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Abstract

We consider a model for random loops on graphs which is inspired by the Feynman–
Kac formula for the grand canonical partition function of an ideal gas. We associate
to this model a corresponding occupation field, which is a positive random field
detailing the total time spent by loops at each vertex. We argue that well known
critical phenomena for the ideal gas can be reinterpreted in terms of random vari-
ables of this occupation field. We also argue that higher order correlations, such as
the existence of o↵-diagonal long-range order, can only be seen in the occupation
field by studying a modified space–time model of loops. We provide an isomor-
phism theorem for this model to a complex Gaussian field, and derive a version of
Symanzik’s formula which describes the ideal gas interacting with a random back-
ground environment. Finally we consider the e↵ect of interactions on the gas, and
present a large deviations analysis of the cycle distribution of the loop model under
two mean field Hamiltonians.
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Introduction

Statistical mechanics can be summarised as the study of macroscopic models via

a microscopic description; that is, we define a model locally (on the micro-scale)

and study global (or macroscopic) changes as we vary some model parameters. To

motivate this description we turn to perhaps the best known model of statistical

mechanics, the Ising model. This is a model for magnetism, where the polarity of

any particular site in a material is assumed to be influenced by nearby sites. In

the presence of a strong external magnetic field the polarity of the sites align and

the material is considered to be magnetized, moreover there is long-range correlation

between sites. As the strength of the external field reduces to zero, intuition suggests

that this long-range correlation should also vanish to 0. This, however, is not always

the case: depending on the model temperature the material can retain a magnetic

force even in the absence of an external field, seen by the continued presence of long-

range correlations. This is an example of a phase transition, where for one range

of the parameters we see typical behaviour whilst for another range we see other

behaviour entirely (in this case above the critical temperature there is no residual

magnetism, whilst below it there is). Defining and proving the existence of phase

transitions is of central importance to the study of statistical mechanics.

In the instance of the Ising model the search for a phase transition was first under-

taken by Ising [Isi25] who showed that in the 1-dimensional model no such phase

transition occurs. It would take the best part of two decades before Onsager [Ons44]

provided the first proof that the Ising model in 2-dimensions does undergo a phase

transition, and provided an exact solution for the critical temperature for the near-

est neighbour model on the square lattice. Onsager’s work is seen by many to be the

starting point of the rigorous mathematical study of phase transitions, and to this

day the Ising model remains one of the most studied models of statistical mechanics.

At the same time as Ising was working on his eponymous model1, a di↵erent type of

phase transition was being proposed by physicists Satyendra Nath Bose and Albert

Einstein. They considered a gas of particles distributed in a box, where each particle

is considered to be at a certain energy level. Einstein [Ein24] defined a model in

which there was no particle interaction, and observed that at moderate temperatures

1
That the model takes Ising’s name is somewhat contentious since the model was first proposed

by his supervisor Lenz, [Len20].
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only a microscopic proportion of the atoms were designated to any given energy

state; however, given a low enough temperature a macroscopic proportion occupied

the lowest of the energy states, the ground state. Einstein remarked: “A separation

is e↵ected; one part condenses, the rest remains a ‘saturated ideal gas’.” Unlike the

Ising model, where the physical phase transition was known to be exhibited in real

magnets well before the mathematical phase transition was proven to occur, prior to

Einstein’s observation nobody had considered that such a condensation phenomenon

could occur, and for some time little attention was paid to the problem. It was only

after London [Lon38] observed that a similar transition occurs in liquid helium

that Einstein’s suggestion was given its due attention. Even then the occurence of

this transition, which had now become known as the Bose–Einstein condensation

phenomenon, remained a purely theoretical construct. It was not until 1995 that

this would change. With the advent of new cooling technology two independent

teams demonstrated the existence of the Bose–Einstein condensate: the group of

Eric Cornell and Carl Wieman condensed a vapor of rubidium 87 atoms [CW02],

and shortly after Wolfgang Ketterle’s team condensed a gas of sodium-23 atoms.

The breakthroughs of these two groups lead to all three physicists being awarded

the 2001 Nobel Prize for Physics dedicated to “the achievement of Bose–Einstein

condensation in dilute gases of alkali atoms, and for early fundamental studies of

the properties of the condensates”, [Nob01].

I Probabilistic Approaches to the Bose Gas

In the following section we give an overview of the mathematical study of the Bose

gas, in particular highlighting several probabilistic approaches. We start our journey

by introducing the classical model for the Bose gas, before deriving the Feynman–

Kac formula, which is at the heart of the probabilistic analysis.

The Bose Gas As a Quantum Mechanical Model

The following section is adapted from our previous work, [Dan11, Dan12]. Before

entering into the quantum world we recall some classical mechanics. The classical

canonical ensemble is described as a collection of N � 1 particles in a box ⇤ ⇢ Rd,

|⇤| < 1, d � 1. The state of the particles is an element of the phase space

�
⇤

= (⇤ ⇥ Rd)N of pairs (x, p) where x 2 ⇤N correspond to particle positions,

and p 2 RdN describe the momenta. The energy of a configuration (x, p) 2 �
⇤

is

described by a Hamiltonian

HN (x, p) .

.=
NX
i=1

p2i
2m

+
X

1i<jN

V
�
|xi � xj |

�
, (x, p) 2 �

⇤

, (0.1)
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where m is the mass of a particle, and the potential V : R
+

! R describes how

pairs of particles interact. The Boltzmann weight exp(��HN (x, p)) describes the

mass associated to the configuration (x, p), and we define the canonical partition

function to be the average of these weights

Z
⇤

(�, N) .

.=
1

N !

Z
�⇤

exp
�
� �HN (x, p)

�
dxdp. (0.2)

We note that the unexpected factorial term arises as a resolution of the Gibbs

paradox, and is justified by the heuristic assumption that we cannot distinguish

between particles [Ada06]; this is better justified in quantum mechanics, where

bosons are known to be indistinguishable.

In quantum mechanics, the Heisenberg uncertainty principle dictates that it is not

possible to simultaneously measure the position and momentum of a particle; re-

sultingly it no longer makes sense to consider particle configurations as elements of

the phase space �
⇤

. Instead, the state of a system is described by a wave function

 (x), a complex valued function such that | (x)|2 describes a distribution of particle

locations in ⇤. The wave function plays the role of a distribution for the particles: in

the case of a single particle without spin, this simply means the probability that the

particle is in a measurable set A ⇢ ⇤ is given to be
R
A | (x)|2dx. The wave function

itself is defined to be a solution to the time-independent Schrödinger equation

E (x) = HN (x),

where E is the separation constant describing the energy of  . The Hamiltonian

HN is given by a Schrödinger operator acting on L2(⇤N )

HN (x) .

.= � ~2

2m

NX
i=1

�(bc)

i  (x) +
X

1i<jN

V (|xi � xj |) (x),  2 L2

�
⇤N

�
,

(0.3)

where ~ ⇡ 1.05⇥ 10�34 is Planck’s constant, and �(bc)

i is the Laplacian associated

to particle i under some boundary conditions ‘bc’, which henceforth we assume to

be periodic.

The definition of HN is analogous to (0.1), where we replace the momenta with

momentum operators pi 7! �i~rpi. For interacting bosons the Hamiltonian, HN ,

acts on the space of symmetric wave functions (a consequence of bosons having in-

teger spins): that is we only consider those wave functions that are equivalent under

permutation of the particle indices. The eigenvalues of the operator HN describe

the possible energy states that the system can occupy, so the natural analogue of

(0.2) is the quantum canonical partition function

Z
⇤

(�, N) .

.= TrL2
+(⇤

N
)

⇣
exp

�
� �HN

�⌘
, (0.4)
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where L2

+

(⇤N ) ⇢ L2(⇤N ) is the sub-Hilbert space of symmetric L2-functions, and

Tr denotes the trace of an operator. In working with the canonical ensemble we

assert that the total number of particles is fixed, and given by N � 1; alternatively

we may be interested in allowing the particle number to fluctuate around a mean

particle number hNi. To achieve this we introduce a chemical potential2 h 2 R and

give a wave function  2 L2

+

(⇤n) the weighting exp(��(Hn � hn)) =.

. �(n)
⇤

. These

weights are used to define the density matrix operator �
⇤

= �1
n=1

�(n)
⇤

, a Boltzmann

distribution on the Fock space of symmetric wave functions, obtained by taking the

direct sum of n-particle spaces, �1
n=1

L2

+

(⇤n). The partition function is then defined

by summing over all n � 1 as well as all symmetric wave functions

⌅
⇤

(�, h) .

.=
1X
n=0

TrL2
+(⇤

n
)

�(n)
⇤

=
1X
n=0

TrL2
+(⇤

n
)

⇣
exp

�
� �(Hn � hn)

�⌘
=
X
n�0

Z
⇤

(�, n)e�hn. (0.5)

The resulting model is known as the grand-canonical ensemble. A classical analy-

sis of the Bose gas now proceeds, see eg. [ZUK77], by analysing thermodynamic

functions defined in terms of the partition functions Z
⇤

(�, N) and ⌅
⇤

(�, h). For

instance, from equation (0.5) we infer the mean particle number is given by

hNi = 1

�
@h log⌅⇤

(�, h). (0.6)

In the case of the ideal gas, Einstein [Ein24] derived an expression for the grand

canonical partition function factorised as

⌅
⇤

(�, h) =
Y
i�0

⇣
1� exp

�
� �("i � h)

�⌘�1

, (0.7)

which is defined for h < "
0

, where 0 < "
0

< "
1

< · · · describe the energy levels that

the particles can occupy, and are the eigenvalues of the Laplace operator (under

prescribed boundary conditions). In dimension d = 3, combining (0.7) with (0.6)

and taking the thermodynamic limit |⇤|!1 the particle density is seen to satisfy

⇢(�, h) .

.= lim
|⇤|!1

hNi
|⇤| =

Z
R3

1

e�(
1

2m |x|2�h) � 1
dx,

2
The standard notation for chemical potential is µ, however we reserve this letter for the loop

measures which will be central to this thesis. The choice of h is not itself random, when considering

models for magnetism the letter h is regularly used to denote an external field, which plays the

same role as the chemical potential here
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and for all h < 0 we have

⇢(�, h) <

✓
2⇡�~2

m

◆� 3
2

⇣

✓
3

2

◆
=.

. ⇢c(�), (0.8)

where ⇣(s) .

.=
P

j�1

j�s denotes the Riemann-zeta function. This suggests that

the gas cannot achieve densities above a fixed critical density ⇢c(�). Seemingly a

paradox, we can explain away this bound by considering separately the density of

particles in the lowest energy state. Taking the thermodynamic limit in such a way

that hNi/|⇤| = ⇢ > 0, so that h = h
⇤

is now a sequence of chemical potentials

chosen to preserve this equality, then for ⇢ > ⇢c(�) we can write ⇢ = ⇢c(�) + ⇢
0

,

where

⇢
0

= lim
|⇤|!1

1

|⇤|
1

exp(�("
0

� h))� 1
,

which is the density of the ground state. We say that Bose–Einstein condensation

(BEC) occurs when ⇢
0

> 0, and refer to this as the condensate density.

The derivation above follows the classic approach of Einstein, which is valid for

describing the phase transition of an ideal gas. For interacting gasses, however, the

energy levels no longer factorise as single-particle energies, and Einstein’s definition

no longer has a meaning. A definition of BEC for interacting gases was first provided

by Penrose and Onsager [PO56], who studied the 1-particle reduced density matrix.

Just as the partition function was defined as the trace of the density matrix �
⇤

, the

1-particle reduced density matrix is given by the partial trace after integrating out

all but one of the particles

�̃
⇤

.

.=
1X
n=0

nTrL2
+(⇤

n�1
)

�(n)
⇤

. (0.9)

Following [LSSY05], for suitably nice potentials V at ‘zero’ temperature, i.e. � =1,

for x, x0 2 R3

�̃
⇤

(x, x0) = N

Z
⇤

N�1
 
0

(x, y
1

, . . . , yN ) 
0

(x0, y
1

, . . . , yN )dy
2

· · · dyN , (0.10)

where  
0

is the ground state wave function, which minimizes
R
�HN (�). Taking

the thermodynamic limit, such that N/|⇤|! ⇢, Penrose and Onsager said that the

reduced density matrix has o↵-diagonal long-range order (ODLRO) if the largest

eigenvalue of �̃
⇤

is of the orderN as |⇤|!1. It can be shown, [PS08] pp.396-7, that

this is in fact equivalent to the requirement that lim|x�x0|!1 lim|⇤|!1 �̃
⇤

(x, x0) 6= 0.
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Moreover, in the case of the ideal gas, this limit agrees with the condensate fraction

lim
|x�x0|!1

lim
|⇤|!1

�̃
⇤

(x, x0) = ⇢
0

.

The above motivates the common definition that BEC is said to occur in an inter-

acting gas, if and only if the 1-particle reduced density matrix exhibits ODLRO.

Proving the existence of ODLRO remains a challenge, and has only been achieved

in a handful of cases. Notably, [LS02] provides the only rigorous proof of BEC in

the continuum for a class of trap potentials, whilst [DLS78, KLS88] prove BEC for

a lattice gas at half filling, that is the density of the gas is equal to half the number

of lattice sites.

To this point we have described ‘classical’ quantum mechanics: whilst the language

of probability is used, at this level we need little probabilistic machinery. This

changes in the next section where we provide a probabilistic formula for the partition

function of the Bose gas.

Feynman–Kac Formulae

Again we follow the description in [Dan12]. Feynman-Kac formulae were introduced

by Feynman [Fey48, Fey53] as a tool to make rigorous his abstract path integral.

In the latter of these papers, Feynman derived a formula for the partition function

of the Bose gas as an integral over a collection of particle trajectories, where these

trajectories are distributed according to interacting Brownian bridges.

Working in the canonical ensemble, Feynman–Kac formulae allow us to derive

stochastic representations for kernels of exponential operators. Given the opera-

tor exp(�tHN ), we wish to find a function Kt(x, y) such that

exp
⇣
� tHN

⌘
f(x) =

Z
⇤

N

Kt(x, y)f(y)dy, f 2 L2

�
⇤N

�
. (0.11)

To simplify notation we write H .

.= H
0

+ V in place of HN . In the simple case of

the ideal gas, H = H
0

= �1

2

� and in the infinite volume limit, it is well known that

the kernel Kt(x, y) = pt(x, y) satisfying (0.11) is the heat-kernel

pt(x, y) .

.= (2⇡t)�
d
2 exp

✓
� |x� y|2

2t

◆
.

On realising that this is the transition kernel of a d-dimensional Brownian mo-

tion, the relationship between Hamiltonian operators and stochastic processes is

less mystical. Feynman–Kac type formulae extend for interacting gases, V 6⌘ 0. A

prototypical result is

Proposition 0.1. For the Hamiltonian H = �1

2

� + V , with V : Rd ! R bounded

xii



and smooth

exp(�tH)f(x) = Ex


exp

⇣
�
Z t

0

V (Bs)ds
⌘
f(Bt)

�
, g 2 L2(Rd). (0.12)

where Ex is the expectation with respect to the Wiener measure Px of a Brownian

motion started at x 2 Rd, B
0

= x.

A proof is given in [Dan12], whilst an in depth treatment of Feynman–Kac formulae

under weaker assumptions is given in [LHB11]. The Feynman–Kac formula for the

partition function of a Bose gas is then obtained by applying (0.12) inside the trace

(0.4). In the following we let SN denote the symmetric group on [N ] ..= {1, . . . , N},
ie. the set of permutations ⇡ : [N ] ! [N ], and write Pt

x,y[ · ] = Px[ · , Bt = y] for

the non-normalised Brownian bridge measure from x to y over time horizon t > 0.

Whilst we assumed below (0.3) that the box has periodic boundary conditions, with

suitable changes to the definition of Px the following holds for free and Dirichlet

boundary conditions as well.

Theorem 0.2 (Feynman–Kac Representation of the Bose Gas). Let HN = H
0

+V ,

be the Hamiltonian of a Bose gas where V decays su�ciently fast. The partition

function has the representation

Z
⇤

(�, N) =

1

N !

X
⇡2SN

Z
⇤

dx
1

· · ·
Z
⇤

dxN ⇥
NO
i=1

P�
xi,⇡(xi)

"
exp

✓
�

X
1i<jN

Z �

0

V (|B(i)
s �B(j)

s |)ds
◆#
(0.13)

See [Fey53] for the classical reference, or [Gin71] for a rigorous account. Feynman

recognised (0.13) as the partition function of a probabilistic model of random per-

mutations ⇡ 2 SN , whose law we denote P
⇤,N , and conjectured that the occurrence

of BEC is signaled by the existence of macroscopic cycles in the random permutation

model (i.e. those which grow with the volume |⇤|).
One approach to studying critical phenomena is through the analysis of thermody-

namic functions such as the canonical specific free energy or the grand canonical

pressure, defined respectively as

f⇢(�) .

.= lim
|⇤|!1

� 1

�|⇤| logZ⇤

(�, N),

p(�, µ) .

.= lim
|⇤|!1

1

�|⇤| log⌅⇤

(�, µ), (0.14)

where in the case of the specific free energy it is assumed that the limit is taken

such that it preserves the density N/|⇤| ! ⇢. In either case, understanding the

singularities of the thermodynamic function can be used to indicate the existence of
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a phase transition. No explicit formula can be derived for the free energy at a fixed

particle density and temperature, but from using (0.13) Adams, Collevecchio and

König [ACK11] derive a variational formula for f⇢(�) under general requirements

on the potential V . The variational problem is posed over a space of probability

measures which describe marked Poisson point processes on Rd, where the marks

are looped trajectories corresponding to the loops over which we integrate in the

Feynman–Kac representation. In this description, BEC is recognised via a loss of

probability mass in the minimiser of the variational problem, with the interpretation

that such a probability distribution puts some mass on infinite cycles.

Feynman’s notion of infinite cycles, or cycle percolation, was made rigorous in a

series of papers by Sütő [Süt93, Süt02], who took as an order parameter the length

⇠
1

of the cycle containing the element 1 2 [N ]. Writing P
⇤,N for the probability

measure on SN induced by (0.13), he showed that in the thermodynamic limit

N/|⇤|! ⇢ X
j�1

lim
|⇤|!1

P
⇤,N [⇠

1

= j]  1,

with strict inequality when ⇢ > ⇢c(�), given in (0.8). The interpretation here is that

there is a loss of probability mass, i.e. with non-zero probability the cycle size ⇠
1

is

infinite. In the second of the two papers this argument is strengthened to say that

infinite cycles occur if and only if there is BEC; moreover it is claimed that the proof

also holds for the mean-field gas, described by the Hamiltonian HN = H
0

+ a
|⇤|N

2

for some constant a > 0.

These papers show that in the ideal gas, presence of macroscopic cycles is equivalent

to BEC and hence equivalent to ODLRO. However, to make the cycle order param-

eter valid for interacting gases a direct relationship to ODLRO must be derived.

Letting ⇢(n) denote the density of particles belonging to cycles of length n,

⇢(n) .

.= lim
|⇤|!1

1

|⇤|nE
⇤,N

⇥
#{cycles c 2 ⇡ st. |c| = n}

⇤
,

Ueltschi [Uel06a, Uel06b] considers the problem of finding a sequence of correlation

functions cn(x) and c1(x) such that

lim
|⇤|!1

�̃
⇤

(x, y) =
X
n�1

cn(x� y)⇢(n) + c(x� y)⇢(1),

where �̃
⇤

is the reduced density matrix introduced in (0.10) and one would hope

(at least it is commonly assumed) that ⇢(1) = ⇢
0

is the condensate fraction. This

equality can be shown to hold in finite volume (i.e. before taking the ⇤ limit) for

interacting gases, and the coe�cients cn,⇤(x� y) are given as expectations of single

particle trajectories from x to y, x, y 2 ⇤. At high temperatures, and for suitably
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fast decaying potentials, Ueltschi demonstrates that this can be carried through

to the thermodynamic limit. On the other hand, he provides heuristic arguments

suggesting that in a crystalline phase then one can simultaneously have ⇢
0

= 0 and

⇢(1) > 0.

Rather than working directly with the permutations which arise from the Feynman–

Kac formula, we can work instead with partitions. To a permutation ⇡ 2 SN we

associate an integer partition � = �(⇡), where � = (�i)i�1

and �i is the number of

cycles of length i in ⇡. We associate to each partition its empirical shape measure,

the rescaled Young tableaux Q�(k) = N�1

P
j�k �j , which describes a probability

measure on N. In [Ada08, Dan11] a large deviations analysis is undertaken for the

shape measures in the thermodynamic limit |⇤|!1, and a variational problem is

derived. As in [ACK11], BEC is seen through the solution to this variational problem

being a sub-probability measure. Whilst the analysis of shape measures for P
⇤,N was

novel to [Ada08], Vershik [Ver96] had previously performed a similar analysis for the

partitions that arise from the momentum space description of the ideal Bose gas, that

is the sequences (ni)i�0

, where ni denotes the number of particles in energy state "i.

Vershik demonstrates that in the thermodynamic limit the Young tableaux of the

typical partition converges to a smooth curve, and identified an exact expression for

the limit shape of the ‘mean’ scaled tableaux. A similar analysis is possible in the

grand-canonical ensemble, with [Lew86, vdBLP88] considering the mean-field and

hard core models from the momentum space description, and [BCMP05] analysing

the mean-field model from the loop (Feynman–Kac) perspective.

If we consider instead the box ⇤ to be a subset of Zd, we can derive the lattice ana-

logue of the partition function (0.13), where the probability measures Px no longer

denote Wiener measure, but rather the distribution of a continuous time simple ran-

dom walk. Tóth [Tót93] considers the lattice gas with a discrete approximation to

the Lennard–Jones potential, and shows that the grand canonical partition function

⌅
⇤

(�, h) is in fact equivalent to the partition function of the spin-1/2 Heisenberg

ferromagnet. The specific choice of potential allows for a series of manipulations

which rewrite the partition function as an expectation with respect to a new ran-

dom permutation model: the random stirring, or interchange, process. This is a

model of a time evolving random permutation, (⇡t)t�0

, where ⇡t : ⇤ ! ⇤. Each

edge in the graph ⇤ is equipped with a unit rate Poisson process, and if at time t

the edge (x, y) 2 ⇤ ‘rings’, then we update ⇡t+ = (x, y) � ⇡t. The partition function

can then be equated to

⌅
⇤

(�, h) = E

24Y
n�1

(1 + e�hn)l�(n)

35,
where l�(n) denotes the number of n-cycles in the permutation ⇡� . Once again the
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Bose condensate can be related to macroscopic cycles, but moreover the equivalence

to the spin-1/2 model means that infinite cycles also correspond to spontaneous

symmetry breaking, and the Mermin–Wagner theorem [MW66]. A detailed survey

of the random stirring process is the content of [Dan12].

In the next section we describe the Markov loop soup: a Poisson point process on a

space of lattice loops, which will be the starting point for our own analysis of the Bose

gas. We have already mentioned that [ACK11] considered the Bose gas as a marked

Poisson point process on Rd, where the marks are Brownian loops. A point process

approach was also taken by Rafler [Raf09], for the ideal gas in Rd. Rafler studies

the Martin–Dynkin boundary of the point process: heuristically, the collection of

all other point processes which locally resemble the one of interest. In the grand

canonical ensemble, it is shown that this set contains only a single process, and

says there is no phase transition. In the canonical and microcanonical ensembles,

Rafler proves that the Martin–Dynkin boundary is a convex (non-singleton) set of

mixed Poisson processes, and says a phase transition occurs. Rafler also considers

geometric aspects of the ‘typical’ loop: such as the location of the barrycentre,

and percolation questions. In some respects this has the closest similarity to our

own work, where we will study the geometry of the Poisson point process via its

associated occupation field, and relate the thermodynamic functions of the grand

canonical Bose gas with correlations in this field.

II A Survey of Markov Loop Soups

Just as the probabilistic models described above have a physical derivation, the

Markov loop soup also owes its conception to the physics community, where it arises

via a functional integral description of a lattice model.

In [Sym66, Sym69], Symanzik provided a heuristic description of '4-quantum field

theory in terms of a gas of interacting Brownian loops. On considering lattice field

theories in place of Symanzik’s continuum model, Brydges, Fröhlich and Spencer

[BFS82] were able to make rigorous the connection between the two models. A

concise version of this equivalence can be described for the Gaussian case.

Let P be the transition matrix of a symmetric random walk, X = (Xt)t�0

, on a

lattice box ⇤ ⇢ Zd, d � 1, and consider the Gaussian field described by

PG(d') = Z�1

⇤

e�h',(I�P )'id',

with d' =
Q

x2⇤ d'x and Z the normalisation constant which makes PG a proba-

bility measure. The covariance of the field ' can be related to the local time of the

xvi



random walk

Cov('x,'y) = (I � P )�1

xy = Ex

Z 1

0

1{Xt=y}dt

�
=.

. Gxy, (0.15)

which is immediate from Gxy =
P

n�1

Pn
xy, Corollary 1.5. Symanzik’s formula pro-

vides a deeper understanding of the link between Gaussian fields and random walks,

notably relating the partition function Z
⇤

of the Gaussian field to a sum over families

of random loops.

Theorem 0.3 (Symanzik’s Formula). The partition function Z
⇤

of the law PG can

be expressed as

Z
⇤

=
X
n�0

1

n!

 X
x2⇤

Z 1

0

1

t
Px[Xt = x]dt

!n

(0.16)

See [BFS82]. This formula holds in the greater generality of the partition function of

a '4-theory, and we return to this in Section 3.3.1 where we discuss an interpretation

for the Bose gas. Inspired by the work of Symanzik and Brydges et al., Dynkin

[Dyn83] provided an extension of (0.15) for correlations for the square of a Gaussian

field. Defining the local time at ‘infinite time’ of a random walk X = (Xt)t�0

to

be the random variable lx =
R1
0

1{Xs=x}dt, then under the measure Pxy[ · ] =R1
0

Px[ · , Xt = y], Dynkin’s theorem says.

Theorem 0.4 (Dynkin’s Isomorphism). For any bounded measurable F : R⇤ ! R

Exy ⌦ EG


F

✓
lx +

1

2
'2

x

◆�
= EG


'x'yF

✓
1

2
'2

x

◆�
.

See [Szn12], pp.35-6. An extension to complex Gaussian measures was given by

Brydges, [Bry92]. Symanzik’s work for Euclidean quantum fields, and Feynman’s

description of the Bose gas are both examples of the functional integral approach

to statistical mechanics. Other important examples are Aizenman’s random walk

description of the Ising model [Aiz82], and the more recent work of Brydges and

Slade (along with an ensemble of collaborators) regarding the functional integral

description of the self avoiding random walk, for a survey see [BIS09].

Independently of the relevance to statistical mechanics, ensembles of loops have been

the focus of recent work in probability. Letting �t denote the collection of continuous

time loops on a graph ⇤: i.e. càdlàg paths � : [0, t] ! ⇤ with �(0) = �(t), Le Jan

defined a measure µ
⇤

on the space � = [t>0

�t by

µ
⇤

(G) .

.=
X
x2⇤

Z 1

0

1

t
Px[G, Xt = x]dt, (0.17)

with Px the law of a symmetric random walk. In [LeJ10, LeJ11], Le Jan provides a
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comprehensive analysis of theMarkov loop soup: the family (P↵)↵>0

of Poisson point

processes on the set � described by the intensity measures ↵µ
⇤

. A configuration

S ⇢ � (where we abuse notation and write ‘⇢’ although S may in fact be a multiset

under the law P↵) defines a random field L = (Lx)x2⇤ called the occupation field,

where

Lx = Lx(S) .

.=
X
�2S

Z |�|

0

1{�(s)=x}ds, x 2 S,

with |�| the length of the loop (i.e. the unique t > 0 for which � 2 �t). Amongst

many results regarding the properties of L, Le Jan provides an interpretation to

Symanzik’s formula and Dynkin’s isomorphism via the loop soup.

Theorem 0.5 (Le Jan’s Isomorphism). Let G = (Gxy)x,y2⇤ be the Green’s func-

tion associated with the random walk P, and PG the law of the associated centred

Gaussian field. Then ⇣
(1
2

'2

x)x2⇤, P
G
⌘

(d)
=

⇣
(Lx)x2⇤, P↵= 1

2

⌘
.

That is, the occupation field of the Markov loop soup at intensity ↵ = 1

2

is equal in

distribution and the square of a Gaussian field.

See [Szn12], pp.90–1. Whilst the essence of this theorem was already present in the

work of Symanzik and Brydges et al., their work does not recognise the right hand

side of (0.16) as the normalising constant of a Poisson point process.

It would be amiss at this point not to mention that prior Le Jan’s work, Lawler

and Werner had already sparked interest in loop soups. In [LW04] they consider the

loop measure3 (0.17) but with Px now the distribution of a Brownian motion in C,
which they relate to the Schramm–Leowner evolution (SLE) processes. Later papers

of She�eld and Werner [SW12] and Qian and Werner [QW15] relate the Brownian

loop soup to the conformal loop ensembles (CLE), a non-Poissonian collection of

mutually and self avoiding random loops in C: these arise as the outer boundaries

of clusters in the Brownian loop soup.

Another variant on the loop soup is to consider the discrete time random walk loop

soup. An n-loop is a finite sequence z = (z(i))ni=0

with z(i) 2 ⇤, and z(0) = z(n).

A discrete loop measure, µD, is defined on the collection of all discrete loops in ⇤

via

µD(z) .

.=
1

n
Pz(0)z(1) · · ·Pz(n�1)z(n)Pz(n)z(0),

3
Strictly speaking, neither Le Jan or Lawler and Werner study the measure µ, rather they

consider an ‘unrooted’ version, in which the loop forgets its starting position. This distinction does

not a↵ect many of the properties of the soup, in particular the occupation field, and so we gloss

over this detail.

xviii



with P a symmetric transition matrix on ⇤; basic properties of this measure are

outlined in [LL10]. Lawler and Trujillo Ferreras [LTF07] proved that the Brownian

loop soup can be derived as the scaling limit of a discrete time random walk loop

soup on Z2, whilst Lawler and Perlman [LP14] define the occupation field of discrete

loops, from which they derive an alternative proof of Theorem 0.5. This proof is

adapted in [Cam15] to provide an isomorphism theorem between a Gaussian free

field (not the square of the field!) and the loop occupation field where the sign of

the occupation field Lx is changed according to an Ising type interaction.

Another random field associated with the discrete (and for that matter the contin-

uous) loop soup is the covering field C = (Ce)e2⇤ 2 {0, 1}⇤, which is now indexed by

the edges of the graph. For a configuration of discrete loops S we set

Ce =

8<:1 if 9 z 2 S st. e 2 z,

0 else.

That is, the edge e is open, Ce = 1, if and only if there is a loop which crosses

it. When ⇤ = Zd, d � 1, as for Bernoulli bond percolation, we can define the

probability ✓(↵) that under the measure P↵ the cluster of Ce which contains the

origin has infinitely many edges. Le Jan and Lemaire [LeJL13] prove that ✓ is

increasing in ↵ > 0, and via a simple coupling with bond percolation provide a

lower bound on the critical intensity ↵c
.

.= inf{↵ > 0 : ✓(↵) > 0}. Chang and

Sapozhnikov [CS14] proved that for d = 1, 2, ↵c = 0, whilst for d � 3 the phase

transition is non-trivial: ↵c > 0, and using a coupling to the Gaussian free field

Lupu [Lup14] proved that in fact ↵c >
1

2

.

III Summary of Contents and Structure

In the preceding sections we saw how models for random loops have arisen in two

distinct contexts: the probabilistic analysis of the Bose gas, and the study of Gaus-

sian fields and isomorphism theorems. Introducing a Bosonic loop measure, our

analysis aims to concurrently develop the literature of the Bose gas, and loop soups.

We approach these topics from two directions:

How do functionals of the Bosonic occupation field relate to the thermody-

namic properties of the ideal gas? Moreover, can we characterise BEC in

terms of behaviour of the occupation field?

To what extent can we carry through the analysis of the occupation field under

µ
⇤

to the Bosonic loop measure? In particular, does the Bosonic loop measure

also induce an isomorphism theorem to a Gaussian free field?
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The loop measure we consider is given by

µB
�,h,⇤(G) .

.=
X
j�1

X
x2⇤

e�hj

j
P�j

xx[G].

This di↵ers from the measure µ in two aspects. The most immediate di↵erence is

that rather than allowing loops of all durations t > 0, we restrict to those loops

whose duration is exactly an integer multiple of � > 0. The second distinction is

the addition of the term e�hj , and we will look to study the behaviour of the loop

model as we vary h  0. This is in contrast to Le Jan, who considers varying the

intensity with the factor ↵ which is independent of the loop lengths.

Letting � = [j�1

��j denote the space of all � loops, we will see that

exp
�
µB
�,h,⇤(�)

�
= ⌅

⇤

(�, h),

where ⌅ is now the grand canonical partition function of an ideal lattice Bose gas. In-

terpreting the partition function on the right hand side as the normalisation constant

of a probability measure, we recognise this as none other than the normalisation of

a Poisson variable with intensity µB
�,h,⇤(�). Moreover, letting S denote the Poisson

point process induced by µB
�,h,⇤, we have

P

24X
�2S

|�| = �N

35 =
e�hNZ

⇤

(�, N)

⌅
⇤

(�, h)
,

which should be compared to (0.5). The above formulae, which we prove in Sec-

tion 1.2 and Section 2.2 respectively, give the interpretation of the loop soup as a

poissonization of the canonical ensembles of the Bose gas, which is exactly to say

that it describes the grand canonical ensemble.

Thesis Outline

In Chapter 1 we formally introduce the Bosonic loop measure, and its related loop

soup and occupation field. In this section we also clarify our definition of graphs

and their spectra, and detail the sense in which we will consider thermodynamic

limits in this thesis.

We start our analysis of the Bosonic occupation field in Chapter 2 where we consider

the mean occupation on the graph, and prove that in the limit this converges to a

degenerate distribution. In turn this is related to the density of the ideal Bose gas,

and we provide a definition for BEC of an ideal Bose gas on a graph.

In Chapter 3 we address the problem of finding an isomorphism theorem for the

Bosonic occupation field; following the approach of Le Jan, we derive the Laplace

transform for the occupation field, but see that in the case of the Bosonic measure
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this does not agree with that of a Gaussian process. Introducing a di↵erent space-

time loop measure we show that this measure does have a description in terms

of complex Gaussian fields. Further we see that the space-time occupation field

provides an interpretation to the 1-particle reduced density matrix of the ideal gas.

Having established several results for the ideal gas, in Chapter 4 we consider possible

Hamiltonians defined on the occupation field, in particular focusing on two mean-

field models. We present a large deviations analysis for the mean-field models,

focused on deriving expressions for the critical density.

Finally, Chapter 5 gives an overview of further topics for consideration, and provide

some closing remarks.

Whilst for the most part the text is self contained and can be read in a linear

manner, we defer the proofs of some technical statements to a series of appendices.
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Chapter 1

Definitions and Preliminary

Results

We commence by introducing some basic terminology and definitions. In the first

section we describe graphs and their associated Markov processes, we introduce the

local time and Green’s function of a process, and define the sense in which we will

take thermodynamic limits of graphs. In the second section, we define formally

both the Markov and Bosonic loop measures, their associated Poisson processes,

and occupation fields.

1.1 Random Walks on Graphs, and Their Limits

Throughout this thesis when we refer to a graph we will mean not only the graph

structure (i.e. edge and vertex sets), but also to a random walk defined on the

structure. As a consequence, we define a graph to be a triple (⇤, w,), with ⇤ a

finite set, w : ⇤ ⇥ ⇤ ! R
+

a weight function, and  : ⇤ ! R
+

the killing vector,

where we use R
+

to denote the positive reals. The set ⇤ corresponds to the vertices

of the graph, whilst for pairs x, y 2 ⇤ with wxy
.

.= w(x, y) > 0, we say there is an

edge from x to y. The weights themselves, together with the vector , determine a

family of Markov processes, as described in the coming section. To simplify notation,

henceforth we will simply write ⇤ to denote the triple ⇤ = (⇤, w,).

1.1.1 Weighted Graphs and Their Markov Generators

A graph induces a family of Markov processes whose jump distributions are de-

termined by the functions w,. To facilitate the definition we enlarge the vertex

set to ⇤⇤ = ⇤ [ {Ü}, where the additional vertex Ü is called the cemetery state.

The discrete time Markov chain (Z⇤
n)n�0

on ⇤⇤ is defined via the stochastic matrix

1



P ⇤ = (P ⇤
xy)x,y2⇤⇤ defined for x, y 6= Ü to be

P ⇤
xy =

wxy

�x
, P ⇤

xÜ =
x
�x

, P ⇤
Üy = 0, P ⇤

ÜÜ = 1,

where �x .

.= x+
P

y2⇤wxy for x 6= Ü, and we set �Ü = 0. We refer to � : ⇤! R
+

as

the rate vector. In turn, P ⇤ is used to define a continuous time Markov process on

⇤⇤ with unit exponential jump rates. Denoted (X⇤
t )t�0

, the process is determined

by its generator (P ⇤ � I), with I the |⇤⇤| ⇥ |⇤⇤| identity matrix. We also define

(X
⇤
t )t�0

with variable exponential jump rates, which leaves site x 2 ⇤⇤ at rate �x:

it is determined by the generator Q⇤ = �(P ⇤ � I). In the case that  6⌘ 0, all three

processes above will almost surely visit the site Ü, after which we say that they are

killed.

We work throughout with the induced sub-stochastic processes on ⇤, and refer to

these as random walks. We define the law and expectation of the processes Z,X,X

conditioned to start from x 2 ⇤ by Px, Ex, and writing P,Q for the cofactors of P ⇤

and Q⇤ obtained by deleting the row and column corresponding to Ü, we have

Px

⇥
Zn = y

⇤
=
�
Pn

�
xy
, Px

⇥
Xt = y

⇤
=
�
et(P�I)

�
xy
, Px

⇥
Xt = y

⇤
=
�
etQ

�
xy
.

We stress that these are not true probability measures, in that if  6⌘ 0, then

summing over y 2 ⇤ the expressions may total less than 1. We briefly describe the

standard coupling of the walks X,X to Z. Given a path Z = (Zn)n�1

distributed

according to Px, define J
0

= 0, and Jn ⇠ Exp(1) i.i.d. exponential variables, n � 1.

Then the path

Yt = Zn, for Jn  t  Jn+1

is equal in distribution to X under Px. If instead I
0

= 0 and In ⇠ Exp(�Zn)

are independent and exponentially distributed according to the rate of the current

state, the resulting path Yt has the distribution ofX under Px. Throughout we will

assume that graphs are loop free, wxx = 0 for all x 2 ⇤, and irreducible: for all

x, y 2 ⇤ there is an n � 0 such that Pn
xy > 0.

1.1.2 Random Walk Local Time and the Green’s Function

For x 2 ⇤ we define the local time at x of the walkX to be the random variable

lTx

⇣
X
⌘

.

.=

Z T

0

1{Xs=x}ds.

2



We define the local time of X similarly, and replacing the integral with a sum, the

local time of Z. Similarly we define the local time ‘at infinity’ by

lx
⇣
X
⌘
=

Z 1

0

1{Xs=x}ds,

where as before we can interchange X for either of X or Z; this variable exists as

an extended real number, and satisfies.

Proposition 1.1. Suppose  6⌘ 0, then for x, y 2 ⇤, ly is Px-a.s. finite, and

Ex[ly] <1. Conversely, if  ⌘ 0, then Px-a.s. ly =1.

