical identifiability problems, in the context of solving an op-

timisation problem, include the case that no solutions are found by the

optimiser, or where other solutions are returned by the optimiser in ad-

dition to or instead of any global optima. In the context of posterior

distributions, practical identifiability problems may occur where the pos-

terior has two or more modes that are not sufficiently separated to be

distinguished. In a practical identifiability analysis, the data sampling

frequency can be studied too.

Clearly, it may be useful to determine the practical identifiability

of a model in addition to other forms of identifiability. Therefore, it

is suggested to determine the structural identifiability of a model, or if

not possible then the numerical identifiability, followed by the practical

identifiability using synthetic data of a similar nature to that seen in real

data.
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2.6. Existing models for ARS

Many existing pharmacokinetic studies for artemisinins have been con-

ducted over the last couple of decades, and have successfully provided

some insights into the absorption, elimination and/or multiple dosing

behaviour of these drugs, and the covariates that influence these, includ-

ing the author’s own attempts in Hall [1] and Hall et al. [2]. Some studies

have restricted their interest to either healthy subjects, uncomplicated

malaria, or severe malaria, and either children, adults or pregnant wo-

men, while others have been designed specifically to consider the differ-

ences between some of these groups. Each study focusses on a specific

artemisinin derivative or derivatives, and a specific route or routes of

administration, either alone or in combination with other antimalarial

agents.

As mentioned in section 2.4, mechanistic models have the most utility.

Of the existing models that used mechanistic approaches, some have

been used to analyse the effects of differing dosing regimens in different

contexts, including cases where the malaria has developed resistance to

this class of drugs. They range from being very simple, e.g. with linear

absorption and exponential elimination as in Saralamba et al. [37], to

being quite complicated, e.g. involving 9 compartments as in Gordi et al.

[72], and of various complexities in between, e.g. 4 compartments as in

Tan et al. [73].

A goal of this work was to develop a model incorporating the parasite

lifecycle and stage-specific effects of the artemisinins. There are a few

existing models of parasite lifecycle, either alone or as part of larger

pharmacokinetic and pharmacodynamic models.

One such model is from Gravenor et al. [74], which splits the lifecycle

into a variable number of compartments of equal duration, each poten-

tially with their own death rates, but these death rates do not relate to

any pharmacokinetic data. The model allows for changes in the degree
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of synchronicity as the length of the parasite lifecycle is not fixed, but is

described by a gamma distribution with a mean of 48 hours and a stand-

ard deviation inversely proportional to the square root of the number of

compartments used.

A slightly similar model is Svensson et al. [47] which fixes the number

of age classes at 4, though this does not include stage-specific effects

(but could be adapted to do so, and indeed the authors note the same).

In order to account for parasite kill continuing beyond the decline of

artemisinin plasma concentrations, the model uses a intermediary pool of

damaged parasites still in general circulation, which are later removed by

the spleen in a first-order process. Rate of parasite damage was described

by first-order but time-varying dynamics, with the rate depending on the

time above a minimum inhibitory concentration.

The only known model incorporating stage-specific effects is from

Saralamba et al. [37]. The pharmacokinetic aspect of the model is

non-mechanistic with linear absorption and exponential elimination with

a single exponential term, which was well suited for their data-fitting

application but cannot be used to experiment with different dosing

strategies. The model makes many useful simplifying assumptions to

aid in their data-fitting application, but which are less suitable for a

predictive model. The model advances in discrete-time, assumes a nor-

mal age distribution of parasites and also assumes that all doses have

identical pharmacokinetic profiles. While this model showed excellent

performance despite its relative simplicity, for some patients there were

clearly systematic deviations from the model, which might be capable of

being explained by a more advanced model.

Most pharmacometric studies of artemisinin have shown that there

are vastly different volumes of distribution of artemisinin drugs between

healthy and infected persons, and the same is true even considering just

infected persons. The author speculates that this could possibly be due

to the take up in infected cells, and no model is currently known to exist

43



2. Background and literature review

with the capability to explore this possibility.

It is submitted there is a need for a new model where the pharma-

cokinetics and pharmacodynamics are both captured in detail, including

the interaction between the two, and one aim of this work is to develop

such a continuous-time model of the stage-specific effects of ARS and

DHA. The model previously published by the author [1, 2] was always

intended as a building block towards such a more complete model, and

will be revisited in subsection 2.6.1.

As has also been noted by Simpson et al. [75], few existing stud-

ies formally estimated pharmacokinetic or pharmacodynamic parameters

within a rigorous (preferably Bayesian) statistical framework using indi-

vidual patient data. The author agrees that a model’s behaviour with

respect to its parameters should be fully explored, and the sensitivity of

the model to its parameters be determined, including whether the para-

meters are estimable with sufficient precision. Indeed, this latter point is

related to the concepts of structural and practical identifiability, which

were important issues highlighted by the author in Hall [1] and Hall et al.

[2], yet those (still) appear to be the only models applied to artemisinins

that have been assessed for structural identifiability to date. One poten-

tial problem with developing a new complete model as desired above is

that it is likely to present unique mathematical and statistical challenges

due to its complexity, and existing structural identifiability techniques

may struggle in analysing such a model.

Finally, as noted above, Simpson et al. [75] expressed a preference

for conducting model fitting via a Bayesian analysis, another preference

shared by the author, despite conducting a non-Bayesian analysis in Hall

[1] and Hall et al. [2].

Therefore, the issues of structural and practical identifiability and

Bayesian analyses are explored in this work.
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2.6.1. Four compartment pharmacokinetic model

This section presents the model used by author previously in Hall et al.

[2], which was in turn based on one of the models presented in Hall [1].

Further analysis of this model is presented in section 4.1. This model is

also used as a base model for the novel model introduced in section 4.2.

2.6.1.1. Model structure

A relatively simple coupled mechanistic model was developed for the

pharmacokinetics of orally-administered ARS and its principle metabol-

ite DHA, for situations where blood plasma concentrations of both are

observed, and is depicted in Figure 2.5. It consists of four linked com-

partments, with the parent drug and its metabolite each represented

by two compartments: an absorption (gut) compartment and a circu-

lation/plasma compartment. The absorption compartments account for

the delay in the drug and metabolite reaching the circulation (and site

of measurement) due to the oral route of administration.
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1 3

2 4

bDδ(t)

y2(t) = α2q4(t)y1(t) = α1q2(t)

k21

k31

k43

k42

ke2

ke3

ke4

Artesunate

(ARS)
Dihydroartemisinin

(DHA)

Absorption:

Circulation:

N Figure 2.5: System diagram of the four compartment
model for ARS (left part) and DHA (right
part). Upper compartments represent
the absorption compartments (unobserved).
Lower compartments are the circulation
compartments (observed).

The administered oral dose of ARS is considered as a bolus (im-

pulsive) input into its absorption compartment (1 in the diagram). To

account for bioavailability, a fraction b of the administered dose D is

assumed to reach the systemic circulation. The dose D is prescribed in

proportion to the body weight of the patient, and so taken in units of

nmol per kg.

Once in the system, ARS is either irreversibly metabolised into DHA

(compartment 3) prior to reaching the circulation (compartment 4), or is

absorbed into the circulation (compartment 2) and subsequently meta-

bolised (compartment 4 again). Elimination can occur from any com-
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partment except the input compartment (compartment 1), and can be

caused by either excretion from the body or further metabolism into

inactive metabolites which are not of interest.

Observations are made of the drug concentrations in the circulation

compartments, with observation gains α1 for ARS (y1) and α2 for DHA

(y2). These parameters incorporate the volumes of distribution of the

respective drugs. As is standard for the purposes of assessing the iden-

tifiability of the structural model, “ideal observation” assumptions are

made, namely that observations are available continually over the entire

infinite time horizon, and further are available without error. These two

assumptions are relaxed later when dealing with the problem of para-

meter estimation from data.

Note that because metabolism of ARS into DHA takes place in the

liver as well as in esterases, metabolism can occur before presentation in

the observed circulation compartments. Indeed, in concentration–time

profiles of malaria patients (e.g. those analysed in this work), large quant-

ities of DHA are observed in the blood plasma prior to those of ARS,

which cannot be attributed solely to being artefacts of differing obser-

vation gains (or otherwise to quantification limits). Hence, the presence

of compartment 3 is crucial to capture the metabolism-before-absorption

route that ARS can take.

The differential equation characterisation of the model is given, for

t ∈ [0,∞) describing the time in hours since drug administration, by

(2.15)


q′(t) = Aq(t) + Bu(t)

q(0+) = q0

y(t) = Cq(t).

Here, q =
(
q1 q2 q3 q4

)T
represents the state vector of the system

model, where each qi denotes the quantity of the respective drug in com-

partment i, u(t) =
(
Dδ(t) 0 0 0

)T
denotes the model input and

q0 =
(

0 0 0 0
)T

the initial condition, y denotes the vector-valued
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observation function, and the model matrices are

A =



− (k21 + k31) 0 0 0

k21 − (k42 + ke2) 0 0

k31 0 − (k43 + ke3) 0

0 k42 k43 −ke4


, (2.16a)

B =



b

0

0

0


, C =

0 α1 0 0

0 0 0 α2

 . (2.16b)

Note that there are different ways to parameterise u, q0 and B. The

parameterisation used here has been chosen as it more clearly corresponds

to the mechanistic concepts.

As mentioned previously, due to the difference in the molecular

weights of the parent drug and the metabolite, the qi are considered

in units of molar mass, per kilogram of patient body weight (nmol/kg).

Observations, which are concentrations, are assumed to be in units of

nmol/l. The observation gains α1 and α2 therefore have units of kg/l, but

the volumes of distribution are generally assumed to scale approximately

linearly with patient body weight, hence the reason that the dosing is

calculated in those terms. (However, there is some debate about whether

or not allometric scaling might be more appropriate.)

All flows (absorption, metabolism and elimination) are assumed to

be first-order and linear, with rate constants kij (denoting the flow rate

constant to compartment i from compartment j, or to the environment

when i = e) time-invariant and specified in units of per hour (which are

standard units for artemisinin drugs). Note that conversion into inactive

unmeasured metabolites and excretion from the body are considered as

flows to the environment with respect to the system model.

The system of equations (2.15), with u(t) and q0 as described above,
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can easily be solved analytically to yield:

(2.17)q(t) = bDeAt , y(t) = Cq(t) .

The solution for the state variables is thus
(2.18)q1(t) = bDe−(k21+k31)t

q2(t) =
bDk21

(
e−(k42+ke2)t − e−(k21+k31)t

)
k21 + k31 − k42 − ke2

q3(t) =
bDk31

(
e−(k43+ke3)t − e−(k21+k31)t

)
k21 + k31 − k43 − ke3

q4(t) = bD

e−(k21+k31)t

k2
21k42 + k31k43(k31 − k42 − ke2) + k21(k31(k42 + k43)− k42(k43 + ke3))

(k21 + k31 − k42 − ke2)(k21 + k31 − k43 − ke3)(k21 + k31 − ke4)

− e−(k42+ke2)tk21k42
(k21 + k31 − k42 − ke2)(k42 + ke2 − ke4)

− e−(k43+ke3)tk31k43
(k21 + k31 − k43 − ke3)(k43 + ke3 − ke4)

+ e−ke4t(k31k43(k42 + ke2 − ke4) + k21k42(k43 + ke3 − ke4))
(k21 + k31 − ke4)(k42 + ke2 − ke4)(k43 + ke3 − ke4)

 .

These equations are already seen to be somewhat unwieldy despite

the relative simplicity of the system model.

2.6.1.2. Model analysis

This model was analysed in Hall [1]. This analysis included a struc-

tural identifiability analysis using the Laplace transform method [54]

and highlighted problems with the Taylor series method [67] and similar-

ity transformation method [53]. The model was found to be structurally

unidentifiable, and so three constraints were identified that together were

sufficient to make the model structurally globally identifiable.

This model was also analysed further in Hall et al. [2]. These further

results include use of a slightly different form of those constraints, and use

of a more systematic approach of testing combinations of the constraints.

Some of this as well as a further improved analysis, including statistical

analysis, of this model is presented in this thesis in section 4.1.
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2.7. Statistical methods, inference and

quantification of results

2.7.1. Bayesian vs. non-Bayesian frameworks

In both Bayesian and classical statistical frameworks, it is normal to have

a likelihood function quantifying the support that the given data have

for arbitrary model parameters. In the classical framework, a point es-

timate of the parameters (the maximum likelihood estimate) is generally

sought. This can be problematic due to practical difficulties in confirm-

ing whether an estimate is genuinely the maximum likelihood estimate

(and indeed whether such an estimate is even unique) since global op-

timisation algorithms cannot identify the global maximum with perfect

certainty, and disallows identification or use of a secondary mode of the

likelihood function, although that secondary mode may sometimes be

more plausible or more compatible with other estimates (e.g. from dif-

ferent studies or from different subjects), and may only have a slightly

worse likelihood than the global maximum. In a Bayesian framework,

all the information known about the parameters a priori is encoded in

the form of a prior distribution, and this is combined with the likelihood,

which contains all the information the data tell us about the parameters,

to give a posterior distribution, which assigns a probability to each po-

tential parameter vector. Such probabilities quantify the degree of belief

that the parameter vector matches the data.

Many authors advocate use of Bayesian posterior distributions in

scientific applications (e.g. [75]). These contain much more informa-

tion, especially regarding uncertainty, than simply determining point es-

timates or confidence bands for the parameters and model predictions.

Correspondingly, Bayesian information is much more useful to a practi-

tioner, and allows a more thorough exploration of the relevant scenarios.

Bayesian methods also allow borrowing of information across subjects
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in mixed effects situations, which would not be so readily possible in a

classical framework. (Mixed effects models are a topic for future work

and are not discussed in this thesis.)

However, calculating a probability distribution instead of just a point

estimate involves much more computation and different assumptions.

One immediate difference is that instead of simply specifying a feasible

parameter region, it is necessary to quantify a priori how feasible each

particular parameter combination is, and this is not always straightfor-

ward. This is known as specifying a prior distribution on the parameters.

Priors can be informative or uninformative, depending on what inform-

ation is known a priori and how many assumptions one wants to make

at this stage. If information is known from other studies, then including

that information as a prior assumption essentially prevents confirma-

tion of that same information. Potential problems can arise when little

is known (or incorporated) in the prior distribution, for example if no

parameter may be a priori unbounded, as a proper prior is required to

integrate to a total probability of one. Additionally, priors are not invari-

ant under transformations and so, for example, a prior that may appear

to be uninformative may in fact be significantly discriminatory towards

a different parameterisation.

Priors also have an effect on identifiability: if a parameter is struc-

turally or practically unidentifiable but the corresponding prior has (for

example) a single point with maximal density, then that single point will

generally be identified, though this depends on the exact nature of the

practical unidentifiability. Indeed, many people impose certain priors

deliberately so that they get an identifiable model, but naturally this

should only be used to resolve practical identifiability concerns rather

than structural ones. It is also possible for a prior to render an otherwise

structurally identifiable model into an unidentifiable model, but this is

pathological and unlikely to occur in practice without a specific aim to

set up such a situation.
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Throughout this work, proper uniform priors with finite support are

used.

In quantifying the results from a Bayesian analysis, it is largely a

case of expressing or otherwise summarising the posterior distribution

and its marginals, but in a non-Bayesian analysis, it is common to have

to conduct further calculations under further (and possibly exaggerated)

assumptions, for example an asymptotic variance-covariance matrix (see

subsection 2.7.4).

2.7.2. Likelihood functions

Unlike for the structural identifiability analysis, the observations are now

assumed to be finite in number and collected at discrete times. Selection

of an error model and a predictive model determines the likelihood func-

tion. Only observation error is considered, as error resulting from model

misspecification is assumed to be dominated by observation error.

So, let yi denote the ith observation, and hi(θ) denote the corres-

ponding model prediction under parameters θ. Then,

εi := r(yi, hi(θ)),

denotes the (modified) model residual under parameters θ for observation

i.

Due to the properties of the drug assays used (discussed in sec-

tion 2.3), it is assumed that the model residuals for drug concentrations

are normally distributed, with mean zero, and variance proportional to

the model predicted value. For simplicity, the same is assumed for para-

site observations. Note that this error model does not account for the

fact that the observed concentrations will always be positive, but is nev-

ertheless convenient to work with. For both the drug assays and the

model residuals, other distributional assumptions could be made, such

as the Laplace distribution (which instead of penalising a large squared
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difference from the mean, penalises a large absolute difference from the

mean, and so has a sharper peak, fatter tails and is more tolerant to

outliers) or Student’s t-distribution (which maintains a similar shape to

the normal distribution but again has fatter tails). These other distri-

butions are relatively easy to incorporate into a Bayesian analysis of

the kind conducted here, though no comparison of the effect of these

different distributions were made here: the normal distribution was used

throughout. The results section later discusses whether a different choice

of distribution might ultimately have been beneficial.

In symbols,

εi ∼ N(0, (δihi(θ))2). (2.19)

The drug assays have a coefficient of variation reported at 15%, so δi =

0.15.

It is further assumed that the observation errors for observations at

different times are independent. (This assumption may not be realistic

but is felt to be a good starting point in the absence of any prior in-

formation to the contrary.) It is also assumed that there is no correla-

tion between observation errors of drug concentrations and parasitaemia.

Observation errors for ARS and DHA observations obtained at the same

time are assumed to be correlated with correlation parameter ρ unknown.

It is convenient to view the yi as forming a one-dimensional vector.

Write y for the data and h(θ) for their model predictions. The above

specification gives rise to the following log-likelihood function, defined up

to an additive arbitrary constant:

`
(
θ |y

)
= −1

2

log det V(θ) +
(
r(y,h(θ))

)T
V(θ)−1

(
r(y,h(θ))

)
︸ ︷︷ ︸

weighted residual sum of squares (WRSS)

 ,
(2.20)

where V(θ) is the weighting matrix with (i, i)-th element σ2
i and (i, j)-

th element ρσiσj when ti = tj, i 6= j, and i, j are observations of drug
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concentrations, and 0 otherwise. Here, r(y,h(θ)) is the modified residual

according to the rules in the following section, which coincides with the

standard residual r(y,x) = y − x when neither argument is below the

applicable censoring thresholds.

2.7.3. Censoring

In both datasets used in this work, data of drug concentrations below the

limit of quantification are not reported with a numerical value but are

simply reported as being below the limit of quantification. These data

points are therefore said to be “left censored”; the values are below a

known threshold but it is not known how far below the threshold. There

are also some data points in the MORU_ARC3_PD dataset correspond-

ing to drug concentrations so low that no distinct peak could be identified

in the HPLC traces; these are reported as “no peak”. This is essentially

the same as detecting no drug in the sample, but the HPLC method does

not have perfect sensitivity so it would not be quite accurate to report

the drug concentration as 0. These data points are therefore also best

considered as left censored, but with a lower threshold than the limit of

quantification. Indeed, some assays report a limit of detection which is

the appropriate threshold in this situation.

Clearly, data points that are below the limit of quantification or below

the limit of detection still carry a significant amount of information, so

this information needs to be incorporated into the statistical analysis

rather than discarding such points. Nevertheless, these points must be

treated distinctly from other data points where values are reported.

In this work, left censored data points will be handled by treating

the model residual as zero where both the data point and the model

prediction lie below the unobserved threshold. Any model predictions

or data points below the threshold are treated as though they were at

the threshold. If a model prediction and corresponding data point are
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both left censored but with different thresholds then the point within

the larger threshold is treated as though it was half way between the two

thresholds.

2.7.4. Maximum likelihood estimation and uncer-

tainty quantification

In a non-Bayesian framework, standard numerical optimisation meth-

ods are generally used to find a minimiser θ̂ of the negative of the log-

likelihood expression (hereafter referred to as the objective function), and

the minimiser is used as “the best” estimate of the parameters, though

the likelihood function is often multi-modal and it can be hard to ensure

that a global minimum is found. Indeed, in non-practically identifiable

situations, such a global minimum may not be unique and/or there may

be multiple local minima that exacerbate the problem of finding global

minima.

To attempt to quantify the uncertainty in the parameter estimates

in a non-Bayesian analysis, the asymptotic (for a large number of obser-

vations) distribution of the parameter estimates can be estimated [76].

The asymptotic distribution of the parameter estimate θ̂ is approxim-

ately MVN(θ∗,C) where MVN denotes the multivariate normal family

of distributions, θ∗ is the “true” value of θ and the variance-covariance

matrix C is described next. Consider the linear approximation to the

dependence of the unweighted residuals on the parameters about the

estimate θ̂:

R(θ̂) = ∂

∂θT

(
y − h(θ)

) ∣∣∣
θ=θ̂

. (2.21)

The inverse of the Fisher information matrix at θ̂ provides an estimate

C of the asymptotic variance-covariance matrix for θ̂,

C =
(
R(θ̂)TV(θ̂)−1R(θ̂)

)−1
. (2.22)
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The variance-covariance matrix C is easier to interpret by reporting

the diagonal elements of C together with the correlation matrix formed

by dividing the respective rows and columns by the square roots of these

diagonal elements. This information fully specifies C but is easier to

compare and contrast than C itself.

2.7.5. Goodness of fit statistics

Likelihood function values and WRSS values are not directly comparable

between subjects, due to each data set having a different variation to

begin with. Instead, the (weighted) coefficient of determination can be

used. Loosely speaking, this expresses the variation in the data explained

by the model as a ratio of the total variation present in the data, and is

defined as

R2 := 100

1−

(
r(y,h(θ))

)T
V(p)−1

(
r(y,h(θ))

)
(y − y)T V(p)−1 (y − y)

 %, (2.23)

where the elements of y are the average of the observed values for the

corresponding curve.

The idea is that a larger coefficient of determination should indicate

a better fit. However, a large value of this statistic does not necessarily

correspond to a high likelihood, which is in some ways problematic as

the objective is to maximise the likelihood not the coefficient of determ-

ination, but it does accord at least qualitatively with a visual analysis of

fits. (Note that the baseline model is simply a mean model, which is not

contained in the fitted model class, so the ANOVA interpretation of this

statistic does not apply.)

2.7.6. Monte Carlo methods

It is well-known that many common problems that need to be solved

in order to conduct a Bayesian analysis quickly become intractable to
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do directly as the dimension increases. This is known as the curse of

dimensionality. These common problems include sampling from a dis-

tribution, determining the normalising constant for a density, and/or

determining the maximal density regions of a distribution. Therefore,

high-dimensional problems require specially tailored analysis methods.

Most of these methods work by approximate simulation, which can in

principle operate to any desired degree of accuracy, and they are known

as Monte Carlo methods.

A simple but efficient class of such methods are Sequential Monte

Carlo (SMC) methods, used extensively here.

2.7.6.1. Sequential Monte Carlo (SMC)

Suppose π is a (possibly high-dimensional) distribution of interest (such

as a posterior distribution), referred to hereafter as the target distribu-

tion. Instead of trying to work directly with this target distribution (due

to the reasons identified above), it is often helpful to sequentially estim-

ate some intermediaries π0, . . . , πT−1, before finally arriving at the target

distribution πT = π (where T is not necessarily fixed and may instead be

determined adaptively). In an SMC sampler, each distribution is approx-

imated by a collection of weighted particles (random samples). In the

application here, each particle is actually a parameter set from the para-

meter space of the model, and the weight represents (up to a constant

of proportionality) the plausibility of that parameter set in terms of de-

scribing the observed data under the relevant assumptions, which can be

compared relative to the weights of the other particles in the collection.

Particles that have a relatively low weight and so contribute little to the

approximation of the distribution may ultimately be discarded/replaced.

The idea is that successive distributions are ‘close’, so generating

samples from πn+1 is easier when samples from πn are already available.

An SMC sampler exploits this when propagating the weighted particles

from each distribution in the sequence to the next. Hence, a sample from
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π is constructed sequentially. SMC samplers are applied in situations

where sampling from π0 and then proceeding sequentially is much easier

than sampling directly from πT (despite there being potentially many

such intermediate distributions, i.e. with a large value of T ). The starting

distribution π0 is chosen to be a distribution that is easy to sample from.

Although there are other occasions where SMC samplers are useful, the

above situation is the motivation behind using SMC in this work.

As SMC is a simulation method, it requires some tuning, diagnostics

and validation, has a high computational cost and only produces approx-

imate output. However, it is felt that each of these aspects are somewhat

simpler or more satisfactory with SMC than other methods, and it is a

proven and widely adopted and trusted method that can make use of

modern computing facilities (which tend to involve parallel computa-

tion).

The parameter space Θ for each distribution in the sequence will be

taken to be the same. This is not restrictive for the purposes here. It will

be assumed that π admits a density with respect to Lebesgue measure,

as will always be the case for distributions used in this work, and making

this assumption now provides for notational simplicity. For complete

details on SMC in its original generality, see Del Moral et al. [77]. Only

sufficient details are given in this thesis for the purposes required herein.

When describing distributions used in Monte Carlo methods, it is

common to need to distinguish between the distributions themselves,

their density functions, and because the latter are normally known only

up to a constant of proportionality, kernels or intensities (unnormalised

densities) for the distribution with respect to a particular constant of

proportionality. Unnormalised densities may also be used where the nor-

malising constant is not relevant (e.g. due to being multiplied by terms

that are also unnormalised). In this work, for a distribution denoted by

π, its density function will be denoted [π] and an unnormalised density

for it will be denoted by JπK. Hopefully this convention will aid the reader
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more than using different symbols for each of these functions would. The

constant of proportionality is not directly of interest here and no special

notation will be introduced for that.

In some applications, there will be a natural sequence of distributions

to consider, for example observations could be incorporated sequentially,

leading to a sequence of distributions referred to as a data tempered se-

quence. Such a sequence has the advantage that the intermediate distri-

butions are meaningful; the posterior likelihood can be updated “on-line”

and possibly in real-time as new observations arrive. However, in such a

sequence, the number of intermediate distributions is constrained by the

number of observations available and this may not be an ideal way to

reach the target distribution, especially where the analysis is conducted

“off-line”, i.e. where all the observations are already available.

Here, all observations are already available for incorporation simul-

taneously rather than sequentially, and so distribution tempering is used

to produce appropriate sequences of distributions. Use of such distribu-

tion tempering schemes within SMC has not been widely documented

but is becoming more popular [78, 79, 80]. The sequence of distributions

is taken as (π0, . . . , πt, . . . , πT ) where each πt is defined by

JπtK = x 7→
(
JπK (x)

)φt

, (2.24)

with 0 = φ0 < · · · < φT = 1 and π is the target distribution of interest

(i.e. the posterior).

Naturally, for observations assumed to come from a single fixed model,

π is taken to be the posterior distribution of the parameters given the

data, derived from Bayes’ theorem as the prior distribution ν times the

likelihood:

JπK = θ ∈ Θ 7→ JνK (θ)L(y1, . . . , yc; θ), (2.25)

where y1, . . . , yc denote the observations (and without loss of generality,

can be considered to be scalar-valued), and L denotes the likelihood

59



2. Background and literature review

function (which may also have irrelevant constant factors removed), so

the sequence of distributions used in the distribution tempering scheme

is {πt}t where

JπtK = θ ∈ Θ 7→ JνK (θ)L(y1, . . . , yc; θ)φt , (2.26)

ν is the prior distribution. Note that at the final iteration T , φT = 1 and

so [πT ] = π, the target distribution as in (2.25).

With this method, it is necessary to be able to evaluate the likelihoods

L(y1, . . . , yc; θ) pointwise, but this is certainly not a problem in the ap-

plications here. However, it is worth noting that it will sometimes be

necessary to use an ODE solver to compute these likelihoods, which will

naturally slow down the computations to a significant, but non-crippling

extent. Crucially, it is also the case that the constants of proportionality

(i.e. those not depending on θ) of each intermediate distribution need

not be known a priori, but can (if of interest) be estimated by the SMC

sampler.

It is convenient to work with logarithms of the (unnormalised) density

functions of the distributions:

log JπtK = θ ∈ Θ 7→ constant + log JνK (θ) + φt logL(y1, . . . , yc; θ)︸ ︷︷ ︸
(̀θ |y)

,

and in this situation, the constant additive term, not depending on θ,

incorporates the normalising constant and need not be known.

With the same assumptions as presented in (2.20),

`
(
θ |y

)
= −1

2

log det V(θ) + r(y,θ)TV(θ)−1r(y,θ)︸ ︷︷ ︸
weighted residual sum of squares (WRSS)

 , (2.27)

where r(y,θ) =
(
y − h(θ)

)
is the modified residual (modified since, if

censoring occurs, it may be cut-off at the limit of quantification). See
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again subsection 2.7.2 where other error distributions were discussed.

In practice, the speed of the SMC sampler is important, so where

simplifications can be made to the above equation, e.g. where V is known

to be a diagonal or block diagonal matrix, these optimisations are built

into the code and provide significant speed ups in those situations. This

is worth the extra maintenance effort of having to maintain multiple

different versions of the likelihood calculation code (i.e. in the diagonal,

block diagonal and dense matrix cases).

During the SMC runs, it often happens that all but a few particles

gain negligible weights; in other words, the particle system is degenerate.