Proof. The proof is classical, and for brevity we prove it only in the case wxy, x > 0

for all x, y 2 ⇤; see [LPW09] Lemma 1.13 pp.11-2 for a more detailed proof (though

not in the context of local times). In light of the standard coupling it su�ces to

prove the proposition only in the case of the discrete walk Z, so that ly = #{n �
0 : Zn = y}. Moreover, we couple Z with the walk Z⇤ on the space ⇤ [ {Ü}, and
defining T = inf{n � 0 : Z⇤

n = Ü}, then

Ex

24X
y2⇤

ly

35 = Ex[T � 1].

Let " .

.= infy P ⇤
yÜ > 0, which is strictly positive due to our assumption x > 0 for all

x 2 ⇤. In particular, for all k � 0, Px[Zk+1

6= Ü |Zk 6= Ü]  (1� "). Then

Ex[T ] =
X
n�0

Px[T > n]

=
X
n�0

Px[Z
⇤
1

, . . . , Z⇤
n 6= Ü]


X
n�0

(1� ")n

= "�1

Hence Ex[ly] 
P

y E[ly]  "�1 <1.

In the case  ⌘ 0, let Ty
.

.= inf{n � 0: Zn = y}, then the same proof as above

asserts that Ex[Ty] <1, and in particular Px[Ty <1] = 1. Consequently, not only

does Zn almost surely visit y, it visits infinitely often, and hence Ex[ly] =1.

Henceforth we say that the graph ⇤ is recurrent if  ⌘ 0, else we say it is transient.

The Green’s function associated to a walk X is the matrix of expected local times

at infinity

Gxy

�
X
�

.

.= Ex

h
ly
⇣
X
⌘i

, x y 2 ⇤, (1.1)

3



which exists as an extended real number. Defining Gxy(X), Gxy(Z) analogously, if

the graph is recurrent then

Gxy

�
X
�
= Gxy

�
X
�
= Gxy

�
Z
�
=1.

The following proposition allows us to extend this equality to the transient case. In

the following we use
(d)
= to denote equality in distribution.

Proposition 1.2. For x, y 2 ⇤, under the law Px

ly
⇣
X
⌘

(d)
= ��1

y ly(X).

Proof. It su�ces to show that the two variables have the same cumulative distribu-

tion function: Px

h
lTy

⇣
X
⌘
 t

i
= Px

⇥
��1lTy (X)  t

⇤
, t 2 R. Let N (respectively N)

denote the total number of visits that X (resp. X) makes to y in time T . From the

standard coupling N
(d)
= N, so

Px

h
lTy (X)  t

i
=

1X
n=0

Px

h
lTy (X)  t

���N = n
i
Px

h
N = n

i
=

1X
n=0

Px

h
lTy (X)  t

���N = n
i
Px

⇥
N = n

⇤
,

so it su�ces to show: Px

⇥
lTy
�
X
�
 t

��N = n
⇤
= Px

⇥
��1

y lTy (X)  t
��N = n

⇤
, n � 0.

But this follows since on the eventN = N = n, the coupling gives

lTy

⇣
X
⌘

=
nX

k=1

Ik = ��1

y

nX
k=1

Jk = ��1

y lTy (X),

where Ik ⇠ Exp(�y) and Jk ⇠ Exp(1) are all i.i.d. and we used the scaling relation

for exponential variables: Exp(�y) = ��1

y Exp(1).

Since equality in distribution implies that the expectations agree, it follows that

Gxy

�
X
�
= ��1

y Gxy

�
X
�
<1. (1.2)

Moreover, since E[Exp(1)] = 1, then

Gxy(X) = Gxy(Z).

1.1.3 Graph Spectra and Spectral Convergence

In this section we provide several basic facts about the spectra of the matrices

P, Q, as well as describing the notion of graph convergence which will be used in
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Chapter 2. For a square matrix, A, we denote Spec(A) for its spectrum, i.e. the set

of eigenvalues of A.

Theorem 1.3. The spectrum of P satisfies

Spec(P ) ⇢ {z 2 C : |z|  1}.

Furthermore, Spec(P ) ⇢ {z 2 C : |z| < 1} if and only if  6⌘ 0.

Proof. Since ⇤ is irreducible, P satisfies the conditions of the Perron–Frobenius the-

orem, [HJ13] p.534. Defining the spectral radius to be ⇢ = max{|⌘| : ⌘ 2 Spec(P )},
there is a positive vector vx � 0 for which ⇢ is a corresponding eigenvalue: Pv = ⇢v,

and

0  min
x

X
y

Pxy  ⇢  max
x

X
y

Pxy  1.

If  ⌘ 0, then
P

y Pxy = 1 for all x 2 ⇤, and so 1 is an eigenvalue, and ⇢ = 1.

Now suppose  6⌘ 0, and that there is a positive vector v such that Pv = v; in

particular since ⇤ is loop free we have vx =
P

y 6=x Pxyvy, for any x 2 ⇤. Choosing

z such that vz is maximal

vz =
X
y 6=z

Pzyvy  vz
X
y 6=z

Pzy  vz,

which is a contradiction unless both inequalities are in fact equalities. But since v

is positive,
P

y 6=z Pzyvy = vz
P

y 6=z Pzy holds only if v is a constant, v ⌘ c > 0. But

then for any x 2 ⇤

c = vx = c
X
y

Pxy,

so that P is stochastic, which contradicts  6⌘ 0.

We say that a random walk is reversible if it satisfies

�xPxy = �yPyx, x, y 2 ⇤.

Corollary 1.4. If P is reversible, then the eigenvalues of P are real, and Spec(P ) ⇢
[�1, 1]. If in addition  6⌘ 0, then Spec(P ) ⇢ (�1, 1).

Proof. In light of the previous theorem it su�ces to prove that P has real eigenval-

ues. Defining the inner-product

hu, vi� .

.=
X
x

�xuxvx, u, v 2 R|⇤|,

5



we note that P is self-adjoint for this inner product

hu, Pvi� =
X
x

�xux

 X
y

Pxyvy

!
=
X
y

�y

 X
x

Pyxux

!
vy = hPu, vi�.

It follows immediately that P has real eigenvalues.

As a consequence we also obtain the following representation of the Green’s function

of the random walk.

Corollary 1.5. If  6⌘ 0, then the Green’s function is given by

G
�
X
�
= G

�
Z
�
= (I � P )�1.

Proof. Working with the discrete walk we note

Gxy = E

" 1X
n=0

1{Zn=y}

#
=

1X
n=0

P[Zn = y] =
1X
n=0

Pn
xy.

From Theorem 1.3 the spectral radius of P is strictly less than 1, and so the matrix

power series above converges to (I � P )�1 by Proposition B.20.

Turning to the generator of a continuous time process, we observe that it is no

longer possible to find a uniform bound on the spectrum. We denote H .

.= {z 2
C : Re(z)  0}.

Theorem 1.6. Let �⇤ = maxx2⇤ �x. The spectrum of Q satisfies

Spec(Q) ⇢ {z 2 C : |z + �⇤|  |�⇤|} ⇢ H.

Further, if  6⌘ 0 then Q is non-singular, and Re(⌘) < 0, for all ⌘ 2 Spec(Q).

Proof. The first part is an application of the Geršgorin circle theorem, which gives

that

Spec(Q) ⇢
[
x2⇤

n
z 2 C : |z + �x| 

����xPy2⇤ Pxy

���o,
see [HJ13] pp.388-9. Since P is (sub)-stochastic,

P
y Pxy  1, and

⇢
[
x2⇤

{z 2 C : |z + �x|  |�x|},

which in turn is a subset of the largest disc centred at �⇤.

For the case  6⌘ 0, we appeal to [HJ13] Corollary 6.2.9 p.399, which in our context

says that a matrix is non-singular so long as it is irreducible, diagonally dominant

|Qxx| �
P

y2⇤\{x} |Qxy|, and strictly dominant in at least one index: there exists

6



x 2 ⇤ such that |Qxx| >
P

y2⇤\{x} |Qxy|. We have already assumed that P (and

hence Q) is irreducible, and choosing x 2 ⇤ such that x 6= 0

Qxx = �x > �x
X

y2⇤\{x}

Pxy =
X

y2⇤\{x}

Qxy.

As we will see in Chapter 2, several statistics of loop occupation fields are determined

entirely by the spectrum of the graph. Consequently in taking graph limits it will

often su�ce only to study the limit of the spectra; in the following we provide the

notion of convergence which will be used in later chapters.

Definition 1.7. The (empirical) spectral measure of a finite graph ⇤ is defined as

the measure m
⇤

on H equipped with the Borel �-algebra

m
⇤

(dx) ..=
1

|⇤|
X
⌘

�⌘(dx),

where the sum runs over the eigenvalues ⌘ 2 Spec(Q), and �a denotes the Dirac (or

degenerate) distribution with atom at a 2 R.

Note that integration against the spectral measure is no more than a summationZ
H
f(x)m

⇤

(dx) =
1

|⇤|
X
⌘

Z
H
f(x)�⌘(x)dx =

1

|⇤|
X
⌘

f(⌘). (1.3)

A sequence of probability measures (mn)n�1

on C is said to converge in distribution

(or weakly) to a measure m1 if given any bounded continuous function f : C! R

lim
n!1

Z
f(x)mn(dx) =

Z
f(x)m1(dx).

In this case, we write mn
(d)�! m1. Noting that f(x) ⌘ 1 is a bounded continuous

function on C, then

m1(C) =
Z
C
1m1(du) = lim

n!1

Z
C
1mn(du) = 1

so that any weak limit of a sequence of probability measures is itself a probability

measure. Our notion of graph convergence will be through convergence in distribu-

tion of the associated spectral measures.

Definition 1.8. Let ⇤n = (⇤n, wn,n)1n=1

be a sequence of graphs, and write

mn = m
⇤n for the spectral measures. We say that the sequence (⇤n)n�1

is a (spec-

trally) convergent graph sequence if there exists a measure m1 to which the spectral

measures converge in distribution, mn
(d)�! m1.

In practice, when proving convergence of graph sequences, rather than considering

them
⇤

directly it is easier to work with a representative distribution of the measures.
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Given a bounded Lebesgue measurable domain D ⇢ Rd with Lebesgue measure

|D| = 1, we say that a measurable function �
⇤

: D ! H is a distribution for ⇤ if m
⇤

is obtained as the pushforward measure of Lebesuge measure under �
⇤

m
⇤

(B) =
����1

⇤

(B)
��, B ✓ H measurable.

We recall that the change of variables formula for pushforward measures allows us

to write integrals against m
⇤

asZ
H
f(y)m

⇤

(dy) =

Z
D

�
f � �

⇤

�
(x)dx, (1.4)

where f : H ! R is measurable, and the integral on the right hand side is with

respect to Lebesgue measure. The following proposition enables us to confirm con-

vergence of the spectral measures by studying associated distribution functions.

Proposition 1.9. Let (⇤n) be a graph sequence, and �n : D ! H a sequence of

distribution functions on the same domain D ⇢ Rd. If there exists �1 : D ! H such

that �n ! �1 pointwise almost everywhere, then the graph sequence ⇤n converges,

and the limit measure m1 is given by the pushforward of �1

m1(B) ..= |��1

1 (B)|, B ✓ H measurable.

Proof. Almost everywhere pointwise convergence of the sequence (�n)n�1

implies

that for any continuous bounded f : H! R the composition f ��n ! f ��1 almost

everywhere. Boundedness of f ensures that f � �n is uniformly bounded, that is

there is an M such that (f � �n)(x)  M for all x 2 D and n � 1. Moreover,

boundedness of the domain D ensuresZ
D
(f � �n)(x)dx M

Z
D
1dx = M |D|,

from which the claim follows via the dominated convergence theorem.

For a graph ⇤ with spectrum Spec(Q) = (⌘j)
|⇤|
j=1

, the simplest choice of distribution

function is �
⇤

: (0, 1]! H defined to be

�
⇤

(u) = ⌘d |⇤|ue.

We refer to this as the canonical distribution function, and for most cases it su�ces

to study only this function. The greater generality in which we defined distribution

functions will however be useful when proving convergence for lattice boxes ⇤ ⇢ Zd,

d � 1. We now provide two examples of graph sequences, which will be referenced

in later chapters. Derivations of the spectra, and proofs of convergence are deferred

to Appendix A.
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Complete Graph

For N � 2, we define the complete graph on N vertices by KN = ([N ], w,), where

for all x, y 2 [N ]

wxy = x =
1

N
.

Subsequently the continuous time walkX is the simple random walk with unit jump

rate and which is killed according to a geometric random variable with mean N .

The eigenvalues of Q are

⌘
1

= · · · = ⌘N�1

= �(1 + 1

N
), ⌘N = � 1

N
.

The sequence (KN )N�2

is spectrally convergent, and has limit measure m1 = ��1

.

Lattice Boxes

For N � 1 define the lattice box ⇤N = [�N,N ]d \ Zd, for d � 1. We will consider

two di↵erent random walks on ⇤N . The first is defined by the weight function

w(dir)
xy =

8<: 1

2d if |x� y| = 1,

0 else.

and killing vector (dir)
x = 1�

P
y2⇤N

wxy. This definesX, the continuous time simple

random walk killed on exiting the box ⇤N . We say that ⇤(dir)

N = (⇤N , w(dir),(dir))

is the lattice box with Dirichlet boundary conditions. Alternatively we can define

the weighting

w(per)
xy =

8<: 1

2d if 9 1  i  d st. xi = �yi = ±N , and xj = yj , j 6= i,

0 else.

with (per) ⌘ 0, for which X is the continuous time simple random walk on the d-

torus, and we call ⇤(per)

N = (⇤N , w(per),(per)) the lattice box with periodic boundary

conditions. In the case of ⇤(per)

N , the spectrum is

Spec(Q(per)) =

(
1

d

dX
i=1

cos

✓
2⇡

ji
2N + 1

◆
� 1 : j = (ji)

d
i=1

2 {1, . . . , 2N + 1}d
)
.
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The sequence ⇤(per)

N converges in distribution, and the limit measure m1 is defined

via its distribution function �1 : [0, 1)d ! [�2, 0]

�(per)
1 (u) =

1

d

dX
i=1

cos(2⇡ui)� 1.

Rather than defining the spectrum of ⇤(dir)

N directly, a comparison argument yields

convergence of the sequence ⇤(dir)

N , and �(dir)
1 = �(per)

1 .

1.2 Loop Measures, Soups, and Their Occupation Fields

Given t > 0, a càdlàg function p : [0, t]! ⇤ with finitely many points of discontinuity

0 = t
0

< t
1

< · · · < tn < t is said to be a path on ⇤ if the sequence of vertices

xj = p(tj) are such that w(xj , xj+1

) > 0 for j = 0, . . . n� 1. Let Dt denote the set

of all paths of duration t, and D = [t>0

Dt the set of all paths. Given p 2 D, we

denote |p| for its duration: the unique t such that p 2 Dt. A path whose start and

end points agree is called a loop, we denote

�t
.

.= {� 2 Dt : �(0) = �(t)}

for the set of length t > 0 loops, and � = [t>0

�t for the set of all loops. A path

with no discontinuities is by default a loop, and we call this a point loop.

Following [Szn12] pp.35-6, we construct a �-algebra onD (respectively, �) as follows.

We define a bijection � : D ! D
1

⇥ (0,1), where p 7! (p̃, t) with t = |p|, and

p̃(s) = p(st). We endow D
1

⇥ (0,1) with the product �-algebra A ⇥ B, where B
is the Borel �-algebra on (0,1), and A is the �-algebra generated by the family

of sets As,x = {p 2 D
1

: p(s) = x}, with s 2 [0, 1], x 2 ⇤. We observe that A is a

natural choice as it is none other than the Borel �-algebra induced by the Skorokhod

topology on D
1

, see [Bil99] pp.134–5. Finally, using the projection � we define

D =
�
��1(B) : B 2 A⇥ B

 
,

which is a �-algebra on D. In the same way we define G, a �-algebra on �.

1.2.1 The Measures µ and µB

As before, let P denote the law of a random walk on ⇤. For t > 0, we define a

measure on paths from x to y by

Pt
xy[G] ..= Px

h
G \

n
Xt = y

oi
, G 2 D.
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We call this the (non-normalised) random walk bridge measure, where the term non-

normalised stems from the fact that this is not a probability measure: Pt
xy[D] =

Px

⇥
Xt = y

⇤
 1. We define two families of measures on �, theMarkov loop measures

µh,⇤(G) .

.=
X
x2⇤

Z 1

0

eht

t
Pt

xx[G]dt, G 2 G. (1.5)

and the Bosonic loop measures

µB
�,h,⇤(G) .

.=
X
x2⇤

X
j�1

e�hj

j
P�j

xx[G], G 2 G. (1.6)

The parameter h < 0 is called the chemical potential, whilst � > 0 is the inverse

temperature. We note that µh,⇤ depends only on h, since adding the relevant terms

in � > 0 act only as a change of variables in the definition. Henceforth we freely

denote µ, µB for the Markov and Bosonic loop measures respectively, including the

various subscripts only when we wish to highlight the dependence on the graph

structure, or values of � and h. We remark that in the case h = 0, the measure

µ
0

is exactly the loop measure studied by Le Jan [LeJ10, LeJ11], and many of the

properties which he studies can be generalised for µh, h < 0: one of these will be

the isomorphism theorem, which we discuss in Chapter 3.

We briefly comment that our convention di↵ers from that used elsewhere in the

literature. As remarked in the introduction, in particular the footnote on page xviii,

for most authors a loop is defined as a conjugacy class of �/⇠ where ⇠ is the

equivalence relation which equates all loops which can be obtained from one another

by a time shift (i.e. by forgetting their root); the loop measure µh is constant on

conjugacy classes, and so determines a measure on the space �/⇠. Since the random
variables we consider will not be e↵ected by whether or not our loops are rooted,

we will not make use of this equivalence relation, and keep the convention that a

loop is endowed with its root, �(0).

Lemma 1.10. Assume  6⌘ 0. Fix � > 0, h  0, then

(i) µ is a �-finite measure.

(ii) µB is finite with

µB(�) = �Tr
⇣
log

⇣
I � e�(Q+hI)

⌘⌘
<1.

If  ⌘ 0, then the above hold if and only if h < 0.

Proof. For a proof that µ
0

is �-finite, see [Szn12], p.63; from the definition, for

h < 0, µh is dominated by µ
0

, i.e. µh(G)  µ
0

(G), so it follows that µh is �-finite.

11



For (ii), we have

µB(�) =
X
x2⇤

X
j�1

e�hj

j
Px

h
X�j = x

i
=
X
x2⇤

X
j�1

e�hj

j

⇣
e�jQ

⌘
xx

=
X
x2⇤

X
j�1

1

j

⇣
e�(Q+hI)

⌘j
xx
.

Appealing to Proposition B.22, the series over j � 1 converges if the spectral radius

of exp(�(Q+ hI)) is less than 1. Letting Spec(Q) = {⌘j}|⇤|j=1

, we require

max
j

|e�(⌘j+h)| = max
j

e�(Re(⌘j)+h) < 1,

where Re denotes the real part of a complex number, and we relied on the fact that

for z 2 C, | exp(z)| = exp(Re(z)). But from Theorem 1.6, Re(⌘j)  0 holds for all

j = 1, . . . , |⇤|, and so the inequality above holds whenever h < 0. On the other

hand, if  6⌘ 0, then the same theorem for the spectrum asserts that Re(⌘j) < 0, so

that the inequality holds for h = 0.

On recalling that Tr(log(I �A)) = log det(I �A), justified below Proposition B.22,

the formula above gives

exp
�
µB(�)

�
=

|⇤|Y
j=1

⇣
1� e�(⌘j+h)

⌘�1

,

where as above we denote ⌘j for the eigenvalues of Q. On comparing this with

(0.7) we see that this is none other than Einstein’s formula for the grand canonical

partition function of the ideal gas. In the following we give a direct argument of

this fact, which does not rely on the spectral representation.

Theorem 1.11. For any � > 0 and h < 0

exp
�
µB(�)

�
= ⌅

⇤

(�, h).

Proof. To simplify notation in the following we write z = exp(�h), which is known as

the fugacity, and write Pj =
P

x2⇤Px

⇥
X�j = x

⇤
, given these notational simplifica-

tions, the total mass of the loop measure becomes µB(�) =
P

j�1

zj

j Pj . Expanding

the exponential power series

exp
�
µB(�)

�
=

X
m�0

1

m!

0@X
j�1

zj

j
P�j

1Am

,
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each power in m can further be expanded using the multinomial theorem for power

series

=
X
m�0

1

m!

X
P

kj=m

✓
m

k

◆Y
j�1

✓
zjPj

j

◆kj

,

where the sum is over sequences k = (kj)j�1

with
P

j kj = m, and
�
m
k

�
= m!/

Q
j kj !

is the infinite multinomial coe�cient. Canceling the factorial terms, we see that the

sum depends on m only through the sequences k, so we write

=
X

P
kj<1

Y
j�1

1

kj !

✓
zjPj

j

◆kj

,

where the sum now runs over all terminating sequences k = (kj)j�1

. We factor this

as a summation over integer partitions: i.e. fixing n � 0, consider those sequences

k such that
P

j jkj = n with the interpretation that there are kj blocks of length j.

Now

=
X
n�0

X
P

jkj=n

Y
j�1

1

kj !

✓
zjPj

j

◆kj

=
X
n�0

1

n!

X
P

jkj=n

Y
j�1

n!

kj !jkj
zjkjP

kj
j .

Recognising the combinatorial factor n!/(kj !jkj ) as the number of permutations

⇡ 2 Sn with exactly kj cycles of length j, we can instead sum over permutations.

Denoting c for a cycle in a permutation ⇡, and nc for the length of the cycle

=
X
n�0

1

n!

X
⇡2Sn

Y
c2⇡

zncPnc

=
X
n�0

zn

n!

X
⇡2Sn

Y
c2⇡

Pnc . (1.7)

Working in the opposite direction, we note that for a permutation ⇡ 2 Sn with

cycles c = (c(1), . . . , c(nc))

X
x1,...,xn2⇤

nY
i=1

Pxi

h
X� = x⇡(i)

i
=

X
x1,...,xn2⇤

Y
c2⇡

ncY
i=1

Pxc(i)

h
X� = xc(i+1)

i
, (1.8)

with the convention c(nc+1) = c(1). The second sum depends only on xc(1), . . . , xc(nc)

and so we can factorise the sum as

=
Y
c2⇡

X
x1,...,xnc

ncY
i=1

Pxc(i)

h
X� = xc(i+1)

i
,
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and the Chapman–Kolmogorov equation gives

=
Y
c2⇡

X
x

Px

h
X�nc = x

i
=
Y
c2⇡

Pnc .

Substituting (1.8) into (1.7) we obtain

exp(µB(�)) =
X
n�0

zn

n!

X
⇡2Sn

X
x1,...,xn2⇤

nY
i=1

Pxi

h
X� = x⇡(i)

i
=
X
n�0

znZ
⇤

(�, n),

where Z
⇤

(�, n) is recognised as the graph analogue of the canonical partition func-

tion (0.13), and the result follows from (0.5).

1.2.2 The Poisson Loop Soup

We start by providing a formal definition of the Poisson point process for loop

measures as a random measure, for which we follow [Kal01] pp.225-6, after which

we give a more user friendly description.

A counting measure on (�,G) is a measure taking integer values, ⇠ : G ! N, and
we denote N .

.= N (�,G) for the set of all �-finite counting measures on (�,G).
For G 2 G, we define the evaluation map ⇡G : N ! N by ⇡G(⇠) = ⇠(G), and let

F .

.= �(⇡G : G 2 G) be the smallest �-algebra for which the evaluation maps are

measurable. Thus, we have defined a measure space (N ,F) of counting measures. A

point process is any probability measure P on (N ,F). Given a measurable function

F : N ! R, we denote the expectation with respect to P by

E[F ] ..=

Z
N
F (⇠)P[d⇠].

We consider point processes as the law of a random measure ⇠: that is, rather than

considering events {⇡�1

G (C)}, we write the equivalent {⇠(G) 2 C}. We state with-

out proof the following uniqueness criteria for point processes [Kal01], Lemma 12.1

pp.225-6.

Lemma 1.12. A point process is uniquely determined by its finite dimensional dis-

tributions. That is the point processes ⇠ with law P, and ⌘ with law eP are equal in

distribution, ⇠
(d)
= ⌘ if and only if for all n � 1, G

1

, . . . , Gn 2 G

�
⇠(G

1

), . . . , ⇠(Gn)
� (d)

=
�
⌘(G

1

), . . . , ⌘(Gn)
�
.

Let ⌫ denote a �-finite measure on (�,G). The poisson point process with intensity

14



⌫ is the law P on (N ,F) with the defining properties

Poisson property. For G 2 G and n � 0

P[⇠(G) = n] = e�⌫(G)

⌫(G)n

n!
.

Independent increments. For pairwise disjoing sets G
1

, . . . , Gk 2 G, the
variables ⇠(G

1

), . . . ⇠(Gk) are pairwise independent under P.

Any ⇠ 2 N can be associated with a countable (or finite, if ⇠ is finite) collection

S = S⇠ ⇢ �⇥ N, where (�, n�) 2 S if and only if ⇠(�) = n� . The collection of pairs

S can in turn be identified with a multiset of loops, with the loop � occurring with

multiplicity n� , and abusing notation we denote S for this multiset. When S is a

multiset with elements in � we write S @ �.

In this form we see that P, the Poisson point process with intensity ⌫, is none other

than a law over random multisets S @ �. The Poisson property, defined above,

becomes

P[#(S \G) = n] = e�⌫(G)

⌫(G)n

n!
, G 2 G, n � 0,

whilst the independence property reads: for G,H 2 G if G\H = ?, then #(S \G)

is independent of #(S \H), under P.
The Poisson point process with intensity µ will henceforth be denoted by P, respec-
tively that of the measure µB will be PB. The corresponding expectations are E and

EB; as before, when we wish to stress the dependence on the parameters ⇤,�, h, we

add the relevant subscripts. We colloquially refer to the law P as the Markov loop

soup, and PB as the Bosonic loop soup.

1.2.3 Occupation Times and the Occupation Field

Finally we come to describe the occupation field of the loop soup, which is analogous

to the local field (lx)x2⇤ associated with a random walk. For x 2 ⇤ we define the

functional Lx : �! R
+

by

Lx(�) .

.=

Z |�|

0

�x
�
�(s)

�
ds,

with �x : R ! R the Kronecker delta function taking the value 1 at x, and 0 else-

where. We refer to Lx(�) as the occupation time of � at x 2 ⇤, and define the field

L : �! R⇤

+

by L(�) =
�
Lx(�)

�
x2⇤, which is the occupation field of the loop �.

Proposition 1.13. The occupation field L : �! R
+

is a G-measurable map.
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Proof. It su�ces to prove G-measurability of Lx for all x 2 ⇤. Recalling the defini-

tion of G on page 10, define L̃x : �1

⇥ (0,1)! R
+

by

L̃x(�̃, t) .

.= t

Z
1

0

�x
�
�̃(s)

�
ds,

so that Lx(�) = L̃x(�(�)), from which measurability of Lx is equivalent to that of

L̃x. Moreover, since the identity map t 7! t is measurable in B(R), and a product of

measurable functions is measurable, it su�ces to show the restriction Lx : �1

! R
+

is measurable. But in general if v : ⇤! R, then � 7!
R
1

0

v
�
�(s)

�
ds is A-measurable

(where we have used the fact that since ⇤ is finite v is necessarily measurable and

bounded, and so the integral exists), [Bil99] pp.246–9.

For S @ � we write L(S) .

.=
P

�2S L(�). In the case that S is a random set under

the measure P or PB, by virtue of Proposition 1.13, its local field is a random field

and we use caligraphic font L = L(S) 2 R⇤ to denote this variable.
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Chapter 2

The Mean Occupation Under µB

We start our analysis of the occupation field of the Bosonic loop soup by considering

the mean occupation of a site, which we define by

L .

.=
1

|⇤|
X
x2⇤

Lx, (2.1)

which is a positive random variable under the law PB. Our emphasis is on study-

ing the behaviour of L in the thermodynamic limit: i.e. under the sequence PB
⇤N

,

with ⇤N a convergent graph sequence. Before proceeding, we state the following

assumptions, which we maintain throughout the chapter.

A1 A graph sequence (⇤N )N�1

will always denote a spectrally convergent se-

quence. The spectral measure of ⇤N is denoted mN , with limit mN
(d)�! m1.

The associated Bosonic loop measure is µB
N = µB

⇤N
, and the law of the associ-

ated Bosonic loop soup is denoted PB
N = PB

⇤N
.

A2 The inverse temperature is strictly positive, � > 0, and the chemical potential

is strictly negative h < 0. When no subscripts are given, e.g. m,µB,PB then

the results are understood to be in the context of some unspecified graph.

As a consequence of A2 and Lemma 1.10, the loop soups PB
N are well defined.

2.1 The Mean Occupation in the Thermodynamic Limit

The aim of this section is to prove convergence in distribution of L to a degener-

ate random variable, and to describe a central limit theorem for the fluctuations.

Then in the following section, Section 2.2, we relate the limiting value of the mean

occupation to the density of an ideal Bose gas defined on the graph.
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2.1.1 Convergence in Distribution of L

Our analysis of the mean occupation on a graph ⇤ will be via the cumulant gener-

ating function, defined for s 2 R by

F (s) .

.= logEB

h
esL

i
, s 2 R.

We derive an expression for F by using the independence of the loop soup on each

of the sets ��j . We will need the following result.

Proposition 2.1. For j � 1

µB(��j) =
|⇤|
j

Z
H
e�j(h+u)m(du).

Proof. As in Lemma 1.10, we have

µB(��j) =
X
x2⇤

1

j

⇣
e�j(hI+Q)

⌘
xx

=
1

j
Tr
h
e�j(hI+Q)

i
.

Since the trace can alternatively be formulated as the sum over eigenvalues ⌘ 2
Spec(Q)

=
1

j

X
⌘

e�j(h+⌘)

the claim follows by definition of the spectral measure m, and (1.3).

Lemma 2.2. The expectation of the mean occupation is

EB
⇥
L
⇤
= �

Z
H

1

e��(h+u) � 1
m(du).

Moreover, for s < |⇤||h| the cumulant generating function of L exists and is given

by

F (s) = |⇤|
Z
H
log

 
1� e��(h+u)

e�s/|⇤| � e��(h+u)

!
m(du). (2.2)

Proof. Rather than summing the mean occupation over vertices in the graph ⇤, we

recognise that the total occupation is none other than the total of all loop lengths.

Consequently we haveX
x2⇤

Lx =
X
�2S

|�| =
X
j�1

(�j)#{S \ ��j}.
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The last of these expressions has the benefit of summing over the disjoint sets ��j ,

so that appealing to the independence property of the Poisson point process the

expectation is

EB
⇥
L
⇤
=

�

|⇤|
X
j�1

j EB
⇥
#{S \ ��j}

⇤
,

=
�

|⇤|
X
j�1

jµB(��j).

Applying Proposition 2.1, and changing the order of summation and integration this

is

= �

Z
H

X
j�1

e�j(h+u)m(du). (2.3)

As before, since for z 2 C, | exp(z)| = exp(Re(z)), we have that | exp(�(h+u))| < 1

for all u 2 H (since h,Re(u) < 0), and the sum converges to the desired expression.

Similarly, the cumulant generating function becomes

F (s) = logEB

24exp
0@ s

|⇤|
X
j�1

�j#(S \ ��j)

1A35
=
X
j�1

logEB


exp

✓
s

|⇤|�j#(S \ ��j)

◆�
.

Each term in j � 1 is now the cumulant generating function of a Poisson distributed

random variable. Since the cumulant generating function of a Poisson ↵ > 0 variable

is s 7! ↵(es � 1) we have

=
X
j�1

µB(��j)


exp

✓
s

|⇤|�j
◆
� 1

�

= |⇤|

Z
H

X
j�1

✓
1

j
e
�j(h+u+ s

|⇤| ) � e�j(h+u)

◆
m(du).

So long as the series converges we have (2.2). We have already seen in computing

the expectation that | exp(�(h+ u))| < 1, so it remains to confirm that the first of

the two series also converges in a domain around 0, i.e.

��e�(h+u+ s
⇤ )

�� = e�(h+Re(u)+ s
⇤ ) < 1,

for u 2 H. Since Re(u)  0, this holds at least for s < |h||⇤|.

We note that from the formula for the expectation, and since (e��(h+u) � 1)�1 is a

bounded continuous function, then we already have that for a sequence of graphs
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limN!1 EB
N

⇥
L
⇤
converges. This is similar to saying that the mean occupation

converges in expectation, however since each occupation field is defined on a di↵erent

probability space, this is not a well defined notion. Our aim therefore will be to

show that the laws of the mean occupation converge in distribution. Before proving

this we state the following analytical lemma which we will call on.

Lemma 2.3. For a positive constant c > 0, the function x(ec/x�1) is a non-negative

decreasing function of x > 0, and has limit

lim
x!1

x(ec/x � 1) = c.

Proof. That the function is decreasing is seen on di↵erentiating

d

dx
x(ec/x � 1) =

1

x

⇣
(ec/x � 1)x� cec/x)

⌘
,

on expanding the exponentials, the bracketed term is given by the power series

1X
n=1

cn+1

xn

✓
1

n!
� 1

(n� 1)!

◆
< 0.

The limit is computed by appealing to l’Hopital’s rule

lim
x!1

x(ec/x � 1) = lim
y!0

ecy � 1

y

= c lim
y!0

ecy.

Theorem 2.4. The law of L under the sequence (PB
N )N�1

converges in distribution

to a degenerate distribution, L (d)�! �a1, with atom

a1 ..= a1(�, h) = �

Z
H

e�h

e��u � e�h
m1(du). (2.4)

Proof. Our proof relies on the fact that convergence in distribution of
�
L,PB

N

�
is

equivalent to pointwise convergence of the cumulant generating functions FN = F
⇤N

on a domain of the origin, [Bil95] p.390. We identify a suitable domain to be

(�1, |h|) since Lemma 2.2 asserted that FN (s) < 1 throughout this domain. For

N � 1 we write FN (s) =
P

j�1

f (j)
N (s), where for each j � 1

f (j)
N (s) .

.= µB
N (��j)

⇣
e�js/|⇤| � 1

⌘
.

Our aim is to show that for s < |h|, the terms f (j)
N satisfy the requirements of the
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dominated convergence theorem. From Proposition 2.1���f (j)
N (s)

��� = |⇤N |
j

���e�js/|⇤N | � 1
�������Z

H
e�j(h+u)mN (du)

����
 |⇤N |

j

���e�js/|⇤N | � 1
��� Z

H

���e�j(h+u)
���mN (du)

=
|⇤N |
j

���e�js/|⇤N | � 1
��� Z

H
e�j(h+Re(u))mN (du)

 |⇤|
j

���e�js/|⇤N | � 1
���e�jh,

where we used the fact that mN is a probability measure, and that Re(u)  0 for

u 2 H. Finally, in light of Lemma 2.3 we have the uniform bound���f (j)
N (s)

���  1

j
e�j(h+s),

which we note is summable for s < |h|. Consequently the dominated convergence

theorem allows

F1(s) .

.= lim
N!1

FN (s)

= lim
N!1

X
j�1

f (j)
N (s)

=
X
j�1

lim
N!1

f (j)
N (s),

and the final line is finite for s < |h|. In particular we have pointwise conver-

gence of the cumulant generating functions, and the mean occupation converges in

distribution. We now identify the limit as the degenerate distribution. Note

f (j)
1 (s) .

.= lim
N!1

f (j)
N (s)

= lim
N!1

|⇤N |
j

✓Z
H
e�j(h+u)mN (du)

◆⇣
e
�j s

|⇤N | � 1
⌘
.

Since the integrand over exp(�j(h+ u)) is a bounded continuous function on H, it

follows from mN
(d)�! m1 that we can take the limit inside the integral

=

✓Z
H
e�j(h+u)m1(du)

◆
lim

N!1

|⇤N |
j

⇣
e
�j s

|⇤N | � 1
⌘
.

The remaining limit is handled by Lemma 2.3

= �s

Z
H
e�j(h+u)m1(du).
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Finally summing over j � 1

F1(s) =
X
j�1

f (j)
1 (s) =

0@�X
j�1

Z
H
e�j(h+u)m1(du)

1As,

which is the form taken by the cumulant generating function of a degenerate distri-

bution. Moreover, on taking the summation inside the integral, we obtain the atom

given by (2.4).

An immediate consequence is the following analogue to a weak law of large numbers.

Corollary 2.5 (Weak Law of Large Numbers). Let a1 be the atom (2.4). For all

" > 0

lim
N!1

PB
N

h��L� a1
�� > "

i
= 0.

Proof. Using the Portmanteau theorem, Theorem 4.25 [Kal01] pp.75-6, we see

lim sup
N!1

PB
N

h
L 2 (a1 � ", a1 + ")c

i
 �a1

⇣
(a1 � ", a1 + ")c

⌘
= 0.

In particular the limit exists, and is 0.

The functions f (j) defined in the proof of Theorem 2.4 are themselves the cumulant

generating functions of the scaled occupation of �j-loops

f (j)(s) = EB

h
es�j#(S\��j)/|⇤|

i
.

Defining the variables n(j)
.

.= #(S \��j) for the number of loops of length �j, then

we have the following.

Corollary 2.6. For j � 1, the random variables |⇤|�1n(j)
N converge in distribution

to a degenerate distribution with atom

n(j)
1

..=
e�jh

j

Z
H
e�jum1(du).

Proof. The variables |⇤N |�1n(j)
N have cumulant generating functions f̃N : R ! R

given by

f̃N (s) .

.= logEB

h
esn

(j)
N /|⇤N |

i
= fN (s/�j) = µB

N (��j)
⇣
es/|⇤N | � 1

⌘
.

Unlike the case for FN , the functions f̃N exist for all s 2 R, and that they converge

pointwise follows from the same argument presented in Theorem 2.4.
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Before we move on, we note that in the case of the complete graph KN , defined on

page 9, the formulae for a1, n(j)
1 simplify to

n(j)
1 =

1

j
e�j(h�1),

a1 = �
⇣
e�(1�h) � 1

⌘�1

. (2.5)

In particular, as one would expect from their definitions: a1 = �
P

j�1

jn(j)
1 .

2.1.2 Fluctuations from the Average and Large Deviations

To complement the proof that the mean occupation converges in distribution we

provide a central limit theorem for the fluctuations. The method of proof is similar

to that of Theorem 2.4.

Theorem 2.7 (Central Limit Theorem). Under the sequence of measures (PB
N )N�1

|⇤N |1/2
⇣
L� EB

N

⇥
L
⇤⌘ (d)�! N (0,�2),

where N (0,�2) is the centred normal distribution with variance

�2 ..= �2(�, h) ..= �2
Z
H

e�(h+u)

(e�(h+u) � 1)2
m1(du). (2.6)

Proof. As before, writing FN (s) =
P

j�1

f (j)
N (s) for the cumulant generating func-

tion of L under PB
N , we have

logEB
N =

h
es|⇤N |1/2(L�EB

N [L])
i
= FN (s|⇤N |1/2)� s|⇤N |1/2EB

N [L] (2.7)

=
X
j�1

✓Z
H
e�j(h+u)mN (du)

◆✓
|⇤N |
j

⇣
e�js|⇤N |�1/2 � 1

⌘
� �s|⇤N |1/2

◆
.

As in the proof of Theorem 2.4, we show that each of the terms in the summation is

uniformly bounded in ⇤N , and apply the dominated convergence theorem. To this

end, denoting g(j)N (s) for the j-th summand in the expression above, and using the

same bound as before for the integral term���g(j)N (s)
���  e�jh

���� |⇤N |
j

⇣
e�js|⇤N |�1/2 � 1

⌘
� �s|⇤N |1/2

����.
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An analogous result as in Lemma 2.3 for the function x 7! x(ecx
�1/2 � 1) � cx1/2

ensures that this function is decreasing in x, and so we have the bound

 e�jh
����1j (e�js � 1)� �s

����
 1

j
e�j(h+s),

from which it follows that we can apply the dominated convergence theorem, and

the cumulant generating functions (2.7) converge pointwise for s < |h|. Considering
the N limit of g(j)N (s) we have on expanding the exponential

g(j)N (s) =
|⇤N |
j

✓
1

2|⇤N |(�js)
2 +

1

3!|⇤N |3/2
(�js)3 + · · ·

◆Z
H
e�j(h+u)mN (du).

On taking the limit in ⇤N , all but the first term of the power series vanish, leaving

lim
N!1

g(j)N (s) =

✓
1

2
�2j

Z
H
e�j(h+u)m1(du)

◆
s2.

And from the dominated convergence theorem

lim
N!1

logEB
N

h
es|⇤N |1/2(L�EB

N [L])
i
=

0@�2Z
H

X
j�1

je�j(h+u)m1(du)

1As2

2
.

Rearranging the bracketed term yields (2.6). Moreover this is the cumulant gener-

ating function of a centered normal distribution.

A similar argument to Corollary 2.6 provides the analogous result for the scaled

cycle distributions |⇤N |�1n(n)
N . We omit the proof.

Corollary 2.8. For j � 1, the random variables |⇤|�1n(j)
N satisfy a central limit

theorem under the measures (PB
N )N�1

|⇤N |�1/2
⇣
n(j)
N � EB

N

h
n(j)
N

i⌘
(d)�! N

✓
0,

1

j

Z
H
e�j(h+u)m1(du)

◆
.

Finally we make some remarks about the probability of rare events; since the limit

distribution ofL is concentrated on the point a1, the event thatL> a > a1 becomes

increasing unlikely under PB
N as N !1. To understand the degree to which this is

a rare event, we consider the probabilities on a logarithmic scale. Using a Cherno↵

bound, the following calculation provides an upper bound on the probability the

mean occupation exceeds a value a > 0

PB
N

⇥
L> a

⇤
= PB

N

h
es|⇤N |L > es|⇤N |a

i
,
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which holds for all s 2 R, and by Markov’s inequality

 EB
N

h
es|⇤N |L

i
e�a|⇤N |s.

Then we have

lim
N!1

1

|⇤N | logP
B
N

⇥
L> a

⇤

✓

lim
N!1

1

|⇤N | logE
B
N

h
esL

i◆
� as.

Supposing that the function1 limN!1
1

|⇤N | logE
B
N

h
es|⇤N |L

i
=.

. ⇤(s) exists as an

extended real number, and optimising over the values s 2 R

lim
N!1

1

|⇤N | logP
B
N

⇥
L> a

⇤
 inf

s2R

�
⇤(s)� as

�
=.

. �I(a).

The calculation above is the standard computation for an upper bound of a large

deviation principle (LDP). The function I is known as the rate function of the LDP.

Heuristically an LDP for (L,PB
N )N�1

says

PB
N

⇥
L 2 A

⇤
⇠ e�|⇤N |I(A), (2.8)

where I(A) = infa2A I(a). In Chapter 4 we will consider the LDP for the cycle

distribution n = (n(j))j�1

; since this result will subsume the LDP for the mean

occupation (in that the LDP for L can be derived from that of n) we will defer the

rigorous definition of an LDP for later. The simplest LDP is Cramér’s theorem for

the mean of a sum of i.i.d. random variables, SN = 1

N (X
1

+ · · · + XN ). Whilst

this is not so far from the situation we are in, since L can be expressed as a sum

of the independent variables (n(j))j�1

, there are two distinctions. The first of these

is simply that whilst the variables n(j) are independent, they are not identically

distributed. The more significant di↵erence is the sense in which the limit is taken.

Cramérs theorem deals with a scaled limit of a finite summation, whereas we consider

an infinite summation, but with each summand converging in the limit. To derive

an LDP for the mean occupation we must instead use the Gärtner–Ellis theorem,

[dH00] Theorem I.4 pp.54-7. The following lemma proves the requisite conditions

for this theorem.

Lemma 2.9. The limit

⇤(s) ..= lim
N!1

1

|⇤N | logE
B
N

h
es|⇤N | L

i
,

exists in R [ {+1}. Denoting D⇤ = {s 2 R : ⇤(s) < 1}, then 0 2 D⇤, and ⇤ is

1
We use the bold font ⇤ since this is the accepted notation used in the literature of large

deviations, of course this is at odds with our choice of denoting graphs by ⇤. We hope that the

bold type face will be su�cient to avoid any confusion!
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di↵erentiable on the interior intD⇤.

Proof. Using the notation established in the previous sections, we have

⇤(s) = lim
N!1

1

|⇤N |FN (|⇤N |s)

=
X
j�1

1

j

✓Z
H
e�j(h+u)m1(du)

◆⇣
e�js � 1

⌘
,

where we justify taking the limit via the dominated convergence theorem, as in

Theorem 2.4. Referencing this theorem again, we also have that ⇤(s) < 1 for

s < |h|, so that 0 2 D⇤, and in particular on the domain of convergence we have

⇤(s) =

Z
H
log

 
1� e�(h+u)

1� e�(h+u+s)

!
m1(du), s < |h|.

That⇤ is di↵erentiable throughout intD⇤ follows as an application of di↵erentiating

under the (complex) integral sign; this is justified in [Mat01].

The existence of ⇤, together with 0 2 intD⇤ is in fact su�cient to derive a weak

form of the Gärtner–Ellis theorem, [dH00] Theorem V.6 pp.54–7, but we will not

consider this here. Unfortunately to move away from this weaker form, in addition

to the claims of Lemma 2.9 we require that ⇤ is steep: that is either D⇤ = R, or
if s⇤ > 0 is on the boundary of convergence of ⇤, then lims%s⇤ ⇤0(s) = +1. For

general graph sequences we do not have a way to prove this condition, and must

include it as an assumption in the following theorem.

Theorem 2.10. Suppose ⇤ exists and is steep. The sequence
�
L,PB

N

�
N�1

satisfies

an LDP with rate |⇤N | and good rate function

I(x) = sup
s2R

�
sx�⇤(s)

�
. (2.9)

Taking as our graph sequence (KN )N�1

the complete graph, we can solve this vari-

ational problem explicitly, in this case

⇤0(s) = �
X
j�1

✓Z
H
e�j(h+u+s)��1

(du)

◆
=

�

e��(h�1+s) � 1
,

and ⇤ is steep at the boundary s = 1� h. Then for x 2 R we wish to find sx which

solves ⇤0(sx) = x, which is satisfied for x > 0 by

sx = �(1� h) + log

✓
x+ �

x

◆
.

For x  0 there is no solution, and sups2R
�
xs �⇤(s)

�
= 1. On checking that sx
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x

1

�2

a1

Figure 2.1: The rate function I(x) (in bold) and its second derivative for the graph
sequence ⇤N with � = 1, h = �1. I has its unique zero at the atom a1, and at this
point the second derivative is given by the reciprocal of the variance of the central
limit theorem, I 00(a1) = 1

�2 .

is in fact a maxima for xs�⇤(s), and after a deal of rearranging, we obtain

I(x) =

8<:x(1� h) + x
� log

⇣
x

�+x

⌘
+ log

⇣
�

�+x

⌘
� log(1� e��(1�h)) x > 0,

+1 x  0.

Following [dH00] p.8, we remark that I � 0, and has a unique zero. In particular

this occurs at x⇤ = a1 given by (2.5), the atom of the limit distribution, which

is as one should expect since the expression (2.8) implies that I should be small

on events with high probability. Further, on taking the second derivative one has

I 00(a1) = 1

�2 , the variance given in (2.6). See Figure 2.1.

For now we will leave our large deviations analysis at this point, returning to it

rigorously in Chapter 4. In the following section, however, we will provide a context

in which we can interpret both the steepness condition of ⇤, and also the variational

problem for I.

2.2 Mean Occupation as the Density of the Ideal Bose

Gas

Our intention now is is to develop the link between the Bosonic loop soup and

the grand canonical ensemble of the ideal Bose lattice gas. Our focus will be on

the density of the Bose gas, but we begin by providing expressions for a variety of

thermodynamic functions.
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2.2.1 Loop Soup Descriptions of Thermodynamic Functions

In Theorem 1.11 we proved directly that exp
⇣
µB
�,h,⇤(�)

⌘
= ⌅

⇤

(�, h), where the right

hand side is the partition function for an ideal gas in the grand canonical ensemble,

(0.7). This is the first hint that we can relate the Bosonic loop soup to the ideal

gas. In this section we develop the links between thermodynamic functions and the

Bosonic loop soup. As a starting point we recall the derivation of the mean particle

number in the grand-canonical ensemble. From (0.5) we have

hNi =
X
n�0

n
e�hnZ

⇤

(�, n)

⌅
⇤

(�, h)

=
1

�

1

⌅
⇤

(�, h)
@h

X
n�0

e�hnZ
⇤

(�, n)

=
1

�

@h⌅⇤

(�, h)

⌅
⇤

(�, h)

=
1

�
@h log⌅⇤

(�, h).

The function p
⇤

(�, h) = ��1 log⌅
⇤

(�, h) is the pressure of the Bose gas. In light of

Theorem 1.11, we can consider µB(�) to be the ‘loop soup pressure’. The following

theorem justifies this, and demonstrates that the loop soup is none other than a

geometric representation of the grand-canonical ensemble.

Theorem 2.11. For n � 0

PB

24X
�2S

|�| = �n

35 =
e�hnZ

⇤

(�, n)

⌅
⇤

(�, h)
,

with Z
⇤

(�, n) the canonical partition function for the ideal lattice gas, (0.13).

Proof. The manipulation is similar to that employed in Theorem 1.11. Fixing n � 0,

we sum over all integer sequences kj such that
P

j�1

jkj = n, with the interpretation

that kj is the number of loops chosen from ��j

PB

hP
�2S |�| = �n

i
=

X
P

jkj=n

PB[#(S \ ��j) = kj , j � 1]

=
X

P
jkj=n

Y
j�1

PB[#(S \ ��j) = kj ]

=
X

P
jkj=n

Y
j�1

e�µB
(��j)

µB(��j)kj

kj !

=
e�µB

(�)e�hn

n!

X
P

jkj=n

Y
j�1

n!

kj !jkj

✓
j

e�hj
µB(��j)

◆kj

.
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As before, the combinatorial factor corresponds to the number of permutations ⇡ 2
Sn with cycle structure k = (kj)j�1

. Using the notation established in Theorem 1.11

for permutations ⇡ 2 SN , we have

=
e�hn

n!⌅

X
⇡2Sn

Y
c2⇡

✓
j

e�hj
µB(��j)

◆nc

.

Finally on recognising that

e��hjjµB(��j) =
X
x2⇤

Px[X�j = x]

=
X

x1,...,xj2⇤

jY
i=1

Pxi [X� = xi+1

],

with xj+1

= x
1

, then we can write

Y
c2⇡

�
jµB(��j)

�nc =
X

x1,...,xn2⇤

nY
i=1

Pxi [Xj = x⇡(i)].

The result now follows on comparison to the canonical partition function, (0.13).

As a consequence we have the following analogous result to hNi = ��1@h log⌅⇤

in

the context of the loop soup.

Corollary 2.12. EB
⇥P

x2⇤ Lx

⇤
= @hµB(�).

Proof. The proof follows by exactly the same steps as taken for hNi. Alternatively
we can derive the equation from the cumulant generating function of the previous

section. Let F be as before then

logEB

h
es

P
x Lx

i
= F (|⇤|s)

=
X
j�1

µB(��j)
�
e�js � 1

�
,

and

EB[
P

x2⇤ Lx] =
d

ds
F (|⇤|s)|s=0

= �
X
j�1

jµ(��j)

= �
X
j�1

X
x2⇤

e�hjPx[X�j = x]

=
X
j�1

@hµ(��j).

In light of these results, we can consider the particle density of the ideal gas to be
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the same as the mean occupation, up to a factor of ��1. That is we make the ansatz

⇢
⇤

.

.=
hNi
|⇤| =

1

�
EB
N

⇥
L
⇤
,

and we can apply the results of the preceding section to analyse the behaviour of

the density in the thermodynamic limit.

2.2.2 The Intrinsic Equation of the Ideal Gas

The (thermodynamic) density of the Bose gas is defined as

⇢(�, h) = lim
N!1

⇢
⇤N

(�, h)

= lim
N!1

1

�
EB
N

⇥
L
⇤
,

and applying Theorem 2.4, the density exists and is given by

⇢(�, h) =

Z
H

e�h

e��u � e�h
m1(du). (2.10)

In this section we study the behaviour of ⇢ as a function of h, and discuss how

BEC is exhibited in the grand canonical ensemble. Considering for a minute the

canonical ensemble described by Z
⇤

(�, N) we recall that the thermodynamic limit

in this context is taken by simultaneously sending N, |⇤| ! 1, in such a way that

the density converges: N/|⇤|! ⇢ 2 R
+

, where we use ⇢ to distinguish between the

function ⇢ defined above. A natural question is given a density ⇢ > 0, at what value

of h < 0 does ⇢(�, h) = ⇢. The heuristic is that at this value h, it is ‘equivalent’ to

study the grand canonical ensemble, instead of the canonical ensemble: ‘⌅1(�, h) =

Z1(�, ⇢)’. Of course we have not defined the functions above, and this is simply a

heuristic description. A rigorous account is a↵orded by the theory of equivalence of

ensembles, [Hua87] Chapter 7.6. Formally we phrase this question as the following

intrinsic equation.

Fix � > 0. For ⇢ > 0 find h⇤ = h⇤(⇢) 2 (�1, 0) for which ⇢(�, h⇤) = ⇢.

(2.11)

For the time being, we will keep � > 0 fixed, and denote ⇢(h) for the density leaving

the dependence on � implicit. The following proposition allows us to concentrate

our study of the variational problem on the extreme values as h approaches �1
and 0.
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Proposition 2.13. For h 2 (�1, 0), the map h 7! ⇢(h) is a di↵erentiable, convex,

strictly increasing function.

Proof. That the map is di↵erentiable follows on checking the conditions which al-

low for di↵erentiation under the (measure theoretic) integral sign. Let p(h, u) =

(e��(u+h) � 1)�1 denote the integrand in our expression for the density, then it

is immediate that u 7! p(h, u) is integrable on u 2 H, and that h 7! p(h, u) is

di↵erentiable for h < 0. Furthermore, we have

@hp(h, u) = �
e��(u+h)

(e��(u+h) � 1)2
,

which is positive and integrable, from which di↵erentiability is confirmed [Kle08]

Theorem 6.28 pp.140-2. Moreover strict positivity of @hp(h, u) confirms that ⇢(h) is

strictly increasing in h < 0. Similarly one can check that the second derivative also

exists, and is positive, and so the density is convex.

Applying this proposition, it follows that as we take the limit h % 0, the density

has a limit

⇢c .

.= ⇢c(�) = lim
h%0

⇢(�, h),

which exists as an extended real number ⇢c 2 [0,1) [ {+1}, we refer to this as

the critical density. Since the integrand p(h, u), introduced in the previous proof, is

strictly increasing in h < 0 the monotone convergence theorem gives

⇢c = lim
h%0

Z
H

e�h

e��u � e�h
m1(du)

=

Z
H
lim
h%0

e�h

e��u � e�h
m1(du)

=

Z
H

1

e��u � 1
m1(du). (2.12)

Theorem 2.14. For all ⇢ 2 (0, ⇢c) there is a unique solution to the intrinsic equa-

tion (2.11).

Proof. It follows from Proposition 2.13 that there is a bijection between h 2 (�1, 0)

and the values ⇢ for which there is a solution to the intrinsic equation, ensuring

uniqueness of the solution. Moreover, since the density is strictly increasing, the

density cannot attain either of the limit values ⇢c, or limh&�1 ⇢(�, h). That the

lower limit is in fact 0, follows on applying the monotone convergence theorem (this
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time for non-negative decreasing sequences of functions) to the integrand p(h, u)

lim
h&�1

⇢(�, h) = lim
h&�1

Z
H
p(h, u)m1(du)

=

Z
H

lim
h&�1

p(h, u)m1(du)

= 0,

which is the expected lower limit.

We briefly remark that we exclude in our discussion the possibility that h = 0, since

the Bose gas is ill-defined at this value. However, as we saw in Lemma 1.10, so

long as  6⌘ 0, then we can define the Bosonic loop soup at h = 0; in this case

the result above changes in that we can now solve the intrinsic equation for values

⇢ 2 (�1, ⇢c].

Of primary interest to us is the value ⇢c(�), and specifically whether or not this value

is finite. In case ⇢c <1 then we see that there is a break down in the equivalence

of ensembles. That is, supposing that ⇢ > ⇢c, then we can clearly still define the

thermodynamic limit of the canonical ensemble with N/|⇤| ! ⇢, however there is

no longer a grand canonical ensemble with which to relate it. This is an indicator

of the BEC phase transition, where we interpret the density of particles which are

not ascribed to loops as the condensate. We now ask how the geometric properties

of the graph sequence ⇤N e↵ect whether or not BEC occurs. Recalling (2.5), when

⇤N = KN then the critical density is finite and given by

⇢c =
1

e� � 1
,

which we note agrees with Tóth’s [Tót90] derivation of the critical density in the

canonical ensemble on the complete graph. Einstein [Ein24], demonstrated that in

the case of the ideal gas in R3 the critical density ⇢c(�) is finite, and given by

⇢c(�) = ⇣

✓
3

2

◆✓
2⇡~2�
m

◆�3/2

<1, (2.13)

with ⇣(s) =
P

n�1

n�s, the Riemann ⇣-function. In the following section we consider

the physically realistic case for lattice boxes converging to Zd, d � 1. In light of this

we will then provide a characterisation for when BEC occurs for arbitrary graph

sequences.
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2.2.3 The Critical Density for Zd

Our aim in this section is to study the critical density of the ideal gas on the integer

lattice Zd, and we prove that

⇢c(�) .

.= lim
h%0

⇢(�, h)

8<:=1 if d = 1, 2,

<1 if d � 3,

so that condensation of the ideal gas occurs only in dimensions 3 and above. From

(2.12) it is su�cient to ask whether or notZ
H

1

e��u � 1
m1(du) <1.

We consider first the case d = 1, and the vertex set of a graph will be [�N,N ] ⇢ Z.
On page 9 we defined two di↵erent graph sequences ⇤(dir)

N , ⇤(per)

N and commented that

in the limit these are spectrally equivalent, in as much that m(dir)
1 = m(per)

1 ; in the

following when we refer to properties of Zd, we mean with respect to either of these

limits. Due to the spectral equivalence our results will hold for either definition,

and as a matter of taste we will work with the periodic graph, ⇤(per).

Since the generator matrix Q associated with ⇤(per)

N is circulant, its eigenvalues take

on a particularly simple form (our reason for choosing the periodic box, over the

case with Dirichlet boundaries)

Spec(Q) =

⇢
cos

✓
2⇡

j

2N + 1

◆
� 1 : j = 1, . . . , 2N + 1

�
.

and the canonical spectral distributions converge to �1(u) = cos(⇡u)�1, u 2 (0, 1],

see Appendix A.

Proposition 2.15. For h < 0, the density ⇢(h) of Z admits the expressions

⇢(h) =

Z
[0,1]

e�h

e�(1�cos(⇡u)) � e�h
du

=

Z
[�2,0]

e�h

e�u � e�h
1p

u(2� u)
du.

In addition it has the power series representation

=
X
j�1

I
0

(�j)e��j(1�h),

where I
0

is the modified Bessel function of the first kind.

Proof. The first expression follows on using the change of variables formula (1.4)

with the integral representation for the density, (2.10). For the second expression
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we consider the cumulative density function

m1({u  x}) =
Z

1

0

1{cos(⇡u)�1x}du,

solving cos(⇡u) = x� 1, we find

= 1� 1

⇡
cos�1(x� 1),

which we recognise as the cumulative distribution function of an arc-sine random

variable on [�2, 0]. Hence m1 has probability density function (�u(2+ u))�1/2, on

[0, 2]. Writing this instead on [�2, 0], we have the given formula. Finally, to derive

the power series expansion we recall that ⇢ =
P

j�1

jn(j)
1 , where n(j)

1 are the limit

densities of �j loops, Corollary 2.6. Then

n(j)
1 (h) =

1

j
e�jh

Z
[0,1]

e��j(1�cos(⇡u))du

=
1

j
e�j(h�1)

Z
[0,1]

e�j cos(⇡u)du.

The integral in the second line can be recognised as I
0

(�j), the modified Bessel

function of the first kind, [AS64] formula 9.6.16.

The derivation of the spectrum for ⇤(per)

N when d � 2 is done in detail in Appendix A,

and we only briefly mention the approach here. We rely on the fact that the in-

terpretation of Z2 = Z ⇥ Z as a cartesian product has an analogue description for

graphs. Moreover, the transition matrix of a cartesian product of two graphs is the

Kronecker sum (defined in the appendices) of the two matrices, from which we can

derive the spectrum of the product graph. In turn this carries through to d-products

of graphs, and in the context of ⇤(per) we find that the spectrum is given by

Spec(Q) =

(
1

d

dX
i=1

cos

✓
2⇡

ji
2N + 1

◆
� 1 : j = (ji)

d
i=1

2 {1, . . . , 2N + 1}d
)
,

from which we derive spectral convergence, and in particular we have the limiting

distribution function �1 : [0, 1)d ! [�2, 0] defined by

�1(u) =
1

d

dX
i=1

cos(2⇡ui)� 1.

where u = (u
1

, . . . , ud).

Proposition 2.16. For h < 0, the density ⇢(h) of Zd, d � 1 has the power series
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expansion

⇢(�, h) =
X
j�1

e�j(h�1)I
0

✓
�

d
j

◆d

.

Proof. The case for d = 1 has already been shown in Proposition 2.15. Following

the same method

⇢(h) =
X
j�1

jn(j)
1 (h)

=
X
j�1

e�j(h�1)

Z
[0,1)d

exp

 
��
d
j

dX
i=1

cos(⇡ui)

!
du

=
X
j�1

e�j(h�1)

 Z
[0,1)

e�
�
d
j cos(⇡u)du

!d

=
X
j�1

e�j(h�1)I
0

✓
�

d
j

◆d

.

We are now in a position to prove our result for the critical density in Zd.

Theorem 2.17. For � > 0,

⇢c(�) ..= lim
h%0

⇢(�, h)

8<:=1 if d = 1, 2,

<1 if d � 3.

Proof. As previously remarked, it su�ces to consider the integrability of

⇢c(�) =

Z
H

1

e��u � 1
m1(du) =

X
j�1

e��jI
0

��
d j
�d
.

Consider the function

f(w) .

.= e��wI
0

✓
�

d
w

◆d

, w > 0

di↵erentiating in w > 0 we have

f 0(w) = �e��wI
0

✓
�

d
w

◆d�1

✓
I
1

✓
�

d
w

◆
� I

0

✓
�

d
w

◆◆
.

It follows from positivity of I
0

, that f(w) > 0, and moreover since I
0

(w) > I
1

(w) the

bracketed term above is negative, f 0(w) < 0, and f is a positive decreasing function

in w > 0. Then the integral test assertsZ 1

1

f(w)dw  ⇢c 
Z 1

0

f(w)dw. (2.14)
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We compute the integrals above by the manipulating the following identity [AS64]

9.6.10,

I
0

(w) =
1X
n=0

✓
2n

n

◆�
1

2

w
�
2n

(2n)!
,

Taking the d-th power we obtain

I
0

⇣w
d

⌘d
=

1X
n=0

X
P

kj=n

✓
2k

1

k
1

◆
· · ·

✓
2kd
kd

◆�
1

2dw
�
2k1 · · ·

�
1

2dw
�
2kd

(2k
1

)! · · · (2kd)!
,

where the sum runs over k = (k
1

, . . . , kd) such that k
1

+ · · ·+ kd = n

=
1X
n=0

✓
1

2d
w

◆
2n X

P
kj=n

✓
2k

1

k
1

◆
· · ·

✓
2kd
kd

◆
1

(2k
1

)! · · · (2kd)!

=
1X
n=0

✓
1

2d
w

◆
2n 1

(2n)!

X
P

kj=n

✓
2k

1

k
1

◆
· · ·

✓
2kd
kd

◆✓
2n

2k
1

, . . . , 2kd

◆
.

The final term is recognised as the combinatorial factor which counts the total

number of d-dimensional lattice paths of length 2n which start and end at the same

point. Together with the weighting (2d)�2n, this is exactly the probability that the

simple random walk on Zd is at the origin after 2n steps. Moreover, since the walk

can only be at the origin after an even number of steps we have

I
0

⇣w
d

⌘d
=

1X
n=0

P
0

[Zn = 0]
wn

n!
.

Returning to the computation of the integral of f(w)

Z 1

0

e��wI
0

✓
�

d
w

◆d

dw =
1

�

Z 1

0

e�wI
0

⇣w
d

⌘d
dw

=
1

�

1X
k=0

P
0

[Zk = 0]
1

k!

Z 1

0

e�wwkdw

and recognising this final integral as the �-function we have

=
1

�

1X
k=0

P
0

[Zk = 0]

=
1

�
G(Z),
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with G(Z) the Green’s function of Zd, (1.1). Noting that limw#0 f(w) = 1, thenZ
1

0

f(w) =
1

�

Z
1

0

e�wI
0

⇣w
d

⌘d
=.

.

1

�
Cd <1.

Then (2.14) gives

1

�
(G(Z)� Cd)  ⇢c(�) 

1

�
G(Z).

Finally we appeal to Polya’s theorem, which asserts that G(Z) is finite if and only

if d  3 [LL10] Theorem 4.1.1 p.75, from which our claim follows.

Further analysis of the critical density reveals the following asymptotic formula,

which is comparable to the equation (2.13) derived by Einstein.

Theorem 2.18. For d � 3,

⇢c(�) ⇠ ��
d
2

✓
d

2⇡

◆ d
2

⇣

✓
d

2

◆
, � !1,

where ⇣(s) ..=
P

k�1

k�s is the Riemann ⇣-function.

Proof. As in the previous theorem we write

⇢c(�) =
X
j�1

e��jI
0

��
d j
�d

=
X
j�1

⇣
e�

�
d
jI

0

��
d j
�⌘d

.

Using the asymptotics I
0

(z) ⇠ (2⇡z)�
1
2 ez [AS64] 9.7.1, we have for � !1

⇢c(�) ⇠
✓

d

2⇡�

◆ d
2 X
j�1

j�
d
2 ,

which is exactly as required.

Ultimately we have demonstrated that for Zd, the critical density is closely related

with the Green’s function G of a random walk, and consequently with the transience

or recurrence of the graph. We would like therefore to develop a similar relationship

for more general graphs, however since our definition of graph convergence did not

require the limit graph to exist, we cannot simply say that BEC is the same as tran-

sience of the limit graph. For example, we have already seen that BEC occurs when

we consider the graph sequence KN , however there is no limit object towards which

this sequence converges, and so we cannot speak of transience. We can however

describe a heuristic link between BEC and the underlying random walk. Defining
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the mean local time of the walk X on a graph ⇤ as

G
⇤

.

.=G
⇤

�
X
�
=

1

|⇤|
X
x2⇤

G
⇤

�
X
�
xx
,

then using Corollary 1.5, and that the generator of the walk X is Q = �(P � I)

G
⇤

=
1

|⇤|
X
x2⇤

(�Q)�1

xx

= � 1

|⇤|
X

⌘2Spec(Q�1
)

⌘

= � 1

|⇤|
X

⌘2Spec(Q)

1

⌘
,

since the eigenvalues ofQ�1 are the reciprocals of the eigenvalues ofQ. Consequently

we have the integral expression

G
⇤

= �
Z
H

1

u
m

⇤

(du).

Up to this point the calculations are rigorous. Suppose that we can justify taking

the limit inside the integral, for the sake of argument we define

G1 = �
Z
H

1

u
m1(du),

thenG1 is in some sense an indicator of transience or recurrence of the graph limit.

But recalling the integral form of the critical density

⇢c =

Z
H

1

e��u � 1
m1(du),

and taking the power series expansion of the exponential

=
1

�

Z
H

1

�u+ u2 � u3 + · · ·m1(du)

= �
Z
H
O

✓
1

u

◆
m1(du),

so that integrability of ⇢c is equivalent to finiteness ofG1.

In the case that the limit graph is recurrent, that is u�1 is not integrable under m1,

the argument above becomes rigorous since then Fatou’s lemma gives

lim inf
N!1

G
⇤N

= lim inf
N!1

Z
H

1

�N (u)
du �

Z
H

1

�1(u)
du = 1.

This is not the only case where the recurrence assumption facilitates our analysis.
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Recall that in the previous section, Theorem 2.10, we proved an LDP for the density

under the caveat that the function ⇤ must be steep at the boundary. Then from

Lemma 2.9

⇤0(s) =

Z
H

1

e��(h+s+u) � 1
m1(du) = ⇢(h+ s). (2.15)

Assuming the graph is recurrent, the boundary is at s = |h|, and lims%|h| ⇢(h+s) =

1, which is to say ⇤ is steep.

Corollary 2.19. LDP of Theorem 2.10 holds whenever ⇢c =1.

Recalling that the rate function I(x) was given by the variational problem (2.9),

then for a given x 2 R the supremum is achieved at the value sx 2 R which solves

x = ⇤0(sx) = ⇢(h+ sx),

so that the LDP variational problem is none other than a shift of the intrinsic

equation for the ideal gas (2.11).

As a consequence of Corollary 2.19 we have that the LDP holds for lattice graphs

in d = 1, 2. Let us consider the case of Zd further; from Lemma 2.9 , and the power

series expression from Proposition 2.16 we have

⇤(s) =
X
j�1

1

j

⇣
e�j(h+s�1) � e�j(h�1)

⌘
I
0

✓
�

d
j

◆d

,

which converges whenever
P

j�1

j�1e�j(h+s�1)I
0

⇣
�
d j
⌘d

does. Setting z = e�(h+s),

we have a power series in zj , with coe�cients j�1e��jI
0

⇣
�
d j
⌘d

, and

xj
s

1

j
e��jI

0

✓
�

d
j

◆d

⇠ xj
s

1

j
e��j

✓
e

�j
d

⇣
2⇡ �d j

⌘� 1
2j

◆d

=

 ✓
2⇡�

d

◆ d
2

j�
d+1
2

! 1
j

,

where we applied the same asymptotics for I
0

as before. Since j�↵/j ! 1 as j !1
for all ↵ > 0, the Cauchy root test ensures that the radius of convergence (as a

function of z) is 1, or equivalently that the series converges for s < |h|. Moreover,

Pringsheim’s theorem for power series with positive coe�cients [FS09] Theorem IV.6

pp.240-1, asserts that the series must diverge at s = |h|, so that |h| is the boundary

of convergence for ⇤. However for d � 3, using (2.15)

lim
s%|h|

⇤0(s) = lim
s%|h|

⇢(h+ s) = ⇢c < 1.

39



In particular we have shown that ⇤ is not steep at its boundary, and so our LDP

as stated cannot be applied in this context.

In the above we have provided two examples of how proofs are facilitated by working

in the recurrent regime. Having said that, we still believe that they hold in both

phases so long as h < 0. We state this in the following conjecture.

Conjecture 2.20. For any spectrally convergent graph sequence:

(i) The sequence
�
L,PB

N

�
N�1

satisfies an LDP with rate |⇤N | and good rate func-

tion

I(x) = sup
s2R

�
sx�⇤(s)

�
.

(ii) The limit G1 = limN!1G
⇤N

exists as an extended real number, and is finite

if and only if ⇢c <1.

We return to study the first part (the LDP) in Chapter 4, where we will state

a stronger form of this statement working on the space of cycle distributions. In

this case, we will be able to prove the theorem in both the recurrent and transient

setting.
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Chapter 3

Bosonic Occupation Fields and

their Isomorphism Theorems

In this chapter we look more closely at the geometry of the occupation field, and in

particular we seek to describe it from a Gaussian perspective. The starting point

for this analysis will be a study of the Laplace transform of the occupation field

for which we derive an exact expression, which unfortunately we will not be able

to relate to any well known distribution. In the second section we circumvent this

by introducing a space-time random walk, for which the Markov loop soup can

be related to the Bosonic soup. With this new occupation field we will not only

be able to provide a Gaussian characterisation of the Bose gas, but also find a

geometric interpretation of the 1-particle reduced density matrix as a correlation in

the occupation field. Finally in the third section we relate our findings to Symanzik’s

formula to a model for an ideal gas in a space-time random environment.

Since we work with the distribution of the entire occupation field, we will not con-

sider graph limits as in the previous section (since as mentioned before, the limit

object need not exist), and for the most part we work on a single fixed graph ⇤.

Throughout the chapter we work under the following assumption

A20 The inverse temperature is strictly positive � > 0, and either:  ⌘ 0 and

h < 0, or  6⌘ 0 and h  0.

The assumption A20 is a weakening of A2 introduced in Chapter 2, where we

insisted that h < 0 for any graph. This limitation was implemented due to the fact

that the Bose gas is only defined for h < 0; in this chapter our focus is more on the

occupation field, and so long as the measures µ, µB are �-finite (respectively, finite)

(which is the content of the assumption) the field is well defined.
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3.1 The Laplace Transform of the Occupation Field

Let f : �! R be a functional on the space of loops, and define F on configurations

of loops S @ � by

F (S) .

.=
X
�2S

f(�),

and say that F is the additive functional of loop configurations associated with f .

The Campbell formula gives an expression for the Laplace functional associated with

F . In the following we denote ⌫ for an arbitrary �-finite measure on (�,G).

Lemma 3.1. Let f : � ! R
+

be positive and measurable, and denote F for the

associated additive functional. Then

E⌫
h
e�F (S)

i
= exp

✓
�
Z
�

1� e�f(�)⌫(d�)

◆
.

If
R
(f ^ 1)d⌫ <1, then the above holds on replacing f 7! if .

See [Kal01], pp.227–8 for a proof for general Poisson point processes. Our anal-

ysis of the occupation field L will proceed by applying this formula in the case

of the Laplace transform of the occupation field. Given u, v : ⇤ ! R we denote

hu, vi =
P

x2⇤ u(x)v(x) for their inner product; with regards to notation we will

swap between writing vx and v(x), using whichever is clearer in the context. Given

a positive function v : ⇤! R
+

, or equivalently a positive vector v 2 R⇤

+

, the Laplace

transform of L against v is given by the expectation

E⌫
h
e�hv,Li

i
.

The Campbell formula allows us to derive the following expression.

Proposition 3.2. For v 2 R⇤

+

E⌫
h
e�hv,Li

i
= exp

✓
�
Z
�

1� exp
⇣
�
R |�|
0

v(�s)ds
⌘
⌫(d�)

◆
. (3.1)

Proof. This follows from the definitions in Section 1.2.3, since for a configuration

S @ �

hv, L(S)i =
X
x2⇤

vxLx(S) =
X
�2S

X
x2⇤

vxLx(�) =
X
�2S
hv, L(�)i,

so that the occupation field is an additive functional. But further for � 2 �

hv, L(�)i =
X
x2⇤

vx

Z |�|

0

�x
�
�(s))ds =

Z |�|

0

v(�(s))ds.
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In the case that the loop measure ⌫ is either µ, or µB, the integral on the right

hand side of (3.1) can be computed with the help of the Feynman–Kac formula for

random walks. We appeal to the following version proven in [Szn12], pp.23–4, and

p.29.

Theorem 3.3 (Feynman–Kac). Let v, f : ⇤! R. For x 2 ⇤, and T � 0

Ex


f(XT ) exp

✓Z T

0

v(Xs)ds

◆�
=
⇣
eT (Q+V )f

⌘
(x), (3.2)

where V = diag(v).

3.1.1 The Calculation for PB

This section is devoted to obtaining an expression for the Laplace transform of L
under the Bosonic loop soup PB. We note that unlike the result of Le Jan [LeJ10,

LeJ11] for the occupation field under P
0

, the Markov loop soup at h = 0, we do

not put any restrictions on the graph structure. Le Jan’s proof required that the

graph be reversible, which will turn out not to be necessary here. We return to this

remark in Section 3.2 where we present a form of Le Jan’s theorem which holds for

graphs with normal transition matrices, which will be important in our study of the

space-time loop soup.

Before identifying the Laplace transform of the occupation field, we state the fol-

lowing proposition which will be required in the proof; we recall that for v : ⇤! R
we denote V = diag(v) for the |⇤|⇥ |⇤| matrix with v on the diagonal.

Proposition 3.4. For c 2 H, v : ⇤ ! R
+

, the eigenvalues of Q + hI + cV have

strictly negative real part

Spec
�
Q+ hI + cV

�
⇢ intH.

Proof. The proof builds on that of Theorem 1.6. As in that result, it su�ces to

check that the union of the Geršgorin disks is contained in intH. We have

Spec(Q+ hI + cV ) ⇢
[
x2⇤

n
z 2 C : |z + �x � h� cvx| 

����xPy2⇤ Pxy

���o.
This is a subset of H if and only if for all x 2 ⇤

Re

0@�(�x � h� cvx) + �x
X
y2⇤

Pxy

1A  0,
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or equivalently

h+Re(c)vx  �x

0@1�
X
y2⇤

Pxy

1A.

Noting that the left hand side is negative, whilst the right hand side is positive, it

follows that Spec(Q+ hI � cV ) ⇢ H. According to [HJ13] Corollary 6.2.9 p.399, so

long as the inequality above is strict for at least one x 2 ⇤, then Q + hI + cV is

non-singular, and hence Spec(Q + hI + cV ) ⇢ intH. But this is the case if either

h < 0, or if  6⌘ 0, which is exactly assumption A20.

Theorem 3.5. For v : ⇤! R
+

EB

h
e�hv,Li

i
=

det(I � e�(Q+hI))

det(I � e�(Q+hI�V ))
=

det(e��hI � e�Q)

det(e��hI � e�(Q�V ))
. (3.3)

where V = diag(v). Moreover, the formulae continue to hold on replacing v 7! iv.

Proof. We consider the integral expression in (3.1), and note that since µB(�) <1
this expression continues to hold for iv, courtesy of Lemma 3.1. From the definition

of the loop measure (1.6), we haveZ
�

1� e�hv,L(�)iµB(d�) =
X
x2⇤

X
j�1

e�hj

j
Ex

h
1{X�j=x}

⇣
1� e�

R �j
0 v(Xs)ds

⌘i
=
X
x2⇤

X
j�1

e�hj

j

⇣
Ex

h
1{X�j=x}

i
�Ex

h
1{X�j=x}e

�
R �j
0 v(Xs)ds

i⌘
.

Applying the Feynman–Kac formula to both expectations

=
X
x2⇤

X
j�1

e�hj

j

⇣⇣
e�jQ

⌘
xx
�
⇣
e�j(Q�V )

⌘
xx

⌘
,

and since e�hI = e�hI commutes with any matrix, we can take the product of matrix

exponentials

=
X
j�1

1

j

⇣
Tr
h
e�j(Q+hI)

i
� Tr

h
e�j(Q+hI�V )

i⌘
(3.4)

= � log det
⇣
I � e�(Q+hI)

⌘
+ log det

⇣
I � e�(Q+hI�V )

⌘
.