A convenient indicator of the degree of degeneracy is the “survival dia-

gnostic”, or the number of effective particles Neff (often referred to as the

effective sample size, but this terminology is avoided here as it conflicts

with the separate notion of effective sample size used in Equation 2.30

later, and is also somewhat misleading; again discussed later) [81]. The

survival diagnostic is calculated as [82]:

Neff = 1∑N
i=1(w(i))2 ,

where w(i) is the normalised weight of the ith particle. After every it-

eration of the SMC sampler, the survival diagnostic should be tested to

see if it is below a given threshold, and if so, to resample the particles:

the new particle system (usually with the same number of particles) con-

tains replicates of the previous particles in proportion to their weights,

with the weights all set to be equal in the new system. This effectively

means that particles with high weights will have lots of replicates in the

new system (with the new replicates able to be moved independently in

the next iteration), whereas particles with low weights will be omitted

completely. There are various resampling schemes available that satisfy

the above descriptive constraints, including stratified, multinomial and

residual resampling. These schemes are not discussed here, except to
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say that residual resampling will be used throughout, as it exhibits lower

conditional variance for all configurations of the weights [83]. It is pos-

sible for the SMC algorithm to recover from situations where the survival

diagnostic falls to a low level, although this may take several iterations.

Therefore, it is helpful to warn if the survival diagnostic becomes quite

low before resampling, especially if this occurs with t close to T . Note

that it is somewhat misleading to refer to the survival diagnostic as an

effective sample size, because immediately upon resampling, the weights

are reset to be equal and so the survival diagnostic is restored to the

number of particles N , even though many of the particles will not be

distinct.

As resampling introduces extra Monte Carlo error, it is not done un-

less necessary (i.e. the survival diagnostic is below a given threshold), and

all calculations should be done before resampling where possible, e.g. ad-

apting the proposal variance, or analysing the final particle distribution

from the last iteration of the sampler. However, this makes those calcu-

lations slightly harder as they must work with a set of weighted particles

rather than particles with uniform weights, as they would be following a

resampling step.

The matters of selecting the SMC parameters, and evaluating conver-

gence etc, will be discussed in the next subsection, subsubsection 2.7.6.2.

There are many different (but similar) versions of SMC algorithms.

Some differ in the order of the component steps per iteration (e.g. re-

weight, select/resample, mutate, advance iteration number). The follow-

ing algorithm describes the one used in this work and is very much like

the standard versions [77], but with the simplifying assumptions that

πt ≈ πt−1, and with the otherwise arbitrary backwards Markov kernel

chosen to be the time-reversed proposal kernel. This has allowed separ-

ation of the reweighting and mutation steps, whereas without the above

choices, the incremental weights will depend on both the previous and

new particle positions.
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Under the assumptions that the distributions πt are invariant under

their respective mutation kernels Kt — written in symbols as follows:

πt = πtKt and πt−1 ≈ πt, (2.28)

— the listing in Algorithm 1 summarises the version of the SMC al-

gorithm used in this work.

A framework in C++ called SMCTC [84] allows implementing such

algorithms relatively straightforwardly, and was used here. (Although

other frameworks were available, none were found to be as powerful or

easy to use, and a comparison of such frameworks is not a focus of this

work. Other frameworks became available during this work [85, 86, 87]

but arrived after the implementation in SMCTC was already underway

and so were not evaluated.)

As alluded to earlier, it is also worth mentioning that, in contrast to

standard MCMC methods, SMC samplers are relatively easy to par-

allelise. The particles can be easily divided into chunks and differ-

ent processors/machines can operate on different chunks simultaneously.

Most operations are on individual particles and are independent of other

particles, therefore these steps can readily be done in parallel. Of course,

information from different instances needs to be merged when analys-

ing variance, determining total weight, etc, but these steps happen a

lot less frequently than the particle mutation steps, and do not require

transmission of the entire particle collection, just aggregate information

computed in parallel. Work on parallel SMC samplers has begun (e.g.

[85]) but have considerably higher complexity than non-parallel variants.

As the SMC runs needed in this work were able to be completed in

practically acceptable time periods without requiring to take advantage

of parallel environments, parallelisation was not employed. However, it

may be necessary to employ parallel methods to complete the analysis of

the model presented in section 4.2.
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Algorithm 1 SMC algorithm for approximating πT with the assump-
tions (2.28)
1: Initialization:
2: Choose an appropriate number of particles N and either the se-

quence of intermediate distributions π0, . . . , πT , or a proced-
ure for determining the same.

3: Step t = 0: Particles are initialised by sampling from the initial
distribution π0. π0 should be chosen so that this can either be
done directly or with standard importance sampling methods.
Write η0 for the corresponding importance distribution (often
η0 = π0).

For each particle i, sample θ
(i)
t ∼ π0 and set w(i)

0 =
Jπ0K(θ(i)

t )

Jη0K(θ(i)
t )

to be the importance weight.

Normalise the particle weights.
4: Choose an appropriate initial proposal scale Σ1.
5: Iteration:
6: for t = 1, . . . , T do
7: Reweighting:
8: The weight of each particle i is incremented from its weight

in the previous iteration by multiplying by its unnor-
malised incremental weight, i.e:

w
(i)
t ← w

(i)
t−1ω

(i)
t

where the unnormalised incremental weight is

ω
(i)
t = JπtK (θ(i)

t−1)/
q
πt−1

y
(θ(i)

t−1).

9: Renormalise the weights if necessary.
10: Detect if there were any issues in the distance between πt−1

and πt (e.g. the ESS has fallen too far or the dχ2 is too
large), and warn appropriately.

11: Optionally, adapt proposal scales Σ̃t and/or distribution
sequence.

12: Resampling:
13: if the survival diagnostic has fallen below the resampling

threshold, then resample.
14: if the survival diagnostic has fallen below the warning

threshold, then warn appropriately.
15: Mutation:
16: For each particle i, sample θ

(i)
t ∼ Kt,Σ̃t

(θ(i)
t−1, ·).

17: Optionally, save the state of the particle system (and/or other
information obtained during the iteration) for later inspec-
tion.

18: end for
19: Output:
20: When the above has finished, the collection of weighted particles

(θ(i)
T , w

(i)
T ), form an approximation of πT .
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2.7.6.2. Choice of SMC proposal

It should be clear that with SMC samplers, there is always a trade off

of number of particles, number of intermediate distributions and speed

(and memory requirements) of computation. More intermediate distribu-

tions means closer successive distributions, while more particles means

a potentially finer approximation of each distribution. The larger the

number of parameters to be sampled, the larger the number of particles

and number of iterations that should be selected, but there is no general

rule of thumb for selecting these “meta” parameters.

It is convenient to select K by means of a proposal kernel together

with an accept-reject step. Writing Q for the proposal and α for the

acceptance probability:

Kt,Σ̃t
(x, ·) = A 7→

∫
A
Qt,Σ̃t

(x,y)αt(x,y) dy +
(
1− cx,t,Σ̃t

)
δx(A)

where

cx,t,Σ̃t
=
∫
Rd
Qt,Σ̃t

(x, ·)αt(x, ·),

and

αt(x,y) = min
JπtK (y)Qt,Σ̃t

(y,x)
JπtK (x)Qt,Σ̃t

(x,y) , 1


This is equivalent to drawing a proposal from Qt,Σ̃t
(x, ·) and accept-

ing this proposed state (i.e. storing θ
(i)
t ← x) with probability αt(x,y),

otherwise leaving the state unchanged. Note that this satisfies the as-

sumption that Kt is πt-invariant.

For the purposes here, Qt,Σ̃t
(x, ·) is chosen to be a Metropolis random

walk starting at x, with covariance matrix Σ̃t. This is a special case of

a Metropolis-Hastings random walk with a symmetrical proposal. The

symmetry allows for a simpler description of the mutation step as follows:

For each particle i, draw a sample from Qt,Σ̃t
(0, ·) and add it to the

current state θ
(i)
t to give a proposed state x. The acceptance probability

then simplifies to JπtK (x)/JπtK (θ(i)
t ).
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If the proposal variance is too small then, depending on the distri-

bution in question and how different it was to the previous distribution,

the acceptance rate will be high but the particles will move around the

space slowly, which might correspond to the particle cloud from the next

iteration not adequately representing that iteration’s target distribution.

Conversely, if the proposal variance is too large then, again depending on

the distributions in question, it is likely that the proposals will be in re-

gions of lower density and so the acceptance rate will be lower. Again this

might mean that the particle cloud is not a good representation of the

intermediate distribution. This therefore suggests that it is important to

select the proposal variance and monitor the acceptance rate carefully,

but fortunately SMC samplers are more robust than similar MCMC al-

gorithms, in that the whole probability distribution is estimated at each

iteration, and the next distribution in the sequence is not too dissimilar

from the previous. Indeed, some thought should be given to the selection

of the proposal variance, but generally increasing the number of inter-

mediate distributions will allay such issues, provided the acceptance rate

isn’t either extremely high or extremely low. When using distribution

tempering, and without adapting the proposals, it is usually observed

that the accept rate will decrease with every iteration, so adaptation of

the proposal variance is important in SMC settings.

Roberts and Rosenthal [88] found an optimal proposal in a certain

high-dimensional MCMC setting, which was:

Kt(x,x+ ·) = (1− β)N(0, (2.38)2Σt/d) + βN(0, (0.1)2Id/d),

where Σt denotes the empirical covariance matrix of the tth iteration,

and they found the optimal acceptance rate in such settings to be 0.234.

As this was an MCMC context rather than an SMC context, it required

t > d for it even to make sense, but the condition imposed was t > 2d

presumably for stability. β was taken to be 0.05 and this component (that
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does not depend on the covariance matrix) ensured that the algorithm

did not get stuck if the covariance matrix Σ became singular at any

point.

Although the context here is not the same, it still seems reasonable to

select a similar proposal and aim for a similar acceptance rate. Used here

is the following adaptation, which does not necessarily satisfy the dimin-

ishing adaptation condition or other assumptions that were necessary in

the MCMC context:

(1− β)N(0, ft(2.38)2Σ̃t/d) + βN(0, (0.1)2Id/d),

although if the covariance matrix was found to be singular, β was tem-

porarily increased to 1. The factor fn is another type of adaptation

introduced, with f1 = 1 and ft+1 = max(min(1 + (at− 0.234), 1.1), 0.9)ft
where at denotes the accept rate of iteration t. This is not dissimilar to

the scheme proposed by Roberts and Rosenthal [88], but here the dimin-

ishing adaptation condition is not required so the adjustment factor is

not itself scaled according to the iteration. Other approaches could of

course be adopted that use more information about the history of the

acceptance rate over previous iterations, which would better facilitate

reaching or remaining at the target acceptance rate, but is felt to be un-

necessary here, especially as the target acceptance rate is not known to

be optimal in this context. In any event, only a reasonable performance

is needed, not an “optimal” performance.

The proposal scale Σ̃t can be updated (based on the covariance Σt of

whole particle system) every K SMC iterations (say) for some K. As the

covariance of the particle system is relatively inexpensive to compute, it

is feasible to take K = 1, so that is done here.
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2.7.6.3. Choice of SMC tempering schedule

The tempering schedule is not adapted here, but a sensible scheme has

been proposed by Zhou et al. [78], who suggests aiming for a fixed reduc-

tion in the conditional ESS, a quantity also defined by him. Instead, a

fixed geometric-based tempering schedule is applied instead: φk =
(
k
T

)λ
with λ > 1 chosen so that π1 is reasonably close to π0, as the jump

between these two distributions in particular is substantially different to

that of any other adjacent distributions. This could be described as a

deterministic adaptation, but the term “adaptive” here is reserved for

dynamic adaptation cases.

While tuning the parameters, it may be helpful to run the SMC solver

only up to some iteration t < T (e.g. just for the first one or two itera-

tions or so), to check that things are working correctly and the distance

between the first two distributions is not too large.

2.7.6.4. Assessing convergence of SMC runs

Diagnostics for sample impoverishment are borrowed from Carpenter et

al. [89] (which was a particle filtering context). Somewhat confusingly,

these are also referred to as effective sample sizes. Although this is not a

particle filtering context, the same concept applies without modification.

If one is interested in the property

∫
g(θt) dL(xk|Dk), (2.29)

(for instance with g taken to give the marginal means of a parameter)

then, with M replicates of weighted particles (x(m,j)
k , w

(m,j)
k ) (for m =

1, . . . ,M), the effective sample size of the property is

Mvk/
M∑
m=1

(
z

(m)
k − zk

)2
(2.30)
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where
z

(m)
k = ∑N

j=1w
(m,j)
k g(x(m,j)

k ),

v
(m)
k = ∑N

j=1w
(m,j)
k g2(x(m,j)

k )− z2
k

(2.31)

and zk, vk are the average values of the M replicates of zk, vk respectively.

2.7.6.5. Chi-squared distance between distributions

Knowledge of the “distance” between distributions is useful to check that

distributions of the SMC sampler corresponding to successive iterations

are sufficiently close for the SMC to perform effectively. It can also be

used to give some insight into the identifiability of the problem, and this

aspect is discussed in the next subsection.

The chi-squared distance between two distributions φ and µ is defined

as [90]:

dχ2(φ, µ) = Varµ(
[
φ(X)

]
/
[
µ(X)

]
)

= Eµ(([φ] (X)/[µ] (X))2)− (Eµ([φ] (X)/[µ] (X)))2

=
∫

([φ] /[µ])2 [µ]− (
∫

[φ] /[µ] [µ])2 = (
∫

[φ]2 /[µ])− 1
(2.32)

Of course, sufficient knowledge of either or both of φ and µ is required

to calculate this quantity directly, and is often not available or not feas-

ible to obtain since the curse of dimensionality arises again. Therefore,

Monte Carlo approximations of χ2 distances are calculated in this work,

which involve little extra effort when a Monte Carlo approximation of

the distribution φ is already available. The integral is replaced with an

importance sampling integral, and the normalising constants of φ and µ

are also estimated with importance sampling integrals. Obviously mul-

tiple replicates should be obtained and averaged but a single replicate can

still be informative. However, in this setup, if φ is not a good importance

base distribution for µ, then the corresponding dχ2(φ, µ) estimate will be

unreliable (and possibly poorly conditioned).

The chi-squared distances provide quantities that can be bench-
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marked but not directly interpreted.

2.7.6.6. Further evaluating SMC output

During the SMC runs, although the resource requirements of outputting

the entire particle distributions for each iteration would be excessive, it

is possible to output the particles periodically, not just at the final iter-

ation. It is helpful to output the full particle system at iteration 0, to

check that the prior distribution was correct and to help identify whether

any oddities seen in later iterations may have been caused by the specific

sample used in this initial iteration. Iteration one is also a very important

iteration as it is the first one that introduces the likelihood function. If

the tempering exponent (or number of iterations) is not well tuned then

the distribution after this iteration may either look too similar to the

initial distribution, suggesting that there may be many wasted compu-

tations in this iteration and following iterations, or it may be drastically

different from the initial distribution suggesting that the assumption of

being close has been violated and so the distribution from the first iter-

ation may not be accurate, not least because only a few particles from

the initial iteration will have survived, resulting in particle degeneracy.

Obviously the final particle distribution is the target distribution in this

setting, and so needs to be output in full so it can be thoroughly ana-

lysed. It may also be helpful to output one or more iterations mid-way

through the SMC run, e.g.
⌊
T/2

⌋
.

Further, it is possible to output details about every iteration, such

as: the average acceptance rate, the survival diagnostic, the proposal

variance, summary statistics for each of the posterior parameters, the

chi-squared distance between the current and next iteration, whether

resampling was performed, and details of a particle with maximal density.

These details will make it much easier to notice if anything looks unusual,

and make it easier to identify where and what may have gone wrong.

If the SMC sampler is executed with a large number of particles,
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then care needs to be taken when analysing the resulting particles: the

memory requirements of loading all the particles into memory on a stand-

ard PC can exceed the capability of the machine, and Windows is espe-

cially bad at remaining responsive during (or recovering from) low avail-

able memory situations.

Obviously, SMC is used mostly when the posterior cannot be eval-

uated analytically, and so the SMC estimate cannot be compared with

the actual posterior. However, it is helpful to run the SMC sampler for

simpler situations where the posterior can in fact be evaluated analytic-

ally, to check that the results are correct in those cases, and to get a feel

for the behaviour and variance of the sampler and things to look out for.

The same can be done in cases where the posterior cannot be evaluated

analytically but where features of the posterior are known, and it can

then be checked whether the SMC sampler has correctly captured those

features. See the next subsection for details where this was done.

Finally, if the output from the SMC sampler looks like it might poten-

tially correspond to the correct target distribution, it is wise to increase

the number of SMC iterations and/or the number of particles by an order

of magnitude, and to check that the resulting estimates are similar. This

need only be done once or twice for every model, and not necessarily for

every set of input data.

There are of course ways to test whether two independent samples

may have come from the same probability distribution, and to test

whether a sample may have come from a particular known probabil-

ity distribution. In one-dimension, the Kolmogorov-Smirnov test for two

independent samples and the Kolmogorov-Smirnov goodness-of-fit test

[91] are such possibilities, and do not assume that the error follows a

normal distribution. In higher dimensions, similar tests are somewhat

harder [92] and there has not been time to apply these in this work.

Visualisation of multi-dimensional distributions can be difficult, but

marginal distributions are trivial to extract from the weighted particle
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collections output by the SMC sampler, so it is generally worth plot-

ting marginal and pairwise marginal distributions for all the parameters.

These marginal distributions can often indicate features and/or likely

problems with the calculated posterior distribution. Scatter plots can

also be used if desired, provided that either the particles are resampled

first to have uniform weights or particles are shown with markers whose

sizes are relative to their weights.

2.7.6.7. SMC examples on simple low-dimensional models

As mentioned in the previous subsection, the SMC sampler should be

tested in situations where the true target distribution is known exactly,

so the sampler can be evaluated for performance and accuracy, before it

is applied to distributions that are less straightforward to verify.

With this in mind, the SMC sampler described was applied to a struc-

turally globally identifiable 2-compartment model with 2 parameters con-

sidered unknown. As this is a 2-dimensional problem, the results are easy

to see visually in 3-dimensions. This was the model depicted in Figure 2.4

with αb = 2.6287, k2,1 = 4.02488, ke,1 = 0 and both u(t) = Dδ(t) (an

impulsive input) with D = 4362.76 and ke,2 = 1.53968 were considered

known. Initially, the sampler was applied to noise-free observations from

this model, and because the observations were noise free, the above (nor-

mally excessive) accuracy stated in the parameters could be recovered by

the sampler.

The correct posterior distribution, computed directly, is shown in

Figure 2.6, and the smoothed output from the SMC sampler with 1,000

iterations, 10,000 particles and tempering exponent 2 is shown in Fig-

ure 2.7. The two plots have slightly different scales but appear to be

in agreement. As mentioned in the previous subsection, a statistical

test would ideally be performed here to check quantitatively whether the

SMC output appears to be a sample from the reference probability dis-

tribution, the true posterior. The author is aware that such a test is not

72



2. Background and literature review

straightforward in more than one dimension and so presently relies only

a visual calculation.

N Figure 2.6: 3D density plot of known correct posterior
distribution from model used for testing
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N Figure 2.7: Smoothed 3D density plot of output from
SMC sampler applied to known-posterior
testing model with 1,000 iterations, 10,000
particles, tempering exponent 2

With insufficient iterations with respect to the 2 compartment model

with 2 unknown parameters, the particle system output by the SMC

sampler misrepresented the true posterior distribution by showing the

distribution to have a lower variance than it actually does. Of course,

this may not be the only way that insufficient iterations generally affect

the output. The histogram in Figure 2.8 shows the output of the SMC

sampler when run with only 10 iterations, but with 10,000 particles. This

can be compared and contrasted with the true distribution in Figure 2.6.
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N Figure 2.8: Smoothed 3D density plot of output from
SMC sampler applied to known-posterior
testing model with 10 iterations (insuffi-
cient), 10,000 particles, tempering exponent
10

With insufficient particles with respect to the same situation, the

particle system output by the SMC sampler again misrepresents the true

posterior distribution by showing the distribution to have a number of

nearby modes instead of one distinct mode. The histogram in Figure 2.9

shows the output of the SMC sampler when run with only 1,000 particles

(but for 5,000 iterations).

75



2. Background and literature review

N Figure 2.9: Smoothed 3D density plot of output from
SMC sampler applied to known-posterior
testing model with 5,000 iterations, 1,000
particles (insufficient), tempering exponent
10

Clearly, it is necessary to choose carefully both the number of itera-

tions and the number of particles. A deficiency in the number of particles

cannot always be easily corrected by a modest (even geometric) increase

in the number of iterations, and vice versa. While a significant increase

in the number of iterations could potentially compensate for a low num-

ber of particles, this would be inefficient and difficult to justify compared

to increasing both the number of particles and the number of iterations

to an appropriate (but more modest) level.
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Chapter 3

New applications of statistical

analysis techniques

3.1. SMC and identifiability

As mentioned in subsection 2.5.6, it is not always possible to determine

the identifiability of a model algebraically. This may be because the al-

gebra becomes too complicated, or because the model does not admit a

rational polynomial expression. In such cases, although the identifiability

question cannot be definitively resolved structurally, it can be insightful

to consider the numerical identifiability of the model. Ideally, this numer-

ical identifiability information can be extracted using the same tool that

is used to perform parameter inference on a model, as the practitioner

can then observe numerical identifiability issues from whatever source in

the same way (e.g. issues caused due to the structural model, and also

issues caused due to the limitations in the data collection frequency or

noise).

As it has been suggested here that SMC is a good tool for model

inference, so it is now suggested that SMC can be applied to the numer-

ical identifiability problem. Whereas numerical optimisation techniques

usually only find one mode from each starting point (and it is not gen-
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erally feasible to find all modes, or to confirm that all modes have been

found), SMC estimates the entire posterior distribution and so if working

correctly will find all non-negligible modes, a key property that makes

it suitable for assessment of identifiability. However, it should be noted

that while numerical optimisation always seeks to identify the mode to

a given precision, SMC may only sample some particles in the vicinity

of the mode, and not find the mode exactly. If desired, it is of course

always possible to run a local optimisation method starting from the

nearby particles to identify the modes more precisely.

3.1.1. SMC applied to structurally unidentifiable

models

As illustrated in subsection 2.5.3, the 2 compartment model from Fig-

ure 2.4 is structurally unidentifiable when all the parameters are con-

sidered unknown (even considering αb as a combined parameter). For

this linear model, the same structural identifiability findings carry over

to the impulsive input case. The SMC sampler was therefore applied

to this model in this setting to determine the behaviour of the sampler

on a structurally unidentifiable model. The same parameter values as

in subsubsection 2.7.6.7 were used. One resulting approximation of the

posterior distribution is shown via the pairwise marginal density plots in

Figures 3.1 through 3.6.

Each of the pairwise marginal densities clearly show a ridge in para-

meter space as in Figure 3.1, or multiple ridges as in Figures 3.2–3.6. The

ridges arise from the fact that the parameters have one or more degrees

of freedom while still describing the same input/output function. If it

were not possible to conduct the structural identifiability analysis for this

model, the shape of the ridges could be used to infer the functional rela-

tionship between the parameters while keeping the input/output function

invariant. This information could then be used to assist the structural
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identifiability analysis.

N Figure 3.1: SMC results on a structurally unidentifiable model: marginal his-
togram density plot of bα and k21

N Figure 3.2: SMC results on a structurally unidentifiable model: marginal his-
togram density plot of bα, ke1
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N Figure 3.3: SMC results on a structurally unidentifiable model: marginal his-
togram density plot of bα, ke2

N Figure 3.4: SMC results on a structurally unidentifiable model: marginal his-
togram density plot of k21, ke1
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N Figure 3.5: SMC results on a structurally unidentifiable model: marginal his-
togram density plot of k21, ke2

N Figure 3.6: SMC results on a structurally unidentifiable model: marginal his-
togram density plot of ke1, ke2
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3.1.2. SMC applied to structurally locally identifi-

able models

As shown in subsection 2.5.3, the 2 compartment model presented earlier

in Figure 2.4 is structurally locally identifiable (but not structurally

globally identifiable) when αb is treated as a combined parameter and

ke,1 = 0, while the remaining parameters are considered unknown.

With the same simulated data as previously, there are two indistin-

guishable parameter combinations:

1. the original parameter set αb = αb = 2.6287, k2,1 = k2,1 = 4.02488

and ke,2 = ke,2 = 1.53968; and

2. αb = αbk2,1
ke,2

= 2.6287, k2,1 = ke,2 = 4.02488, and ke,2 = k2,1 =

1.53968.

The SMC sampler was again applied to this model with ke,1 = 0

considered known and the remaining parameters considered unknown. A

resultant approximated posterior distribution is shown via the pairwise

marginal density plots in Figures 3.7 through 3.9. The plots clearly

show that the marginal distributions have two separated and well-defined

modes (though the large separation between them prevents display of

more detail in the vicinity of these modes), and it can be seen that

these modes occur exactly in the expected positions as revealed by the

structural identifiability analysis. This demonstrates that one possible

cause of having multiple but separated modes in the posterior distribution

could be structural local identifiability of the model. If it were not already

known, it would not be completely infeasible to identify the functional

relation between the parameters from the positions of the modes and

to use this information to confirm algebraically that the model is not

structurally globally identifiable.
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N Figure 3.7: SMC results on a structurally locally identifiable model: marginal
histogram density plot of bα, k21

N Figure 3.8: SMC results on a structurally locally identifiable model: marginal
histogram density plot of bα, ke2
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N Figure 3.9: SMC results on a structurally locally identifiable model: marginal
histogram density plot of k21, ke2

3.1.3. Using the posterior distribution to inform on

identifiability

A much quicker way to inform on overall practical identifiability is to

calculate the chi-squared distance between the target distribution and

an exponentiated copy of the target distribution (like a “tempered” dis-

tribution but raised to a power larger than 1), essentially extracting the

information directly from the computed posterior distribution. Raising

the posterior distribution to a power larger than 1 amplifies its peaks and

diminishes other regions, so if the posterior distribution has well-defined

peaks then there will be a large difference between it and the exponenti-

ated distribution. On the other hand, if the posterior distribution does

not have well-defined peaks (e.g. because it is practically unidentifiable),

then raising it to a larger power will not result in a significant difference,

and so the chi-squared distance will be smaller.
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Although this method requires significantly less computational re-

sources, and does not even require estimating the exponentiated distri-

bution, it does not inform on which parameters are problematic.
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3.2. SMC for computing profile likelihood-

s/posteriors

It is possible to compute “profile posteriors” for each of the parameters,

which would be useful for various purposes, including to examine those

profiles to determine the practical identifiability of the corresponding

parameters. Namely, if a profile is flat for large regions of the parameter

space, then the parameter is practically unidentifiable. If the profile

contains multiple peaks then there is a possibility of getting stuck in

a local mode. Conversely, if the profile has a distinct maximal peak,

and few smaller peaks, then that parameter is likely to be practically

identifiable.

However, computing these “profile posteriors” would appear to in-

volve solving a large quantity of optimisation problems, which would

again be infeasible. A more efficient approach would be to borrow in-

formation from one optimisation problem to help with the next such

problem, and this is indeed possible through SMC. Each iteration in

such a setup corresponds to a particular value of the ‘profiled’ parameter,

and the distribution at each iteration (or at least the particle with max-

imal posterior density) is of interest, as opposed to a standard SMC run

where only the final iteration is of real interest. Successive distributions

are similar because they only involve a small increment/decrement to

the profiled parameter. This also requires standard SMC runs to reach

the starting distribution for each parameter, before the profiling can pro-

ceed. However, calculating the profile posteriors through SMC somewhat

prevents those profile posteriors being used to help verify the original ap-

proximation of the target distribution as produced by SMC.

A rough implementation of this was attempted by the author but was

soon abandoned in favour of the preceding approach, as it was necessary

to discard previous SMC runs when switching from exploration mode

to profiling mode, and therefore was not considered efficient enough to
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justify its use.
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Chapter 4

Model development and

analysis

4.1. Pharmacokinetic model development

and analysis

The model from subsection 2.6.1 is revisited, and an extension is now

presented to the analysis thereof.

4.1.1. Structural identifiability

The structural identifiability of this model was previously considered in

Hall [1] and some of the following extensions to the results there were

presented in Hall et al. [2].

Let p denote the vector of unknown parameters in the model. Take

p =
(
b k21 k31 k42 k43 ke2 ke3 ke4 α1 α2

)T
, (4.1)

where the feasible parameter space is Ω := (0,∞)n 3 p, with n = 10

denoting the number of unknown parameters.

The observation function y is now written y(·,p) to emphasise its

dependence on the unknown parameters.

88



4. Model development and analysis

The structural identifiability of this model was analysed using the

Laplace transform approach [54] in Hall [1], one of the most commonly

used methods for linear time-invariant systems, where it was found that

ke4 is SLI with either ke4 = ke4 or ke4 = k43 + ke3, and all other model

parameters are SUI. Additional assumptions were then considered to see

if they constrain the system model to be structurally identifiable. A

slight modification of those assumptions is presented below:

(a) Other studies have reported apparent volumes of distribution for

ARS and DHA following oral administration of ARS. In particular,

Morris et al. [39] report the median volume of distribution for ARS

at 6.8 l/kg and 1.55 l/kg for DHA in malaria patients (though these

are noted to vary significantly relative to severity of infection). Such

information can be used to treat the ratio of the observation gains

as known; that is, r := α2/α1 is known (α1 = α and α2 = rα, say).