The final line follows on using that for A 2 Cn⇥n

X
j�1

1

j
Tr[Aj ] =

X
⌘2Spec(A)

X
j�1

1

j
⌘j = �

X
⌘2Spec(A)

log(1� ⌘) = � log det(I �A),

so long as |⌘| < 1 for all ⌘ 2 Spec(A). In our context, as a consequence of Proposi-
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tion 3.4 and that � > 0

⇢
⇣
e�(Q+hI�V )

⌘
= max

⌘
|e⌘| = max

⌘
eRe(⌘) < 1.

Having derived an expression for the Laplace transform it makes sense to ask what

we can do with it! Unfortunately the formula does not prove easy to wield, for

instance even providing the distribution of the occupation field at a single point

seems beyond possibility. As an example, consider the easier task of deriving the

expected value of the occupation field at the point x 2 ⇤. Let ṽ 2 R⇤ be the vector

which is zero in all entries except ṽx = v. Then

EB[Lx] = �
d

dv
EB

h
e�hṽ,Li

i
|v=0

= �
 

d

dv

⇤Y
i=1

1� e�(⌘i+h)

1� e�(⌘
v
i +h)

!�����
v=0

,

where we denoted Spec(Q) = {⌘i}|⇤|i=1

, Spec(Q � Ṽ ) = {⌘vi }⇤i=1

. The problem we

face is that even when Ṽ is as simple as it is in this case, it has only one non-zero

diagonal entry, we cannot give an explicit formula for the eigenvalues of Q � V in

terms of those of Q. Since even this example proves troublesome, we have little

hope for deriving higher order correlations. There is, perhaps unsurprisingly, one

expression we can obtain from (3.3) however, which is the distribution of the mean

occupation. Setting ṽx = v for all x 2 ⇤, the eigenvalues of ⌘vi 2 Spec(Q) are now

given by ⌘vi = ⌘i � v, so that

EB

h
e�hṽ,Li

i
=

det(I � e�(Q+hI))

det(I � e�(Q+hI�V ))
=

|⇤|Y
i=1

1� e�⌘i+h

1� e�⌘i�v+h
,

which on taking logarithms, and rephrasing as an integral over the spectral measure,

is seen to agree with (2.2) the cumulant generating function for the mean occupation

L.

3.1.2 The Calculation for P

In this section we provide the complementary result for the occupation field of the

Markov loop soup, (L,P), which will turn out to be easier to manipulate. The

formula for the Laplace transform of the occupation field L under P was derived

by Le Jan [LeJ10, LeJ11], though we reference [Szn12] Proposition 3.7 pp.76–80,

and Theorem 4.3 pp.87–89, for a detailed derivation. Our purpose for outlining this

theorem will become clear in Section 3.2, where we will re-envisage the Bosonic loop

measure as a limit of a particular sequence of Markov loop measures. One small

obstacle which we must overcome, however, is that as it stands, the proof of Le

Jan holds under the assumption that the random walk is reversible, which we recall

requires �xPxy = �yPyx, for all x, y 2 ⇤. As we will see, the random walks which
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will be of interest in our context will not have this property, and so we introduce an

alternative condition.We will require that the transition matrix is normal, that is

P ⇤P = PP ⇤,

where P ⇤ is the conjugate transpose of P , P ⇤
xy = P yx; of course since P is a real

matrix, this simply says P TP = PP T . Following Le Jan, we make a change in our

conventions: for this section we consider the Markov loop measure to be induced

by the walk X, with unit jump rates, rather than the walk X which has been

considered up until now. To balance this change, we will then scale the occupation

field by considering (��1

x Lx)x2⇤. Recalling the scaling relation Proposition 1.2,

this is equivalent to considering the unscaled field L under the Markov measure

associated withX.

Since our proof only deviates from that of Le Jan in a few places, we provide only

a sketch proof and refer the reader to [Szn12] for the additional details. As with

the case of the Bosonic loop measure, it su�ces to study the integral expression in

(3.1), where we replace ⌫ with µ = µh, and we see for v 2 R
+Z

�

1� e�hv,��1Liµ(d�) =
Z
�

1� e�hv/�,Liµ(d�)

=
X
x2⇤

Z 1

0

eht

t
Ex

h
1{Xt=x}

⇣
1� e�

R t
0 v/�(Xs)ds

⌘i
dt.

As before we apply the Feynman–Kac formula, Theorem 3.3, to each of the two

terms in the expectation

=
X
x2⇤

Z 1

0

eht

t

⇣⇣
et(P�I)

⌘
xx
�
⇣
et(P�I�V/�)

⌘
xx

⌘
dt,

where we note that the expression is in terms of P�I in place of Q since we assumed

the measure is driven by the unit rate walk X; the notation V/� is understood to

mean the diagonal matrix with entries vx/�x. Continuing as for the Bosonic case

=

Z 1

0

e(h�1)t

t

⇣
Tr
⇥
etP

⇤
� Tr

h
et(P�V/�)

i⌘
dt.
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This is the point at which the proof diverges from that of the Bosonic measure. The

analogous line in the Bosonic case is given in (3.4), and we justified that we could

perform the summation over j � 1. In the Markov case we must do some more

work before getting an expression as a sum. In particular, expanding the matrix

exponentials, and changing the order of summation we obtain

=
X
k�1

⇣
Tr[P k]� Tr[(P � V/�)k]

⌘Z 1

0

e(h�1)t

t

tk

k!
dt. (3.5)

Pausing to consider the integral term, we noteZ 1

0

e(h�1)t

t

tk

k!
dt =

1

(1� h)k
1

k!

Z 1

0

e�ttk�1dt

=
1

k(1� h)k
,

where we recognise the latter integral as that of �(k), the �-function [AS64], 6.1.1.

p.255. Consequently we have arived atZ
�

1� e�hv,Lidµh =
X
k�1

1

k

⇣
Tr
h�

1

1�hP
�ki� Tr

h�
1

1�h(P � V/�)
�ki⌘

,

which is now familiar on recalling (3.4), with the exception that the matrices are

no longer exponentiated. It is at this point at which the proof for the Markov

loop measure becomes somewhat more delicate. We recall that courtesy of Propo-

sition 3.4, the expression (3.4) converged for any choice of generator Q and v 2 R⇤

+

.

The di↵erence now is that rather than wanting the spectral radius of an exponential

matrix exp(P � V/�) to be bounded by 1, we require that ⇢
⇣

1

1�h

�
P � V/�

�⌘
< 1.

Supposing that this is the case (which in general is not true, but we return to that

in the following paragraph), then the same argument as for the Bosonic case yieldsZ
�

1� e�hv,Lidµh = � log det
⇣
I � 1

1�hP
⌘
+ log det

⇣
I � 1

1�h(P � V/�)
⌘

= � log

0@ det
⇣
(1� h)I � P

⌘
det

⇣
(I � h)I � P + V/�

⌘
1A. (3.6)

The sticking point is the bound on the spectrum, which fails to hold for general

v 2 R⇤

+

even in the simplest of cases. For instance, consider P = ( 0 1

1 0

), then � = 1,

and supposing h = �1, v = (u, u) the eigenvalues of
⇣
1

2

�
P � V

�⌘
are 1

2

(�u ± 1),

and the spectral radius is greater than 1 for u > 1. Sznitman demonstrates [Szn12]

pp.79-80 that this can be overcome so long as the bound holds for small enough
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v 2 R⇤

+

. That is, if for some " > 0

⇢
⇣

1

1�h

�
P � V/�

�⌘
< 1 whenever maxx2⇤ |vx| < ", (3.7)

then an argument via analytic extensions confirms that the identity (3.6) holds for

all v 2 R⇤

+

(whilst the constant h < 0 does not appear in the work of Le Jan, or the

description of Sznitman, it does not feature in the proof of the analytic extension).

In the case that P is reversible this is confirmed in [Szn12] pp.77–8 by observing

that P is symmetric with respect to the inner product hu, vi� .

.=
P

x2⇤ �xuxvx,

from which the result follows from spectral bounds of symmetric operators. In the

following we confirm that the condition (3.7) also holds if the transition matrix is

normal.

Proposition 3.6. Let P denote a normal transition matrix. Then there exists an

" > 0 for which condition (3.7) holds.

Proof. The proof relies on a spectral bound for normal matrices which we derive in

Appendix B, Proposition B.12; in our present context it says

⇢
⇣

1

1�h

�
P � V/�

�⌘
= 1

1�h⇢
�
P � V/�

�
 1

1�h

�
⇢(P ) + ⇢(V/�)

�
,

where we have used the fact that since V/� is diagonal, it is necessarily normal since

(V/�)T = V/�. Moreover, since V/� is positive and diagonal, its spectral radius is

given by its largest element

⇢(V/�) = (v/�)⇤ .

.= max
x2⇤

�
vx/�x) 

✓
max
x2⇤

vx

◆
/

✓
min
y2⇤

�y

◆
= v⇤

�
��1

�⇤
.

Substituting this into the inequality above, we have

⇢
⇣

1

1�h

�
P � V/�

�⌘
 1

1� h
⇢(P ) +

1

1� h
v⇤
�
��1

�⇤
.

and the right hand side is strictly less than 1 whenever

v⇤ <
(1� h)� ⇢(P )

(��1)⇤
.

If the right hand side of this expression is strictly positive, then it is a suitable

candidate for ". Noting that the denominator is strictly positive, this condition

holds whenever the numerator (1 � h) � ⇢(P ) > 0. But under assumption A20

this is always true since either ⇢(P ) < 1 and h  0, or ⇢(P ) = 1 and h < 0,

where we reference Theorem 1.3 for the bound on ⇢(P ), and in either case the claim

follows.

Combining (3.6) along with Sznitman’s argument for the analytic extension, we
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obtain the following representation of the Laplace transform.

Theorem 3.7. Suppose that P is either reversible or normal. The Laplace trans-

form of ��1L under P is given for v 2 R⇤

+

to be

E
h
e�hv,��1Li

i
=

det
�
(1� h)I � P

�
det

�
(1� h)I � P + V

�

�
We recall that when defining the Markov loop measure, (1.5), we omitted any de-

pendence on � > 0 since a change of variables demonstrates shows that it leaves

the measure unchanged. The following corollary relates the measure Ph to the un-

weighted measure P
0

which is studied by Le Jan.

For c  0, we construct from ⇤ = (⇤, w,) a new graph ⇤c =
�
⇤, wc,c

�
, where the

weights remain the same wc
xy = wxy, but the killing is given by

c
x = x � c�x,

negativity of c ensures c
x � x. Let µc = µc

0

, so that this is the true Markov loop

measure considered by Le Jan (i.e. zero chemical potential), but with a reweighted

random walk. We denote Pc for the law of the associated local field.

Corollary 3.8. For h  0

�
��1L,Ph

� (d)
=

�
(�h)�1L,Ph

�
.

Moreover

Eh

h
e�hv,��1Li

i
= det(I +GhV )�1,

where Gh = Gh(X) is the Green’s function of the walk X with variable jump rates

on ⇤h.

Proof. Noting that

�h
x =

X
y2⇤

wh
xy + h

x = �x � h�x = (1� h)�x,

then

P h
xy

.

.=
wh
xy

�h
x

=
wxy

(1� h)�x
=

1

1� h
Pxy.

Now considering the Laplace transform of the occupation field ��1L under the
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measure Ph, we have from the preceding theorem

Eh

h
e�hv,��1Li

i
=

det
�
(1� h)I � P

�
det

�
(1� h)I � P + V/�

�
=

det
�
I � (1� h)�1P

�
det

⇣
I � (1� h)�1P + V

(1�h)�

⌘
=

det(I � P h)

det(I � P h + V/�h)
.

The final line is exactly Eh
0

h
e�hv,(�h)�1Li

i
. Continuing to manipulate this expression

det(I � P h)

det(I � P h + V/�h)
= det

⇣
(I � P h)�1(I � P h + V/�h)

⌘�1

= det
⇣
I + (I � P h)�1V/�h

⌘�1

,

which is as desired, since Gh
�
X
�

= (�h)�1(I � P h)�1, from Corollary 1.5, and

equation (1.2).

We note that as a consequence of this corollary the two conditions of assumption

A20 are actually equivalent: since if h < 0, then necessarily h 6⌘ 0.

3.2 Space-Time Realisations of the Ideal Bose Gas

In this section we present an alternative definition for a Bosonic loop measure, in

which we massage the measure µ so as that it is ‘close’ to the measure µB. We

commence by recalling the definitions of the respective loop measures

µ( · ) .

.=
X
x2⇤

Z 1

0

eht

t
Pt

xx[ · ]dt,

and on performing change of variables t 7! �t

=
X
x2⇤

Z 1

0

e�ht

t
P�t

xx[ · ]dt,

which we compare to the Bosonic loop measure

µB( · ) .

.=
X
x2⇤

X
j�1

e�hj

j
P�j

xx[ · ].

It is clear that the only distinction between the two measures µ and µB is that the

first of the two allows loops of all lengths �t > 0, whilst the second is concentrated

on loops whose length is �j with j 2 N�1

. One way to incorporate this restriction
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into the definition of µ, is to introduce a second drift process into the definition of

Px. We derive this heuristically as follows; defining

⇥t
.

.= ��1t mod 1,

which we view as a deterministic stochastic process on the torus T .

.= R/Z, so that

the pair X
(�)
t

.

.=
�
Xt,⇥t

�
defines a stochastic process on the space ⇤ ⇥ T, whose

distribution we write asQ. For x 2 ⇤, ⌧ 2 T we denote the site x⌧ .

.= (x, ⌧) 2 ⇤⇥T,

and then

Qx⌧

h
X

(�)
t = y⌧ 0

i
= �⌧ 0

�
��1(⌧ + t) mod 1

�
Px

h
Xt = y

i
,

and integrating the expression on the right hand sideZ
t>0

�⌧
�
��1(t+ ⌧) mod 1

�
Px

h
Xt = x

i
dt =

X
j�1

Px

h
X�j = x

i
.

Consequently we can reformulate the Bosonic loop measure as

µB( · ) =
X
x2⇤

X
j�1

e�hj

j
P�j

xx[ · ]

=
X
x2⇤

Z 1

0

e�ht

t
Qt

x0x0
[ · ]dt,

and using invariance under torus translations: Qx0

(d)
= Qx⌧ , we have

R
1

0

Qx⌧d⌧ =

Qx0 and

=
X
x2⇤

Z
1

0

Z 1

0

e�ht

t
Qt

x⌧x⌧
[ · ]dt d⌧.

In particular we see that the Bosonic loop measure can be equated to a Markov

loop measure defined on the space ⇤ ⇥T, which we call the space-time realisation

of the ideal Bose gas. The derivation above was somewhat non-rigorous, but can be

made rigorous on definition of the suitable �-algebras; we omit this here since we

will not work directly with this process. Studying a loop measure on ⇤⇥T would

of course require us to leave the discrete world, and certain technical constraints

will become cumbersome: for instance the occupation field L = (Lx⌧ )x⌧2⇤⇥T is no

longer indexed by a discrete set, and each path ⌧ 7! Lx⌧ will not be guaranteed to

be continuous. Moreover it is not clear that the techniques established for deriving

the Laplace transform, which depended on the fact that we were manipulating finite

matrices, will carry over to a continuous setting. Instead we choose to work with a

sequence of discrete loop measures whose limit agrees with the continuous one.

As in the definition of the process X
(�)

, we consider a pair
�
Xt,⇥

N

t

�
, where ⇥

N
=
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�
⇥

N

t

�
t�0

is now a random process on TN = Z/NZ, the discrete torus, or cycle, for

N � 2. In fact if we define TN = ([N ], wN ,N ), with N ⌘ 0 and

wN (⌧, ⌧ 0) =

8<:��1N if ⌧ 0 = ⌧ + 1 mod N ,

0 else.

then the induced process ⇥
N

is the walk which only takes clockwise steps on the

torus (i.e. from j to j+1 mod N), and does so at rate ��1N , so as that the expected

time to cover the whole torus is �. Equivalently we can identify this with a rate

��1N Poisson jump process taken modulo N . As we discussed above, we will not

actually take the limit of the process itself, however the following theorem justifies

that the sequence
�
Xt,⇥N

t

�
, N � 1, will be approximating the correct loop model.

For � > 0, let P � = (P �
t )t�0

denote the Poisson point process defined by its law P

on the Skorokhod space D[0,1) of càdlàg paths x : [0,1)! R
+

with x(0) = 0, see

[Bil99] pp.135–6 for a detailed construction. We also define �� = (�t)t�0

which is

deterministic and can also be described as a process with paths in D[0,1).

Theorem 3.9. For � > 0, the sequence of scaled Poisson processes
⇣

1

NP �N

⌘
con-

verges in distribution to the rate � deterministic drift: 1

NP �N (d)�! ��.

Before proving this result we state a technical lemma regarding the incomplete

Gamma function; recall [AS64] 6.5.1 pp.260, that this is given by

�(s, x) .

.=

Z 1

x
ts�1e�tdt =.

. �(s)� �(s, x),

and �(s) = �(s, 0) is the � function.

Lemma 3.10. For c
1

> c
2

> 0,

lim
x!1

�(bc
1

xc, bc
2

xc)
�(bc

1

xc) = lim
x!1

�(bc
1

xc, c
2

x)

�(bc
1

xc) = 0.

Proof. Since both terms above are positive, and �(bc
1

xc, bc
2

xc)  �(bc
1

xc, c
2

x), it

su�ces only to prove the later limit. We consider the integrand t 7! e�ttbc1xc�1,

di↵erentiating this for t > 0 there is a unique critical point t⇤ = bc
1

xc � 1, at

which the integrand is maximised. Subsequently, for su�ciently large x > 0, t⇤ =

bc
1

xc � 1 > c
2

x and hence

�(bc
1

xc, c
2

x) =

Z c2x

0

e�ttbc1xc�1dt


Z c2x

0

e�c2x(c
2

x)bc1xc�1dt

= e�c2x(c
2

x)bc1xc,
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where we used the fact that c
2

x < t⇤ and the integrand is increasing on the domain

of integration.Appealing to Stirling’s approximation

�(c
1

x) =

r
2⇡

c
1

x

✓
bc

1

xc
e1

◆bc1xc✓
1 +O

✓
1

bc
1

xc

◆◆
,

we obtain the bound

�(bc
1

xc, c
2

x)

�(bc
1

xc) 
r
bc

1

xc
2⇡

ebc1xc�c2x

✓
c
2

x

bc
1

xc

◆bc1xc✓
1 +O

✓
1

bc
1

xc

◆◆�1

 A
p
bc

1

xcebc1xc�c2x

✓
c
2

x

bc
1

xc

◆bc1xc
,

for some constant A > 0 and su�ciently large x. Taking logarithms of the upper

bound

log

 
A
p
bc

1

xcebc1xc�c2x

✓
c
2

x

bc
1

xc

◆bc1xc
!

= Ã+
1

2
logbc

1

xc+ bc
1

xc � c
2

x+ bc
1

xc log c
2

x

bc
1

xc

using that bc
1

xc  c
1

x we have

 Ã+
1

2
log c

1

x+ (c
1

� c
2

)x+ c
1

x log c
2

x� bc
1

xc log bc
1

xc

similarly since c
1

x � 1  bc
1

xc, and consequently �(c
1

x � 1) � �bc
1

xc we can

remove the final instance of the floor terms

 Ã+
1

2
log c

1

x+ (c
1

� c
2

)x+ c
1

x log c
2

x

� (c
1

x� 1) log(c
1

x� 1)

= Ã+
1

2
log c

1

x+ x
⇣
(c

1

� c
2

) + c
1

log c
2

x� c
1

log(c
1

x� 1)
⌘

+ log(c
1

x� 1)

 Ã+
3

2
log c

1

x+ x

✓
(c

1

� c
2

) + c
1

log
c
2

(c
1

� x�1)

◆
which diverges to �1 so long as the coe�cient of x is negative. But this is the case,

since on rearranging

lim
x!1

✓
(c

1

� c
2

) + c
1

log
c
2

(c
1

� x�1)

◆
= (c

1

� c
2

) + c
1

log
c
2

c
1

and

(c
1

� c
2

) + c
1

log
c
2

c
1

< 0 if and only if log
c
2

c
1

<
c
2

c
1

� 1,
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which is true since log y < y � 1 for all y > 0.

We now return to prove the theorem.

Proof of Theorem 3.9. The proof follows the same steps as that of Donsker’s theo-

rem concerning the convergence of simple random walk to Brownian motion, [Bil99]

Theorem 14.1 pp.146–7; as in that proof, it su�ces to prove convergence of the

f.d.d.s and tightness of the sequence of measures. For simplicity of notation we

consider the case � = 1.

Starting with convergence of the f.d.d.s, we fix m � 1, x 2 Rm and 0  t
1

 t
2


· · ·  tm <1. By the Cramér–Wold theorem [Bil95] Theorem 29.4 p.383, it su�ces

to prove

1

N

mX
j=1

xjP
N
tj

(d)�!
mX
j=1

xjtj .

We prove the stronger statement of convergence in second moments. Note

E
0

24�����
mX
j=1

xj
⇣ 1

N
PN
tj � tj

⌘�����
2

35=
mX
j=1

x2jE0

"���� 1N PN
tj � tj

����2
#

+ 2
X

1i<jm

xixjE0

✓
1

N
PN
ti � ti

◆✓
1

N
PN
tj � tj

◆�
.

Since PN
t ⇠ Poi(Nt), we have E

0

h
PN
t

i
= Nt, we recognise each term as a covariance

=
mX
j=1

x2j Var

✓
1

N
PN
tj

◆
+ 2

X
1i<jm

xixj Cov

✓
1

N
PN
ti ,

1

N
PN
tj

◆

=
1

N2

0@ mX
j=1

x2j Var
⇣
PN
tj

⌘
+ 2

X
1i<jm

xixj Cov
⇣
PN
ti , P

N
tj

⌘1A.

Using the fact that Var
⇣
PN
tj

⌘
= Ntj , and Cov

⇣
PN
ti , P

N
tj

⌘
= N min(ti, tj) = Nti

=
1

N

0@ mX
j=1

x2j tj + 2
X

1i<jm

xixjti

1A.

Consequently the term inside the bracket is independent of N , and the expression

above vanishes as N ! 1, which is to say that we have convergence in second

moments. Convergence in distribution now follows.

To establish tightness we need to show that the process 1

NPN does not grow too fast,

[Bil99] Lemma 3 pp.173–4, and Theorem 13.2 pp.139-40 property (i), and neither

does it fluctuate quickly, property (ii). Since the Poisson process is increasing, the
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definitions of these properties are simplified, and we require for all T � 0

lim
C!1

lim sup
N!1

P
0


1

N
PN
T > C

�
= 0, (3.8)

and letting ⇧�,T denote the set of partitions 0 = t
0

< t
1

< · · · < tm = T such that

for j = 1, . . . ,m, |tj � tj�1

| > �, then we require for all " > 0

lim
�!0

lim sup
N!1

P
0


inf

t2⇧�,T

max
1jm

1

N

�
PN
tj � PN

tj�1

�
> "

�
= 0. (3.9)

The first of these, (3.8), is given exactly on applying the formula for the cumulative

distribution function of a Poi(NT ) variable

P
0

[PN
T > CN ] = 1� �(bCNc, TN)

�(bCNc) =
�(bCNc, TN)

�(bCNc) .

Then since for C > 2, bCNc > N + 1 holds for all N � 1, on appealing to

Lemma 3.10, the above expression converges to 0, as required.

Similarly we derive a bound on the second probability (3.9) in terms of the � function

as follows. Let m � 1 be the largest value such that 2�m > �, so that the dyadic

partition t(m) = [0, T ] \ 2�mZ 2 ⇧�,T . Then

P
0


inf

t2⇧�,T

max
1jm

1

N

�
PN
tj � PN

tj�1

�
> "

�
 P

0


max

tj2t(m)

1

N

�
PN
tj � PN

tj�1

�
> "

�
= 1�P

0


max

tj2t(m)

�
PN
tj � PN

tj�1

�
 N"

�
.

Using the independence of increments of a Poisson process, the variables
�
PN
tj�P

N
tj�1

�
are all independent, and since in general P[max(X,Y )  "] = P[X  "]P[Y  "] for
independent variables, we have

= 1�
Y

tj2t(m)

P
0

h
PN
tj � PN

tj�1
 N"

i
.

The partition t(m) has at most 2m(T + 1) intervals of width 2�m, and all of these

are identically distributed, hence

 1�P
0

[PN

2

�m  N"]2
m
(T+1)

= 1�
✓
�(b"Nc, b2�mNc)

�(b"Nc)

◆
2

m
(T+1)

.

Recognising the term inside the product as

1� �(b"Nc, b2�mNc)
�(b"Nc) ,
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and choosing m su�ciently small that 2�m < ", then the bracketed term tends to

1 as N !1. Note that since we take the limit in N first, the power of 2m(T + 1)

does not a↵ect the convergence.

3.2.1 The Space–Time Random Walk Measure

In light of the proof that the suitably scaled Poisson process converges to a de-

terministic drift, we proceed to describe a space-time random walk, for which the

associated Markov loop model will approximate the Bosonic loop measure. We note

that although their emphasis is quite di↵erent to our own, a similar discretization

of the temporal process was used by Balaban, Feldman, Knörrer and Trubowitz

[BFKT08a, BFKT08b] who study the Bose gas from a functional integral approach.

Rather than defining the space-time random walk as a pair (X,⇥N ), it will be

easier for us to define it as a single process on the graph ⇤ ⇥ TN . That is, if

⇤ = (⇤, w,) is the graph which induces the walk X, we define the new graph

⇤N = (⇤ ⇥ TN , wN ,N), where we adopt the same convention as before writing

x⌧ = (x, ⌧) 2 ⇤⇥TN , and the weight function is given by

wN(x⌧ , y⌧ 0) =

8>>><>>>:
w(x, y) if ⌧ = ⌧ 0

��1N if x = y, ⌧ 0 = ⌧ + 1 mod N ,

0 else.

(3.10)

and the killing vector is N
x⌧

= x. The induced process is denoted X
N
, and the

normalised unit-jump rate walk is denoted XN . Note that on checking the jump

rates above, it is clear that the walk X
N
defined above does agree with the process

(X,⇥
N
). When we wish to see the process as a product, we refer to X as the

spatial component, and ⇥
N

the temporal component. Before proceeding we update

our collection of assumptions which will now be maintained for the remains of the

chapter.

A10 Graph sequences will always be of the form ⇤N = ⇤ ⇥TN , that is limits are

only considered in the temporal dimension.

A20 The inverse temperature is strictly positive � > 0, and either:  ⌘ 0 and

h < 0, or  6⌘ 0 and h  0.

A3 The weights wxy,x of the graph ⇤ are normalised so that �x =
P

y2⇤wxy +

x = 1, or equivalently Pxy = wxy. Moreover, P is normal.

A4 The Markov loop measure µN = µh,⇤N
denotes the Markov loop measure

defined on ⇤N , and is with respect to the normalised walk XN , not the walk

X
N
. We denote the law of the loup soup PN , and define the scaled occupation

field LN
.

.= (1 +N��1)�1L.
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Whenever we omit the subscript N , e.g. ⇤, µ, P, we are referring to the

Markov loop measure on ⇤.

The first two assumptions speak for themselves. The later two recall the conditions

under which we studied the Laplace transform for the loop soup under the Markov

loop measure. The assumption A4 is really only fixing notation, and reintroducing

the scaling convention which was adopted in Section 3.1.1. Of greater interest is the

restriction we introduce in assumption A3. Again, the fact that we choose P to be

normal will be of importance in deriving the Laplace transform for the space–time

random walk, the curiosity, however, is our insistence that the weights normalise to

1. Whilst not essential for deriving the Laplace transform of LN itself, we will see

that under this assumption we can prove convergence in distribution of a related

‘projected’ occupation field.

Our first order of business is to confirm that the transition matrix PN induced by

(3.10) is in fact a normal transition matrix. Just as the transition matrix of the

d-dimensional lattice box can be derived as a Kronecker sum of matrices, we will

prove that this is the case in our present context. Given two matrices A 2 Cm⇥m

and B 2 Cn⇥n with m,n � 1, we define their Kronecker product to be the mn⇥mn

matrix given in block form by

A⌦B .

.=

0BBBB@
a
11

B a
12

B · · · a
1mB

a
21

B a
22

B · · · a
2mB

...
...

. . .
...

am1

B am2

B · · · ammB

1CCCCA,

and entry wise this is (A⌦B)ijkl = aikbjl , 1  i, k  m and 1  j, l  n. Then the

Kronecker sum is the mn⇥mn matrix

A�B .

.=
�
A⌦ In

�
+
�
Im ⌦B

�
,

and (A�B)ijkl = aik�j(l)+ bjl�i(k). Both the Kronecker product and sum turn out

to be pleasant to work with due to their distributivity properties, and their spectral

representations. We defer proofs and statements of these to Appendix B, but will

draw on certain results in the coming pages. Working from the definitions above we

derive the following.

Lemma 3.11. Let P denote the transition matrix of the walk X on ⇤, and PN that

of the process XN = (X,⇥N) on ⇤N . Then

PN =
1

1 +N��1

�
P �N��1⌃

�
,

where ⌃ ..= circ(0, 1, 0, . . . , 0) 2 CN⇥N is the rightward shift of the identity matrix.

Moreover PN is a normal matrix.
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Proof. Using the notation established above

�
P �N��1⌃

�
x⌧y⌧ 0

= Pxy�⌧ (⌧
0) +N��1⌃⌧⌧ 0�x(y)

= wxy�⌧ (⌧
0) +N��1�⌧+1

(⌧ 0)�x(y),

which we see agrees with (3.10); note that we adopted the convention here that ⌧+1

is taken modulo N whenever necessary, which was to avoid cumbersome terms such

as �⌧+1 mod N (⌧ 0).

To see that PN is normal, according to Proposition B.15 it su�ces to show that both

P and N��1⌃ are normal. Since, by assumption, P is normal, it remains to confirm

that ⌃ is. However, on noting that ⌃T = circ(0, . . . , 0, 1), i.e. ⌃T
⌧⌧ 0 = �⌧�1

(⌧ 0) we

have

�
⌃T⌃

�
⌧⌧ 0

=
NX
✓=1

⌃T
⌧✓⌃✓⌧ 0

=
NX
✓=1

�⌧�1

(✓)�✓+1

(⌧ 0),

noticing that this requires us to simultaneously have ⌧ � 1 = ✓ = ⌧ 0 � 1, i.e. ⌧ = ⌧ 0

= �⌧ (⌧
0),

i.e. ⌃T⌃ = IN , the identity matrix. Then since ⌃⌃T =
�
⌃T⌃)T = IN , the claim

follows.

As a side note, perhaps a more intuitive justification for the normality of ⌃ comes

from considering the related Markov chain which always jumps clockwise on the

torus; similarly the Markov chain associated to ⌃T always jumps anti-clockwise. It

follows then that a clockwise jump, followed by an anti-clockwise one leaves the

process at its starting point (i.e. the identity matrix), as does an anti-clockwise

jump followed by a clockwise one, from which we have that ⌃⌃T = IN .

Courtesy of this proposition and Theorem 3.7 we are in a position to state the

formula for the Laplace transform of the occupation field LN ; having said that, at

this stage there is nothing to be gained by repeating the formula. For the time

being we develop the relationship between
�
LN ,PN ) and

�
L,PB). We achieve this

by projecting the occupation field LN onto the spatial dimension; that is we define

L#N =
�
L#N
x )x2⇤ via

L#N
x

.

.=
NX
⌧=1

LN
x⌧
, x 2 ⇤,

which we refer to as the projected occupation field. For our voyage into the space–
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time formulation to have any worth, we of course expect that this field can be

related to the Bosonic occupation field, as TN ! R/Z. It will turn out that the

fields are equivalent on accounting for a surplus field of point loops: those which do

not complete a lap of the torus, but merely stay at their starting point. The main

step towards deriving the relation is the following statement.

Theorem 3.12.

lim
N!1

EN

h
e�hv,L#Ni

i
=

det
�
I � e�(I�P )

�
det

�
I � e�(I�P+V )

� . (3.11)

Proof. In light of Corollary 3.8 it su�ces to consider only the case h = 0, since

any other h < 0 can be obtained by changing the definition of P . Let 0N be the

N ⇥N matrix of all zeros; for a vector v 2 R⇤, let vN
.

.= v� 0N be the length N |⇤|
vector with v(xt) = v(x), i.e. vN = (v

1

, . . . , v
1

, . . . , v|⇤|, · · · v|⇤|) 2 RN |⇤|. From the

definitions we have

hv,L#Ni =
X
x2⇤

vx

NX
⌧=1

LN
x⌧

= hvN ,LNi.

Then applying Theorem 3.7 to the space–time walk

EN

h
e�hv,L#Ni

i
= EN

h
e�hvN ,LNi

i
=

det
�
I � PN

�
det

�
I � PN + 1

1+N��1V N
� . (3.12)

Our analysis of this term now proceeds by identifying the eigenvalues. As in

Lemma 3.11 we can rewrite the matrix �PN +
�
1 + N��1

��1

V N as a Kronecker

sum

�PN +
1

1 +N��1

V N = �
✓
PN � 1

1 +N��1

V N

◆
= � 1

1 +N��1

�
(P � V )�N��1⌃

�
.

We appeal to the fact that the eigenvalues of the Kronecker sum of two square

matrices are given by the sum of all the pairs of eigenvalues, Lemma B.13, hence we

have

Spec

✓
�PN +

1

1 +N��1

V N

◆
=

⇢
�⌘

v
i +N��1�j
1 +N��1

: 1  i  |⇤|, 1  j  N

�
,
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where ⌘vi 2 Spec(P � V ), �j 2 Spec(⌃). It follows that for any v 2 R⇤

+

det

✓
I � PN +

1

1 +N��1

V N

◆
=

|⇤N |Y
i=1

NY
j=1

✓✓
1� ⌘vi

1 +N��1

◆
� N��1�j

1 +N��1

◆
.

Since ⌃ = circ(0, 1, 0, . . . , 0) is a circulant matrix, its eigenvalues are given explicitly

as the N -th roots of unity, Theorem B.18

�j = !j
N

.

.= exp

✓
2⇡i

j

N

◆
,

and we recall the following identity
QN

j=1

(a � c!j
N ) = aN � cN , for a 2 R, c � 0,

Proposition B.19. Applying this, the product over j = 1, . . . , N becomes

NY
j=1

✓✓
1� ⌘vi

1 +N��1

◆
� N��1�j

1 +N��1

◆
=

✓
1� ⌘vi

1 +N��1

◆N

�
✓

N��1

1 +N��1

◆N

=

✓
N��1

1 +N��1

◆N
 ✓

1 +
1� ⌘vi
N��1

◆N

� 1

!
.

Substituting this into the expression (3.12), where the numerator is simply the case

v ⌘ 0, and we denote the corresponding eigenvalues ⌘i = ⌘0i , we obtain

EN

h
e�hv,L#Ni

i
=

|⇤|Y
i=1

⇣
1 + 1�⌘i

N��1

⌘N
� 1⇣

1 +
1�⌘vi
N��1

⌘N
� 1

.

In taking limits we recognise the term in N in both the numerator and denominator

to be convergent to an exponential

lim
N!1

EN

h
e�hv,L#Ni

i
=

|⇤|Y
i=1

lim
N!1

⇣
1 + 1�⌘i

N��1

⌘N
� 1⇣

1 +
1�⌘vi
N��1

⌘N
� 1

=

|⇤|Y
i=1

e�(1�⌘i) � 1

e�(1�⌘
v
i ) � 1

=
det

�
I � e�(I�P )

�
det

�
I � e�(I�P+V )

� ,
from which the claim follows on comparison with the Laplace transform of L under

PB, Theorem 3.5.

On comparing (3.11) with (3.3), we see that the two Laplace transforms agree up to

a change in the sign preceeding the term in V . To reconcile this di↵erence we must

take into account the contribution of point loops to the field LN . For the purpose
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of simplicity we briefly return to considering general graphs ⇤, before returning to

the space–time context. As before we let � denote the set of all loops on ⇤, the set

of point loops is given to be �⇤ ⇢ � with

�⇤
.

.= {� 2 � : #(� \ ⇤) = 1},

i.e those loops that do not leave their starting point. The occupation field of point

loops is denoted by G = (Gx)x2⇤, with Gx =
P

�2�⇤ L(�). Le Jan [LeJ10] Proposition

14, refers to the loops in �⇤ as trivial loops, and identified the distribution of G under

the Markov loop measure µ as a Gamma random field. We prove this statement in

the additional context of the parameters � and h, and also demonstrate that in the

space–time limit the point loops contribute a deterministic factor to the occupation

field L#N .

Lemma 3.13. For h < 0, the occupation field of point loops satisfies

(G,P) (d)
=

✓
1

1� h
G, P⌦⇤

◆
,

with P the law of �(1, 1) random variable.

Moreover, in the context of the space–time loop model, the field G#N =
PN

⌧=1

Gx⌧

converges to a degenerate distribution⇣
G#N ,PN

⌘
(d)�!

✓
�

1� h
1, �⌦⇤

�
1�h

◆
.

Proof. Since we are now somewhat accustomed to the computation of occupation

fields, we describe the following in brief. Our usual application of the Campbell

formula leads us to identify the following integralZ
�

⇤
1� e�hv,��1Liµ(d�) =

X
x2⇤

Z 1

0

eht

t
Ex

h
1{Xu=x,80ut}

⇣
1� e�

R t
0 v/�(Xs)ds

⌘i
dt,

where we brought the requirement that the loops are point loops into the indicator

variable for the random walk. This then becomes

=
X
x2⇤

Z 1

0

eht

t
(1� e�tvx/�x)Px[Xu = x, 80  u  t]

=
X
x2⇤

Z 1

0

1

t

⇣
e�(1�h)t � e�(1+vx/�x)t

⌘
dt

=
X
x2⇤

log

✓
1 + vx/�x
1� h

◆
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It follows that the Laplace transform of the field Gx is given by

E
h
e�hv,Gi

i
=
Y
x2⇤

✓
1 + vx/�x
1� h

◆�1

,

from which the first claim follows.

Turning to the context of the space–time walk, we consider the case h = 0 for

simplicity. We have

lim
N!1

EN

h
e�hv,G#Ni

i
= lim

N!1

Y
x2⇤

NY
⌧=1

✓
1 +

vx/�x
1 +N��1

◆

= lim
n!1

Y
x2⇤

✓
1 +

vx/�x
1 +N��1

◆�N

=
Y
x2⇤

e��vx/�x .

Combining the above expression for the occupation field of G#N with (3.3), one

immediately obtains.

Theorem 3.14 (The Bosonic Isomorphism Theorem). In the limit N ! 1, the

projected occupation field satisfies

(L#N ,PN )
(d)�!

✓
L+

�

1� h
1,PB

◆
,

where 1 is the deterministic field with 1x = 1 for all x 2 ⇤.

We mentioned previously that working with the field L under PB presents challenges

due to the fact that we cannot manipulate the Laplace transform easily; this provides

some level of motivation to work instead with the field LN and then project down to

L#N , since the Laplace transform of LN was given in terms of the Green’s function

of the walk P h, and in particular did not involve exponential terms. In the following

section we discuss the distribution of the space–time occupation field, and state the

analogue of Le Jan’s isomorphism theorem to the Gaussian free field.