Using the above information from Morris et al. [39], this would give

r = 4.387 (the observation gain for DHA is larger because it has

the smaller volume of distribution);

(b) There is no known reason to suggest that the metabolism of the

ARS occurs at significantly different rates before and after absorp-

tion, so it might be valid to consider the metabolism rate constants

to be equal: k31 = k42;

(c) There are no other major metabolites of DHA and negligible quant-

ities of ARS are detected in urine. Hence, ARS is almost entirely

converted to DHA, and so it may be reasonable to assume that the

elimination rate parameter ke2 = 0;

(d) Absorption of the metabolite is rapid, thus its elimination may be

negligible before it is absorbed, i.e. ke3 = 0.

Note that when constraints of this sort are imposed on paramet-

ers, the corresponding models are considered to be structurally distinct;
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structural identifiability is concerned with the behaviour of almost all

parameter values, and these assumptions may mean that previously null

sets now have strictly positive measure.

Each combination of these four assumptions was assessed (or if con-

sidered previously, then re-assessed) using the same methods as previ-

ously, and the structural identifiability results are tabulated in Table 4.1.

It can be seen that applying just one of the additional constraints does

not improve the structural identifiability for the majority of the para-

meters. Applying any combination of two constraints except α2/α1 = r

and ke2 = 0 constrains all the parameters to be at least structurally loc-

ally identifiable. Applying any combination of three of the assumptions

constrains the model to be structurally globally identifiable. The assump-

tion (b) that k31 = k42 seems to be the weakest in terms of improving

structural identifiability.

4.1.2. Statistical analysis

4.1.2.1. Weight cap

Hall [1] did not use the described weighting matrix for the data, so the

use of that matrix was evaluated here. However, as was anticipated, due

to the wide range in concentrations reported for individual patients over

the studied time interval, parameter fitting using the weighting matrix

corresponding to the reported errors (see subsection 2.7.2) did not yield

good fits. When using errors corresponding to predicted observations in

contrast to weighting by actual observations, high concentrations were

artificially predicted, corresponding to low weights. These points could

thus be missed completely with little penalty on the likelihood. Prior to

conducting the analysis, this outcome was anticipated and it was planned

that the condition number of the weighting matrix might need to be

controlled to resolve this. The singular values of the weighting matrix

(to cater for the cases where the matrix was not diagonal due to the
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Assumptions Structural identifiability results
α2
α1

= r
r known

k31 = k42 ke2 = 0 ke3 = 0 k21 k31 k42 k43 ke2 ke3 ke4 bα1 bα2 bα

0 0 0 0 U U U U U U L U U -
0 0 0 1 U U U L U - L U U -
0 0 1 0 U U L U - U L U U -
0 0 1 1 L L L L - - L L L -
0 1 0 0 U - U U U U L U U -
0 1 0 1 L - L L L - L L L -
0 1 1 0 G - G L - L L G L -
0 1 1 1 G - G G - - G G G -
1 0 0 0 U U L U L U L - - U
1 0 0 1 L L L L L - L - - L
1 0 1 0 U U G U - U G - - U
1 0 1 1 G G G G - - G - - G
1 1 0 0 L - L L L L L - - L
1 1 0 1 G - G G G - G - - G
1 1 1 0 G - G G - G G - - G
1 1 1 1 G - G G - - G - - G

The applicable parameters under any combination of the assumptions (1
if the assumption is applied and 0 if not) are either structurally uniden-
tifiable (U), structurally locally identifiable (L) or structurally globally
identifiable (G).

Table 4.1: Structural identifiability analysis results for the
four compartment model under different com-
binations of constraints
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assumption of correlation between different measurement errors) were

therefore capped so that no singular value exceeded 100 times the lowest

singular value, resulting in the condition number of the weighting matrix

becoming at most 100. Imposing this cap yielded much improved model

fits, and so only these improved fits are presented here.

Even with this cap, the objective function had multiple local minima

for many patients, and often had multiple local minima achieving similar

objective function values but considerably different parameter estimates.

In these cases, the global minimum was usually selected, except in a

minority of cases where the fitted parameter values were extreme and a

local minimum was identified that seemed more realistic. This highlights

the fact that having a globally identifiable model structure is a necessary

but not sufficient condition to ensure practical identifiability, especially

in the presence of high model and observation errors.

4.1.2.2. Maximum likelihood results

Observations and model fits for one of the patients (“Patient A”) are

shown in Figure 4.1 together with model predictions of the quantities in

the absorption compartments. The corresponding parameter values and

measures of their uncertainty are presented in Table 4.2 and Table 4.3.

The confidence bands give an indication of the sensitivity of the fit.

It can be seen that the model fit for patient A appears to be satis-

factory. Not all model fits were satisfactory for all patients. For brevity,

results for the other patients are not presented here in the same way,

but instead model fit results are summarised through the coefficient of

determination and shown in Figure 4.2, and a summary of parameter

estimates across all patients is provided in Table 4.4. The worst model

fits correspond to patients whose observed ARS and DHA concentration–

time profiles did not both reach peaks within 3 hours of dose administra-

tion, or those where at least one of the drugs exhibited multiple peaks

(approximately half of the patients exhibited one of these issues, and are
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N Figure 4.1: Example of model predicted ARS and DHA quantities/concentra-
tions in each compartment for patient A using the 4-compartment
pharmacokinetic model. Error bars are representative of assay er-
ror. Confidence bands are also shown but are very narrow.

Parameter Fitted value Standard error Units

bα 0.2330 0.0105 kg/l
r 4.3870 (fixed) dimensionless
k21 1.2518 0.0863 h−1

k42 2.0378 0.0199 h−1

k43 0.4604 0.0113 h−1

ke4 0.9975 0.0426 h−1

ρ 0.0207 (nuisance) correlation

Objective function value 3747.23
Coefficient of determination 96.46 %

Table 4.2: Table of parameter estimates and their uncer-
tainties for patient A using the 4-compartment
pharmacokinetic model.
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Parameter correlation matrix (darkness of black/red colour corresponds to
strength of positive/negative value in each cell respectively):

bα k21 k42 k43 ke4
bα 1.000 −0.977 0.199 −0.767 0.994
k21 −0.977 1.000 −0.292 0.638 −0.982
k42 0.199 −0.292 1.000 −0.021 0.187
k43 −0.767 0.638 −0.021 1.000 −0.712
ke4 0.994 −0.982 0.187 −0.712 1.000

Table 4.3: Correlation matrix for the parameters in
Table 4.2 for the 4-compartment pharmacokin-
etic model.

−20 0 20 40 60 80 100

N Figure 4.2: Distribution of the coefficient of determin-
ation (%) over the Mahidol_PK dataset;
marks in red correspond to patients with un-
expected profiles. Recall that the objective
was not to maximise the coefficient of de-
termination, but this statistic allows easier
comparison between subjects than the actual
objective function values.
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coloured in red in Figure 4.2). Note that the fit for one such patient

has a negative coefficient of determination. This does not necessarily

suggest that fitting the mean to the concentration–time profile of each

drug would have performed better than fitting the model (although that

is a natural interpretation), because the model still captures part of the

absorption and elimination processes and therefore their shapes, though

model predictions should not be relied upon in these circumstances. The

coefficient of determination statistic was used to help quantify the good-

ness of the model fits, but it does not provide a good interpretation of

the results: there is no direct correlation between this statistic and the

likelihood function used. In particular, the objective criteria was not to

maximise the coefficient of determination. These results suggest that it

would be useful to compare the influence that the normal distribution

had vs. Student’s t-distribution or the Laplace distribution: see subsec-

tion 2.7.2 and section 5.1.

Parameter Mean (SD) Units

bα 0.472 (0.32) kg/l

r 4.387 (fixed) dimensionless

k21 0.281 (0.30) h−1

k42 1.119 (0.74) h−1

k43 0.835 (0.59) h−1

ke4 1.612 (1.28) h−1

CoD weighted 74.25 (28.8) %

ARS half-life 0.93 (0.58) h

DHA half-life 0.72 (0.53) h

Table 4.4: Fitted parameter values, aggregated

The parameter estimation procedure was typically insensitive to the
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correlation parameter ρ (perhaps as a result of the weight cap) and this

parameter was often fitted close to 0 even when not used as the initial

value for the optimisation. Having preferred a local minimum over the

global minimum in some cases, no individual parameter estimates were

unreasonable in isolation. However, the parameter estimates were not

always considered well determined and many varied significantly between

patients.This was most marked for k21, where the largest and smallest

estimated values differed by a factor of 100, while the other parameters

varied by roughly a factor of 10. The wide variability in the patient

profiles makes it possible that (though unclear whether) this is plausible,

and could be due to differences in the severity of the malaria, issues with

the quality of the data, or other covariates (such covariates were not

available for evaluation here).

Many people working in the field prefer to express elimination para-

meters in terms of half-lives. From the parameters in the parameter

vector p, the ARS half-life can be calculated as

t 1
2 ,ARS

= ln 2/(k42 + ke2), (4.2)

and the DHA half-life as

t 1
2 ,DHA = ln 2/ke4. (4.3)

Estimates of these parameters obtained here (shown in Table 4.4) agree

in range with those summarised in Morris et al. [39] (0.36–1.2 hours for

ARS and 0.49–3.08 hours for DHA), but while Morris et al. [39] report

that the DHA half-life is consistently longer than that of ARS, the same

result was not found for all of the patients in this study; the reasons for

this are unclear.

Model fitting was also conducted by relaxing one constraint at a time

(still resulting in SGI model structures) to assess the effect on the para-
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meter estimates. Doing so either did not significantly alter the parameter

estimates, or otherwise did not generally improve fits visually (sometimes

making them appear noticeably worse), and only marginally reduced the

objective function values. The resulting estimates for some parameters

were very close to their constrained values in some cases, while in others,

the parameter estimates changed significantly and inconsistently, and

their associated uncertainties increased also. When this occurred, the

changes propagated to the other parameters too (due to the correlation),

resulting in even wider variability of the parameters between patients.

These results therefore provide evidence suggesting that the constraints

imposed are as reasonable as could be hoped.

4.1.2.3. Sequential Monte Carlo results

The Sequential Monte Carlo sampler described in subsubsection 2.7.6.1

was also applied to the four compartment pharmacokinetic model to ex-

plore both the model and data in more detail and to gain more experience

with the SMC sampler. Independent uniform priors were assumed for all

parameters, truncated to the plausible range to ensure the prior was

proper and to improve the behaviour of the sampler compared to using

a larger space.

SMC estimated posterior marginal distributions for each of the para-

meters are presented in Figures 4.3 through to 4.7.
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N Figure 4.3: SMC estimate of posterior marginal distri-
bution for bα for patient A
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N Figure 4.4: SMC estimate of posterior marginal distri-
bution for k21 for patient A
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N Figure 4.6: SMC estimate of posterior marginal distri-
bution for k43 for patient A
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N Figure 4.7: SMC estimate of posterior marginal distri-
bution for ke4 for patient A

Pairwise marginal distributions have also been extracted and are

shown in section A.1 to prevent cluttering this section. The model fits

corresponding to the point with maximal posterior density are shown in

Figures 4.8 and 4.9. It can be seen that the residuals for these plots are

smaller than those in the previous fit (Figure 4.1).

2 4 6 8 10 12
Time

50

100

150

200

Conc
ARS

N Figure 4.8: ARS model fit using point with maximal pos-
terior density for patient A
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N Figure 4.9: DHA model fit using point with maximal
posterior density for patient A
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4.2. Coupled parasite lifecycle model

4.2.1. Model development

As mentioned previously in section 2.3, a model must be designed with

reference to the available data. A goal of this chapter is to model the

data from subsection 2.3.3. Recall from that section that some patients

were administered mefloquine in addition to artesunate on days 3 and 4.

As the pharmacokinetic data for mefloquine are unavailable, it is difficult

to model beyond day 3 for those patients and so this has not been done

here.

It was previously concluded that there are changes in the stage-

specific efficacy of the artemisinin derivatives between the two sites. It is

therefore important that the model designed here is capable of capturing

the same behaviour, and it will be interesting to observe whether the

same effect is found.

The model is designed to be able to make use of in vitro data to help

calibrate parameters that would otherwise be unidentifiable.

As the model is non-linear, unlike the pharmacokinetic model in sub-

section 2.6.1, it will be necessary to use the full quantity of drug admin-

istered as input to the model, rather than the per kg amount. Fortu-

nately, the dataset contains the necessary data for this to be possible.

The most difficult part of the modelling was to ensure that the para-

sites’ lifecycle is described continuously without having the effect of in-

stantaneous ageing. It was initially thought that discrete-time models

would be necessary for this, or models where each parasite replicate had

an age parameter associated to it (which due to the large number of

parasites initially present would be intractable), but a solution involving

“shadow compartments” was found. This will be described in more detail

in the relevant subsection.
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4.2.2. Model

A novel model coupling the drug pharmacokinetics and the parasite life-

cycle is proposed. The model structure has been tailored to correspond

with the available data (see subsection 2.3.3), but no attempt is made

to model the mefloquine kinetics or dynamics: data only for days prior

to mefloquine administration will be used. Model predictions can be

generated for the following days assuming mefloquine had not been ad-

ministered, to examine the effect that the addition of mefloquine has

had.

Although this model is an extension of the model in subsection 2.6.1,

previous assumptions on those rate constants that are analogous will have

to be revalidated or replaced.

The system model is not strictly compartmental so the system dia-

gram has to be interpreted with care.

In introducing the model, it is helpful to first look at a subsection of

it:

4.2.2.1. Submodel

The proposed model essentially contains a submodel consisting of the

plasma, red blood cell and parasite dynamics. It is simpler to present

this submodel for a single drug first; see Figure 4.10. The in vitro data

can be modelled by this submodel as an initial step, before considering

the full model.

The submodel contains 4 compartments, of which 3 represent the

location of the drug: a plasma compartment, a red blood cell (RBC)

compartment, and a parasite compartment. The parasite compartment

in fact represents the bound form of the drug, after binding with receptors

in the parasites. Representing the pool of available receptors in the

parasites as the 4th compartment therefore completes the selection of

model states.
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The drug in the plasma compartment is modelled as flowing by dif-

fusion to and from the red blood cells. Ligand-receptor kinetics are then

used to describe the binding of the drug inside the red blood cells to the

parasitised portion of the red blood cells. Although radio-labelled stud-

ies have shown that drug bound to the parasites does not appear to be

displaced, it is not known a priori whether it is possible for the drug to

dissociate from the parasite receptors, albeit very slowly, or whether no

dissociation can occur at all. The model therefore leaves in the possib-

ility of dissociation, which is effectively removed when the dissociation

rate constant is zero.

The in vitro study measures the proportion of uptake of the radio-

labelled artemisinin in the “pellet” compared to the total (pellet plus

supernatant) after centrifuging. The pellet therefore includes the red

blood cells and the parasites within the red blood cells, while the super-

natant corresponds to the plasma.

The parameters in this submodel and their meanings are listed in

Table 4.5.
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2. plasma 5. RBCs,
diffusion

7. parasites
inside RBCs

r. parasite
receptors

y1(t) =
q5(t)+q7(t)

q2(t)+q5(t)+q7(t)

k52(t)

k25(t)

k7(t)

k−a/ζ

k7(t) k−a/ζ

= artemisinin (or derivative), = linear non-zero flow (with
hematocrit fixed), = non-linear (i.e, non-constant transfer coefficient).

= coupled to parasite parameters.

N Figure 4.10: In vitro submodel for drug uptake into red
blood cells

The compartments within the model are numbered to correspond to

those in the full model. The model is parameterised in terms of the

haematocrit ζ (considered proportional to the number of RBCs), para-

sitaemia percentage p, and the total volume of blood v2. These are con-

sidered static parameters for the in vitro experiments (rather than poten-

tially changing with time). The initial concentration of the drug in the

plasma is a known initial condition of the model, while the initial number

of parasite receptors is only known up to a constant of proportionality.

In the in vitro experiments, the volumes of blood and parasitaemia are
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known, but the parasite lifecycle stage is not measured. Therefore, for

simplicity and identifiability, the infected red blood cell compartment is

not split by parasite stage.

The equations for the submodel are as follows:



q′2(t) = µ
(
q5(t)
v5
− q2(t)

v2

)
q′5(t) = −µ

(
q5(t)
v5
− q2(t)

v2

)
− kaq5(t)qr(t)

ζ
+ k-aq7(t)

ζ

q′r(t) = k-aq7(t)
ζ
− kaq5(t)qr(t)

ζ

q′7(t) = kaq5(t)qr(t)
ζ

− k-aq7(t)
ζ

q2(0) = c0v2

q5(0) = 0

q7(0) = 0

qr(0) = κζp

y1(t) = q5(t)+q7(t)
q2(t)+q5(t)+q7(t)

(4.4)

where v5 = ζλc, v2 = 0.7 ml. i.e. in the above diagram,

k52(t) = max
{
µ
(
q5(t)
v5
− q2(t)

v2

)
, 0
}

k25(t) = max
{
−µ

(
q5(t)
v5
− q2(t)

v2

)
, 0
}

k7(t) = kaq5(t)qr(t)/ζ.

(4.5)

The parameter λc provides an extra degree of freedom for the concen-

trations in red blood cells and whole blood to differ by a fixed ratio.

The in vitro data are only available for artemisinin, so the submodel

will be initially calibrated based on this, though adjustments may have

to be made for the different derivatives used in the full model (artesunate

and dihydroartemisinin). The calibration of the submodel to the data

is made under the assumption that the radio-tracer stayed bound to

the artemisinin, which therefore includes the assumption that there was

no metabolism of artemisinin, either into other artemisinin derivatives

or into inactive metabolites. This assumption is necessary given the
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limitations of the data provided, and will still produce useful insight.

However, before incorporating parameters derived from these data into

the full model, consideration should be given to necessary corrections,

including the corrections already necessary for the different derivatives.

4.2.2.2. Submodel structural identifiability

Before attempting to fit the in vitro data to the submodel, it is important

to first check that the model is structurally identifiable. The model is an

uncontrolled model with 5 unknown parameters, 3 known parameters,

and no input. The model parameters are summarised in Table 4.5.

Parameter Description Known/unknown

κ number of receptors per unit of infected hematocrit unknown

ka drug-parasite receptor binding rate constant unknown

k-a drug-parasite receptor unbinding rate constant unknown

µ permeability of red blood cells unknown

λc concentration factor for diffusion equilibrium unknown

ζ hematocrit known

c0 initial concentration of drug known

p parasitaemia known

v2 total volume of blood known

Table 4.5: Table of parameters in the artemisinin red blood
cell uptake submodel

The Taylor series method is easily applied to this model. Calculating

six Taylor series coefficients of the observation function shows the model

to be structurally globally identifiable.

It may be of interest to also determine the situation when used with

only uninfected red blood cell data, i.e. when p = 0. Re-applying the

same method under these circumstances, only µ and λc are found to be

structurally globally identifiable, with the remaining unknown paramet-
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ers κ, ka and k-a being structurally unidentifiable (in fact, not appearing

in derivatives of the output function at all to any order checked, though

it is noted that this method is technically inconclusive unless all Taylor

series cofficients are checked), as would be expected.

4.2.2.3. Submodel parameter estimates

Based on the above structural identifiability analysis, it would clearly be

possible (under the assumption of continuous noise-free data) to estimate

parameters µ and λc from the uninfected red blood cell data, and then

to consider these parameters as known when estimating the remaining

parameters from the infected red blood cell data. However, there are few

data points available and it is probably more helpful to estimate all the

parameters using all the data, so that is what was done here.

Parameter estimates were determined using the in vitro data for

artemisinin (introduced in subsection 2.3.2) and are shown in Table 4.6,

and the corresponding model predictions are shown in red in Figures

4.11 through to 4.17. Note that the same parameters are used to gen-

erate all plots (excepting the independent parameters ζ, p, c0), so that

even though some plots do not look to have fitted perfectly, the reason

for that is the model has been constrained by the data points shown in

the other plots. The systematic error that appear consist of too-high

model estimates in some plots, and too-low model estimates in others,

suggesting that the fitting has performed as well as it can under the con-

straints. It was unknown whether the flow described by parameter k-a
was in fact present in the system being modelled. The numerical optim-

iser was estimating parameter k-a to be close to 0 (around 10−9) so this

parameter was instead forced to 0 to improve estimates of the remaining

parameters.

As noted earlier, these data are for artemisinin and so these para-

meters cannot necessarily be used directly for ARS or DHA, but if the

model behaves well for artemisinin then an appropriate change to the
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parameter values should render it suitable for those other derivatives.

As this derivative is not of much interest here, a full statistical analysis

is not carried out. It is sufficient to determine visually whether the model

is behaving appropriately.

Parameter Description Value

κ number of receptors per unit of infected hematocrit 14,500

ka drug-parasite receptor binding rate constant 0.00225

k-a drug-parasite receptor unbinding rate constant 0 (forced)

µ permeability of red blood cells 5.58

λc concentration factor for diffusion equilibrium 1.12

Table 4.6: Table of parameter estimates in the artemisinin
red blood cell uptake submodel
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N Figure 4.11: Hematocrit against partitioning coefficient
for uninfected cells (with c0 = 880 nM, t =
2 hours, p = 0%), data and model
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N Figure 4.12: Incubation time (hours) against partition-
ing coefficient for uninfected cells (with
c0 = 1410 nM, ζ = 33%, p = 0%), data
and model
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N Figure 4.13: Initial concentration against partitioning
coefficient for uninfected cells (with t = 2
hours, ζ = 33%, p = 0%), data and model
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N Figure 4.14: Hematocrit against partitioning coefficient
for infected cells (with c0 = 880 nM, t = 2
hours, p = 6%), data and model
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N Figure 4.15: Incubation time (hours) against partition-
ing coefficient for infected cells (with c0 =
1410 nM, ζ = 33%, p = 7%), data and
model
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N Figure 4.16: Initial concentration against partitioning
coefficient for infected cells (with t = 2
hours, ζ = 33%, p = 6%), data and model
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N Figure 4.17: Parasitaemia against partitioning coeffi-
cient (with c0 = 1410 nM, t = 2 hours,
ζ = 33%), data and model

It is clear that the model appears to capture the correct shape of the

behaviour for each ‘slice’ of the available data. Some systematic errors

are clearly seen in the uninfected haematocrit and uninfected incubation

time slices, with under- and over-estimates of the data, respectively. It is

also clear that the first data point for measuring uptake against time was

too late to capture the initial uptake period (or rather, the uptake was

so fast so as to prevent observation of this), so it seems that it should be

hard to calibrate the uptake parameter µ exactly. Although no problems

were reported by the numerical optimisation scheme used, no sensitivity

analysis was conducted.
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4.2.2.4. Ageing model

As the lifecycle stage of the parasites plays a key role in both the time

of replication of the parasites, and in the drug-parasite interactions, it

is necessary to model the lifecycle stage of the parasites, or equivalently,

their ages. There can be in excess of 1012 parasites in total in severe

cases, corresponding to 200,000 parasites per microlitre of blood [93]. The

parasites are also often synchronised or near-synchronised. It is therefore

neither feasible nor particularly useful to keep track of the age of each

individual parasite: keeping track of the lifecycle stage is a sufficient and

simpler alternative.

To decide on the appropriate lifecycle stages to lump parasites into,

first recall that there are 4 age classes into which malaria parasites are

often distinguished: merozoites (∼ 2 mins), ring forms (∼ 12 hours),

trophozoites (∼ 24 hours) and schizonts (∼ 12 hours). From a modelling

perspective, the merozoites are transient; existing only on a negligible

time scale relative to the remaining stages and time scales of the drug

model, hence merozoites need not be incorporated as a distinct stage but

parasites in this form can be lumped into either of the adjacent stages.

The remaining three stages have different durations, and the susceptibil-

ity of the young and mature ring forms is thought to differ. Hence, it is

helpful to reassign the stages to be more practical for the purposes of the

model, and such that each has a similar duration. Eight age classes are

therefore used, each of 6 hours duration: young ring forms, mature ring

forms, young circulating trophozoites, mature circulating trophozoties,

youngly sequestered trophozoites, mature sequestered trophozites, young

schizonts and mature schizonts. There is thought to be little value in hav-

ing age classes of shorter duration, due to the synchronous nature of the

parasites and the forseeable difficulty in the practical identifiability of

stage-specific parameters for shorter age classes.

Now that the age classes have been decided upon, the actual mech-
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anics of the progression between age classes needs to be elucidated. In-

stantaneous progression of parasites from one age class to the next might

be simple to model but, even if parasites are generally age-synchronised,

this would be an undesirable property because there would be sudden

discontinuous jumps in the numbers of parasites due to parasite death

and replication. Hence a continuous-time model of ageing would be pre-

ferred. The simplest such model that occurred to the author consisted of

each age class connected in series to its successor, in the standard first-

order manner as is usual for many compartmental models. However, it is

clear that first-order kinetics can only account for the mean behaviour of

essentially exponentially distributed holding times (or extensions thereof

with moderate complexity such as Erlang distributions) [94]. Such hold-

ing time distributions have non-zero probability densities for all positive

times, and so are not really suitable to describe ageing. For instance,

some non-zero proportion of the parasites age instantaneously in these

models, and to make this proportion negligible requires a large number

of intermediate compartments, which becomes infeasible.

It is possible to maintain continuous-time behaviour without this dif-

ficulty, however, by specifying that the flow rates between age classes

undergo discrete-time step changes. Specifically, to describe a 48 hour li-

fecycle using eight age classes of equal duration, the eight age classes can

be represented with two compartments each; one acting (at any given

time) as a ‘live’ compartment and one as a ‘shadow’ compartment for

each, giving 16 compartments in total. The terms ‘live’ and ‘shadow’

compartments are slightly misleading as their roles periodically altern-

ate, but the ‘live’ compartment can be thought of as ‘initially live’ when

t = 0 (i.e. when modelling begins) and the other as ‘initially shadow-

ing’. Live and shadow compartments are symmetrical in terms of their

equations and hence equivalent in nature, just it is convenient to give

them names that highlight the fact that they represent part of the same

measured quantity (parasites in a certain age class). The distinction is
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that the live compartment represents parasites prior to the transition to

the next age class, and the shadow compartment represents those after

the transition has completed (or vice versa, depending on the stage in

the periodic cycle).

As the ageing is to happen continuously rather than instantaneously,

a time window τchange for ageing must be chosen, e.g. the advancing from

one age class to the next could take place over a window of length τchange =

1 hour, say. Suppose that at t = 0, the parasites were already δt hours

into their current age classes. i.e. in the age class of 0–6 hours, all the

parasites are ∼ δt hours old, and similarly those in the 6–12 hour age

class are all ∼ 6 + δt hours old, and so on. The advancement process

then could be modelled as taking place between time 5.5−δt and 6.5−δt

hours, every 6 hours. Generally, the switching begins τchange/2 time units

before the lifecycle duration is reached, and completes τchange/2 time units

after. This is achieved in the model by toggling on a flow during that

time interval, such that the parasites in the ‘live’ compartments move to

the age-advanced ‘shadow’ compartments, as shown in Figure 4.18. (In

the next time interval 6 hours later, the flows are from these ‘shadow’

compartments into the ‘live’ compartments, as their roles have reversed.)

Zeroth-order (constant) dynamics are chosen, but once all the parasites

in the donor compartment have migrated (or died), that particular flow

is toggled back to 0.

A background rate of parasite kill is specified here for illustrative

purposes. This is replaced with a drug-dependent rate in the full coupled

model.

At the beginning of the discrete event at time t∗ with · representing

either the live compartments l or the shadow compartments s as appro-

priate, set k(·)
i ← p

(·)
i (t∗)/τchange where τchange is the time interval over

which the ageing process takes place. (To validate this, note that the

time domain equation for the contribution of the zeroth-order ageing

flow after τchange hours is −kiτchange, which with the above definition of
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ki is equal to −p(·)
i . i.e. this corresponds to all parasites having left the

compartment. Of course, with background/drug-induced death, it may

not take τchange for the compartment to become empty, but the ageing

rates are still defined in this way.)

The differential equations governing the parasite lifecycle model are

conceptually simple:

p
(l)
1
′
(t) = −d1p

(l)
1 (t)− k(l)

1 +Mk
(s)
8

p
(l)
2
′
(t) = −d2p

(l)
2 (t)− k(l)

2 + k
(s)
1

p
(l)
3
′
(t) = −d3p

(l)
3 (t)− k(l)

3 + k
(s)
2

p
(l)
4
′
(t) = −d4p

(l)
4 (t)− k(l)

4 + k
(s)
3

p
(l)
5
′
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where the k rate parameters are driven by discrete events. The discrete
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events are:

when p(·)
i reaches 0, set k(·)

i ← 0

when t+ toffset ≡ 0 mod 12, set k(s)
i ← p

(s)
i (t)/τchange

when t+ 6 + toffset ≡ 0 mod 12, set k(l)
i ← p

(l)
i (t)/τchange.