3.2.2 Complex Gaussian Measures and The Space–Time Isomor-

phism

Having derived a random field, a natural question to ask is how the global structure

of the field appears, and how correlations behave across it. As a simple calculation,

we can consider the expected value at a point of the field, something which was

outside of our scope when studying the mean occupation in Chapter 2. As before

we assume that the term in h  0 has been absorbed into the definition of the

random walk P = P h, and for a point x⌧ 2 ⇤N , choose ṽ 2 R|⇤|N to be the vector
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of all zeros except ṽx⌧ = v. Then

E
⇥
LN
x⌧

⇤
= � d

dv
EN

h
e�hṽ,LNi

i
|v=0

= � d

dv
det

�
I +GN eV ��1

|v=0

.

where GN = G
�
X

N�
is the Green’s function of the variable jump rate walk. SinceeV only has one non-zero entry,

�
GN eV �

x⌧x⌧
= GN

x⌧x⌧
v, we have

= � d

dv
(1 +GN

x⌧ ,x⌧
v)�1

|v=0

= GN
x⌧ ,x⌧

.

Comparing this with our attempt at a calculation using the Laplace transform of the

Bosonic occupation field on p. 45, we note that the ease of computation here follows

from the fact that the dependence on V becomes multiplicative. In this particular

example we immediately derived the spectrum of GN Ṽ , whereas previously we dis-

cussed that the spectrum of Q � V remains mysterious. Continuing this example,

we note that we need not stop at the expectation; writing

E
h
e�vLN

x⌧

i
=

1

1 +GN
x⌧x⌧

v
,

this is recognised as the Laplace transform of a �-distributed variable, LN
x⌧
⇠

�(1, Gx⌧ ,x⌧ ). Of course turning this into a result about
�
Lx,PB

�
remains a chal-

lenge: although we have
PN

⌧=1

LN
x⌧

(d)�! Lx +
�

1�h1, we cannot readily calculate the

sum of a collection of dependent Gamma random variables.

That each site of LN is �-distributed is a sub-result of a much more significant ob-

servation regarding the distribution of the entire field. In fact we are already in a

position to provide a description of the space–time occupation field in terms of a

recognisable distribution. In [VeJ97], Vere–Jones introduced a family of distribu-

tions known as ↵-permanental processes; letting I denote an arbitrary index set, and

U : I ⇥ I ! R
+

, the ↵-permanental process with kernel U and law P↵,U is, when it

exists, the process ✓ = (✓t)t2I such that for all finite collections t = (t
1

, . . . tm) 2 Im,

and v 2 Rm
+

E↵,U
h
e�

1
2

Pm
i=1 vi✓ti

i
= det

�
I + U|t V

�� 1
↵ , (3.13)

where we denote U|t for the m⇥m matrix with entries U|t(i, j) .

.= U(ti, tj). In the

special case that ↵ = 1/2 and U is positive and symmetric, the process ✓ agrees

with the distribution of the square of half a Gaussian process. That is if � = (�t)t2I
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is a centred Gaussian distribution on I with covariance U , and law PU then⇣
✓, P↵= 1

2 ,U

⌘
(d)
=

⇣
�2, PU

⌘
.

In general one can ask under what conditions the right hand side of (3.13) determines

a distribution: i.e. when is this a valid Laplace transform for a random process?

Vere–Jones provided necessary and su�cient conditions on the index ↵ > 0 and

kernel U . Eisenbaum and Kaspi [EK09] establish that these conditions are satisfied

whenever U is the kernel of a transient Markov process on I, in which case the

corresponding ↵-permanental process exists for all values ↵ > 0. Further they

relate the ↵-permenantal process to Dynkin’s isomorphism for the local field of a

random walk: we return to this in the next section. As a side note we remark that

in the same paper of Eisenbaum and Kaspi they go on to consider the Bosonic point

process, which can be derived from the Feynman–Kac formula for the ideal gas

(0.13). A loop of length �j is identified with j points x
1

, . . . , xj 2 Rd by forgetting

the Brownian paths connecting them, and considering only the point locations. Note

that this is somewhat perpendicular to our own study, where we study only statistics

of the paths.

Returning to the occupation field of the space–time walk, we note on comparing

Laplace transforms, that we have confirmed Eisenbaum and Kaspi’s result on the

existence of permanental processes in the special case of the space–time walk.

Theorem 3.15. Let G = GN =
⇣
GN

x⌧y⌧ 0

⌘
be the Green’s function of the walkX

N
on

⇤N , then for ↵ > 0 the permanental process ✓ = (✓x⌧ )x⌧2⇤N
with law P↵,G exists,

and

�
LN ,P↵N

� (d)
=

�
1

2

✓, P↵,G
�
,

where P↵N denotes the law of the occupation field with intensity measure ↵µN .

Note that the extension to all intensities ↵ > 0 follows immediately from Camp-

bell’s formula (3.1) once one has established the case for ↵ = 1. A consequence of

identifying the occupation field as a permanental process is that we can in fact get

all of the correlations as expressions in the Green’s function. In the following we use

PerA to denote the permanent of a square matrix A 2 Cm⇥m, which is defined by

PerA .

.=
X
⇡2Sm

mY
i=1

Ai⇡(i).

Corollary 3.16. For x
1

, . . . , xm 2 ⇤, ⌧
1

, . . . , ⌧m 2 TN let x = (x
1⌧1 , . . . , xm⌧m) 2

⇤m
N . Then

EN

h
LN

(x1,⌧1)
· · · LN

(xm,⌧m)

i
= PerGN

|x.
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The moment formula for permanental processes is derived in [VeJ97] for general

↵ > 0.

As we have already mentioned, in the case that the generator of the random walk

is in fact symmetric one can recognise the Laplace transform in terms of Gaussian

fields. This is the content of Le Jan’s isomorphism theorem, [LeJ10, LeJ11]. We

recall that given a symmetric real matrix U 2 R⇤⇥⇤ with non-negative entries, the

centred (discrete) Gaussian free field is the field � = (�x)x2⇤ with law PU , where

PU (d�) .

.=
1

(2⇡)
1
2 |⇤|
p
detU

e�
1
2h�,U�1�id�,

and d� .

.=
Q

x2⇤ d�x. PU is determined by the fact that it is the unique law on R⇤

for which EU [�x�y] = U(x, y), see [Szn12] pp.31-2.

Theorem 3.17 (Le Jan’s Isomorphism). Let ⇤ be such that the associated walk is

reversible, and let P↵ denote the law of the loop soup with intensity measure ↵µ.

Then ⇣
��1L,P↵=

1
2

⌘
(d)
=

⇣
1

2

�, PG
⌘
,

where PG is the law of the Gaussian field with covariance G = G
�
X
�
.

Moreover, if ↵ = k/2 for some k = 1, 2, . . ., then⇣
��1L,P↵=

k
2

⌘
(d)
=

⇣
1

2

�
�(1) + · · ·+ �(k)

�
, PG ⌦ · · ·⌦ PG

⌘
,

where �(j) are independent PG Gaussian fields.

A proof that (I+GV )�
1
2 is the Laplace transform of a square of a Gaussian process

is given in [Szn12] Proposition 2.14 pp.47-9; the extension to ↵ = k
2

is immediate

from the superposition of Poisson processes, and follows on inspection of Campbell’s

formula for the Laplace functionals, Lemma 3.1.

Implicit in the above was that the Green’s function G = G
�
X
�
is symmetric, else the

occupation field ��1L cannot possibly be equivalent to a Gaussian field. This is a

consequence of reversibility of the walk, since recalling the conventions of Section 1.1

Gxy = ��1

y G(Z)xy = ��1

y

X
n�0

Pn
xy = ��1

x

X
n�0

Pn
yx = Gyx.

In the absence of reversibility, however, one can no longer hope for a Gaussian

description. In particular for the space time occupation field it would appear as

though a permanental description, Theorem 3.15, is as best as we can do. This is

in fact not quite true, so long as one is happy to leave the realm of real probability

measures, and consider instead complex measures. In the following we provide a

brief introduction to complex Gaussian measures, and closely follow the exposition
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of Brydges, Imbrie and Slade [BIS09].

We consider distributions on complex fields ( x)x2⇤ 2 C⇤, with  x = ux + ivx,

and we adopt the convention of always writing the field as the pair ( x, x), where

 x = ux � ivx is the complex conjugate. We use the notation  to distinguish from

the real fields � discussed above. Integration on C⇤ is defined via the di↵erential

forms

d x = dux + idvx, d x = dux � idvx,

and we take products of di↵erential forms via the anti-commutative wedge product,

which satisfies: dux ^ dvy = �dvy ^ dux. Henceforth we omit the wedge symbol,

duxdvy .

.= dux ^ dvy. A consequence of anticommutativity is

duxdux = �duxdux = 0 = dvxdvx,

d xd x =
�
dux � idvx

��
dux + idvx

�
= 2iduxdvx.

The di↵erential form on C⇤ is then given by

d d .

.=
Y
x2⇤

d xd x,

and using the calculation above, this is

= (2i)|⇤|
Y
x2⇤

duxdvx,

so that integration on C⇤ can be done against real variables ux, vx 2 R. We saw in

the definition of the (real) Gaussian field � that it was determined by a symmetric

matrix, where symmetry ensured the existence of its inverse which was required to

define the normalisation constant. The complex equivalent is to require a matrix

A 2 C|⇤|⇥|⇤| to be Hermitian: A =
�
A
�T

=.

. A⇤. We assume throughout that A is

positive-definite, and consequently invertible; we denote C .

.= A�1. The following

proposition will enable us to define a complex valued equivalent to the Gaussian

free field.

Proposition 3.18. Let A 2 C|⇤|⇥|⇤| be Hermitian, with inverse C = A�1. Then

ZC
..=

Z
e�h ,A id d =

(2⇡i)|⇤|

detA
.

Moreover, this continues to hold if A is not Hermitian, but has positive definite

Hermitian part: HA
..= 1

2

(A+A⇤).

Proof. We consider only the case of A Hermitian, and follow the calculations of

[BIS09] Lemma 2.1 p.37-8. As a consequence of A being Hermitian, its eigenvalues
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are necessarily real, and moreover it can be diagonalised by a unitary matrix. That

is, there is a U 2 C|⇤|⇥|⇤| with UU⇤ = U⇤U = I, and A = UDU⇤, with D = diag(⌘x)

the diagonal matrix of eigenvalues ⌘x 2 Spec(A), which are in an arbitrary order.

Performing a change of variables ' = U Z
e�h ,A id d =

Z
e�h',D'id'd'

= (2⇡i)|⇤|
Z

e�
P

(ux+ivx)⌘x(ux�ivx)du
1

. . . du|⇤|dv1 . . . dv|⇤|

= (2⇡i)|⇤|
Y
x2⇤

Z
R
e�⌘x(u

2
x+v2x)duxdvx,

which we recognise as a standard Gaussian integral

= (2⇡i)|⇤|
Y
x2⇤

1

⌘x
.

As a consequence of this proposition we define a complex Gaussian measure with

covariance C = A�1 by

PC
�
d , d 

�
.

.=
1

ZC

Z
e�h ,A id d . (3.14)

Integrals of this form have been widely studied by physicists under the guise of path

integrals, and often go under the name of Grassman integration. Recent work by

Brydges and Slade, along with a myriad of co-authors, have applied this formalism

to a variety of statistical mechanical models: notably the '4-field theory, and the

study of self avoiding walk models. Remarkably they derive a complex Gaussian

integral representation for the weakly self-avoiding walk model, for which the two

point correlation function is seen to agree with the two point function of a '4-field

theory; see [BIS09] for a survey. To model self avoiding walks, additional machinery

is required to define suitable di↵erential forms, and we will not make use of these

here. However, at the heart of these arguments, will be an integration by parts

formula for complex Gaussian measures, which will be reminiscent of the moment

formula for a permanental field, Corollary 3.16. We define di↵erentiation of complex

fields via

@

@ x

.

.=
1

2

✓
@

@ux
� i

@

@vx

◆
.

Lemma 3.19. Let A have positive definite Hermitian part HA, C = A�1 and let

PC denote the induced complex Gaussian measure. For F : C|⇤| ! C smooth, and
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x 2 ⇤ Z
 xF PC

�
d d 

�
=
X
y2⇤

Cxy

Z
@F

@ y
PC

�
d , d 

�
. (3.15)

Proof. Again we follow [BIS09] Lemma 2.2, p.38. As a preliminary calculation we

note

@

@uy
e�h ,A i = @

@uy
e�

P
y,z2⇤(uy+ivy)Ayz(uz�ivz)

=
X
z2⇤

Ayz(uz � ivz)e
�

P
y,z2⇤(uy+ivy)Ayz(uz�ivz)

= e�h ,A i
X
z2⇤

Ayz z,

and similarly

@

@vy
e�h ,A i = ie�h ,A i

X
z2⇤

Ayz z.

Consequently

@

@ y
e�h ,A i = e�h ,A i

X
z2⇤

Ayz z.

Now considering the integral term on the right hand side of (3.15), and applying

the integration by parts formula for real integrals (against ux, vx)Z
@F

@ y
PC(d , d ) =

Z
@F

@ y
e�h ,A id d 

=

Z
F

@

@ y
e�h ,A id d 

=
X
z

Ayz

Z
 zF PC(d , d ).

Summing both sides over Cxy

X
y2⇤

Cxy

Z
@F

@ y
PC(d , d ) =

X
y2⇤

X
z2⇤

CxyAyz

Z
 zF PC(d , d )

=
X
z2⇤

0@X
y2⇤

CxyAyz

1AZ
 zF PC(d , d ).
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Since C = A�1, the summation over y is equal to �x(y) and all of the terms on the

right hand side vanish except for the term with y = x

=

Z
 xF PC(d , d ).

Following the parlance of statistical mechanics, we use h · iC to denote ‘expectation’

against the complex Gaussian measure PC ; when the expectation is against variables

of the form  x x 2 R we will also write EC . As an application of the integration

by parts formula, we have the following calculations. For x, y 2 ⇤

⌦
 x y

↵
C

=

Z
 x yP

C(d , d ) =
X
z

Gxz

Z
@

@ z
 yP

C(d , d ) = Gxy (3.16)

whilst

⌦
 x x y y

↵
C
= EC

�
 x x y y

�
=

Z
 x x y yP

C(d , d )

=
X
z

Gxz

Z
@

@ z
 x y yP

C(d , d )

= Gxx

Z
 y yP

C(d , d ) +Gxy

Z
 x yP

C(d , d )

= GxxGyy +GxyGyx.

We recognise these as agreeing with the moments of an ↵ = 1 permanental process,

and in fact we have the following more general result, [BIS09] Lemma 2.3 pp.39.

Lemma 3.20. For x
1

, . . . , xm 2 ⇤

⌦Qm
i=1

 xi xi

↵
C

= PerG|{x1,...,xm}.

The above is su�cient to confirm that the ↵ = 1 permanental field agrees with a

complex Gaussian, so long as the generator of the permanental field has positive

definite Hermitian part. As in [BIS09] we omit the proof of this moments lemma,

since it is a rather drawn out inductive argument. Instead we prove the equality in

distribution by showing equivalence of the Laplace transforms. We prove this in the

context of interest to us, the space–time occupation field.

Theorem 3.21. Let G = GN be the Green’s function of the walk X
N
on ⇤N . Then⇣

LN ,P
⌘
=
⇣
  , PG

⌘
,

where (  )x⌧
..=  x⌧ x⌧

= u2x⌧
+ v2x⌧

, for x⌧ 2 ⇤N .

Proof. Denoting �N = 1+N��1, we recall that G = GN = ��1

N

�
I �PN

��1

, we first
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confirm that �N (I�PN) and �N (I�PN +V ) have positive definite Hermitian part,

where V = diag(v) for some v 2 R⇤N
+

. We have

H�(I�PN
)+V =

1

2

⇣
(�(I � PN) + V ) + (�(I � PN) + V )T

⌘
= I �HPN + V.

The matrix HPN is symmetric, and is the average of two transition matrices, and

hence is itself a transition matrix. Moreover, by assumption A2 the matrix is sub-

stochastic. It follows that Spec(I � HPN ) ⇢ (0, 2), so that I � HPN is positive

definite. Moreover, positivity of v 2 R⇤

+

ensures that V is also positive definite, and

hence so is the sum I �HPN + V , Proposition B.2. Positivity of �N then gives the

desired result. NowD
e�h ,V  i

E
G
= Z�1

G

Z
e�h ,�N (I�P+V/�N ) id d ,

and since �N (I�P+V/�N ) has positive definite Hermitian part, by Proposition 3.18

the integral above exists and is given by Z��1
N (I�P+V/�N )

�1 , from which

=
det(I � P )

det(I � P + V/�N )
.

As mentioned above, the theorem is not limited to the case of the space–time walk,

and holds for any permanental process whose generator has positive definite Her-

mitian part. In terms of the loop soup isomorphism however, to date we have only

established the Laplace transform of the occupation field for generators P �I which

are normal or reversible. We do, however, believe that an extension to processes

with HI�P positive definite is possible. A further question is whether this can in

turn be extended to the generator Q = �(P � I) with continuous jump rates.

In light of this isomorphism and the fact that L#N ! L + �
1�h1, the occupation

field under PB, we have the interpretation of the Bosonic occupation field as the

field obtained on integrating out the spatial component of a space–time complex

Gaussian field plus the additon of a deterministic factor. In the next section we

continue to work with the space–time description of the loop model, but provide

further relationships with the ideal Bose gas.

3.3 Space Time Loops And The Bose Gas

In the final section of this chapter we provide two applications of the space–time

formulation of the loop soup to the study of the ideal Bose gas. The first of these con-

tinues on the theme of the previous section, where we derive a version of Symanzik’s

formula for complex Gaussian fields, which we then provide a physical interpreta-

tion for. The second section considers space–time correlations in the loop soup, and

relates these to the 1-particle reduced density matrix of an ideal gas.
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3.3.1 Symanzik’s Formula for Bosons in a Random Environment

It was mentioned in the introduction that the study of loop measures was started by

Symanzik [Sym66, Sym69] who used them to derive a path integral representation

for Euclidean quantum field theory. One particular result relates the correlations of a

quantum field under a potential to an expectation with respect to an occupation field

of random loops and paths. In this section we derive Symanzik’s formula for complex

measures in the context of the space–time loop soup, and will relate the formula to

a model of ideal bosons interacting with a space–time random environment. Our

steps follow those of Sznitman [Szn12] Section 4.3, pp.91–5, and before engaging

specifically with the space–time world we recall some definitions.

Up until now we have considered only measures on closed loops. In this section we

also consider measures on paths, and define for x, y 2 ⇤ the measure

Pxy[B] =
1

�x

Z 1

0

Px

⇥
1{Xt=y}(B \Dt)

⇤
dt, D 2 D,

where D is the �-algebra on the space of paths D, introduced on p. 10. This is a

finite measure on ‘open ended bridges’: i.e. paths from x to y but with no prescribed

duration. The additional factor of ��1 is similar to the convention adopted in the

previous section of working with the walk X, and then scaling the occupation field

by L 7! ��1L; in this context it ensures that the total mass of the measure is

Pxy[D] =
1

�x

Z 1

0

Px[Xt = y]dt = G
�
X
�
xy
.

We stress that this is not a probability measure, however we still write expressions

such as Pxy[Xt = z] to stand for the mass of the set {� 2 D : �t = z}. We define

the local time under the measure Pxy analogously to how occupation times for the

loop soup were defined in Section 1.2.3, but denote local fields of random walk by

lowercase l = (lx)x2⇤; we also make the distinction of referring to local fields when

speaking of random walks, and occupation fields when referring to the loop soup.

As discussed above, since we have defined the measure in terms of the walk X, we

will consider the scaled local field ��1l: in fact we maintain all the assumptions

A10-4 introduced on p.56. The following lemma is the equivalent of the derivation

for the Laplace transform of the Markov loop soup.

Lemma 3.22. For ⇤ reversible or normal, and v 2 R⇤

+

Exy

h
e�hv,��1li

i
= (V �Q)�1

xy .

Proof. We argue via the Feynman–Kac formula (3.3). We proceed as in the proof
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for the loop soup occupation field, noting

Exy

h
e�hv,��1li

i
=

Z 1

0

Ex

h
1{Xt=y}e

�
R t
0 V/�(Xs)ds

i
=

Z 1

0

⇣
et(P�I�V/�)

⌘
xy
.

If we consider the truncated integral on [0, T ], for any T > 0Z T

0

et(P�I�V/�) =
1X
n=0

(P � I � V/�)n

n!

Z T

0

tndt

=
1X
n=0

(P � I � V/�)n

(n+ 1)!
Tn+1

= (P � I � V/�)�1

 1X
n=0

(P � I � V/�)n

n!
� I

!
= (P � I � V/�)�1

⇣
eT (P�I�V/�) � I

⌘
.

Appealing to Proposition 3.6, for v 2 R⇤

+

su�ciently small the eigenvalues of P �
I � V have negative real part and consequently limT!1 eT (P�I�V ) = 0, [HJ13]

Theorem 5.6.12 pp.348–9. Hence

Exy

h
e�hv,��1li

i
= ��1

x (I � P + V/�)�1 = (V �Q)�1.

This confirms the result for su�ciently small v, the extension to all positive v is

given in [Szn12] Proposition 3.10 p.81.

Denoting GV = (V � Q)�1 (note that when V = 0, GV = G), then so long as

�(I � P ) has positive Hermitian part, the complex Gaussian measure PGV is well

defined, and from the lemma above, and (3.16) we have the relation

Exy

h
e�hv,��1li

i
= GV (x, y) =

⌦
 x y

↵
GV

. (3.17)

This can be seen as a basic form of Dynkin’s isomorphism theorem for complex

measures; more generally this says for bounded measurable functions F : R⇤ ! R

Exy ⌦ EGV

h
F
�
��1l +   

�i
=

D
 x yF

�
  

�E
GV

,

see [Bry92] Theorem 3.2 pp.21–22. The content of (3.17) is that the moments of

a Gaussian field are characterised by the local field of a random walk. Symanzik’s

formula generalises this result so that the left hand side is now an expectation with

respect to a perturbation of a Gaussian.

Let C = A�1 be the covariance matrix of a complex Gaussian field, and let f : R⇤

+

!
R
+

be measurable and integrable with respect to PC , EC

⇥
f
�
  

�⇤
<1. We define
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the perturbed Gaussian measure PC,h to be the normalised measure

PC,f (d , d ) =
1

ZC,h
e�h ,A if

⇣
  

⌘
d d .

In the case that f(t) = exp
�
�g

P
x2⇤ t2x � ⌫

P
x2⇤ x

�
, this is exactly the law of the

'4-field theory studied by Symanzik, [Sym66, Sym69]. As with this example, we

consider the case that f is multiplicative: f(t) =
Q

x2⇤ fx(tx), for some measurable

fx : R+

! R
+

; moreover we assume that each of the fx can be derived as the Laplace

transform of a random variable on R
+

; that is there is a law ⌫x on R
+

for which

fx(u) =

Z 1

0

e�vu⌫x(dv).

In this case we write PC,⌫ in place of PC,f , and we can view the perturbation f as

being the e↵ect of a randomisation in the Gaussian, since for example

ZG,⌫ =

Z  Y
x2⇤

Z 1

0

e� x xvx⌫x(dvx)

!
PC

�
d d 

�
=

Z
⌫
1

(dx
1

) · · ·
Z
⌫|⇤|(dx|⇤|)

✓Z
e�h ,A�V  iPC

�
d d 

�◆
= E⌦⌫⇥Z

(A�V )

�1

⇤
= (2⇡i)|⇤|E⌦⌫


1

det(A� V )

�
, (3.18)

where we use E⌦⌫ =
N

x2⇤E⌫x to denote the product measure, and V = diag(vx)

is now a random diagonal matrix. We now state Symanzik’s formula for the space–

time walk; as with the derivation of the space–time isomorphism, this result can be

generalised so long as the Gaussian measure exists and the Laplace transform of the

Markov loop occupation field is defined. As we have done throughout the section,

we write LN = (1 +N��1)�1L, and similarly we denote lN .

.= (1 +N��1)�1l.

Theorem 3.23 (Symanzik’s Formula). Let G = GN be the Green’s function of the

walk X
N

on ⇤N , and for x⌧ 2 ⇤N let ⌫x⌧ be the law of a positive random variable

vx⌧ . Then for x⌧ , y⌧ 0 2 ⇤N

⌦
 x⌧

 y⌧ 0 iG,⌫ =
E⌦⌫ ⌦Ex⌧y⌧ 0 ⌦ EN

h
e�hv,(LN

+lN )i
i

E⌦⌫ ⌦ EN

h
e�hv,��1LN i

i .

Proof. Our proof follows that given in [Szn12] pp.78–9, with the distinction that

we work with complex Gaussian measures and that the loop soup is considered at
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intensity 1. From the definition of the measure PG,⌫ ,

⌦
 x⌧

 y⌧ 0

↵
G,⌫

=
1

ZG,⌫

Z
 x⌧

 y⌧ 0e
�h ,�Q i

0@ Y
z✓2⇤N

Z 1

0

e� z✓
 z✓

vz✓ ⌫z✓(dvz✓)

1Ad d 

=
1

ZG,⌫
E⌦⌫


ZG,V

ZG,V

Z
 x⌧

 y⌧ 0e
�h ,(V�Q) id d 

�
,

we recognise the integral term as agreeing with the right hand side of (3.17), so that

=
1

ZG,⌫
E⌦⌫ ⌦Exy

h
ZGV

e�hv,lNi
i
.

Using the identity for the partition function ZGV
= ZGV

= (2⇡i)|⇤| detGV , this

becomes

=
(2⇡i)|⇤|

ZG,⌫
E⌦⌫ ⌦Exy

h
detGV e

�hv,lNi
i
,

and then multiplying by detG/ detG

=
(2⇡i)|⇤| detG

ZG,⌫
E⌦⌫ ⌦Exy


detGV

detG
e�hv,lNi

�
.

Considering the quotients of determinants

detGV

detG
=

det
⇣
�NI

�
I � PN

�⌘
det

⇣
�NI

�
I � PN + V/�

�⌘
=

det
�
�NI

�
det

�
I � PN

�
det

�
�NI

�
det

�
I � PN + V/�

�
=

det
�
I � PN

�
det

�
I � PN + V/�

� ,
where we recognise the right most expression as the Laplace transform of the field

LN , Theorem 3.7. Hence

⌦
 x⌧

 y⌧ 0

↵
G,⌫

=
(2⇡i)|⇤| detG

ZG,⌫
E⌦⌫ ⌦Exy ⌦ EN

h
e�hv,LN

+lNi
i
,

which is the desired numerator. The calculation for the denominator proceeds along

similar lines, from (3.18)

ZG,⌫

(2⇡i)|⇤| detG
= E⌦⌫


detGV

detG

�
= E⌦⌫ ⌦ EN

h
e�hv,LNi

i
.

We now provide a heuristic derivation of how Symanzik’s theorem can be inter-

preted in the context of the ideal gas. Recalling the definition of the 1-particle
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reduced density matrix �̃
⇤

, given by (0.9), the Onsager–Penrose criterion for BEC

was described as the existence of a non-vanishing limit of �̃
⇤

(x, y) as |⇤|!1, and

then |x � y| ! 1. Ginibre [Gin71] provides a description of the 1-particle density

matrix which is amenable to our study of occupation fields. Before stating this we

provide some details regarding an interacting gas. Assuming that the graph ⇤ has

been endowed with a metric d
⇤

: ⇤⇥⇤! R
+

, we define a pair potential � : R
+

! R,
which is assumed to be integrable. Given a collection of paths p

1

, . . . , pm 2 D�j , we

define the weight

U(p
1

, . . . , pm) .

.=

Z �

0

X
i<j

�
⇣
d
⇤

�
pi(t), pj(t)

�⌘
dt,

and the partition function for the Bose gas with pair potential � is then given by

⌅
⇤,�(�, h) =

1X
n=0

e�hn

n!

X
x1,...,xn2⇤

nO
i=1

E�xixi


e�U

�
X

(1)
,...,X

(n)
��

,

where we recall that P�
xx[ · ] = Px

⇥
1{X�=x} ·

⇤
, andX

(i)
is the walk associated with

the measure P�
xi,xi . Ginibre’s expression for the 1-particle reduced density matrix

is as follows, we explain the notation beneath.

Theorem 3.24. The grand canonical partition function of the interacting Bose gas

with suitably defined pair potential � : R
+

! R is given by

⌅
⇤,�(�, h) =

X
n�0

1

n!

�
µB

�⌦n
h
e�U(�1,...,�n)

i
,

whilst the 1-particle reduced density matrix of an ideal gas on a graph ⇤ is given by

�̃
⇤

(x, y) = ⌅
⇤,�(�, h)

�1

X
j�1

X
n�0

e�hj

n!
E�jxy ⌦

�
µB

�⌦n
h
e�U(X,�1,...,�n)

i
.

See [Gin71] pp.355-9, or [BR02] Theorem 6.3.14, pp.385-6. The term over n is an

expectation with respect to n independent loops �
1

, . . . , �n chosen according to the

Bosonic loop measure µB, whilst the expectation is with respect to a single path from

x to y, whose length is determined according to the weighted sum
P

j�1

e�hjE�jxy.

Finally the exponential term in U is understood to integrate over all ‘legs’ of the

walks. That is if p is a path of length �j, then it is understood that p contributes j

terms to be integrated over in U : one corresponding to each interval [i�, (i+ 1)�),

i = 0, . . . , j � 1. The summation over n � 0 is none other than the Poisson point
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process under µB, so that we can rewrite these expressions as

⌅
⇤,�(�, h) = EB

h
e�U(S)

i
�̃
⇤

(x, y) =
1

⌅
⇤,�

X
j�1

e�hjEj�
xy ⌦ EB

h
e�U(X,S)

i
, (3.19)

where we dropped the dependence of ⌅
⇤,� on � > 0 and h < 0 for clarity, and S

is the Bosonic loop soup. In the case that � ⌘ 0, we have the ideal Bose gas, and

since exp
�
µB(�)

�
= ⌅

⇤

(�, h)

�̃
⇤

(x, y) =
1

⌅
⇤,�

0@X
j�1

e�hjEj�
xy

1A0@X
n�0

1

n!
µB(�)n

1A =
X
j�1

e�hjEj�
xy. (3.20)

Whilst at the present time we have no way of handling pair interactions, the equation

(3.19) has its similarities to the expression of Symanzik’s formula, we develop this

relationship in the following, though we do so somewhat heuristically. Rather than

considering the potential U to be defined via a pair interaction, instead we suppose

that � : ⇤! R
+

, and then for paths p
1

, . . . , pm 2 D� define

U(p
1

, . . . , pm) =
mX
i=1

Z �

0

�(pi(t))dt.

In the corresponding Bosonic model, paths are no longer weighted via their inter-

action with one another, but rather with their interaction with a background envi-

ronment. For a path p 2 D�j made up of the legs pi : [0,�)! ⇤, pi(t) = p(�i+ t),

i = 0, . . . , j � 1, then we have

U(p) = U(p
0

, . . . , pj�1

) =
j�1X
i=0

Z �

0

�(pi(t))dt =

Z �j

0

�(p(t))dt = h�, l(p)i,

where l(p) is the local field of the path p. It follows that for such a choice of U , the

formula on the right hand side of (3.19) becomes

1

⌅
⇤,�

X
j�1

e�hjEj�
xy ⌦ EB

h
e�U(X,S)

i
=

1

⌅
⇤,�

X
j�1

e�hjE�jxy ⌦ EB

h
e�h�,L+li

i
,

with L the occupation field under PB, and l the local field of the path under Pj�
xy.

We formally identify this as the 1-particle reduced density matrix of a model of ideal

bosons interacting with a background environment �, and denote this by �̃ as in

the rigorously derived case. A particular feature of the function �̃(x, y) is that the

sum over j � 1 considers only walks which terminate at y at times which are an

integer multiples of �; although a path from x to y is not a loop (unless x = y), the
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paths of interest still have the ‘space–time property’ of needing to do full cycles of

the torus. As such it is natural to derive �̃
⇤

(x, y) as an observable of the space–time

loop model. In particular we look to relate the 1-particle reduced density matrix

to Symanzik’s formula. We make the following ‘exchanges’, which are now natural

after some experience with the space–time loop model

� : ⇤! R
+

 ! �N : ⇤N ! R
+

EB  ! EN

L, l  ! LN , lNX
j�1

e�hjE�jxy  ! Pxy.

We note that in moving to the space–time model we have performed our usual

change from using the variable jump rate walk X to working with X the unit jump

rate process. Moreover, we have also assumed the convention of taking P = P h,

the walk scaled by h < 0 introduced in Corollary 3.8, so as that we can drop the

dependency on h in all of the expressions. We have therefore the following heuristic

derivation of the 1-particle reduced density matrix of a Bose gas interacting with a

space–time background field

�̃
⇤

(x, y) = lim
N!1

1

⌅
⇤N ,�N

Ex0y0 ⌦ EN

h
e�h�N ,LN

+lNi
i

and performing similar substitutions for the partition function term

= lim
N!1

Ex0y0 ⌦ EN

h
e�h�N ,LN

+lNi
i

EN

⇥
e�h�N ,LN i

⇤ .

The fact that we take Ex0y0 is exactly the condition which was previously required

of the paths under
P

j�1

E�jxy: that they have duration equal to an integer multiple

of �. Moreover we stress that the right hand side of the above is an observable

which is defined purely on the graph ⇤, whereas the right hand side is a space–

time expression. On appealing to Symanzik’s formula we can therefore relate the 1-

particle reduced density matrix to the correlations of a space–time complex Gaussian

field. We state the following heuristic theorem, or heurum, summarising our findings.

Heurum 3.25. Let �̃
⇤

: ⇤ ⇥ ⇤ ! R
+

be the 1-particle reduced density matrix of

an ideal Bose gas interacting with a background potential � : ⇤ ! R
+

, and let

�N : ⇤N ! R
+

be such that �N (x⌧ ) = �(x), x⌧ 2 ⇤N . Then

�̃
⇤

(x, y) = lim
N!1

⌦
 x0

 y0

↵
GN ,�N

.

Moreover this expression continues to hold on replacing �N above with a space–time
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random environment �N ⇠ E⌦⌫ , so long as the limit exists.

3.3.2 The 1-particle Reduced Density Matrix and Leg Walker

We saw in (3.20) that the 1-particle reduced density matrix of an ideal gas is given

by

�̃
⇤

(x, y) =
X
j�1

e�hjPx

⇥
X�j = y

⇤
.

Penrose and Onsager [PO56] provided the general criterion that the Bose gas in Rd

undergoes BEC if it shows o↵-diagonal long-range order (ODLRO), which in the

grand canonical ensemble, is to say

lim
|x�y|!1

lim
|⇤|!1

�̃(x, y) = C > 0.

This condition can be reformulated for sequences of graphs, so long as the limit

graph is well defined, where the term |x � y| is replaced with a graph metric. We

choose to work with an alternative criterion of Yang [Yan62], who considered instead

the condition

�̃2(x) .

.= lim
|⇤|!1

Z
⇤

�̃(x, y)�̃(y, x)dy = C.

This definition has its advantage in our context as we need not consider graph

metrics. We make the following definitions for graphs

�̃2
⇤

(x) .

.=
X
y2⇤

�̃
⇤

(x, y)�̃
⇤

(y, x),

and if the graph is vertex transitive, such as the periodic lattice box ⇤(per)

N , this is

the same as

=
1

|⇤|
X
x,y

�̃
⇤

(x, y)�̃
⇤

(y, x)

=.

. �̃2
⇤

.

In the vertex transitive case, Yang’s criterion says lim|⇤|!1 �̃2
⇤

= C. In the following

we return to the notation of Chapter 2, and denote ⇤N for a convergent graph

sequence (rather than the space–time graph considered elsewhere in this chapter).

Theorem 3.26. Let ⇤N be a convergent graph sequence, with reversible transition
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matrices. For h < 0

�̃2
⇤

=

Z
1�

e��(h+u) � 1
�
2

m1(du).

Before proving the theorem, we note that the diagonal terms of the 1-particle density

matrix are given by

�̃
⇤

(x, x) =
X
j�1

e�hjPx

⇥
X�j = x

⇤
=
X
j�1

jµB(�x,�j),

with �x,�j
.

.= {� 2 ��j : �0 = x}. And consequently

Tr[�̃
⇤

] =
X
x2⇤

X
j�1

jµB(�x,�j) = ⇢
⇤

,

with ⇢
⇤

= ⇢
⇤

(�, h) the density of the ideal gas. That is the density is the trace of

the 1-particle reduced density matrix, whereas �̃2
⇤

= Tr[�̃
⇤

�̃
⇤

]. On recalling that

the integral expression for the thermodynamic limit of the density was given as

⇢ =

Z
1

e��(h+u) � 1
m1(du),

it is perhaps no surprise that �̃2 has the same integrand but squared. We make this

rigorous below.

Proof of Theorem 3.26. We write z = e�h for the fugacity of the Bose gas, so as

that �̃
⇤

(x) becomes

�̃2
⇤

(x) =
X
y2⇤

X
j,k�1

zj+kPx

⇥
X�j = y

⇤
Py

⇥
X�k = x

⇤
,

and applying the Markov property

=
X
j,k�1

zj+kPx

⇥
X�j+k = x

⇤
.

For each n there are exactly n�1 pairs 1  j, k  n�1 such that j+k = n, so that

=
1X
n=1

(n� 1)znPx

⇥
X�n = x

⇤
.
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Denoting G�(x; z) .

.=
P1

n=0

znPx

⇥
X�n = x

⇤
, we have from the above

�̃2
⇤

=
1

|⇤|
X
x2⇤

✓
z
d

dz
G�(x; z)�G�(x; z) + 1

◆
, (3.21)

and writing G�(x; z) in terms of the generator QX
x2⇤

G�(x; z) = Tr
⇥P1

n=0

zne�nQ
⇤

= Tr
h
(I � ze�Q)�1

i
.

Then considering the derivative term

d

dz

X
x2⇤

G�(x; z) = Tr


d

dz
(I � ze�Q)�1

�
,

which on using the identity d

dzA
�1(z) = �A�1(z)

�
d

dzA(z)
�
A�1(z),

= Tr
h
(I � ze�Q)�1e�Q(I � ze�Q)�1

i
.

Combining the last two equations with (3.21)

�̃2
⇤

=
1

|⇤| Tr
h
z(I � ze�Q)�1e�Q(I � ze�Q)�1 � (I � ze�Q)�1 + I

i
.

To make the following manipulations easier to follows we write R = (I � ze�Q)�1

and S = e�Q, we note that R�1 � I = �zS. The above becomes

�̃2
⇤

=
1

|⇤| Tr[zRSR�R+ I]

=
1

|⇤| Tr
⇥
R(zSR� I +R�1

⇤
=

1

|⇤| Tr[R(zSR� zS)]

=
1

|⇤| Tr[zRS(R� I)].

On confirming the identity: R� I = zRS we have

=
1

|⇤| Tr
⇥
z2RSRS

⇤
=

z2

|⇤| Tr
⇥
(RS)2

⇤
.

Writing

RS = (I � ze�Q)e�Q = (e��Q � z)�1,
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we get

�̃2
⇤

=

Z
z2

(e��u � z)2
m

⇤

(du)

=

Z
1�

e��(h+u) � 1
�
2

m
⇤

(du),

and the result follows on taking the limit in ⇤.