The di terms represent first-order parasite death rates, which in the

full model are coupled to the pharmacokinetics of the drugs, but for illus-

tration here they consist solely of a constant background death rate. The

model also incorporates a further discrete event to ensure if the density

of the parasites falls below a predefined threshold, then the infection has

effectively died out. Without this extra event, after enough cycles in the

absence of a significant background/drug-induced death rate, the para-

sites might be shown to return to a substantial density under the model,

which isn’t always observed. The threshold can of course be configured

to a plausible value.

Figure 4.18 shows the compartments representing the age stages

within the lifecycle and the connections between the live and shadow

compartments.
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N Figure 4.18: Parasite lifecycle model showing connectivity between live and shadow compartments.
The solid flows are always enabled. Either the dashed green flows or the dashed teal flows are active
(until the respective donor compartment runs out of parasites), both sets of dashed flows are never
active simultaneously. The number of parasites in a given age class is always taken to be the sum of
the quantities in each of the live and shadow compartments for that age class.
Compartments with a grey background are observable, while compartments with a white background
are unobservable as they represent sequestered stages of the lifecycle.
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An example of the behaviour of this parasite lifecycle model is shown

in Figure 4.19. For this figure, the model was started with a single ini-

tial parasite population entirely within age class 1, and uses constant

background death rate parameters. In the figure, it can be seen that the

parasites that initially started in age class 1 move into the successive age

classes after the expected time intervals. Figures 4.20 and 4.21 show the

aggregated time courses of total and observable parasite densities across

the age classes, respectively. The effect of the background parasite death

rate can be seen, which stops the parasite population from exploding.

It is also clear that the unobservability of the sequestered parasites has

a significant effect on the observed parasitaemia, and that even though

it may appear that all the parasites have died, this is not necessarily

the case. Observations must therefore be made of parasitaemia at suf-

ficient intervals to determine whether the infection is cured or whether

the parasites are simply sequestered.

Note that the model is fully capable of having an initial parasite

distribution that consists of multiple age classes, but to aid clarity, that

situation has not been shown in the simulations here.
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N Figure 4.19: Parasite lifecycle model simulation with all parasites initially in age class 1. The inner circle of age
classes from Figure 4.18 are identically zero for the whole simulation duration and are omitted here.
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N Figure 4.20: Total density of parasites across all classes
in the simulation shown in Figure 4.19
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N Figure 4.21: Total density of all observable (non-
sequestered) parasites in the simulation
shown in Figure 4.19
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4.2.2.5. Full model

The full model is now presented, which couples a drug pharma-

cokinetic/pharmacodynamic model (Figure 4.22) with the parasite li-

fecycle/pharmacodynamic model introduced in the previous subsection

(Figure 4.18), but now with death rates coupled to the pharmacokinetic

model. Live and shadow compartments are also adopted in exactly the

same way to keep track of the amount of the drugs inside the red blood

cells.

The absorption compartments from the four compartment pharma-

cokinetic model, not relevant in the submodel above, are restored to the

full pharmacokinetic/pharmacodynamic model for in vivo use. The para-

site receptors and drugs inside parasites are now split into parasite age

classes, and use shadow compartments to facilitate what is essentially

the rotation of contents of these compartments when the parasites age.

Note that the parasitised red blood cell aspects of the drug model

are coupled to the lifecycle model, and the lifecycle model is coupled to

the drug concentration in parasitised red blood cells. The lifecycle model

triggers discrete events every 6 hours to toggle on the relevant shadow

flows, and discrete events are automatically triggered to toggle off the

zeroth-order shadow flows once the donor compartments become empty.

In between the discrete events, the model is described by a standard

system of coupled first-order ordinary differential equations.

The drug model is as simple as possible while still capturing all the

key features of the biological processes involved. As the study again

relates to orally administered artesunate (ARS) and its principle meta-

bolite dihydroartemisinin (DHA), the model is again divided into par-

ent/metabolite compartments with input to the parent absorption/gut

compartment.

As in the submodel, there are now compartments for red blood cells,

and parasites within some of those red blood cells, in addition to the
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oral doses u(t)

1. parent,
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facilitate transport

split by age class + shadowed

= parent drug (Artesunate), = active derivative and principle metabolite
(Dihydroartemisinin), = linear non-zero flow, = non-linear (i.e, non-constant

transfer coefficient). = coupled to parasite model.

Compartments 7.1–7.8, 8.1–8.8 and r1–r8 also have shadow copies but only the “initially live” set of
compartments is shown to prevent obscuring the more interesting aspects of the model.

N Figure 4.22: Diagram of drug model component. Note that shadow compart-
ments are also used here but are not shown to avoid obscuring the
rest of the diagram.

121



4. Model development and analysis

plasma circulation compartments from the previous pharmacokinetic

model. Obviously each subject has a large number of red blood cells,

but for simplicity, the model only includes one red blood cell compart-

ment for each drug and one parasite compartment for each drug, and

thus captures only the average dynamics. The average quantities of drug

inside the red blood cells may therefore change during parasite death and

replication, but it is not felt that this affects the model utility.

Observations are made of the concentrations of ARS and DHA in

plasma (rather than in whole blood), and of the non-sequestered parasite

burden. While the drug concentrations are only measured in plasma in

the available datasets, representing whole blood distribution in the model

is more accurate than compensating for this through the observation gain

parameters as in subsection 2.6.1, and concentrations in the blood cells

are physiologically relevant. The remaining aspects of the model are ana-

logous to the corresponding respective components of the submodel and

previous pharmacokinetic model. Note that the model does not degener-

ate to the pharmacokinetic model in the case where there is no malaria,

due to the inclusion of the red blood cells with non-linear dynamics.

Distribution of ARS and DHA into uninfected cells is reversible, but

into infected cells is irreversible (due to conversion to free radical or

inactive and unmeasured forms, as confirmed when fitting the submodel

to the in vitro data); the red blood cells act as a sink for the drugs.

It is possible that metabolism of ARS to DHA will still occur to the

ARS present inside red blood cells. The model does not allow ARS to

metabolise once bound to the parasites, because this binding is irrevers-

ible and no further observations are made of either drug following such

binding, and so the model would not be able to support nor benefit from

such a metabolism parameter.

The initial conditions for the lifecycle component of the model, in-

cluding the initial time offset, are not known and have to be estimated.

Artesunate is administered orally, and initially enters impulsively at
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each dosing time into an absorption compartment. First-order irrevers-

ible absorption occurs into the systemic circulation (this compartment

lumps together multiple organs and blood, and has an apparent volume

of distribution). As in the submodel, the drug then undergoes passive

diffusion into red blood cells; this diffusion is reversible and driven by the

concentration gradient. At any of these stages, the drug can be meta-

bolised (hydrolysed) into the more active derivative dihydroartemisinin,

whence it can then undergo the remaining processes.

For subjects with malaria, both drugs are actively and irreversibly

transported into the parasite component of infected red blood cells. For

full model power, parasites (and hence drug in parasitised cells) are split

into 8 age classes. Once either drug derivative is inside a parasite, its

pharmacodynamic effect begins: parasites are killed, arrested or their

growth stunted. Once the pharmacodynamic effect has taken place, the

drug is no longer able to have any further effect — it is said to be de-

natured. In the model, this is represented by the drug flowing into its

respective denatured compartment, labelled 7.d and 8.d in the diagram.

These compartments are not strictly necessary as elimination from the

system model would be an equally valid modelling choice, but it may

be helpful to keep drug of the quantities of the drugs that have been

denatured to evaluate how significant this effective route of elimination

is.

Meanwhile, the parasites are progressing through their lifecycle:

ageing, replicating, and showing affects from the interaction with the

artemisinin derivatives. While a parasite matures (advances into the

next age class) after having taken up some artemisinin, the respective

amount of the artemisinin simultaneously moves into the respective age

class also. When a parasite dies, the artemisinin it contains flows into

the denatured/sink compartment. In order to prevent immediate further

maturation through the next class and so on, shadow compartments are

used. Essentially, there are two distinct copies of each compartment that
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is linked to a specific parasite stage.

The volumes of the red blood cell and parasite-bound drug compart-

ments are affected by the haematocrit and parasite burden at any par-

ticular time.

Uptake of drug into parasites of a particular age class requires avail-

ability of parasite receptors in that age class. This mechanism ensures

that uptake of drug into parasites is saturable. The differential equations

are therefore:

dq1
dt = −(k21 + k31 + ke,1)q1(t) + u(t)

dq2
dt = k21q1(t)− (k42 + ke2)q2(t) + k25(t)− k52(t)

dq3
dt = k31q1(t)− (k43 + ke3)q3(t)

dq4
dt = k42q2(t) + k43q3(t)− ke4q4(t) + k46(t)− k64(t)

dq5
dt = −∑4

i=1
∑
x∈{lead,shadow} k7.x.i,5(t) + k52(t)− k25(t)− k65q5(t)

dq6
dt = −∑4

i=1
∑
x∈{lead,shadow} k8.x.i,6(t) + k64(t)− k46(t) + k65q5(t)

dqr.x.i

dt = − 1
ζ(t)(ka,ARS,iq5(t) + ka,DHA,i

q6(t))qr.x.i(t) + fshadow,r.x.i
(t)

dq7.x.i

dt = q5(t)ka,ARS,iqr.x.i(t) + fshadow,7.x.i(t)− d7.x.i(t)
dq8.x.i

dt = q6(t)ka,DHA,i
qr.x.i(t) + fshadow,8.x.i(t)− d8.x.i(t)

(4.6)

where qr.x.i denotes the number of unbound parasite receptors for para-

sites in age class i, x is either the lead or shadow compartment, ka,j,i
denotes the uptake rate of drug j into a parasite in age class i.

To ensure the above equations are not unwieldly lengthy, the non-
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linear flows have been expressed as separate functions:

k52(t) = max
{
µARS(c2(t)− c5(t)), 0

}
(4.7)

k25(t) = max
{
µARS(c5(t)− c2(t)), 0

}
(4.8)

k64(t) = max
{
µDHA(c4(t)− c6(t)), 0

}
(4.9)

k46(t) = max
{
µDHA(c6(t)− c4(t)), 0

}
(4.10)

k7.x.i,5(t) =
ka,ARS,i
ζ(t) q5(t)qr.x.i(t) (4.11)

k8.x.i,6(t) =
ka,DHA,i

ζ(t) q6(t)qr.x.i(t) (4.12)

(4.13)

The parasite lifecycle is divided into 8 age stages of equal lengths,

reflecting the same divisions used in the drug model. The parasites ma-

ture into the next age class in continuous time. When progressing from

age class 8 to age class 1 to renew the lifecycle, a number of daughter

parasites are released, ready to infect more red blood cells. The model

assumes instant invasion of new red blood cells by the daughter parasites

(in reality, in non-anaemic patients, this re-invasion will take place within

the order of a few seconds, and so neglecting this is a reasonable model

simplification compared to the other time scales of interest). Where there

are insufficient red blood cells to invade, this could be reflected in the

model by reducing the number of daughter parasites produced, but all

patients are known to be non-anaemic here.

It is necessary to implement a threshold at which parasites are con-

sidered to be fully killed, otherwise recrudesence will always be experi-

enced due to the first-order kinetics.

Shadow compartments are used to ensure that parasites can only

mature through one age class at a time. For purposes not connected to

ageing, the number of parasites/drug in a particular state is the sum of
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the two shadowing compartments for that state:

pi := ∑2
x=1 px.i

qARS.i := ∑2
x=1 qARS.x.i

qDHA.i := ∑2
x=1 qDHA.x.i

qr.i := ∑2
x=1 qr.x.i.

(4.14)

For stage i, the parasite death rate is

di(t) =
∑

j∈{ARS,DHA}
dj.i(t) (4.15)

where for convenience, the artemisinin derivatives are assumed to act

independently, with

dj.i(t) = Emax,j.icj.i(t)
EC50,j.i +cj.i(t)

. (4.16)

Here, Emax,j.i controls the speed of parasite death in stage i caused by

drug j, cARS.i is understood to mean c7.i and cDHA.i to mean c8.i. As this

is non-linear with respect to the shadowing states, the shadowing states

are assumed to have contributed proportionally to the effect:

dj.x.i = −κdj.i(t)
qj.x.i(t)

qj.1.i(t) + qj.2.i(t)
. (4.17)

Parasite death is assumed to be caused when all the receptors be-

longing to that parasite have bound to the artemisinins (though this is

not enforced by the model), so no further change needs to happen to the

number of available parasite receptors upon parasite death.

Continuous-time parasite ageing is realised through use of discrete

event toggles. It is assumed that the parasites within each age class are

roughly synchronised. The parasites’ lifecycle is known to have a dura-

tion of approximately 48 hours. Therefore, the ageing flows are toggled

every 6 hours. After 8 such toggles, the parasites will have matured
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through all 8 age classes and thus completed one full cycle. The timing

and duration of these discrete event toggles are deterministic and are not

influenced by other states of the model (though in reality it is hypothes-

ised that the artemisinins can delay parasite growth). After each toggle,

the shadow compartments and the lead compartments are swapped. In

the following, x denotes the complementary lead/shadow state to x. The

discrete events to toggle off the shadow flows are also deterministic but

their times are not known in advance, they are triggered when the relev-

ant state variables reaching zero.

While parasite ageing flows are activated, so too are the corresponding

flows for drugs inside the parasites and the number of parasite receptors,

with proportionate rates designed to ensure that the ageing process takes

the same duration to complete for each component. Parasite ageing

is described simply by linear zeroth-order flows during the activation

window.

dpi.x
dt = fshadow,p.i.x

(t)− di.x(t) (4.18)

di.x = di(t)
pi.x(t)

pi.1(t) + pi.2(t) . (4.19)

1s,x is an indicator flag for the shadow flows for x being activated.

When the model first runs, both 1s,1 and 1s,2 are zero. Once tlifecycle
reaches 12 hours, 1s,1 is set to 1. After the next 12 hours, 1s,1 is set to

0 and 1s,2 is set to 1. At this point, it should be the case that the states

with x = 1 will be virtually empty (otherwise the shadow flow rates are

set too small). This toggling of 1s,1 and 1s,2 then happens every 6 hours.