The function G�(x; z) defined above is itself the Green’s function of a walk, which we

call the leg walker. This is the discrete time walk Z� =
�
Z�n

�
n�0

, whose transition

matrix is given by P � = e�Q. The walk is equivalent to the process (X�j)j�1

, where

we only ‘observe’ the continuous time walk at times which are integer multiples of �:

the name leg comes from the fact that we do not see the processes behavior between

successive ‘legs’ of its path. The 1-particle reduced density matrix is then exactly

the Green’s function

�̃
⇤

(x, y) =
X
j�1

zjPx[Zj = y] =.

. G�(x, y; z).

In the case that ⇤ is a subset of Zd, we can derive the behavior of �̃
⇤

(x, y) at

h = 0 by appealing to established facts for the Green’s function of random walks on

lattices. As a first point we note that it is su�cient to consider the Green’s function

of the limit graph Zd, since the limit of the Green’s functions of the boxes [�N,N ]d

agree with this, see [LL10] p.101. Henceforth let G�(x) .

.= G�(0, x; 1) be the Green’s

function for the infinite lattice, providing the expected local time at x given a walk

started from 0 2 Zd; we are now interested in taking the limit as |x| ! 1. For

d = 1, 2, we know that G�(x) = 1 for all x 2 Zd, we concentrate therefore on the

case that d � 3.

Whilst the walk Z� is no longer nearest neighbour, it retains several desirable proper-

ties of the nearest neighbour walk. In the following we define the first-step covariance

matrix C = C� 2 Rd⇥d to be

Cjk = E
0

h
Z�
1

(j)Z�
1

(k)
i
,

where Z�
1

=
�
Z�
1

(1), . . . , Z�
1

(d)
�
2 Zd.

Lemma 3.27. The random walk Z� =
�
Z�n )n�1

satisfies the following properties.

(i) The walk is centred, E
0

h
Z�
1

i
= 0, with 0 = (0, . . . , 0) 2 Rd,

(ii) has finite first moment E
0

h��Z�
1

��2i = � <1,

(iii) and covariance matrix C = �
d I.
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Proof. All three statements follow from properties of the continuous time walk X� .

For (i), the symmetry of X� implies

E
0

h
Z�
1

i
=

X
x2Zd

xP (0, x)

=
1

2

X
x2Zd

�
xP (0, x) + (�x)P (0,�x)

�
=

1

2

X
x2Zd

�
xP (0, x) + (�x)P (0, x)

�
= 0.

Finiteness of the mean-squared displacement follows since

E
0

h��Z�
1

��2i = e��
1X
n=0

�n

n!
E

0

h��Z�n ��2i,
where Zn is the simple random walk on Zd. And following the standard calculation,

letting Zn =
Pn

i=1

Yi with Yi ⇠ Z
1

i.i.d.

E
0

⇥
|Zn|2

⇤
=

X
1k,ln

E
⇥
YkYl

⇤
=

nX
k=1

E
⇥
Y 2

k

⇤
= n,

from which

E
0

⇥
|Z

1

|2
⇤
= e��

1X
n=0

�n+1

n!
= �.

Finally considering the covariance matrix, we generalise the argument from above

Cij = E
0

⇥
X

1

(i)X
1

(j)
⇤
= e��

1X
n=0

�n

n!
E

0

⇥
Zn(i)Zn(j)

⇤
,

and

E
0

⇥
Zn(i)Zn(j)

⇤
=

X
1k,ln

E
0

⇥
Yk(i)Yl(j)]

= nE
0

⇥
Y
1

(i)Y
1

(j)]

=
n

d
�i(j),

where the final line follows since Y
1

(i)Y
1

(j) = 0 if i 6= j since in a single step, Z

moves in only one of the coordinate directions, and E
0

⇥
Y
1

(i)Y
1

(i)] = 1/d, since the

coordinate direction in which the walk does move is chosen uniformly amongst the d

available options. The result now follows on substituting back into the exponential
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series.

As a consequence of the fact that the walk Z� is suitably regular, we can apply the

following result from [Spi64], P1 pp.308–10, which we state in the context of the

1-particle reduced density matrix.

Theorem 3.28. Let ⇤N = [�N,N ]d ⇢ Zd, with d � 3. The 1-particle reduced

density matrices �̃N = �̃
⇤N

at chemical potential h% 0 are such that

lim
N!1

�̃N (0, x) =
d

2⇡�
|x|�(d�2) +O

⇣
|x|�d

⌘
.

This result suggests that we cannot see the BEC phenomenon in the grand–canonical

ensemble, at any temperature 1/� > 0, and is a manifestation of the break down

in the equivalence of ensembles at the point of phase transition. To resolve this, we

would need to work with loop soups where the total loop length is fixed: but this

would mean parting ways with the Poissonian nature of the model, which has been

fundamental to our study of the ideal gas.
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Chapter 4

Bosonic Loop Soups Under

Cycle Distribution Hamiltonians

In the preceding chapters our attention has been focused on studying the ideal

Bosonic loop soup, and on understanding the distribution of its occupation field.

In Section 3.3.1, we described how Symanzik’s theorem for the space-time loop

model can be seen as a formulation of the Bosonic loop model interacting with

a space-time random environment. In this chapter we look to study a di↵erent

class of interactions, in which a Hamiltonian reweights configurations according to

interactions between loops.

A Hamiltonian is a mapping H of a configuration of loops S @ �, to the real

numbers, H(S) 2 R, we will be more specific about the form which H takes in the

subsequent sections. Given a Hamiltonian we define the loop soup QH
.

.= QH
�,h,⇤ by

its Radon–Nikodym derivative

dQH

dPB
(·) .

.=
1

ZH
e��H(·), (4.1)

where ZH = ZH
�,h = EB

⇥
e��H

⇤
is the partition function. We write EH to denote

expectation against the loop soup with law QH . If the Hamiltonian is additive, that

isH(S) =
P

�2S H(�), then Campbell’s formula, Lemma 3.1, provides an expression

for the partition function as

ZH = exp

✓
�
Z
�

1� e��H(�)µB(d�)

◆
.

This can in turn be extended to provide an expression for the Laplace transform of
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the occupation field

EH

h
e�hv,Li

i
=

1

ZH

Z
e�hv,Li+�HdPB

=
1

ZH
EB

h
e�hv,Li+�H

i
,

and since both H and L are additive we can apply Campbell’s formula again

=
1

ZH
exp

✓
�
Z
�

1� e�(hv,L(�)i+�H(�))µB(d�)

◆
,

and combining this with the expression for the partition function

= exp

✓Z
e��H(�)

⇣
e�hv,Li � 1

⌘
µB(d�)

◆
. (4.2)

Proposition 4.1. The expected mean occupation under an additive Hamiltonian

H : �! R is given by

EH
⇥
L
⇤
=

1

|⇤|

Z
|�|e��H(�)µB(d�). (4.3)

Proof. The proof follows as an application of (4.2); we note that the desired expec-

tation is given by

EH
⇥
L
⇤
= � 1

|⇤|
d

dv
EH

h
e�v

P
x2⇤ Lx

i���
v=0

.

Considering the derivative

d

dv
EH

h
e�v

P
x2⇤ Lx

i
=

d

dv
exp

✓Z
e��H(�)

⇣
e�v|�| � 1

⌘
µB(d�)

◆
=

✓
d

dv

Z
e��H(�)

⇣
e�v|�| � 1

⌘
µB(d�)

◆
EH

h
e�v

P
x2⇤ Lx

i
=

✓Z
|�|e��H+v|�|µB(d�)

◆
EH

h
e�v

P
x2⇤ Lx

i
.

Unfortunately additive Hamiltonians are limited in their scope: ultimately additivity

implies that the model has only self interactions. These can of course be of interest:

for instance the self-intersection Hamiltonian

H(�) .

.=

Z |�|

0

Z |�|

0

��(s)
�
�(t)

�
dsdt,

however in such a case we cannot expect to be able to solve the integral (4.3).

We consider instead Hamiltonians which are not additive, but which depend on

the geometry of the loop soup to a lesser extent. In particular we will study two

Hamiltonians which depend on the loop soup only through its cycle distribution.
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We recall that this was given in Chapter 2 to be the sequence n = n(S) .

.= (nj)j�1

with

nj
.

.= #{S \ ��j}, (4.4)

with ��j the set of loops of duration �j, j � 1. In the canonical ensemble of N

particles, the cycle distribution is a random partition of the integer N ; this model

has been previously studied in [Ver96, Ada08, Dan11]. In the grand-canonical en-

semble, the sequence n is a random bounded integer sequence. As recorded in the

introduction, similar work has been carried out in [BCMP05] for the cycle distri-

bution, and in [Lew86, vdBLP88] for the momenta distribution for the continuum

mean field model. Our contribution is a rigorous and self contained large deviations

analysis for two lattice mean field models, and focuses on identifying expressions for

the density of the loop soup: this complements the analysis undertaken in Chapter 2

where the density of an ideal gas was studied.

In Corollary 2.6 we saw that for spectrally convergent graph sequences, the re-scaled

cycle counts |⇤|�1nj converge in distribution to a degenerate variable. Our aim now

is to strengthen this result in two regards: namely we consider the distribution of the

entire sequence, rather than the individual entries, and we also provide a rigorous

account of the large deviations principle which was referenced at the conclusion of

Chapter 2. In our present context, the heuristic understanding of an LDP is that

we can find a function I : RN ! [0,1) [ {+1} such that for a set E ⇢ RN, the

probability that the cycle distribution of the loop soup lies in E scales like

P
⇤

[E] ⇠ e�|⇤|I(E).

As we will discuss later in the chapter, the minimizer of the rate function can in

turn be related to the density of the Bose gas.

4.1 The Cycle Distribution of an Ideal Gas

Before studying the mean field models we warm up by describing the LDP for the

ideal gas. Not only will this be an easier setting within which to introduce the

methods we employ, but the result will be relied on when generalising to the case

with interactions.

Central to our large deviations analysis is the choice of measure space on which

we define the law of n, and this proves to be a rather delicate matter. Billingsley

[Bil99], pp.9–10 proposes a metric, d, on the space RN of all real sequences, under

which (RN, d) is Polish. Whilst this is often a su�cient condition for proving LDPs,

the technical lemma (Baldi’s Lemma to be described below) on which our large

deviations analysis depends requires that the space is also a Banach space: which

86



(RN, d) is not. Consequently we turn to the classical sequence spaces, `p(R) which
are Banach spaces for 1  p  1. Our choice is again restricted since Baldi’s Lemma

also requires that the sequence of laws satisfies the exponential tightness property.

We defer the definition of this until later, but remark that this e↵ectively restricts

us to considering our sequences as elements of `
1

(R), the space of all absolutely

convergent sequences. For the most part we hide the technical problems imposed

by this choice of space in Appendix C.

Let m = (mj)j�1

be a summable sequence of positive weights: mj > 0 andP
j�1

mj = M < 1. Denoting Pmj for the law of the Poisson variable with in-

tensity mj , in Appendix C we construct the product measure

Pm
.

.=
1O
j=1

Pmj , (4.5)

on the measure space (`
1

(R),B), where B denotes the Borel �-algebra of `
1

(R).
Choosing the sequence mj = µB

⇤

�
��j

�
, the resulting measure agrees with the law

of the cycle distribution of the Bosonic loop soup,
�
n, PB

⇤

�
. Abusing notation,

throughout this chapter we will let PB
⇤

denote the law of the scaled cycle distribution,

|⇤|�1n. We work under the following assumptions.

A1 A graph sequence (⇤N )N�1

will always denote a spectrally convergent se-

quence. The spectral measure of ⇤N is denoted mN , with limit mN
(d)�! m1.

The associated Bosonic loop measure is µB
N = µB

⇤N
, and the law of the associ-

ated Bosonic loop soup is denoted PB
N = PB

⇤N
.

A2 The inverse temperature is strictly positive, � > 0, and the chemical potential

is strictly negative h < 0. When no subscripts are given, e.g. m,µB,PB then

the results are understood to be in the context of some unspecified graph.

A5 Since we will not make use of the Markov loop measure µ in this section, we

abuse notation and for j � 1 denote

µN
j

.

.= µB
N

�
��j), µ1

j
.

.= lim
N!1

1

|⇤N |µ
N
j , µ1

.

.=
X
j�1

µ1
j .

In light of the previous assumptions all these values exist and are finite. More-

over, when we wish to stress the dependence on the chemical potential h < 0,

we write µN
j (h) etc.

Given a graph sequence (⇤N )N�1

, we say that the sequence of measures PB
N = PB

⇤N

satisfies an LDP with rate function I : `
1

(R) ! R
+

[ {+1} if I 6⌘ +1, is lower

semi-continuous: that is given a sequence t(n) ! t 2 RN then lim inf I(t(n)) � I(t),
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and satisfies

lim sup
N!1

1

|⇤N | logP
B
N [C]  �I(C), C ⇢ `

1

(R) closed,

lim inf
N!1

1

|⇤N | logP
B
N [O] � �I(O), O ⇢ `

1

(R) open.

If in addition the level sets Ca .

.= {t : I(t) = a} are compact then I is said to be a

good rate function. A detailed introduction to large deviations is given in [dH00].

For real valued random variables, a candidate rate function for an LDP is often given

by the Legendre transform of the cumulant generating function. In our context, the

cumulant generating function is given to be

F (t) := lim
N!1

1

|⇤N | logE
B
N

h
e|⇤N |ht,ni

i
, t 2 `1(R), (4.6)

where ht, ni =
P

j�1

tjnj , and `1(R) is chosen as it is the dual space to `
1

(R). After
confirming certain technical requirements, detailed in Lemma 4.2, we will identify

the rate function as the Legendre transform of F

I(x) = sup
t2`1(R)

{ht, xi � F (t)}.

Before proceeding we recall a few definitions. The sequence of measures PB
N is said

to be exponentially tight if for any ↵ > 0, we can find a compact set K = K↵, such

that

lim sup
N!1

1

|⇤N | logP
B
N (K) < �↵.

A function f : `1(R)! R is said to be Gâteaux di↵erentiable if for all t, s 2 `1(R)
the map " 7! f(t+ "s) is di↵erentiable at " = 0. In that case we define the Gâteaux

derivative of f in the direction s to be

df(t ; s) .

.=
d

d"
f(t+ "s)

���
"=0

.

Finally, a function f : `1(R) ! R is said to be lower semi-continuous if for all

sequences t(n) ! t 2 `1(R) then

lim inf
n!1

f
�
t(n)

�
� f(t).

Our LDP relies on confirming the criteria of the following result, which holds in the

more general context of measures on Banach spaces, [DZ98] pp.160–1.

Lemma 4.2 (Baldi’s Theorem). Suppose PB
N is an exponentially tight sequence of

measures on `
1

(R). Let F (t) be as in (4.6), and suppose that it exists and is finite
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for bounded t 2 `1(R), the dual space of `
1

(R). If F is Gâteaux di↵erentiable, and

lower semi-continuous on `1(R), then PB
N satisfies an LDP with rate function

I(x) = sup
t2`1(R)

�
ht, xi � F (t)

 
. (4.7)

In the following results we confirm the requisite conditions of Lemma 4.2, starting

by proving exponential tightness of the measures. Of course this requires us to find

suitable sets K↵ which satisfy the definition, which calls on a combination of both

probabilistic and topological intuition. In the following proof we provide a suitable

family of sets, but defer the proof that they are compact in `
1

(R) to Lemma C.3,

since the proof somewhat distracts from the flow of the probabilistic argument.

Proposition 4.3. PB
N is an exponentially tight sequence of measures.

Proof. Suppose we can find a sequence x = x(↵) 2 `
1

(R) such that for all j � 1

lim sup
N!1

1

|⇤N | logP
B
N

⇥
|⇤N |�1nj > xj

⇤
< �2�j↵, (4.8)

and define the set Kx
.

.= {y 2 `
1

(R) : |yj |  |xj | 8j � 1}. Then, by independence of

the nj

lim sup
N!1

1

|⇤N | logP
B
N (Kc

x) = lim sup
|⇤N |!1

1

|⇤N |
X
j�1

logPB
N

⇥
|⇤N |�1nj > xj ] < �↵.

Appealing to Lemma C.3 in the appendix, we assert that such a set is compact, and

hence the above assures that PB
N is an exponentially tight sequence. Subsequently,

our focus is on constructing such a sequence x. Fixing j � 1, we derive a suitable

candidate for xj = xj(↵) via a Cherno↵ bound. For all constants c � 0, and t � 0

PB
N

⇥
|⇤N |�1nj > c

⇤
= PB

N

h
etnj/|⇤| > etc

i
 e�tcEB

N

h
etnj/|⇤|

i
,

where we have applied Markov’s inequality. The remaining expectation is none other

than the moment generating function of a Poisson variable with mean µN
j

= exp
⇣
� tc

⌘
exp

⇣
µN
j (et/|⇤| � 1)

⌘
.

The inequality above holds for all t � 0, and di↵erentiating in t we obtain the

minimum at t⇤ = |⇤N | log(c|⇤N |/µN
j ). Hence

PB
N

⇥
|⇤N |�1nj > c

⇤

 
c|⇤N |
µN
j

!�|⇤N |c

exp
⇣
|⇤N |c� µN

j

⌘
.
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And taking the limit in N !1

lim sup
N!1

1

|⇤N | logP
B
N [|⇤N |�1nk 2 Kc

j ]

 c� c log c� lim sup
N!1

⇢
1

|⇤N |µ
N
j � c log(µN

j /|⇤N |)
�
.

Appealing to A1, we have |⇤N |�1µN
j ! µ1

j . And so

= c� µ1
j � c log(c/µ1

j ).

We note that for c > 0, the map

c 7! c� µ1
j � c log(c/µ1

j )� 2�j↵,

is di↵erentiable, decreasing and has a unique zero c⇤j . Consequently (4.8) holds for

any xj > c⇤j . It remains to show that xj can be chosen so that
P

j�1

|xj | < 1. If

we choose xj = c⇤j + 2�j , then
P

j�1

xj = 1 +
P

j�1

c⇤j , subsequently is su�ces to

check summability of c⇤j . Since the c⇤j solve

c⇤j
�
1� log(c⇤j/µ

1
j )
�
= µ1

j � 2�j↵,

then summing over j � 1, the right hand side is convergent andX
j�1

c⇤j
�
1� log(c⇤j/µ

1
j )
�
= µ1 � ↵ <1.

Suppose, for a contradiction, that
P

j�1

c⇤j = 1, then for the left hand side of the

above equation to converge, we require 1 � log(c⇤j/µ
1
j ) ! 0, and consequently we

have c⇤j/µ
1
j ! e1, as j ! 1. In particular there is a J � 1 such that for j � J ,

c⇤j/µ
1
j < 3, and hence X

j�J

c⇤j  3
X
j�J

µ1
j < 3µ1,

which is a contradiction. In particular
P

j�1

c⇤j <1, as required.

We now turn to the cumulant generating function.

Proposition 4.4. The limit cumulant generating function (4.6) exists and is given

by

F (t) =
X
j�1

µ1
j e

tj � µ1 <1, t 2 `1(R).

Moreover, F is Gâteaux di↵erentiable, lower semi-continuous, and strictly convex.
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Proof. Using independence of the nj we write

1

|⇤N | logE
B
N

h
e|⇤N |ht,ni

i
=

1

|⇤N |
X
j�1

logEB
N

h
e|⇤N |tjnj

i

=

0@X
j�1

1

|⇤N |µ
N
j e

tj

1A�
0@X

j�1

1

|⇤N |µ
N
j

1A.

Both sets of summands are positive, and have limits as N ! 1. Subsequently

Fatou’s lemma ensures that we can interchange the summation and limit (note that

in this instance Fatou’s lemma gives equality since the limsup and liminf agree)

F (t) = lim
|⇤|!1

1

|⇤|
X
j�1

logEB
N

h
e|⇤|tjnj

i

=

0@X
j�1

µ1
j e

tj

1A�
0@X

j�1

µ1
j

1A
=
X
j�1

µ1
j (e

tj � 1).

Since t 2 `1(R) is bounded we can choose T = supj�1

tj , and then

 µ1(eT � 1).

confirming that F (t) is finite.

To confirm Gateaux di↵erentiability, let t, s 2 `1(R), and consider

d

d"
F (t+ "s) =

X
j�1

µ1
j sje

tj+"sj <1.

In particular the derivative is defined at " = 0, and hence F is Gateaux di↵erentiable.

Lower semi-continuity is an immediate consequence of Fatou’s lemma since for any

sequence t(n) ! t, then

lim inf
n!1

X
j�1

µ1
j (e

t
(n)
j � 1) �

X
j�1

µ1
j (e

tj � 1) = F (t).

Finally we see that F is strictly convex since for any distinct t, s 2 `1(R), and

� 2 [0, 1]

F
�
�s+ (1� �)t

�
=
X
j�1

µ1
j e

�sj+(1��)tj � µ1.
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Considering each term of the sum individually, since the exponential function is

convex

< �
X
j�1

µ1
j e

sj + (1� �)
X
j�1

µ1
j e

tj � µ1

= �F (s) + (1� �)F (t).

This pair of propositions confirm that the sequence PB
N satisfies the conditions of

Baldi’s theorem. We complete the derivation of the LDP by solving the variational

problem (4.7), for which we analyse the zeros of the Gateaux derivative. In particular

we appeal to the following result of convex analysis.

Lemma 4.5. Let f : `
1

(R
+

)! R be strictly convex and Gâteaux di↵erentiable. The

point x 2 int `
1

(R
+

) is the unique minimum of f if and only if df(x; y) = 0 for all

y 2 `
1

(R).

That the minimum is unique (if it is achieved at all) is a consequence of strict

convexity. A proof of the lemma is given in Appendix C see Proposition C.4 and

Lemma C.5. In the above we can of course interchange convex functions for concave,

with minima being changed for maxima in the statement. It is in this form that

we use the lemma to derive the following expression for the large deviation rate

function.

Theorem 4.6. The sequence PB
N satisfies an LDP with rate |⇤N | and good rate

function I : `
1

(R)! R [ {+1} given by

I(x) =

8<:
P

j�1

xj log
⇣

xj

µ1
j

⌘
�
P

j�1

xj + µ1 , x 2 `
1

(R
+

),

+1 , else.
(4.9)

Proof. As already remarked, Propositions 4.3 and 4.4 confirm the conditions of

Baldi’s Theorem, Lemma 4.2; it remains to derive (4.9) from the variational problem

(4.7).

Let Gx(t) .

.= hx, ti � F (t) denote the functional which we wish to maximize. We

consider first the case x 2 `
1

(R)\`
1

(R
+

); let j be such that xj < 0, and consider

t0 = t0(x) = (0, . . . , t, 0, . . .) 2 `1(R), the sequence with all entries equal to 0 except

in the j-th position. Then

sup
t2`1(R)

Gx(t) � sup
t02R

Gx(t
0)

= sup
t02R

xjt
0 � µ1

j e
t0 + µ1

Taking t0 ! �1, since xj < 0 the above diverges to +1.

For the remaining case, note that strict convexity of F implies that Gx is strictly
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concave. We find the supremum of Gx by computing the Gâteaux derivative dGx

dGx(t; s) =
X
j�1

sj
�
xj � µ1

j e
tj
�
,

and setting t⇤j = log(xj/µ1
j ), then dGx(t⇤; s) = 0, for all s 2 `1(R). Hence accord-

ing to Lemma 4.5, Gx is maximised at t⇤, and so for x 2 `
1

(R
+

)

I(x) = Gx(t
⇤)

=
X
j�1

xj
�
log

�
xj/µ

1
j

�
� 1

�
+ µ1.

The following corollary proves our intuition that the minimiser of the rate function

provides the ‘mean’ sequence of the cycle structure |⇤|�1nj , in the limit |⇤| ! 1,

where we recall that in Corollary 2.6 we already saw that E
⇤

⇥
|⇤|�1nj

⇤
! µ1

j . The

proof provides a template which we will follow when finding the minimisers of the

rate function of an LDP with interactions.

Corollary 4.7. The rate function I(x) given by (4.9) is strictly convex on `
1

(R
+

),

positive, and has a unique zero (and hence minimum) at x⇤ = (x⇤j )j�1

given by

x⇤j = µ1
j .

Proof. We confirm that I is strictly convex on `
1

(R
+

) by checking that each term

of the summation over j � 1 is convex. i.e. xj 7! xj log(xj/µ1
j ) � xj is convex for

xj � 0, j � 1. Then since I is a linear combination of strictly convex functions, it

follows that I too is strictly convex. That each of the individual terms is convex is

immediate on checking that the second derivative is positive.

The Gâteaux derivative of I is given by

dI(x; y) .

.=
d

d"
I(x+ "y)

���
"=0

=
⇣P

j�1

yj log
xj+"yj
µ1
j

⌘���
"=0

=
X
j�1

yj
�
log xj � logµ1

j

�
,

setting x⇤j = µ1
j , then clearly dI(x⇤; y) = 0 for all y 2 `

1

(R).

Recognising the values of x⇤j to be exactly the mean number of �j loops, calculated

in Corollary 2.6, we obtain a new expression for the density of the ideal gas as

⇢(�, h) =
X
j�1

jx⇤j . (4.10)

In the following section we introduce two models for the cycle distribution under a
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Hamiltonian, and apply (4.10) to derive an expression for the density.

4.2 Mean Field Hamiltonians

We move away from the study of the ideal gas, and introduce two Hamiltonians

which are of interest: the particle mean field Hamiltonian denoted HPMF
⇤

, and the

cycle mean field Hamiltonian, HCMF
⇤

, which are defined as

HPMF
⇤N

(x) .

.=
1

2|⇤N |

0@X
j�1

jxj

1A2

,

HCMF
⇤N

(x) .

.=
1

2|⇤N |

0@X
j�1

xj

1A2

.

The factor of 1/2 present in the above is chosen to simplify later expressions, and

corresponds to fixing the interaction strength of the model to 1, [BCMP05]. The

Hamiltonian HPMF has been previously studied in [BCMP05] where the authors

employ a large deviations analysis to study the occurrence of long loops in the Bose

gas, supporting the arguments of [Süt93, Süt02] that Bose–Einstein condensation is

equivalent to the occurrence of infinite cycles. In turn their work is developed from

earlier studies [Lew86, vdBLP88] which work with the classical momentum-space

description of the Bose gas. In this case they work with integer sequences (ñj)j�1

,

with ñj corresponding to the number of particles in the j-th energy level, and prove

the existence of BEC by studying the occupancy of the ground state. Our aim in

the following is to make the large deviations analysis for the cycle structure more

transparent, and to focus on deriving explicit formulae for the density of the Bose

gas under the mean field models.

LetQPMF
N , QCMF

N be the change of measures induced byHPMF andHCMF respectively,

as in (4.1). In the case of the particle mean field model, configurations are down-

weighted according to the total particle number, or density, of the Bose gas. On the

other hand, the cycle mean field penalises configurations which have many cycles,

but does not di↵erentiate between the length of these cycles: this model is specific

to the functional integral description which we have followed throughout this work.

We consider first the cycle mean field model.

4.2.1 The Cycle Mean Field Model

We will see that the LDP for the sequence QCMF
N can be obtained from that of the

ideal gas as an application of Varadhan’s lemma, which we state below.

Lemma 4.8 (Varadhan). Suppose PB
N satisfies an LDP on `

1

(R) with rate function
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I, and let H : `
1

(R)! R be continuous and bounded below. Then

lim
N!1

1

|⇤N | logE
B
N

h
e�|⇤N |�H

i
= � inf

y2`1(R)

�
�H(y) + I(y)

 
. (4.11)

Moreover, the sequence
⇣
Q|⇤N |H

⇤

⌘
N�1

satisfies an LDP on `
1

(R) with rate function

IH(x) = �H(x) + I(x)� inf
y2`1(R)

�
�H(y) + I(y)

 
. (4.12)

See [dH00], pp.32–4; the second statement follows from the first, and is known

as the tilted LDP. Before we can apply Varadhan’s lemma, we must massage the

Hamiltonian into a form which resembles that in Lemma 4.8. To this end, we note

that we can rewrite

HCMF
⇤N

(n) =
|⇤N |
2

0@X
j�1

|⇤N |�1nj

1A2

=.

. |⇤N |HCMF
�
|⇤N |�1n

�
. (4.13)

That is we have replaced the (graph dependent) Hamiltonian HCMF
⇤N

with the scale-

free Hamiltonian HCMF given by

HCMF (x) .

.=
1

2

⇣P
j�1

xj
⌘
2

.

Proposition 4.9. The Hamiltonian HCMF : `
1

(R)! R is bounded below, and con-

tinuous.

Proof. Clearly HCMF is bounded below by 0. To see that it is sequentially con-

tinuous, and hence continuous, let x(n) ! x be a convergent sequence in `
1

(R),
limn!1

P
j�1

|x(n)j � xj | = 0. The function S(x) .

.=
P

j�1

xj is continuous since���S�x(n)�� S
�
x
���� = lim

n!1

���Pj�1

x(n)j �
P

j�1

xj
���

 lim
n!1

X
j�1

��x(n)j � xj
��

= 0.

Hence HCMF is continuous as it is a composition of continuous functions: HCMF =

T � S, where T : R! R is simply T (x) = x2.

In light of this, we are in a position to apply Varadhan’s lemma to derive the LDP

for the sequence QCMF
N .

Theorem 4.10. The sequence QCMF satisfies an LDP on `
1

(R) with rate |⇤N |, and
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rate function

ICMF (x) =

8>>><>>>:
�
⇣P

j�1

xj
⌘
2

+
⇣P

j�1

xj log
xj

µ1
j
� xj

⌘
+ 1

�W (�µ1) + 1

2�W (�µ1)2 , x 2 `
1

(R
+

)

+1 , else,

where W denotes the Lambert-W function, defined by the relation z = W (z)eW (z)

for z � 0. In particular ICMF is strictly convex on `
1

(R
+

), positive, and has a

unique zero at x⇤ = (x⇤j )j�1

given by

x⇤j
..= µ1

j

W (�µ1)

�µ1
. (4.14)

Proof. Appealing to (4.13) and Proposition 4.9, as well as the fact that we have

already established an LDP for the measures PB
N in Theorem 4.6, the sequence of

measures QCMF
⇤

satisfy the requirements of Varadhan’s lemma.

It remains to solve the variational problem (4.12). Let F (y) .

.= �HCMF (y) + I(y)

be the function which we want to minimize, and I the rate function for PB
N , given

in (4.9). Written explicitly

F (y) =

8<:
�
2

⇣P
j�1

yj
⌘
2

+
P

j�1

⇣
yj log

⇣
yj
µ1
j

⌘
� yj

⌘
+ µ1 , y 2 `

1

(R
+

)

+1 , else.
(4.15)

Note that for x, y 2 `
1

(R) and � 2 [0, 1] then

HCMF (�x+ (1� �)y) = 1

2

0@�X
j�1

xj + (1� �)
X
j�1

yj

1A2

,

and since x 7! x2 is strictly convex throughout R

 �

2

0@X
j�1

xj

1A2

+
1� �
2

0@X
j�1

yj

1A2

,

so that HCMF is convex on `
1

(R). Having previously shown that �I is strictly

convex on `
1

(R
+

), Corollary 4.7, then F (and subsequently ICMF ) is strictly convex

on `
1

(R) as it is a sum of a convex and strictly convex function. We proceed to find

the minimizer of F by calculating the Gâteaux derivative on `
1

(R
+

)

dF (x; y) .

.=

⇢
�
2

d

d"

⇣P
j�1

xj + "yj
⌘
2

+
P

j�1

yj log
xj+"yj
µ1
j

����
"=0

= �
⇣P

j�1

yj
⌘⇣P

j�1

xj
⌘
+
P

j�1

yj log
xj

µ1
j
.
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To find a candidate x⇤ for which dF (x⇤; y) = 0 for all y 2 `
1

(R
+

) we require

log
x⇤
j

µ1
j

= �c,

for some constant c 2 R, i.e. x⇤j = µ1
j e

�c. Factoring out the summation over the yj

dF (x⇤; y) =
⇣P

j�1

yj
⌘⇣
�
P

j�1

x⇤j � c
⌘
.

The above is equivalent to 0 for all y if and only if �
P

j�1

x⇤j = c, that is

�
X
j�1

µ1
j e

�c = �µ1e�c = c.

Recalling that for z > 0 the Lambert-W function at z is defined by the relation

z = W (z)eW (z) [Wri59], then we have c = W (�µ1). Consequently using the identity

e�W (z) = z�1W (z)

x⇤j = µ1
j e

�W (�µ1
)

= µ1
j

W (�µ1)

�µ1
,

as claimed. To derive the expression for the rate function we evaluate the following

expressions

X
j�1

x⇤j =
1

�
W (�µ1).

X
j�1

x⇤j log
x⇤j
µ1
j

=
W (�µ1)

�µ1
log

W (�µ1)

�µ1

X
j�1

µj

=
W (�µ1)

�
log

W (�µ1)

�µ1

= �W (�µ1)2

�
.

Substituting into (4.15)

F (x⇤) = µ1 � 1

2�
W (�µ1)2 � 1

�
W (�µ1),

from which the identity for ICMF now follows immediately.

Recalling the discussion below Corollary 4.7, we derive an expression for the density

of Bosonic loop soup under the cycle mean field Hamiltonian. As with the discussion

of the density of the ideal gas in Section 2.2, we interchangeably write ⇢CMF =

⇢CMF (�, h) = ⇢CMF (�) = ⇢CMF (h), including and excluding the arguments as is

relevant to the context. In the following we write µ1
h = µ1(h) for ease of reading.
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Corollary 4.11. The density of the Bose gas under the Hamiltonian HCMF is given

by

⇢CMF (h) = e�W (�µ1
(h))⇢(h),

where ⇢ denotes the density of the ideal gas. Consequently,

1. ⇢CMF (h) is monotone increasing in h < 0.

2. ⇢CMF
c (�) ..= limh%0

⇢CMF (�, h) exists and is finite whenever ⇢c(�) < 1. In

particular

⇢CMF
c (�) = w(�)⇢c(�).

with w(�) = limh%0

exp(�W (�µ1)).

Proof. Employing (4.10), and the formula for x⇤, (4.14)

⇢CMF =
X
j�1

jx⇤j

=
W (�µ1)

�µ1

X
j�1

jµ1
j

= e�W (�µ1
)⇢,

with ⇢ = ⇢(�, h) the density of the ideal gas.

We will employ the following formula for the derivative of W : R
+

! R

d

dz
W (z) =

W (z)

z(1 +W (z))

which holds for all z 6= �e�1, and for di↵erentiable f, g : R ! R, combining this

with the product and chain rules so long as f(z) 6= �e�1

⇣
e�W (f)g

⌘0
= e�W (f)

✓
g0 � gf 0W (f)

f(1 +W (f))

◆
, (4.16)

where we drop the z-dependence for clarity. Now, fixing � > 0, and writing µ1 =

µ1
h , ⇢

CMF = ⇢CMF (h) then (4.16) gives

d

dh
⇢CMF (h) = e�W (�µ1

h )

 
⇢0h �

⇢h�(µ1
h )

0W (�µ1
h )

�µ1
h

�
1 +W

�
�µ1

h

��!

= e�W (�µ1
h )

 
⇢0h �

⇢h(µ1
h )

0W (�µ1
h )

µ1
h

�
1 +W

�
�µ1

h

��!.

Since the prefactor of exp(�W (�µh)) > 0, we require that the bracketed term is
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also positive, which is equivalent to

⇢0hµ
1
h (1 +W (�µ1

h )) > ⇢h(µ
1
h )

0W (�µ1
h ).

Further, if we expand the brackets on the left-hand side, then since ⇢0hµ
1
h > 0 (be-

cause ⇢h is increasing in h, and µ1
h is positive) it su�ces to show that ⇢0hµ

1
h W (�µ1

h ) >

⇢h(µ1
h )

0W (�µ1
h ) or

⇢0hµ
1
h > ⇢h(µ

1
h )

0. (4.17)

Note that

(µ1
h )

0 =
d

dh

0@ lim
|⇤N |!1

X
x2⇤

X
j�1

e�hj

j
P�j

x

1A
=
X
j�1

✓
d

dh

e�hj

j

◆
lim

|⇤N |!1

X
x2⇤

P�j
x

= �
X
j�1

e�hj lim
|⇤N |!1

X
j�1

P�j
x

Letting m1
j = lim|⇤N |!1

P
x2⇤P�j

x , which was seen to converge in Chapter 2,

= �
X
j�1

e�hjm1
j (4.18)

= �⇢(h).

A similar computation for the density yields

⇢0h = �
X
j�1

je�hjm1
j . (4.19)

Using the power series representations of µ1
h , (µ

1
h )

0 and ⇢0h we have

⇢0hµ
1
h = �

0@X
j�1

je�hjm1
j

1A0@X
j�1

e�hj

j
m1

j

1A
= �

X
j�1

⇣
e�hjm1

j

⌘
2

+ �
X
i<j

✓
i

j
+

j

i

◆
e�h(i+j)m1

i m
1
j
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where the sum runs over all pairs of integers 1  i < j  1, and given that

i/j + j/i > 2 for all such pairs

> �
X
j�1

⇣
e�hjm1

j

⌘
2

+ �
X
i<j

2e�h(i+j)m1
i m

1
j

= �

0@X
j�1

e�hjm1
j

1A2

= ⇢h(µ
1
h )

0,

which is inequality (4.17).

4.2.2 The Particle Mean Field Model

We now turn to analyse the large deviations for the particle mean field model; as

with the cycle mean field model we can reformulate the Hamiltonian HPMF
⇤N

so as to

be scale independent

HPMF
⇤N

(n) =
|⇤N |
2

0@X
j�1

|⇤N |�1jnj

1A2

=.

. |⇤N |HPMF(|⇤N |�1n), (4.20)

with

HPMF(x) .

.=
1

2

⇣P
j�1

jxj
⌘
2

.

Whilst on first inspection it would appear as though the analysis follows from a

similar application of Varadhan’s lemma, this is not quite the case. To see this, we

note that HPMF is no longer continuous as a function from `
1

(R) to R. For instance,
considering the sequence x(n) with x(n)j = 1/(nj2), then we have x(n) ! 0, the

sequence of all zeros, since

lim
n!1

��P
j�1

x(n)j � 0
�� = limn!1

⇡2

6n = 0.

On the other hand

lim
n!1

��HPMF
�
x(n)

�
�HPMF

�
0
��� = lim

n!1

���1
2

⇣P
j�1

1

nj

⌘
2

� 0
��� =1.

We can however establish lower semi-continuity.

Proposition 4.12. The Hamiltonian HPMF : `
1

(R) ! R [ {+1} is bounded below

and lower semi-continuous.

Proof. It is clear that HPMF is bounded from below by 0. To see lower semi-

continuity, note that if x(n) ! x in `
1

(R), then we have for each j � 1: x(n)j ! xj ,
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and consequently jx(n)j ! jxj . Then applying Fatou’s lemma

lim inf
n!1

X
j�1

jx(n)j �
X
j�1

jxj ,

and since the map T (x) = x2 is continuous

lim inf
n!1

HPMF
�
x(n)

�
=

1

2
T
⇣
lim infn!1

P
j�1

jx(n)j

⌘
� 1

2
T
⇣P

j�1

jxj
⌘

= HPMF(x),

which is to say that HPMF is lower semi-continuous.

Lower semi-continuity is su�cient to prove ‘half’ of the equality in Varadhan’s

lemma, (4.11). We state the following proposition as it applies in our context;

a general proof is given in [DZ98] Lemma 4.3.6 pp.138-9.

Proposition 4.13. Let I denote the rate function for the sequence
�
PB
N

�
N�1

. The

Hamiltonian HPMF satisfies the upper bound

lim sup
N!1

1

|⇤N | logE
B
N

h
e�|⇤N |�HPMF

i
 � inf

y2`1(R)

�
�HPMF(y) + I(y)

 
.

Appealing to the tilted LDP, the second part of Lemma 4.8, the LDP for QPMF
N will

follow if we can establish the corresponding lower bound

lim inf
N!1

1

|⇤N | logE
B
N

h
e�|⇤N |�HPMF

i
� � inf

y2`1(R)

�
�HPMF(y) + I(y)

 
. (4.21)

Since the derivation of this will be done in several steps, we outline the programme

below. Fixing J � 1, we derive an LDP for the truncated cycle distribution (nj)Jj=1

,

first in the case of the ideal gas, Proposition 4.15, and then for the particle mean field

model, Lemma 4.16. The latter will follow by a standard application of Varadhan’s

lemma. Following an argument of [ACK11], we then demonstrate that the left

hand side of (4.21) is in fact bounded from below by the equivalent statement for

the truncated sequences. In the truncated case we already know that Varadhan’s

lemma is satisfied, and optimising over J � 1 we obtain the desired expression on

the right hand side of (4.21), Theorem 4.18.

For J � 1, define the projection map ⇡J : `1(R) ! RJ which takes the first J

coordinates of x 2 `
1

(R)

⇡J(x) .

.= (x
1

, . . . , xJ) 2 RJ .

We note that ⇡J is continuous, since if x(n) ! x in `
1

(R), then we have point-

wise convergence x(n)j ! xj , for all j � 1, and consequently
�
x(n)
1

, . . . , x(n)J

�
!

(x
1

, . . . , xJ) in RJ . Let PB
N,J be the law of the properly scaled truncated cycle

distributions |⇤N |�1(n
1

, . . . , nJ), which is obtained from PB
N via the pushforward
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measure PB
N,J [ · ] ..= PB

N

⇥
⇡�1

J ( · )
⇤
.

To establish an LDP for PB
N,J we will need the contraction principle for LDPs. In

our context this reads.

Lemma 4.14 (Contraction Principle). Let F : `
1

(R) ! Rn be a continuous map,

then the sequence of pushforward probability measures
�
PB
N

⇥
F�1( · )

⇤�
N�1

satisfies

an LDP with rate |⇤N | and rate function

IF (y) ..= inf
x2`1(R) : F (x)=y

I(x),

where I is the rate function for the sequence
�
PB
N

�
N�1

, given by (4.9).

See [dH00] Theorem III.20 p.35.

Proposition 4.15. For J � 1, the sequence PB
N,J satisfies an LDP on RJ with rate

|⇤N |, and rate function

IJ(x) =

8<:
PJ

j=1

⇣
xj log

⇣
xj

µ1
j

⌘
� xj + µ1

j

⌘
, x 2 RJ

+

+1 , else.

Proof. Since ⇡J : `1(R)! RJ is continuous, we are in a position to apply the contrac-

tion principle, Lemma 4.14, which asserts that PB
N,J satisfies an LDP, and identifies

the rate function IJ as

IJ(x) .

.= inf
y2`1(R) : ⇡J (y)=x

I(y),

with I the rate function of the sequence PN , given in (4.9).

If x 2 RJ\RJ
+

, then any element y 2 `
1

(R) with ⇡J(y) = y is such that y 2
`
1

(R)\`
1

(R
+

), and hence I(y) = +1. This establishes the identity for x 2 RJ\RJ
+

.

Now suppose that x 2 RJ
+

; a similar argument to the above allows us to only

consider those y 2 `
1

(R) with positive entries, since any y with a negative entry has

I(y) = +1, and hence will not be a candidate for the infimum. So let y 2 `
1

(R
+

)

with ⇡J(y) = x. We write

I(y) =
JX

j=1

yj

 
log

yj
µ1
j

� 1

!
+
X
i>J

yi

✓
log

yi
µ1
i

� 1+

◆
+ µ1

=
JX

j=1

xj

 
log

xj
µ1
j

� 1

!
+
X
i>J

yi

✓
log

yi
µ1
i

� 1

◆
+ µ1,

where the first and last terms are constant, so it su�ces to minimise only the second

sum, which we do term wise. In particular we look to minimise an expression of

the form y 7! y
�
log y

m � 1 +m
�
, which on di↵erentiating is seen to have its unique
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minimum at y⇤ = m. Consequently the infimum is given by the sequence y⇤ with

y⇤j = xj , for j  J and y⇤j = µ1
j for j > J . Hence

IJ(x) = I(y⇤) =
JX

j=1

xj

 
log

xj
µ1
j

� 1

!
�
X
j>J

µ1
j + µ1,

which is exactly as desired.

Now let HPMF
J : RJ ! R [ {+1} denote the truncated Hamiltonian

HPMF
J (x) .

.=
1

2

⇣PJ
j=1

jxj
⌘
2

.

Since RJ is finite dimensional we no longer have any problems with continuity of

HPMF, which is now immediate as it is obtained from elementary combinations of

continuous functions. Following the notation above, we let QPMF
N,J denote the law of

the truncated cycle sequence with Radon–Nikodym derivative

dQPMF
N,J

dPB
N,J

( · ) .

.=
1

ZPMF
N,J

e��H
PMF
J ( · ).

Lemma 4.16. For J � 1, the sequence QPMF
N,J satisfies an LDP on RJ with rate

|⇤N |, and rate function

IPMF
J (x) =

8<:
�
2

⇣PJ
j=1

jxj
⌘
2

+
PJ

j=1

xj
⇣
log

⇣
xj

µ1
j

⌘
� 1

⌘
+AJ , x 2 RJ

+

+1 , else,

where AJ is the constant

AJ =
c2J
2�

+
JX

j=1

µ1
j

⇣
h� cJ

�

⌘
, (4.22)

and cJ is the unique solution to

JX
j=1

jµ1
j

⇣
h� cJ

�

⌘
=

cJ
�
.

Proof. As a consequence of the continuity of the truncated Hamiltonian HJ , it

is immediate from Varadhan’s lemma, Lemma 4.8 that QPMF
N,J satisfies an LDP. It

remains to solve the variational problem for IJ , (4.12). As in the case for the ideal

gas, when y 62 RJ
+

, then the rate function is easily seen to be IPMF
J (x) = +1.

Let F (y) .

.= �HPMF
J (y)+IJ(y); since RJ is now a finite dimensional space, the theory

of Gâteaux derivatives is now replaced with the equivalent theory for directional
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derivatives. We maintain the notation established elsewhere, and compute

dF (x; y) = �
⇣PJ

j=1

jyj
⌘⇣PJ

j=1

jxj
⌘
+
PJ

j=1

yj log
xj

µ1
j
.

Considering x⇤ = (x⇤j )j�1

of the form x⇤j = µ1
j e

�cj we can write

dF (x⇤; y) = �
⇣PJ

j=1

jyj
⌘⇣PJ

j=1

jx⇤j

⌘
� c

⇣PJ
j=1

jyj
⌘

=
⇣PJ

j=1

jyj
⌘n
�
⇣PJ

j=1

jx⇤j

⌘
� c

o
,

which is equal to 0 for all y 2 `
1

(R
+

) if and only if �
PJ

j=1

jx⇤j = cJ > 0, noting

that cJ > 0 must be the case since x⇤j 2 RJ
+

. Substituting the expression for x⇤j the

required condition becomes

JX
j=1

jµ1
j e

�jcJ =
cJ
�
. (4.23)

Recalling that the definition of µN
j , for finite N � 1, was given to be µN

j = µN
j (h) =

1

j e
�h
P

x2⇤N
Px[X�j = x], we can absorb the term e�jcJ into the measure with a

change in the chemical potential:

µN
j (h)e

�jcJ = µN
j (h� cJ/�).

Note that since cJ > 0, we have that h�cJ/� < 0 so that the left hand side remains

well defined. Carrying this through to the limit we have

JX
j=1

jµ1
j (h)e

�jcJ =
JX

j=1

jµ1
j

⇣
h� cJ/�

⌘
=.

. ⇢J
⇣
h� cJ

�

⌘
,

where the right hand side is the density of loops of length  J in the ideal gas.

Returning to (4.23), we are thus looking to confirm that there is a cJ > 0 which

solves

⇢J

✓
h� cJ

�

◆
=

cJ
�
.

It is immediate from the definition of ⇢J above that the map c 7! ⇢J(h � c/�) is

continuous, strictly decreasing, and has limit 0 as c!1, from which the existence

of a unique fixed point cJ is guaranteed. Finally we evaluate F (x⇤), from (4.23)

�HJ(x
⇤) =

�

2

0@ JX
j=1

jµ1
j e

�jcJ

1A2

=
�

2

✓
cJ
�

◆
2

=
c2J
2�

,
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whilst

IJ(x
⇤) =

JX
j=1

µ1
j e

�jcJ log(e�jcJ )� µje
�jcJ +

JX
j=1

µ1
j

= �cJ
JX

j=1

jµje
�jcJ �

JX
j=1

µ1
j e

�jcJ +
JX

j=1

µ1
j

= �c2J
�
�

JX
j=1

�
µ1
j (h)� µ1

j (h� cJ/�)
�
,

so that

F (x⇤) =
JX

j=1

�
µ1
j (h)� µ1

j (h� cJ/�)
�
� c2J

2�

= �AJ +
JX

j=1

µ1
j (h),

from which we obtain the formula for IPMF
J .

Having established the LDP for the truncated cycle distributions, we are now in a

position to derive a lower bound for the LDP on the full cycle distribution.

Proposition 4.17. For J � 1, let AJ be as given in (4.22). Then

lim inf
N!1

1

|⇤N | logE
B
N

h
e�|⇤N |�HPMF

i
� lim sup

J!1
AJ .

Proof. Let RJ ⇥ 0 ⇢ `
1

(R) be the subset of sequences which are 0 after at most

their first J entries, that is x 2 RJ ⇥ 0 if and only if xj = 0, j > J . This set is

immediately seen to be closed in `
1

(R), and hence is measurable. Consequently we

can write

EB
N

h
e�|⇤N |�HPMF

i
� EB

N

h
e�|⇤N |�HPMF1{RJ⇥0}

i
= EB

N

h
e�|⇤N |�HPMF

J 1{RJ⇥0}

i
,

where we used the shorthand
�
RJ ⇥ 0

 
=
�
n 2 RJ ⇥ 0

 
to denote the event that

their are no loops in the soup S with length greater than �J , and then noted that

on this event we can replace H with HJ .

The Hamiltonian HJ only a↵ects the first J entries in any x 2 `
1

(R), so that in this

expectation the additional entries xj , j > J , remain independent. Hence

EB
N

h
e�|⇤N |�HPMF

J 1{RJ⇥0}

i
=

0@Z
RJ

e�|⇤N |�HPMF
J (y)

JO
j=1

PµN
j
(dyj)

1A0@Z Y
j>J

1{yj=0}
O
j>J

PµN
j
(dyj)

1A,
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where PµN
j

are independent Poisson distributions with mean µN
J . Consequently the

latter of the two terms simplifies to give

=

0@Z
RJ

e�|⇤N |�HPMF
J (y)

JO
j=1

PµN
j
(dyj)

1A exp

0@�X
j>J

µN
j

1A.

Moreover, since the integrand in the first term depends only on the first J entries,

we can reintroduce the integration against the full measure

= EB
N

h
e�|⇤N |�HPMF

J (y)
i
exp

0@�X
j>J

µN
j

1A
= EB

N,J

h
e�|⇤N |�HPMF

J (y)
i
exp

0@�X
j>J

µN
j

1A.

Therefore we have

EB
N

h
e�|⇤N |�HPMF

i
� EB

N,J

h
e�|⇤N |�HPMF

J (y)
i
exp

0@�X
j>J

µN
j

1A,

and taking the appropriate limit infimum

lim inf
N!1

1

|⇤N | logE
B
N

h
e�|⇤N |�HPMF

i
� lim inf

N!1

1

|⇤N | logE
B
N,J

h
e�|⇤N |�HPMF

J (y)
i

� lim sup
N!1

1

|⇤N |
X
j>J

µN
j .

Since we have already established the LDP for the sequence of measures QPMF
N,J by

Varadhan’s lemma, the first term is given exactly by AJ

= AJ � lim sup
N!1

1

|⇤N |
X
j>J

µN
j

= AJ �
X
j>J

µ1
j .

Since
P

j>J µ
1
j = µ1 �

PJ
j=1

µ1
j ! 0, the result follows on taking limits in J on

the right hand side.

Finally we complete the proof of the lower bound for Varadhan’s lemma by identi-

fying the limit of the sequence AJ .

Theorem 4.18. For J � 1, let AJ be as in (4.22). Then

lim
J!1

AJ =
c2

2�
+ µ1

⇣
h� c

�

⌘
,
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where c is the unique solution to

⇢
⇣
h� c

�

⌘
=

c

�
.

Proof. Recall that we defined

⇢J(h) .

.=
JX

j=1

jµ1
j (h),

and that cJ was the unique solution to

⇢J
⇣
h� cJ

�

⌘
=

cJ
�
.

We first confirm that cJ converges to some c. From the definition we see that

⇢J+1

(h) > ⇢J(h) for all h < 0 and J � 1, and it follows that the fixed points cJ

form an increasing sequence since

⇢J+1

⇣
h� cJ

�

⌘
> ⇢J

⇣
h� cJ

�

⌘
=

cJ
�
.

Moreover, since ⇢J(h) ! ⇢(h), the density of the ideal gas, it follows that cJ <

⇢(h), so that cJ is in fact a bounded increasing sequence, and hence has a limit

c = limJ!1 cJ .To identify the limit we note that since ⇢J(h) < ⇢(h)

cJ
�

= ⇢J
⇣
h� cJ

�

⌘
< ⇢

⇣
h� cJ

�

⌘
,

and so taking the limit in J !1

c

�
= lim

J!1

cJ
�
 lim

J!1
⇢
⇣
h� cJ

�

⌘
= ⇢

⇣
h� c

�

⌘
,

by continuity of ⇢, Proposition 2.13. Similarly since cJ < c, and ⇢J is increasing

⇢J
⇣
h� c

�

⌘
< ⇢J

⇣
h� cJ

�

⌘
=

cJ
�
,

and in the limit

⇢
⇣
h� c

�

⌘
= lim

J!1
⇢J
⇣
h� c

�

⌘
 lim

J!1

cJ
�

=
c

�
,

which gives the equality c
� = ⇢

⇣
h� c

�

⌘
.

We apply a similar argument to confirm convergence of the second term of AJ . First
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of all we have

JX
j=1

µ1
j

⇣
h� cJ

�

⌘
<

1X
j=1

µ1
j

⇣
h� cJ

�

⌘
,

so that

lim
J!1

JX
j=1

µ1
j

⇣
h� cJ

�

⌘
 lim

J!1

1X
j=1

µ1
j

⇣
h� cJ

�

⌘
= µ1

⇣
h� c

�

⌘
,

where we justify taking the limit inside the summation by the dominated conver-

gence theorem (since µ1(h) <1). For the corresponding lower bound we note

JX
j=1

µ1
j

⇣
h� cJ

�

⌘
>

JX
j=1

µ1
j

⇣
h� c

�

⌘
,

and then

lim
J!1

JX
j=1

µ1
j

⇣
h� cJ

�

⌘
� lim

J!1

JX
j=1

µ1
j

⇣
h� c

�

⌘
= µ1

⇣
h� c

�

⌘
.

The LDP for HPMF now follows immediately.

Corollary 4.19. The sequence QPMF
N satisfies an LDP on `

1

(R) with rate |⇤N |, and
rate function

IPMF(x)=

8<:
�
2

⇣P
j�1

jxj
⌘
2

+
P

j�1

xj
⇣
log

⇣
xj

µ1
j

⌘
� 1

⌘
+A , x 2 `

1

(R
+

)

+1 , else,

where

A =
c2

2�
+ µ1

⇣
h� c

�

⌘
,

and c is the unique solution to

⇢
⇣
h� c

�

⌘
=

c

�
.

In particular IPMF is strictly convex on `
1

(R
+

), positive, and has a unique zero at

x⇤ = (x⇤j )j�1

given by

x⇤j
..= µj

⇣
h� c

�

⌘
, (4.24)

Proof. All of the statements are immediate from the preceding analysis. That an

LDP is satisfied follows since we have confirmed the limit of Varadhan’s Lemma,
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(4.11). As in the case of the cycle mean field, strict convexity of IPMF is established

since I is strictly convex, and �H is convex: so that their sum, and hence IPMF, is

strictly convex. Finally the uniqueness of the zero follows from the uniqueness of

the minimum, which was established in the previous results. Alternatively this can

be derived directly by computing the Gâteaux derivative of IPMF.

We conclude by analysing the density of the particle mean field model.

Corollary 4.20. For � > 0, h < 0, the density of the Bose gas under the Hamilto-

nian HPMF is given by ⇢PMF(�, h) = p, where p is the unique solution to

p = ⇢(�, h� p), (4.25)

where ⇢ denotes the density of the ideal gas. Consequently,

(i) ⇢PMF is monotone increasing in h < 0, and monotone decreasing in � > 0.

(ii) For all � > 0, h < 0: ⇢PMF(�, h) < ⇢(�, h).

(iii) ⇢PMF
0

(�) ..= limh%0

⇢PMF(�, h) exists and is finite. In particular it solves

⇢PMF
0

(�) = ⇢(�,�⇢PMF
0

(�)).

Proof. The formula for the density follows immediately from (4.10) with

⇢PMF(�, h) =
X
j�1

jx⇤j

which was defined in Theorem 4.19 to be

=
c

�

= ⇢

✓
�, h� c

�

◆
.

Fixing � > 0, let c = ch and consider ⇢PMF as a function of h, h 7! ⇢PMF(h), we show

that this function is increasing in h < 0. We have

d

dh
⇢PMF(h) =

1

�

d

dh
ch

=
d

dh
⇢

✓
�, h� ch

�

◆
using the multivariate chain rule, along with the fact that the first argument of ⇢ is

independent of h

=

✓
1� 1

�

d

dh
ch

◆
@(0,1)⇢

✓
�, h� ch

�

◆
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where @(1,0)⇢, @(0,1)⇢ respectively denote the partial derivative of ⇢ in its first and

second arguments. Equating the right hand side of the first and third lines, implicit

di↵erentiation yields

d

dh
⇢PMF(h) =

1

�

d

dh
ch =

@(0,1)⇢(�, h� ch/�)

1 + @(0,1)⇢(�, h� ch/�)
.

Since ch > 0, as explained in Lemma 4.16 and h � ch < 0, it follows that the

right hand side is positive, since the map x 7! @(0,1)⇢(�, x) is positive for x < 0,

Proposition 2.13. It follows that ⇢PMF is increasing in h.

Now fixing h < 0, setting c = c� and considering � 7! ⇢PMF(�) similar manipulation

gives

d

d�
⇢PMF(�) =

d

d�

c�
�

=
d

d�
⇢

✓
�, h�

c�
�

◆
= @(1,0)⇢

✓
�, h�

c�
�

◆
� d

d�

✓
c�
�

◆
@(0,1)⇢

✓
�, h�

c�
�

◆
.

As in the previous calculation, after rearranging

d

d�
⇢PMF(�) =

d

d�

c�
�

=
@(1,0)⇢

⇣
�, h� c�

�

⌘
1 + @(0,1)⇢

⇣
�, h� c�

�

⌘ .
The denominator of the right hand expression is positive whilst the numerator is

negative, again appealing to Proposition 2.13, from which it follows that ⇢PMF is

decreasing in � > 0. The bound for part (ii) is immediate from the fact that ⇢ is

increasing in h

⇢PMF(�, h) = ⇢(�, h� ⇢PMF) < ⇢(�, h).

For part (iii), since ⇢PMF is increasing in h then it must converge as h% 0, possibly

to +1, which is to say that ⇢PMF
0

(�) .

.= limh%0

⇢PMF(�, h) exists as an extended real

number. Then, by continuity of ⇢(�, h) in h,

⇢PMF
0

(�) = lim
h%0

⇢PMF(�, h)

= lim
h%0

⇢(�, h� ⇢PMF(�, h))

= ⇢

✓
�, lim

h%0

h� ⇢PMF(�, h)

◆
= ⇢(�,�⇢PMF

0

(�)).
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But suppose that limh%0

⇢PMF(�, h) = 1, then the right hand side of the last line

above would be

= ⇢

✓
�,� lim

h%0

⇢PMF(�, h)

◆
= 0,

since limh!�1 ⇢(�, h) = 0, which is a contradiction.

Note that in the above we refrained from denoting ⇢PMF
c for limh%0

⇢PMF(h) =.

. ⇢PMF
0

.

As we see from Corollary 4.20 part (iii), the value ⇢PMF
0

< 1 regardless of the

convergent sequence of graphs taken, and so unlike ⇢c, the critical density of the

ideal gas, ⇢PMF
0

does not exhibit a phase-transition. In particular, the corollary

suggests that although the reference measure P�,h is only well defined for h < 0, the

density ⇢PMF has an extension to positive h. As such the intrinsic equation (2.11)

is no longer an indicator of the presence of the Bose–Einstein condensation phase

transition. We relax the assumption in this intrinsic equation that h < 0, and now

ask.

Fix � > 0. For ⇢ > 0 find h⇤ = h⇤(⇢) 2 R for which ⇢PMF(�, h⇤) = ⇢. (4.26)

As with the ideal gas, we define the critical density for the particle mean field model

to be the supremum of those densities which can be achieved:

⇢PMF
c (�) .

.= sup{% : 9h 2 R st. % = ⇢PMF(�, h)}.

The following corollary is the equivalent of Theorem 2.14 in the case of the particle

mean field Bose gas.

Corollary 4.21. The intrinsic equation (4.26) is such that

(i) For all h < ⇢c(�), there exists a solution p = p(�, h).

(ii) For h > ⇢c(�) there is no solution.

(iii) As h% ⇢c(�), the solution satisfies limh!⇢c(�) p(�, h) = ⇢c(�).

In particular, there is a unique solution to (4.26) for % < ⇢c(�), and

⇢PMF
c (�) = ⇢c(�).

Proof. In the preceding corollary we have already shown that a unique solution

exists whenever h  0. As a function of p, ⇢(h� p) exists for p > h, and is strictly
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p
h

⇢c(�)

pc

Figure 4.1: Illustrating the proof of Corollary 4.21. If 0 < h < ⇢c(�), then the curve
⇢(h� p) will always intersect the line y = p at some point p > h.

decreasing with limit 0 as p!1. Existence of a solution to (4.25) is equivalent to

an intersection of the line y = p with the curve ⇢(h� p), at some point p > h. Since

the first of these is increasing and the second decreasing, this is in turn equivalent

to limp&h y(p)  limp&h ⇢(h� p), but

lim
p&h

y(p) = h  lim
p&h

⇢(h� p) = ⇢c(�),

which confirms parts (i) and (ii). Finally (iii) follows since we have

h < p = ⇢(h� p) < lim
"%0

⇢(") = ⇢c(�),

and in taking the limit h% ⇢c(�) the above are all equalities.

Not only does the above result assert that there is a critical density for the particle

mean field, but moreover that this is achieved at a critical chemical potential:

hPMF
c (�) = sup{h : 9 soln. p(h) to (4.25)}.

Furthermore we have hPMF
c = ⇢PMF

c = ⇢c.
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Chapter 5

Topics for Further Study

Before concluding we share some thoughts about two further topics which we have

partially explored, and which remain open for further study. The first of these looks

to establish that the occupation field for the Bosonic loop measure can in fact be

extended to a law defined on the entirety of Zd. The ground work for this result

has been established, but we have found it challenging to prove convergence of the

Laplace transforms in the limit. The second section considers the hole distribution

of the occupation field: this is the probability that a given site is not visited by any

loops, PB[Lx = 0]; this is an interesting problem since such sites cannot occur in a

Gaussian field, and highlights the non-Gaussian nature of the measure PB. Moreover

a question of percolation can be posed in terms of the vacant set of the occupation

field.

In addition to the two topics studied here, together with Stefan Adams we are in the

process of preparing a pre-print [AD15] concerning a mixture of the two mean-field

models studied in Chapter 4. This model is inspired by the Huang-Yang-Luttinger

model which is defined in the momentum space description of the bose gas; this

model has a pay-o↵ between wanting to achieve an optimal density, whilst penalising

configurations with many loops.

5.1 The Bosonic Occupation Field of Zd

In Theorem 3.5 we established a formula for the Laplace transform of the occupation

field L under the Bosonic loop measure PB. If we wish to establish a result for the

existence of a limiting occupation field, it does not make sense to consider graph

limits in the sense of spectral convergence: since as we saw, the limit graph may not

exist. For this reason we restrict our attention to the case of the lattice box ⇤(per)

N ,

where each box is embedded in Zd, and so the limit graph is well defined. In this

section we ask whether the corresponding random field (Lx)x2⇤N
also has a limit

as N ! 1, as a random field on Zd. Throughout this section we work with the

following iteration of our standard assumption.
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A200 The inverse temperature is strictly positive � > 0, and either: the dimension

of the lattice is d = 1, 2 and and h < 0, or d � 3 and h  0.

Before considering the laws PB
N we make some general remarks concerning conver-

gence to a field defined on Zd. Henceforth we consider d � 1 to be fixed and denote

⌦ .

.= {� : Zd ! R},

for the collection of all functions defined on the graph; this is none other than

⌦ = RZd
, however this notation becomes rather unsightly on repetition. Billingsley

[Bil99] pp.9-10, establishes that there is a metric on ⌦, for which ⌦ becomes a

complete separable metric space, i.e. a Polish space. Moreover, the topology induced

is that of pointwise convergence: �n ! � in ⌦ if and only if �n(x) ! �(x) for all

x 2 Zd. We denote M
1

(⌦) = M
1

(⌦,B) for the space of all probability measures on

⌦ with respect to the Borel �-algebra B = B(⌦). This space is itself a Polish space,

and the associated metric is such that convergence is equivalent to convergence in

distribution.

The outcome of the above is that convergence of distributions in M
1

can be char-

acterised by two properties: tightness, and convergence of finite dimensional distri-

butions (f.d.d.s), which we define in the lemma to follow. Let ⇤ ⇢ Zd, and define

the projection ⇡
⇤

: ⌦ ! R⇤ by the map (�x)x2Zd 7! (�x)x2⇤. Given a measure

P 2 M
1

(⌦), we denote P⇡�1

⇤

[ · ] = P (⇡�1

⇤

[ · ]) for the pushforward measure on

M
1

(R⇤,B), and refer to it as the f.d.d. supported on ⇤.

Lemma 5.1. A sequence of probability measures (Pn)n�1

2 M
1

(⌦) converge in

distribution if and only if they satisfy

(i) Tightness. For each x 2 Zd

lim
C!1

lim
n!1

Pn

⇥
|�(x)| � C

⇤
= 0.

(ii) Convergence of f.d.d.s. Fix M � 1 and let ⇤ = [�M,M ]d. There is a

measure Q
⇤

2M
1

(R⇤,B) such that

Pn⇡
�1

⇤

(d)�! Q
⇤

as n!1.

Moreover, the limit measure P ..= limn!1 Pn has the property P⇡�1

⇤

= Q
⇤

.

We make some remarks concerning this lemma. The first requirement says that each

of the 1-dimensional f.d.d.s is tight. This e↵ectively means that probability mass

does not get put on elements of ⌦ which are unbounded. That it is su�cient to

confirm tightness for the 1-dimensional f.d.d.s is a consequence of the fact that ⌦
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is equipped with the topology of pointwise convergence, [Gia01]. Requirement (ii)

on the other hand says that all of the f.d.d.s converge weakly to some limit. The

existence of the limit measure, and that it satisfies P⇡�1

⇤

= Q
⇤

is then a consequence

of the Kolmogorov extension theorem, [Bil95] pp.482–92.

To actually apply Lemma 5.1 we still require a way to prove convergence in distri-

bution of the f.d.d.s. This is routine if one knows the distribution of the limiting

variable, since then it su�ces to prove convergence of the respective Laplace trans-

forms to the limit transform. In our instance we do not, however, have control of the

Laplace transforms of Pn⇡
�1

⇤

; a priori it is not clear that the limit of a sequence of

Laplace transforms necessarily defines a Laplace transform itself. In fact this state-

ment is not true for any sequence of probability measures, but is in the presence of

tightness.

Lemma 5.2. Let (Pn)n�1

be a sequence of probability measures on Rk, and denote

(Ln)n�1

for the associated sequence of Laplace transforms, where Ln : Rk
+

! R.
Suppose that the sequence Pn is tight, and that limn!1 Ln(v) ..= L(v) exists, then

there exists a measure P on Rk whose Laplace transform is L, and moreover Pn
(d)�!

P .

Proof. Since the sequence Pn is tight, there is a subsequence (Pnk
)k�1

which con-

verges to some probability measure Q, see [Bil99] pp.57–63. Let LQ denote the

Laplace transform of Q, and note that we have Lnk
! LQ. But then by the as-

sumption that Ln ! L, we have L = LQ, and in particular L is a Laplace transform.

Consequently, Pn ! Q.

We now return to the setting of the Bosonic occupation field. Henceforth we write

PN
.

.= P
⇤N
2M

1

(⌦) for the law on ⌦ which satisfies

PN⇡
�1

⇤N
[ · ] = PB

N [L 2 · ], (5.1)

which defines the law of L under PB
N on the larger space ⌦; our aim then is to prove

that PN
(d)�! P1, for some distribution P1, which we would then identify as being

the Bosonic occupation field of Zd. We first demonstrate the the sequence PN is

tight, before proceeding to explain why we have been unable to derive convergence

of the f.d.d.s.

Lemma 5.3. For all x 2 Zd,

lim
C!1

lim
N!1

PN [|�(x)| � C] = 0,

which is to say PN is a tight sequence of probability measures on ⌦.

Proof. We choose N � 1 su�ciently large that x 2 ⇤N , and in this case we have
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(�(x), PN )
(d)
= (L,PB

N ). Applying Markov’s inequality, we obtain the upper bound

PN

⇥
|�(x)| � C

⇤
= PB

N [Lx � C]

 EB
N [Lx]

C
.

Since the graph ⇤(per)

N is invariant under translations, it follows that Lx
(d)
= Ly for

all x, y 2 ⇤N . As a consequence we have

EB
N [Lx] =

1

|⇤| |⇤|E
B
N [Lx] =

1

|⇤|E
B
N

hP
y2⇤ Ly

i
= EB

N

⇥
L
⇤
.

Then returning to Markov’s inequality

lim
N!1

PN

⇥
|�(x)| � C

⇤
 lim

N!1

EB
N

⇥
L
⇤

C

=
a1
C

.

where a1 = a1(�, h) is the atom in Theorem 2.4, and under assumption A200 this

is finite. The lemma follows on taking the limit C !1.

We move on to consider the f.d.d.s. We make some prior remarks concerning the

notation used in the proof. Let ⇤ = [�M,M ] ⇢ Zd be a fixed lattice box, M � 1.

Our aim is to prove that the laws PN⇡
�1

⇤

2M
1

(⌦) converge, by showing convergence

of their Laplace transforms LN , defined by

LN (v) .

.= EN⇡
�1

⇤

h
e�hv,⇡⇤(�)i

i
, v 2 R⇤

+

,

with EN⇡
�1

⇤

denoting expectation with respect to PN⇡
�1

⇤

. The following proposition

rephrases convergence of the LN as convergence of the Laplace transforms for the

field L under PB
N .

Proposition 5.4. Suppose N �M , ⇤ = [�M,M ]d. Let v 2 R⇤, and let vN 2 R⇤N

be the vector such that ⇡
⇤

vN = v, and vN ⌘ 0 outside of ⇤. Then

LN (v) = EB
N

h
e�hvN ,Li

i
.

Proof. From (5.1) we have

LN (v) .

.= EB
N⇡

�1

⇤

h
e�hv,⇡⇤(�)i

i
= EB

N

h
e�hv,⇡⇤(L)i

i
,

and then the claim follows since hv,⇡
⇤

(L)i =
P

x2⇤ vxLx = hvN ,Li.

116



The end result of the above is that we have massaged the Laplace transform defined

in terms of measures on M
1

(⌦) into a form to which we can apply Theorem 3.5,

the equation for the Laplace transform of L under PB
N . It remains then to confirm

pointwise convergence of the Laplace transforms. Since we have not been able

to complete a proof of this, we outline some thoughts on the matter. Recalling

the notation of Proposition 5.4, let VN = diag(vN ) 2 R|⇤N |⇥|⇤N |, and define the

following spectra

Spec(QN ) =
⇣
⌘(i)N

⌘|⇤N |

i=1

, Spec(QN � VN ) =
⇣
⇠(i)N

⌘|⇤N |

i=1

, Spec(VN ) =
⇣
⌫(i)N

⌘|⇤N |

i=1

,

with QN the generator of the continuous time walk on ⇤N . According to Theo-

rem 3.5

LN (v) =
det

�
e��hI � e�(QN )

�
det

�
e��hI � e�(QN�VN )

� =

|⇤N |Y
i=1

e��h � e⌘
(i)

e��h � e⇠(i)
. (5.2)

To simplify expressions in the following, we write

b⌘ (i)
N

.

.= exp
⇣
� �h

⌘
� exp

⇣
�⌘(i)N

⌘
, b⇠ (i)

N
.

.= exp
⇣
� �h

⌘
� exp

⇣
�⇠(i)N

⌘
,

so that the product above becomes
Q|⇤N |

i=1

b⌘ (i)
N /b⇠ (i)

N , and according to Lemma 5.2

convergence of the f.d.d.s is equivalent to the limit of this product existing.

We have at our disposal two eigenvalue inequalities which we make use of to analyse

this product, these are the Weyl inequalities, and the Cauchy interlacing inequalities.

Unfortunately, to the best of our knowledge, these are not strong enough to prove

convergence of the product above; we can however use them to show boundedness.

Lemma 5.5. Fix M � 1, ⇤ = [�M,M ]d and v 2 R⇤

+

. Let LN : R⇤

+

! R be as

above. Then there exists a U : R⇤

+

! R, such that

0  LN (v)  U(v), 8v 2 R⇤

+

.

Proof. Consider the spectra to be ordered, so that ⌘(1)N � ⌘(2)N � · · · � ⌘(|⇤N |)
N , and

similarly for ⇠(i)N . Since VN is diagonal its eigenvalues are exactly the entries of vN ,

so that ⌫(i)N = 0 for i > |⇤|. Since the matrices QN and VN are both symmetric, and

hence Hermitian, we are in a position to apply Weyl’s inequality, Theorem B.16 to

QN � VN . In particular we have

⌘(i+|⇤|)
N  ⇠(i)N  ⌘

(i)
N , for i = 1, . . . , |⇤N |� |⇤|, (5.3)

⌘(i)N � ⌫
(1)

N  ⇠(i)N  ⌘
(i)
N , for i = (|⇤N |� |⇤|) + 1, . . . , |⇤N |. (5.4)

Since the function x 7! e��h � e�x is decreasing in x, the inequality above hold for
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b⌘ (i)
N , b⇠ (i)

N on reversing the inequality signs, and consequently from (5.3) we obtain

1 
b⌘ (i+|⇤|)
Nb⇠ (i)

N


b⌘ (i+|⇤|)
Nb⌘ (i)

N

, for i = 1, . . . , |⇤N |� |⇤|. (5.5)

Returning to the determinant expression, we write the product as

LN (v) =

|⇤N |Y
i=1

b⌘ (i)
Nb⇠ (i)
N

=

0@ |⇤|Y
i=1

b⌘ (i)
Nb⇠ (�i)
N

1A0@|⇤N |�|⇤|Y
i=1

b⌘ (i+|⇤|)
Nb⇠ (i)

N

1A,

where we use the shorthand notation (�i) .

.= (i + |⇤N | � |⇤|), and the eigenvalues

⌘(�i)
N etc. are the corresponding i-th smallest eigenvalues. Let RN (v) denote the

first of the two products, and SN (v) the second. Our aim is to show

lim
N!1

RN (v) = R1(v),

lim
N!1

SN (v)  S1(v),

so that L1(v)  R1(v)S1(v) =.

. U(v).

Proof for RN. Since ⇤ is a fixed box, the product above is over finitely many

terms, and we can take the limit in each term of the product

lim
N!1

RN (v) =

|⇤|Y
i=1

b⌘ (i)
1b⇠ (�i)
1

=

|⇤|Y
i=1

exp
⇣
� �h

⌘
� exp

⇣
�⌘(i)1

⌘
exp

⇣
� �h

⌘
� exp

⇣
�⇠(�i)

1
⌘ ,

with ⌘(i)1 .

.= limN!1 ⌘(i)N , and similarly for ⇠(i)1 , b⌘ (i)
1 , b⇠ (i)

1 . In the following we first

confirm that b⌘ (i)
1 = 1, before showing that the limit b⇠ (�i)

1 exists1. Recalling that

the spectrum of QN is given in Appendix A to be

Spec(QN ) =

8<:⌘N (k) =
1

d

dX
j=1

cos

✓
2⇡

kj
2N + 1

◆
� 1 : k 2 {1, . . . , 2N + 1}d

9=;,

choosing k(i) = (i, 1, . . . , 1), then for large enough N , i < 2N+1, so that ⌘N (k(i)) 2
Spec(QN ). Moreover ⌘N (k(1)) � ⌘N (k(2)) � · · · � ⌘N (k(i)). It follows that

⌘N (k(i)) is at most the i-th largest eigenvalue of QN , and so ⌘(i)N � ⌘N (k(i)), and

1
A word of caution regarding the interpretation of these claims. The statement that b⌘ (i)

1 = 1

for i � 1 is understood to say that having fixed an i, in the limit the i-th largest eigenvalue is 1. It

does not say that all of the eigenvalues are 1 in the limit.
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hence

lim
N!1

⌘(i)N � lim
N!1

⌘N (k(i))

= lim
N!1

1

d

0@cos

✓
2⇡

i

2N + 1

◆
+

d�1X
j=1

cos

✓
2⇡

1

2N + 1

◆1A� 1

= 0.

Since Spec(QN ) ⇢ [�2, 0], it follows that limN!1 ⌘(i)1 = 0, and hence b⌘ (i)
1 = 1.

Turning to ⇠(�i)
1 , we note that the matrix QN � VN can be obtained from QN+1

�
VN+1

by deleting the rows and columns which correspond to vertices x 2 ⇤N+1

\⇤N .

As a result we are in a position to apply the Cauchy interlacing theorem, Theo-

rem B.17, which gives

⇠(�i)
N = ⇠i+|⇤N |�|⇤|

N � ⇠
i+|⇤N+1|�|⇤|
N+1

= ⇠(�i)
N+1

,

and in particular ⇠(�i)
N is a decreasing sequence in N � 1. Recalling the inequality

(5.4), and combining this with the fact that ⌘(�i)
N 2 [�2, 0], and ⌫(1)N = maxx2⇤ vx =

v⇤ which is independent of N , then we have the lower bound

⇠(�i)
N � �2� v⇤,

so that ⇠(�i)
N is a bounded decreasing sequence, and hence converges to some ⇠(�i)

1 .

It follows that

lim
N!1

RN (v) =

|⇤|Y
i=1

1b⇠(�i)
1

=.

. R1(v).

Proof for SN. From (5.4) we have

1  SN 
|⇤N |�|⇤|Y

i=1

b⌘ (i+|⇤|)
Nb⌘ (i)

N

=.