Most of the shadow flows have a similar structure, though may differ

in behaviour at the renewal of the cycle. During the reproduction phase

of the lifecycle, new parasite receptors are generated in proportion to the
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number of new parasites generated.

fshadow,p.x.i
(t) =



1s,xMks,1,8px.8(t)− 1s,xks,i+1,ipx.i(t) i = 1

1s,xks,i,i−1px.i−1(t)− 1s,xks,i+1,ipx.i(t) i ∈ {2, . . . , 7}

1s,xks,i,i−1px.i−1(t)− 1s,xks,1,8px.i(t) i = 8

fshadow,r.x.i
(t) =



1s,xκMks,8,1px.8(t) i = 1

1s,xκks,i,i−1qr.x.i−1(t)− 1s,xκks,i+1,iqr.x.i(t) i ∈ {2, . . . , 7}

1s,xκks,i,i−1qr.x.i−1(t)− 1s,xκks,1,8qr.x.i(t) i = 8

fshadow,7.x.i(t) =



−1s,xκks,i+1,iq7.x.i(t) i = 1

1s,xκks,i,i−1q7.x.i−1(t)− 1s,xκks,i+1,iq7.x.i(t) i ∈ {2, . . . , 7}

1s,xκks,i,i−1q7.x.i−1(t)− 1s,xκks,1,8q7.x.i(t) i = 8
dq7.d

dt = ∑8
i=1

∑2
x=1 di.x(t)q7.x.i(t) +∑2

x=1 1s,xκks,1,8q7.x.8(t)

fshadow,8.x.i(t) =



−1s,xκks,i+1,iq8.x.i(t) i = 1

1s,xκks,i,i−1q8.x.i−1(t)− 1s,xκks,i+1,iq8.x.i(t) i ∈ {2, . . . , 7}

1s,xκks,i,i−1q8.x.i−1(t)− 1s,xκks,1,8q8.x.i(t) i = 8
dq8.d

dt = ∑8
i=1

∑2
x=1 di.x(t)q8.x.i(t) +∑2

x=1 1s,xκks,1,8q8.x.8(t)
(4.20)

The shadowing rate parameters control the speed and synchronicity

of parasite ageing, and in particular, replication. In the above, M is the

parasite replication factor, which is considered constant.

Also during this phase, any drug that was previously inside the para-

site prior to replication is assumed to have no further effect on the daugh-

ter parasites (and is not released in active form into the bloodstream),

and so moves into the sink compartment.

4.2.2.6. Model parameters

For convenience, a table of all the parameters in the model is presented

in Table 4.7, while Table 4.8 provides a table of all the state variables and
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Table 4.9 lists all the intermediate functions used in the model equations.

Values for IC50 concentrations for ARS and DHA are available from

the literature [95] and may assist with identification and estimation of

them from the available data, though these are plasma concentrations

and not “within parasite” concentrations as used in this model.
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Parameter Description
k21 ARS absorption rate
k31 ARS to DHA metabolism rate prior to absorption
k42 ARS to DHA metabolism rate after absorption
k43 DHA absorption rate
ke,1 ARS elimination rate before absorption
ke2 ARS elimination rate from circulation
ke3 DHA elimination rate before absorption
ke4 DHA elimination rate from circulation
k65 ARS to DHA metabolism rate inside RBCs
ηj,i uptake rate of drug j into a parasite in age class i
µj RBC permeability (diffusion rate) for drug j
ka,j,i parasite-drug binding rate for drug j in age class i
α1 ARS quantity-concentration factor
α2 DHA quantity-concentration factor
k7.x.(j+1),7.y.j, j ∈ {1, 2, 3} shadow flow rate (toggled)
k7.x.d,7.y.4, j ∈ {1, 2, 3} shadow flow rate (toggled)
k8.x.(j+1),8.y.j, j ∈ {1, 2, 3} shadow flow rate (toggled)
k8.x.d,8.y.4, j ∈ {1, 2, 3} shadow flow rate (toggled)
kr.x.(j+1),r.y.j, j ∈ {1, 2, 3} shadow flow rate (toggled)
ke,r.y.j, j ∈ {1, 2, 3} shadow flow rate (toggled)
Emax,i,j maximum rate of parasite death in stage i from drug j

Table 4.7: Table of parameters for coupled model
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State Description
q1 quantity of ARS not yet absorbed into circu-

lation
q2 quantity of ARS in circulation
q3 quantity of DHA not yet absorbed into cir-

culation
q4 quantity of DHA in circulation
q5 quantity of ARS inside red blood cells (un-

bound)
q6 quantity of DHA inside red blood cells (un-

bound)
q7.x.i quantity of ARS bound to parasites in age

stage i and shadow state x
q8.x.i quantity of DHA bound to parasites in age

stage i and shadow state x
q7.d quantity of ARS that has denatured and is

no longer associated to a living parasite
q8.d quantity of DHA that has denatured and is

no longer associated to a living parasite
qr.x.i quantity of parasite receptors that is avail-

able for binding with the drugs, for parasites
in age stage i and shadow state x

px.i quantity of living parasites that are in age
state i and shadow state x

Table 4.8: Table of state variables used in the coupled
model
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Function Description
c1 parent concentration prior to systemic circulation
c2 parent concentration in systemic circulation
c3 metabolite concentration prior to systemic circulation
c4 metabolite concentration in systemic circulation
c5 parent concentration in RBCs from passive diffusion
c6 metabolite concentration in RBCs from passive diffusion
c7.i.j parent concentration in infected RBCs from facilitated uptake
c8.i.j metabolite concentration in infected RBCs from facilitated uptake
t 7→ k52(t) parent drug passive duffusion into RBCs
t 7→ k25(t) parent drug passive duffusion from RBCs
t 7→ k64(t) metabolite passive duffision into RBCs
t 7→ k46(t) metabolite passive duffision from RBCs
t 7→ k7.i.j,5(t) parent drug uptake into infected RBCs in age stage j, shadow state i
t 7→ k8.i.j,6(t) metabolite uptake into infected RBCs in age stage j, shadow state i
t 7→ k7.d,7.i.j(t) parent drug flow when parasites die
t 7→ k8.d,8.i.j(t) metabolite drug flow when parasites die
t 7→ ke,r.i.j(t) parasite receptor flow when parasites die
y1 parent drug observation
y2 metabolite observation
pi total quantity of parasites in age class i
di rate of parasite death for parasites in age class i

Table 4.9: Table of intermediate functions used in the
coupled model
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4.2.3. Model simulation

As part of the model development process, simulations were obtained

to verify that the model has the intended behaviour, capturing the key

features it was intended to, and to verify that it describes the data to

the correct order of magnitude, without having any unanticipated or

unrealistic dynamics.

Model parameters were chosen so that the simulated curves peak at

roughly the same values as in Figure 4.1, and with an initial parasitaemia

of a typical order of magnitude as in the MORU_ARC3_PD dataset.

Naturally the model has many different parameters and input conditions

that can be manipulated (and were manipulated by the author during the

creation of this work), but a single simulation corresponding to one par-

ticular combination of parameters is shown here in Figure 4.23 to avoid

confusing the reader or overloading this thesis with largely repetitive

figures and descriptions. Some of these other possible model configura-

tions/conditions are discussed in conjunction with an evaluation of the

presented simulation. It should also be noted that for many of the fea-

tures observed in the simulation, different parameters may substantially

alter or eliminate those features: this is not a shortcoming of the model

but instead demonstrates its flexibility.

Plots of drug quantities in Figure 4.23 are shown in the same layout

as the respective compartments from Figure 4.22, except that only the

totals of the shadowed compartments are shown (as the shadowing is

only a modelling device and hinders rather than assists with a visual-

isation of the underlying system). For compartments where there is a

sensible interpretation of drug concentration, these are also indicated on

the same plots as the corresponding quantities, via use of dual y-axes: the

left-hand y axes represent quantities and the right-hand ones represent

concentrations. The haematocrit was taken to be constant so there is in

fact a constant volume for each of these compartments in this simulation.
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It is natural to take time t = 0 to be the timing of the first dose

as this is usually also when the observations of the parasitaemia begin

and the model would obviously not show any interesting dynamics be-

fore any drugs have been administered. In Figure 4.23, it can be seen

that the pharmacodynamic effect of the drugs starts to kill the parasites

almost immediately upon dosing of the artesunate at time 0, but does

not suddenly stop when the plasma concentrations of artesunate and di-

hydroartemisinin reach low levels. Indeed, a significant proportion of the

drugs enter into the parasites and remain there until either the parasites

die or the corresponding infected red blood cells burst. This is seen to be

more significant for DHA than it is for ARS, as expected due to the fast

conversion of ARS to DHA. By quantity, in this example, over 50% of

the ARS that reaches the systemic circulation is irreversibly taken up by

parasitised red blood cells. For DHA, the quantity in the parasitised cells

reaches more than double the peak quantity in the general circulation.

It is also readily seen that the model suggests that a single dose

of ARS may not be sufficient for full pharmacodynamic effect; the peak

ARS and DHA concentrations inside red blood cells are significantly lower

following the first dose than the second. Of course, the parasitaemia is

also lower by the time of the second dose, but the quantity of each drug

inside the parasitised cells is saturable and still increases again following

the second dose.

It is important to note that the volumes of distribution for ARS

and DHA represented in this model (corresponding to the circulation

compartments) are not comparable with volumes of distribution obtained

for malaria patients according to a model without a red blood cell or

parasitised cell uptake mechanism.
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It is also apparent from the time course of observed DHA concentra-

tions that the pharmacokinetics of at least DHA are significantly affected

by the severity and stage of the malarial infection, because the second

peak is much higher than the first. Hence in any multiple dosing study

involving DHA, capturing this effect requires a model such as this, with

coupling of the drug dynamics to the parasite burden. It is not reason-

able to conclude that ARS does not require such a complicated model,

because with other parameter values, similar behaviour is observed as for

DHA.

In producing this simulation, a single synchronous group of parasites

was specified, assumed to be 3 hours into their lifecycle at time t =

0. Hence, the parasites sequestered between t = 21 and 22 hours and

replicated between t = 45 and 46 hours. Parameters were set such that

the ageing and replication each took place over a period of one hour

duration. These transitions are also apparent from the model simulations

but are smooth gradual changes, not sharp sudden ones. Again the initial

population of parasites and the ageing durations/speed can be specified

differently in the model. For example, if the parasite population never

appears to dip and regrow, this may be specified with either parasites in

each of the age classes initially, with slower ageing transition times, or

with a faster rate of parasite kill. At time t = 45 hours, there is a small

but noticeable dip in the quantity of each drug that is present inside the

parasitised cells where the drug from ruptured red blood cells is modelled

as being effectively eliminated from the system, while simultaneously, the

drugs are being taken up into the newly parasitised red blood cells as the

parasites re-invade.

As has been reported for oral administration of ARS and noted in

chapter 2, the parasite burden is reduced 10,000-fold within one parasite

lifecycle period as seen in the plot of p(t). Though somewhat difficult to

observe from the figure due to the smooth transitions and confounding

from other factors, the rate of parasite kill also varies with time due to
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the stage-specific effects, which were set to have a susceptibility weight

of 0.5 for the first 6 hours of the parasite lifecycle, 1 for the next 30 hours

(until the parasites sequester) and then 0.1 for the remaining 12 hours

for illustrative purposes.

As mentioned in subsection 2.3.3, this model was designed with stud-

ies in mind that included a third dose of ARS on day three, but the model

behaviour following this third dose was essentially identical to that of the

second, and so a 72 hour time window is shown excluding the third dose

to better illustrate the model behaviour upon parasite replication once

treatment has finished. It is therefore clear that if insufficient doses of

ARS are administered, then the illness may recrudesce.

In summary, the model demonstrates all the expected and desired

features as intended and has many parameters available for tuning the

behaviour as applicable to each particular subject/patient.
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Chapter 5

Closing

5.1. Conclusions and future work

It was not possible to meet all the aims and objectives set out in sec-

tion 1.2, but the main aim was to develop a novel pharmacokinetic and

pharmacodynamic model to capture important properties of artemisinin-

based treatments, and indeed such a model has been proposed and shown

to be viable.

New methods have been developed to help analyse this model, though

not all these methods were able to successfully applied within the time

constraints of the project, and some of the new methods designed were

ultimately not applicable to the final version of the model structure and

were therefore not presented here as it would have disrupted the focus

on the overall aim.

The in vitro model has been shown to be structurally globally identi-

fiable and describes the radio-labelled data reasonably well, although the

parameters are not able to simultaneously describe all the in vitro data

to the same level of accuracy, but the overall shape is generally captured.

Due to the discrete events within the model, it is not possible to ana-

lyse it from a structural identifiability perspective as a complete unit,

but it is possible to consider the behaviour of the model up until the
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first discrete event (though this clearly will not be able to inform on

the identifiability of the discrete event times, which will require practical

identifiability analyses). The author has applied structural identifiabil-

ity methods to the model in this setting but these have so far proved

intractable, probably due to the complexity of the model in terms of the

number of parameters, number of state variables, and the nature of the

non-linearities. It might be possible to proceed under the assumption

that more of the parameters are known, or by deriving necessary and

sufficient conditions for some of the parameters by analysing submodels

of the full model. Further or alternatively, consideration of numerical and

practical identifiability should be more straight-forward (but require for-

ward simulations of the full model). Though these are also computation-

ally demanding, which is why no results have been successfully obtained

so far, numerical and practical identifiability have the advantage that

sufficient computation time is really the only ingredient needed for such

an analysis, whereas structural identifiability using algebraic methods is

in some sense a “black box” because the symbolic algebra package does

the calculations and the progress cannot be inferred, nor the intermedi-

ate results displayed or used. Eventually, often after a period of a few

days, the symbolic algebra system will run out of memory (even if the

problem is assigned to a highly specified and otherwise capable server)

and the entire calculation will be terminated, leaving no usable evidence

of any progress towards a solution.

The SMC method described in this work has been demonstrated on

a small selection of models, including low dimensional models to explore

and illustrate the typical behaviour in various situations, and also on

the four compartment model introduced in previous work. Though not

entirely straightforward, the method can be adjusted to run in parallel

on modern computing clusters [85, 96, 97, 98], which could speed up the

use of SMC considerably.

It is seen that the assumption of normally distributed errors is perhaps
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not the most appropriate, since there are many outliers in the model fits

which are heavily punished under this error model. A distribution with

heavier tails such as Laplace or Student’s t-distribution would be worth

considering.

Finally, a simulation from the full coupled pharmacokinetic and phar-

macodynamic drug-parasite model was presented and discussed, and it

was demonstrated that the model met the overall aims (with the argu-

able exception of simplicity in an absolute sense, but necessary given the

complexity of the real world system it attempts to represent). Imple-

mentation of the model in a more user-friendly package that the reader

could interact with would potentially alleviate some of the negative ef-

fects of the model complexity. Simulations generated according to the

full coupled model could be produced within a few seconds for most

parameter combinations (but took up to 2 hours for others), though no

attempt was yet made to optimise this. The time that would there-

fore be required to generate forward model evaluations for use in SMC

likelihood calculations may therefore be concerning, but hopefully with

optimisation and improved computational facilities that have been de-

veloped since the author started this work, would be well within the

limits of present feasibility. This might permit eventual fulfilment of the

remaining objective of using the model and methods described herein to

perform inference for clinically-obtained data.
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