. UN ,

so it su�ces to prove that the upper bound UN converges. Taking logarithms

logUN =

0@|⇤N |�|⇤|X
i=1

log b⌘ (i+|⇤|)
N

1A�
0@|⇤N |�|⇤|X

i=1

log b⌘ (i)
N

1A,

and since the terms i = |⇤|+ 1, . . . , |⇤N |� |⇤| in both sums agree

=

|⇤|X
i=1

log b⌘ (�i)
N � log b⌘ (i)

N .
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Using that the logarithm is an increasing function, we can bound the sum by

 |⇤|
⇣
log b⌘ (�|⇤|)

N � log b⌘ (|⇤|)
N

⌘
,

and in the limit N !1

lim
N!1

SN  |⇤| lim
N!1

log
b⌘ (�|⇤|)
Nb⌘ (|⇤|)
N

= |⇤| log
✓
e��h � e�2�

e��h � 1

◆

The factorisation LN = RNSN was performed to separate o↵ the part of the spec-

trum of QN�VN which is not close to that of QN , i.e. the terms which contribute to

RN , and then to show that the remaining part of the spectra converge: i.e. SN ! 1.

That this part converges was anticipated since the Weyl inequality (5.3) implies

that for any i � 1, ⇠(i)N ⇠ ⌘(i)N . Unfortunately it is not in fact the case that SN

converges to 1, as seen by approximating this limit using a computer. This lemma

could still be of use if one is able to show that the sequence SN is monotonic, from

which convergence to some function S1 will then follow by boundedness; to date

our attempts have proved fruitless.

An alternative characterisation of convergence of the Laplace transforms is obtained

by taking logarithms of the product, and confirming that the corresponding series

converge. Considering this

logLN (v) =

|⇤N |X
i=1

log b⌘(i)N � log b⇠(i)N ,

which we can rewrite as integrals against spectral measures mN , and mV
N , where

the latter is the spectral measure of QN � VN . Then

= |⇤N |
✓Z

log
⇣
e��h � e�u

⌘
mN (du)�

Z
log

⇣
e��h � e�u

⌘
mV

N (du)

◆
.

A similar proof as in the above lemma can be used to show that mV
N

(d)�! m1, since

the ‘bulk’ of the eigenvalues converge via Weyl’s inequality, and the remaining |⇤|
terms which are not suitably bounded are negligible in the N limit. However, due

to the additional pre-factor of |⇤N | this is not a strong enough statement to confirm

convergence of the above. For this to hold we need to understand the relative rates

of convergence of mN , mV
N to m1.

Conjecture 5.6. Fix M � 1, ⇤ = [�M,M ]d and v 2 R⇤

+

. Let LN : R⇤

+

! R be as

defined in Proposition 5.4. Then limN!1 LN (v) = L1(v) exists.

Consequently, there exists a law P1 2M
1

such that PN
(d)�! P1.
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5.2 The Hole Distribution and Vacant Set Percolation

We move away from the topic of limits of graphs, and throughout this section

consider ⇤ to be a fixed graph. We recall that below the proof of Theorem 3.5 we

remarked about the di�culty of describing such simple correlations as the expected

occupation at a site. Fixing some x 2 ⇤, we are interested in the law of Lx, which

is a positive random variable. In the case of the Markov loop measure we saw in

Section 3.2.2 that

E
⇥
e�vLx

⇤
=

1

1 +Gxxv
,

so that at each site the occupation field has a �-distribution. A partial explanation

for the di�culty in deriving a similar result for the Bosonic occupation field is

a↵orded by the fact that the corresponding distribution is no longer continuous. In

particular the law (Lx,PB) has an atom at 0. This is a result of the fact that the

loop measure µB is finite, rather than �-finite, and hence

PB[L ⌘ 0] = PB[S = ?] = e�µB
(�) =

1

⌅
⇤

(�, h)
> 0. (5.6)

It is no longer surprising that we could not find a Gaussian description of the

Bosonic occupation field, since in particular the two distributions are not absolutely

continuous: PB ⌧ P.
We refer to those sites with 0 occupation as ‘holes’ for the occupation field, and can

define the vacant set V ⇢ S to be the set of all holes

V .

.=
�
x 2 ⇤ : Lx = 0

 
.

In light of the previous section, and assuming that Conjecture 5.6 is true, then

a natural question arises concerning whether or not the random subset V ⇢ Zd

percolates or not. We do not expect this to be a simple problem, and as indicated

in the introduction, active research regarding a similar problem for discrete Markov

loop soups is still ongoing, see for example [LeJL13, CS14, Lup14].

Identifying the probability that a given site is a hole does not require us to derive

a formula for the full distribution of the occupation at that site. Rather we can

compute it using the formula

PB[Lx = 0] = PB[S \ �x = ?] = e�µB
(�x),

where �x
.

.= {� 2 � : �(t) = x for some t 2 [0, |�|)} is the set of loops which visit
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site x. Alternatively it can be computed from the Laplace transform, since

lim
v!1

EB
⇥
e�vLx

⇤
= PB[Lx = 0] + lim

v!1
EB

h
e�vLx

���Lx > 0
i

= PB[Lx = 0].

In general we do not have a way to compute this value from either of these expres-

sions, though in the case that the graph is vertex transitive then we can derive a

crude upper bound. Rather than defining vertex transitivity, we consider the exam-

ple of ⇤(per)

N for the lattice box with periodic boundaries. Clearly the set �x contains

as a subset ��x, the set of loops which are rooted at x, ��x .

.= {� 2 �x : �(0) = x};
note that this should not be confused with our previous notation ��j for loops of

length �j, which will not be used here. The mass of this set under the Bosonic loop

measure can be computed explicitly as

µB(��x) =
X
j�1

e�hj

j
Px

h
X�j = x

i
=

1

|⇤(per)

N |

X
x2⇤(per)

N

X
j�1

e�hj

j
Px

h
X�j = x

i

=
1

|⇤(per)

N |
µB(�),

where we used vertex transitivity of the lattice box with periodic boundaries to

introduce the sum over x 2 ⇤(per)

N . Then in terms of the spectral measure this is

= �
Z

log
⇣
1� e�(h+u)

⌘
mN (du).

Using the fact that ��x ⇢ �x, we obtain the bound

PB
⇥
Lx = 0

⇤
 exp

✓Z
log

⇣
1� e�(h+u)

⌘
mN (du)

◆
.

Returning to general graphs ⇤, a complimentary lower bound can be obtained as

follows. Given a site x 2 ⇤, and a set A ⇢ ⇤ with x 2 ⇤, let �A
.

.= [y2A�y denote

the set of loops which visit A. By definition we have �x ⇢ �A and so

PB
⇥
Lx = 0

⇤
= PB

⇥
S \ �x = ?

⇤
� PB

⇥
S \ �A = ?

⇤
= exp

�
� µB(�A)

�
. (5.7)

We now look to choose A in such a way as that we can compute the left most

expression; to this end, we note that by the definition of a measure

µB
�
�A

�
= µB(�)� µB

�
�A

c
�

122



We already have an expression for µB(�) in terms of the spectral distribution, so

the first term is easily computed, whilst the second set �c
A is exactly the set of loops

which are contained in ⇤\A. In fact, consider the graph ⇤⇤ which has vertex set

⇤\A, weight function w⇤
xy = wxy, for x, y 2 ⇤\A, where wxy is the weight function

of ⇤, and killing

⇤x
.

.= x +
X
y2A

wxy.

Comparing the walk X⇤ on ⇤⇤ with X on ⇤, we note that X⇤ can be coupled to X

in such a way as that they agree up to the point at which X first visits a site in A,

at which point X⇤ is killed. It follows that any loop � 2 �c
A, i.e. a loop which does

not visit A, is given the same mass under the measure µB
⇤

and µB
⇤

⇤ , and moreover

µB
⇤

�
�c
A

�
= µB

⇤

⇤
�
�c
A

�
= µB

⇤

⇤
�
�
�
.

This expression can now be given exactly in terms of the spectral measure m⇤

associated with the graph ⇤⇤.

Whilst the above has outlined a programme for computing a lower bound, the

challenge remains to actually identify the spectral measure µ⇤. In the case of the

lattice, whilst it was not overly taxing to identify the spectral measure mN for a

lattice box ⇤(per)

N , we do not have any general method to compute the spectrum

of the graph on removal of some subset A, and hence identifying m⇤
N will prove

challenging. Suppose that we can identify the eigenvalues of ⇤⇤, then using our

usual expansion of the loop measure in terms of the spectrum we obtain

PB[Lx = 0] � eµ
B
⇤⇤ (�)�µB

⇤ (�) =

Q
⌘⇤
�
e��h � e�⌘

⇤�Q
⌘(e

��h � e�⌘)
, (5.8)

where the products run over the spectrum of ⇤, respectively ⇤⇤. In this form it

is clear that this is not far from the issues we faced in the previous section, where

we could not handle the similar expression (5.2) for a small perturbation in the

definition of the spectral measure.

Having stressed negative outcomes so far, we conclude by providing two examples

where this technique does in fact give exact expressions for the probability that a

site is a hole: we consider first the complete graph KN and then the 1-dimensional

lattice box with periodic boundaries. Both examples proceed from the fact that we

can compute exactly the spectral distribution of ⇤⇤ when A = {x}, in which case

the inequality (5.7) is an equality. For the first of these cases, we recall that we

identify the vertex set of the complete graph KN with the set [N ] .

.= {1, . . . , N};
the weights are defined in Appendix A.

Proposition 5.7. Let PB
N be the law of the Bosonic loop soup on KN . The proba-
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bility that the site 1 2 KN is a hole is given by

PB
N

⇥
L
1

= 0
⇤
=

✓
1� e�

�
h� 1

N

�◆✓
1� e�

�
h�N+1

N

�◆
✓
1� e�

�
h� 2

N

�◆ ,

and in the limit N !1

lim
N!1

PB
N

⇥
L
1

= 0
⇤
= 1� e�(h�1).

Proof. For any N � 2, we note that the graph ⇤⇤ on KN\{1} is the complete graph

KN�1

with the weights

w⇤
xy =

1

N
, ⇤xy =

2

N
.

Denoting Spec(QN ) =
�
⌘i
 N
i=1

, and Spec(Q⇤
N ) =

�
⌘⇤i
 N�1

i=1

, these are given to be

⌘
1

= · · · = ⌘N�1

= �N + 1

N
, ⌘N = � 1

N
,

⌘⇤
1

= · · · = ⌘⇤N�2

= �N + 1

N
, ⌘⇤N�1

= � 2

N
,

see Appendix A. Then from (5.8)

PB
⇥
L
1

= 0
⇤
=

⇣
1� e�

�
h�N+1

N

�⌘N�1

⇣
1� e�

�
h� 1

N

�⌘
⇣
1� e�

�
h�N+1

N

�⌘N�2

⇣
1� e�

�
h� 2

N

�⌘ ,
which simplifies to give the desired expression. The limit N !1 follows easily.

For the case of a box in Z, we consider ⇤(per)

N on the vertex set [�N,N � 1] \ Z,
where we use the box with 2N sites as it will make the notation in the proof easier

to follow.

Theorem 5.8. Let ⇤(per)

N = [�N,N ] as defined in Appendix A. Then

PB
⇥
L
0

= 0
⇤
=

Q
2N
j=1

⇣
1� exp

⇣
�
⇣
cos

⇣
⇡j
N

⌘
� 1 + h

⌘⌘⌘
Q

2N�1

j=1

⇣
1� exp

⇣
�
⇣
cos

⇣
⇡j
2N

⌘
� 1 + h

⌘⌘⌘ , (5.9)

and in the limit N !1

lim
N!1

P�,h,⇤N
[L

0

= 0] =
q
(1� e�h)(1� e�(h�2)). (5.10)
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Proof. Let ⇤⇤
N = ⇤(per)

N \{0}, and note that w⇤
xy = wxy for all x, y 6= 0,±1, and

w⇤
1,2 = w

1,2 =
1

2
, ⇤

1

= w
1,0 =

1

2
,

w⇤
�1,�2

= w�1,�2

=
1

2
, ⇤�1

= w�1,0 =
1

2
.

We recognise these as the weights associated with the lattice box on 2N �1 vertices

with Dirichlet boundary conditions. The equation (5.9) follows on recognising the

spectra as

Spec(QN ) =
n
cos

�
⇡ j
N

�
� 1

o
2N

j=1

, Spec(Q⇤
N ) =

n
cos

�
⇡ j
2N

�
� 1

o
2N�1

j=1

,

the proof for QN is given in Appendix A, whilst the case of the path can be found

in [LPW09] Section 12.3.2. We concentrate on obtaining the limit.

We rewrite

Spec(QN ) =
n
cos

�
⇡ bj/2c

N

�
� 1

o
2N

j=1

,

and define the function f(x) = 1� exp
�
�
�
cos(⇡x)� 1 + h

��
, we have

PB
⇥
L
0

= 0
⇤
=

Q
2N
i=1

f
⇣
bi/2c
N

⌘
Q

2N�1

j=1

f
⇣

j
2N

⌘ ,
= f

✓
b1/2c
N

◆
2N�1Y
j=1

f
⇣
b(j+1)/2c

N

⌘
f
⇣

j
2N

⌘ ,

and note that when j is even the terms cancel so that

= f(0)
NY
j=1

f
⇣

2j
2N

⌘
f
⇣
2j�1

2N

⌘ .
To compute the limit we will take logarithms and then show that the resulting

summations converge. Before doing so we note that

log f(x) = �
1X
k=1

1

k

⇣
exp

�
�
�
cos(⇡x)� 1 + h

��⌘k
= �

1X
k=1

ek�(h�1)

k
exp

�
k� cos(⇡x)

�
,
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so that

log f(x)� log f(y) =
1X
k=1

ek�(h�1)

k

⇣
exp

�
k� cos(⇡y)

�
� exp

�
k� cos(⇡x)

�⌘
,

and introducing the functions gk(x) = exp(k� cos(⇡x)), this is

=
1X
k=1

ek�(h�1)

k

�
gk(y)� gk(x)

�
.

Then, returning to the computation of the hole probability, and using the notation

above

logPB
⇥
L
0

= 0] = log f(0) +
NX
j=1

log f

✓
2j

2N

◆
� log f

✓
2j � 1

2N

◆

= log f(0) +
NX
j=1

1X
k=1

ek�(h�1)

k

✓
gk
⇣2j � 1

2N

⌘
� gk

⇣ 2j

2N

⌘◆

= log f(0) +
1X
k=1

ek�(h�1)

k

NX
j=1

✓
gk
⇣2j � 1

2N

⌘
� gk

⇣ 2j

2N

⌘◆
. (5.11)

We fix k � 1, and consider the summation in N . Since the function gk is continuous

and di↵erentiable, the mean value theorem asserts that there is a value cN (j) 2
[(2j � 1)/2N, 2j/2N) such that

1

2N
g0k

⇣
cN (j)

⌘
= gk

✓
2j

2N

◆
� gk

✓
2j � 1

2N

◆
,

and we have

NX
j=1

✓
gk
⇣2j � 1

2N

⌘
� gk

⇣ 2j

2N

⌘◆
= �1

2

NX
j=1

1

N
g0k

⇣
cN (j)

⌘
.

Since cN (j) 2 [(j � 1)/N, j/N), j = 1, . . . , N , and these intervals form a partition

of [0, 1), the above can be interpreted as a Riemann sum, and taking the limit in

N !1

lim
N!1

NX
j=1

✓
gk
⇣2j � 1

2N

⌘
� gk

⇣ 2j

2N

⌘◆
= �1

2

Z
1

0

g0k(x)dx

=
1

2

�
gk(0)� gk(1)

�
=

1

2

⇣
ek� � e�k�

⌘
.

Of course we recognise the above as being sinh(k�), however since we now wish to
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take the series in k � 1, we leave it in this form. Returning to (5.11) we have

logPB
⇥
L
0

= 0
⇤
= log f(0) +

1X
k=1

ek�(h�1)

2k

⇣
ek� � e�k�

⌘
= log

⇣
1� e�h

⌘
+

1

2

1X
k=1

ek�h

k
� 1

2

1X
k=1

ek�(h�2)

k

=
1

2

⇣
log

⇣
1� e�h

⌘
+ log

⇣
1� e�(h�2)

⌘⌘
,

from which the result follows.

h 0

1

Figure 5.1: The probability that a site is a hole as a function of h < 0, at � = 1.
The light curve corresponds to the hole probability in the limit for KN , which is
positive at h = 0. The bold curve corresponds to the limit of a lattice box in Z, in
this case the probability of a site being a hole converges to 0 as h% 0.

We anticipate that a similar method could be employed to derive a lower bound for

the hole distribution for a lattice box ⇤(per)

N = [�N,N ]d in Zd. Denoting 0 2 ⇤N for

the origin, we obtain a bound on L
0

by removing the set A = {x 2 ⇤N : x
1

= 0}
from ⇤N , which has the e↵ect of ‘opening’ the torus. The remaining graph ⇤\A is

now the lattice box with Dirichlet boundary conditions.

The exact form taken by the two limit formaulae in the above results is of interest

in itself. Plots of the two functions are given in Figure 5.1 for varying h < 0. Once

again we see that transience and recurrence play a role in determining the behaviour

as h% 0. It is reasonable to expect that if the graph approaches a transient graph

in the limit, then the hole probability should remain positive. Similarly, if the graph

is recurrent in the limit, then the probability of any given site being a hole should

converge to 0.
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Appendix A

Examples of Graph Convergence

In this section we prove some statements regarding spectral convergence of graphs:

most noteably we prove graph convergence of lattice boxes ⇤ ⇢ Zd. Throughout we

use the notation introduced in Section 1.1, and assume that ⇤ is finite, loop-free,

and irreducible.

The Complete Graph, Kn

For the complete graph on n vertices, denoted Kn, we identify the vertex set with

[N ] .

.= {1, . . . , n}, and define the weight function and killing for x, y 2 [N ], x 6= y

by

wxy =
1

n
, x =

1

n
.

The resulting walk X agrees with X and is the simple continuous time random

walk on Kn with unit jump rate, and geometric killing. Since � ⌘ 1, and P is

symmetric we immediately have that Spec(Q) ⇢ [�2, 0] from Theorem 1.6. Writing

the generator in the form

Q = n�1J � (1 + n�1)I,

where J is the n⇥n matrix with all entries equal to 1. We note that since J has n�1
repeated eigenvalues equal to 0, and a single eigenvalue equal to n, the eigenvalues

of Q are

⌘
1

= . . . = ⌘n�1

= �n+ 1

n
,

⌘n = � 1

n
.
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For n � 2 the canonical distribution functions �n : (0, 1]! [�2, 0] are

�n(u) =

8<:� 1

n if u 2 (0, n�1],

�n+1

n if u 2 (n�1, 1].

Clearly �n(u)! �1, for all u 2 (0, 1], and Kn is a convergent graph sequence with

limiting spectral measure given by the point mass m1 = ��1

.

The Cyclic Graph, Cn

We move towards more physically relevant examples, with the goal of describing cu-

bic lattices in general dimensions. An important stepping stone will be the analysis

of the symmetric walk on the cycle Cn, whose vertex set is given by the interval

{1, . . . , n}. We consider in greater generality the family of non-symmetric walks on

the cycle, with drift q 2 [0, 1], which is determined by the edge weights

wxy =

8>>><>>>:
q if y = x+ 1, or x = n, y = 1,

(1� q) if y = x� 1, or x = 1, y = n.

0 else.

We set  ⌘ 0. The resulting random walk is the unit-rate random walk with drift

on the n-cycle. In the extreme cases q = 0, 1 this corresponds to a Poisson jump

process on the cycle, which is considered in Section 3.2. Since � ⌘ 1, the eigenvalues

of Q = �(P �I) lie in the disk {z : |z+1|  1} ⇢ H. Moreover since Q is a circulant

matrix, Q = circ(�1, q, 0, . . . , 0, 1 � q), its eigenvalues are completely determined,

see Theorem B.18

⌘j = �1 + e�2⇡i j
n + q

⇣
e�2⇡i j

n � e2⇡i
j
n

⌘
= �1 + cos

✓
2⇡

k

n

◆
+ i(2q � 1) sin

✓
2⇡

k

n

◆
.

The canonical distribution functions are

�qn(u) = �1 + cos

✓
2⇡
dnue
n

◆
+ i(2q � 1) sin

✓
2⇡
dnue
n

◆
, u 2 (0, 1]. (A.1)

Pointwise convergence is once again immediate, with the limit

�q1(u) = �1 + cos(2⇡u) + i(2q � 1) sin(2⇡u).

Note that when q = 1/2 the imaginary term drops out, as expected since then P is

symmetric. Recalling that the functions �1 are used only as a change of variables,

they are not unique. In the case q = 1/2 we note that we could equally well use
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�̃1(u) = cos(⇡u)� 1. To see this it is su�cient to check that |��1

1 (B)| = |�̃�1

1 (B)|,
for measurable B. Using symmetry of �1 through the line u = 1/2, and the fact

that �1 is invertible on (0, 1/2] then

|��1

1 (B)| = 2

���� 12⇡ cos�1(1 +B)

����
=

���� 1⇡ cos�1(1 +B)

����
= |�̃�1

1 (B)|,

where we use the standard notation x + B .

.= {x + b : b 2 B} for the shift of a

set B ⇢ R by a real x 2 R. Consequently in the following we will work with

�̃1(u) = cos(⇡u)� 1, as it is notationally simpler.

The Integer Lattice, Z

The previous calculations for Cn will now play an important role in simplifying

the analysis for lattice boxes, for which explicit calculation of the eigenvalues is

unavailable.

For n � 1 we identify the vertex set of a 1-dimensional lattice box as ⇤n = [�n, n]\Z,
and we assign edges to nearest neighbours in the box

wxy =

8<:1

2

if |x� y| = 1,

0 else.

We set the killing vector to be �n = n = 1/2, and zero in the interior: x = 0,

�n < x < n. The resulting random walk is unit rate simple random walk with

killing on the boundary. We note that the generator matrix Q is in fact a cofactor

of the larger generator Q0 of the graph C
2(n+1)

, with q = 1/2, obtained by deleting

the final row and column, as seen below (the braces denoting the matrix Q).

�1 1

2

0 · · · 0 0 1

2

1

2

�1 1

2

· · · 0 0 0

0 1

2

�1 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · �1 1

2

0

0 0 0 · · · 1

2

�1 1

2

1

2

0 0 · · · 0 1

2

�1

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA
Denoting Spec(Q) = (⌫j)

2n+1

j=1

and Spec(Q0) = (⌘j)
2(n+1)

j=1

, where we assume the

eigenvalues to be in decreasing order, then the eigenvalue interlacing theorem, The-
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orem B.17, says

⌘
1

� ⌫
1

� ⌘
2

� · · · � ⌘
2n+1

� ⌫
2n+1

� ⌘
2(n+1)

.

Moreover, as in the previous section, the ⌫j are known explicitly, and in decreasing

order are

⌘j .

.= cos

 
⇡
b j
2

c
n+ 1

!
� 1,

Let �n denote the canonical distribution for Q, then using the interlacing inequality

⌘d(2n+1)ue � �n(u) = ⌫d(2n+1)ue � ⌘d(2n+1)ue+1

,

and using our knowledge of the eigenvalues ⌘j

cos

 
⇡
b d2(n+1)ue

2

c
n+ 1

!
� 1 � �n(u) � cos

 
⇡
b d2(n+1)ue+1

2

c
n+ 1

!
� 1.

From which we see pointwise convergence of �n(u) ! cos(⇡u) � 1, since both the

left and right sides of the above converge.

It is unsurprising that the lattice box should converge to the same spectral distribu-

tion as the cycle, since one can interpret the cycle as being none other than a lattice

box with periodic boundaries. Since our results for thermodynamic limits will be

phrased in terms of the limiting spectral distribution, the above amounts to the

fact that thermodynamic properties are independent of whether we take Dirichlet

or periodic boundary conditions. To be complete, we show that the same is true

when taking hard boundary conditions.

The lattice box ⇤n = [�n, n] with reflecting boundary is as above, except that

we set  ⌘ 0, so that there is no longer killing on the boundary; we denote Q00

for the generator. On deleting the first and last rows and columns of Q00 we ar-

rive at the generator Q of the walk with absorbing boundaries on the smaller box

⇤n�1

= [�(n � 1), (n � 1)]. As such we can once again use the eigenvalue inter-

lacing theorem. Writing Spec(Q) = (⌫j)
2n�1

j=1

, Spec(Q00) = (⌘j)
2n+1

j=1

for the spectra

arranged in decreasing order. The interlacing relation now reads

⌘j � ⌫j � ⌘j+2

, j = 1, . . . , 2n� 1.

with the consequence that we can bound the eigenvalues ⌘j of Q00 by

⌫j�2

� ⌘j � ⌫j , j = 3, . . . , 2n� 1.

This bound, in conjunction with the bound in terms of the eigenvalues of Q0 (for
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the walk on the cycle) ensures pointwise convergence of the canonical distribution

functions on the open interval (0, 1).

Hypercubic Lattices, Zd

We now obtain the more general result for graph convergence of lattice boxes in

d � 1 dimensions. In line with our observation above, it su�ces to consider only

the case of lattice boxes with periodic boundary conditions. Let ⇤n = [�n, n]d\Zd,

with weights

wxy =

8<: 1

2d if 9 i st. xi � yi (mod n) ⌘ 1 or �1, and xj = yj for i 6= j,

0 else.

The killing vector is degenerate,  ⌘ 0. Let P = (2d)�1Ad, so that A is the

adjacency matrix of the graph; the d-torus can be seen as the Cartesian product of

d copies of C
2n+1

, from which it follows that the adjacency matrix can be written

as the Kronecker sum of the d-copies of the adjacency matrix A
1

of C
2n+1

, Ad =

A
1

�· · ·�A
1

, see Appendix B for the definition of the Kronecker sum. Consequently,

Lemma B.13, if Spec(A
1

) = (↵j)
2n+1

j=1

then

Spec(Ad) =
n
↵j1 + · · ·+ ↵jd : (j1, . . . , jd) 2 {1, . . . , (2n+ 1)}d

o
.

Writing the spectrum of Q (the generator for ⇤n) as Spec(Q) = (⌘j)j2I , where the

indices run over j = (j
1

, . . . , jd) 2 {1, . . . , (2n + 1)}d, we can write the eigenvalues

explicitly thanks to the equation above (A.1)

⌘j =
1

d

dX
i=1

cos

✓
2⇡

ji
2n+ 1

◆
� 1.

At this point, rather than working with the canonical distribution functions as we

have done until now, we make use of the general definition of a spectral distribution,

and work with functions  n : (0, 1]d ! [�2, 0]. Writing u = (u
1

, . . . , ud) 2 (0, 1]d we

define

 n(u) = ⌘d(2n+1)ue, u 2 (0, 1]d,

with the convention that due = (du
1

e, . . . , dude). Letting �n denote the distribution

function for C
2n+1

as in (A.1) we have that

 n(u) =
1

d

dX
i=1

�n(ui).
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from which the pointwise convergence of  n !  1 is immediate

 1(u) = lim
n!1

1

d

dX
i=1

�n(ui)

=
1

d

dX
i=1

cos(2⇡ui)� 1.

As with the case d = 1, we can replace the distribution function above by the simpler

 0
1(u) =

1

d

dX
i=1

cos(⇡ui)� 1.
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Appendix B

Linear Algebra

In this appendix we collate several definitions and statements from linear algebra.

Throughout we consider (finite) matrices with entries in C.

B.1 Positive Definite Matrices

A complex valued matrix A 2 Cn⇥n is Hermitian if it is equal to its conjugate

transpose: A = A⇤.

Definition B.1. A Hermitian matrix A 2 Cn⇥n is positive-definite (resp. positive-

semidefinite) if for all x 2 Cn\{0}, x⇤Ax is real and: x⇤Ax > 0 (resp. x⇤Ax � 0).

The following is an immediate consequence of the definition.

Proposition B.2. If A,B 2 Cn⇥n are both positive-definite matrices, then A + B

is positive-definite. If either of A,B are allowed to be positive-semidefinite, then

A+B is positive-semidefinite.

The following provides useful alternative characterisations.

Theorem B.3. Let A be a Hermitian matrix. The following are equivalent:

1. A is positive-definite.

2. All eigenvalues of A are strictly positive.

3. A�1 exists and is positive-definite.

See [HJ13], p.438. In the case that A is positive-semidefinite, equivalence of condi-

tion 2 to condition 1 still holds on allowing the eigenvalues to be non-negative.

Corollary B.4. Let A,P 2 Cn⇥n. If A is positive-definite then P ⇤AP is positive-

semidefinite. Moreover, if P is invertible, then P ⇤AP is positive-definite.
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Proof. Let x 2 Cn\{0}. Then

x⇤(P ⇤AP )x = (Px)⇤A(Px) � 0,

so that P ⇤AP is positive-semidefinite. Suppose in addition that P is invertible. Since

P ⇤AP is positive-semidefinite, it’s eigenvalues are positive, so it su�ces to show that

0 is not an eigenvalue. But since A,P are both invertible det(A), det(P ) 6= 0 and

hence det(P ⇤AP ) 6= 0. So 0 is not an eigenvalue of P ⇤AP .

A matrix can only be positive-definite if it is Hermitian, but we would like to be able

to derive a similar positivity condition for eigenvalues of non-Hermitian matrices, in

line with Theorem B.3. A suitable result for our purposes is the following.

Proposition B.5. Let A 2 Cn⇥n with positive-semidefinite Hermitian part, 1

2

(A+

A⇤). Then all eigenvalues ⌘ 2 Spec(A) have non-negative real part: Re ⌘ � 0.

See [HJ94], pp.3–4.

B.2 Normal Matrices

Our intention in this section is to provide a useful description of the spectral radius

of a normal matrix, the content of Corollary B.11. We first recall the singular value

decomposition of a square matrix.

Theorem B.6 (Singular Value Decomposition). Let A 2 Cn⇥n. There exist unitary

matrices U, V 2 Cn⇥n and a diagonal matrix ⌃ = diag(�
1

, . . . ,�n) with �1 � · · · �
�n � 0 such that A = U⌃V ⇤. Moreover the �k, k = 1, . . . n are the positive square

roots of the eigenvalues of AA⇤.

See [HJ13], pp. 150–1. The values �k = �k(A), k = 1, . . . , n are referred to as the

singular values of A. The following generalises the Courant-Fischer formula for the

eigenvalues of a square matrix, we state only the result for the largest singular value.

Theorem B.7 (Courant-Fischer). Let A 2 Cn⇥n, and let �
1

denote the largest

singular values of A. Then

�
1

= max
kxk2=1

kAxk
2

,

See [HJ13], pp. 451–2. The singular values of A can be used to bound the spectral

radius, which we recall is defined as the maximum modulus of the eigenvalue of A

⇢(A) .

.= max
1kn

|�k|.
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Proposition B.8. The function k · k : Cn⇥n ! R
+

, A 7! �
1

(A) defines a matrix

norm. Furthermore

0  ⇢(A)  �
1

(A).

See [HJ13], pp.346–7. Our intention is to refine the above proposition in the case

that A is normal. We recall that a matrix A 2 Cn⇥n is said to be normal if it

commutes with its conjugate transpose: AA⇤ = A⇤A. Clearly any Hermitian matrix

is normal. The following theorem classifies normal matrices, [HJ13] pp.150–1.

Theorem B.9. A matrix A 2 Cn⇥n is normal if and only if it is unitarily diago-

nalisable: there exist U 2 Cn⇥n unitary, such that

A = UDU⇤,

where D = diag(�
1

, . . . ,�n) and �k, k = 1, . . . , n are the eigenvalues of A.

Corollary B.10. For A normal, the singular values of A are the moduli of the

eigenvalues: �k = |�k|.

Proof. Suppose A is normal. From Theorem B.9, there is a unitary U 2 Cn⇥n such

that A = UDU⇤. Hence

AA⇤ = (UDU⇤)(UD⇤U⇤) = UDD⇤U⇤,

which implies that AA⇤ is normal and has eigenvalues given by the diagonal of

DD⇤ = diag(|�
1

|2, . . . , |�n|2), with �k, k = 1, . . . , n the eigenvalues of A. Hence

from Theorem B.6 the singular values of A are exactly the moduli of the eigenvalues

of A.

The following is now an immediate consequence of the above corollary and Propo-

sition B.8.

Corollary B.11. For A normal

⇢(A) = �
1

(A) = kAk.

This has all been building towards the next proposition which is required in Chap-

ter 3 in deriving the Laplace transform of the loop occupation field under the Markov

loop measure.

Proposition B.12. Let A,B be normal. Then

⇢(A+B)  ⇢(A) + ⇢(B).

136



Proof. According to Proposition B.8 and the Courant–Fischer theorem

⇢(A+B)  �
1

(A+B)

= max
kxk2=1

k(A+B)xk

 max
kxk2=1

kAxk+ max
kxk2=1

kBxk,

= �
1

(A) + �
1

(B).

The claim now follows from Corollary B.11.

B.3 Kronecker Products and Sums

For matrices A 2 Cm⇥n, B 2 Cp⇥q, the Kronecker product of A with B is the matrix

A⌦B 2 Cmp⇥nq given in block form by

A⌦B .

.=

0BBBB@
a
11

B a
12

B · · · a
1nB

a
21

B a
22

B · · · a
2nB

...
...

. . .
...

am1

B am2

B · · · amnB

1CCCCA.

We write (A ⌦ B)ijkl = aikbjl. If A 2 Cn⇥n, B 2 Cm⇥m are square matrices, the

Kronecker sum of A with B is the matrix A�B 2 Cmn⇥mn

A�B .

.= (A⌦ Im) + (In ⌦B),

so that (A�B)ijkl = aik�j,l + bjl�i,k.

Lemma B.13. For square matrices A 2 Cn⇥n, B 2 Cm⇥m with spectra denoted

Spec(A), Spec(B) respectively

Spec(A⌦B) = {�⌘ : � 2 Spec(A), ⌘ 2 Spec(B)},

Spec(A�B) = {�+ ⌘ : � 2 Spec(A), ⌘ 2 Spec(B)}.

Proof. We show that if Au = �u, Bv = ⌘v then u ⌦ v is an eigenvector of both
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A⌦B and A�B with corresponding eigenvalues �⌘ and �+ ⌘, respectively.

(A⌦B)(u⌦ v)ij =
X
kl

(A⌦B)ijkl(u⌦ v)kl

=
X
k,l

aikbjlukvl

=

 X
k

aikuk

! X
l

bjlvl

!
= �⌘uivj

= �⌘(u⌦ v)ij .

Similarly

(A�B)(u⌦ v)ij =
X
kl

(aik�j,l + bjl�i,k)ukvl

= vj
X
k

aikuk + ui
X
l

bjlvl

= vj�ui + ui⌘vj

= (�+ ⌘)(u⌦ v)ij .

Lemma B.14. Let A,C 2 Cn⇥n, B,D 2 Cm⇥m. Then

1. (A⌦B)⇤ = A⇤ ⌦B⇤.

2. (A⌦B)(C ⌦D) = (AC ⌦BD).

These follow by similar calculations to the above; for details, see [HJ94], pp.243–4.

Proposition B.15. If A 2 Cn⇥n, B 2 Cm⇥m are both normal matrices, then A⌦B

and A�B are normal.

Proof. Consider first A⌦B. Using Theorem B.9 we write A = UDU⇤, B = V EV ⇤

with U, V unitary, and D,E diagonal. Then

A⌦B = (UDU⇤)⌦ (V EV ⇤)

= (U ⌦ V )(D ⌦ E)(U⇤ ⌦ V ⇤),

from the second claim of the preceeding lemma. Clearly D ⌦ E is diagonal, and

again from the lemma we know

= (U ⌦ V )(D ⌦ E)(U ⌦ V )⇤,

138



so it remains to check that U ⌦ V is unitary. But

(U ⌦ V )(U ⌦ V )⇤ = (U ⌦ V )(U⇤ ⌦ V ⇤)

= (UU⇤)⌦ (V V ⇤)

= Imn.

where we have used the fact that In ⌦ Im = Imn.

Considering now (A � B), we note that in general if A, B are both normal then

A+B is normal if and only if

AB⇤ +BA⇤ = A⇤B +B⇤A.

Applying this to (A⌦ Im), (In ⌦B), by Lemma B.14

(A⌦ Im)(In ⌦B)⇤+(In ⌦B)(A⌦ Im)⇤ = A⌦B⇤ +A⇤ ⌦B

=(A⌦ Im)⇤(In ⌦B)+(Im ⌦B)⇤(A⌦ Im).

B.4 Miscellaneous Matrix Identities

In the following we denote the eigenvalues of a matrixA 2 Cn⇥n by �
1

(A), · · · ,�n(A),

and suppose that they are in decreasing order: �
1

(A) � · · · � �n(A). We present

two famous eigenvalue inequalities.

Theorem B.16 (Weyl’s Inequality). Suppose A,B 2 Cn⇥n are Hermitian matrices,

so that the eigenvalues of A,B, and A+B are real. Then, the eigenvalues of A+B

satisfy

�i(A) + �j(B)  �k(A+B) whenever k  i+ j � n, and

�i(A) + �j(B) � �k(A+B) whenever k � i+ j � 1.

In particular

�k(A) + �n(B)  �k(A+B)  �k(A) + �
1

(B).

See [HJ13] Theorem 4.3.1 pp.239–40.

Theorem B.17 (Cauchy’s Interlacing Theorem). Let A 2 Cn⇥n be Hermitian,

and let B be the matrix obtained from A by deleting the last m rows and columns,

1  m < n. Then

�k(A) � �k(B) � �k+m(A), k = 1, . . . , n�m.
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In particular for m = 1

�k(A) � �k(B) � �k+1

(A), k = 1, . . . , n� 1.

See [HJ13], pp. 246–7.

Recall that a matrix A 2 Cn⇥n is circulant if it is of the form

A =

0BBBBBBBBBB@

a
0

a
1

a
2

· · · an�1

an�1

a
0

a
1

a
2

...

an�1

a
0

a
1

. . .
...

. . .
. . .

. . . a
2

a
1

a
1

· · · an�1

a
0

1CCCCCCCCCCA
,

we write A = circ(a
0

, . . . , an�1

).

Theorem B.18. Let A = circ(a
0

, . . . , an�1

), with a
1

, . . . , an 2 C. Then

�k =
n�1X
j=0

aj!
j
k,

is an eigenvalue with eigenvector (1,!k, . . . ,!
n�1

k ), where !k = exp(2⇡i kn).

See [Gray06], p.186.

The following result, whilst strictly not related to matrices will be used in the context

of circulant matrices.

Proposition B.19. For a 2 R, b > 0, and !k, k = 1, . . . , n the n-th roots of unity,

nY
k=1

�
a� b!k

�
= an � bn.

Proof. The roots of unity are defined to be the solutions to xn � 1 = 0, and conse-

quently we have: xn � 1 =
Qn

k=1

(x� !k). Then

nY
k=1

�
a� b!k

�
= bn

nY
k=1

⇣a
b
� !k

⌘
= bn

⇣⇣a
b

⌘n
� 1

⌘
.

At several points we will make use of matrix power series. The following result will

be used in defining the Green’s function for a random walk.

Proposition B.20. If A 2 Cn⇥n has spectral radius ⇢(A) < 1, then the following
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power series exists and is equal to

(I �A)�1 =
1X
n=0

An.

See [HJ13], p.351. Recall that the matrix exponential is defined by the power series

eA = exp(A) .

.=
1X
n=0

1

n!
An,

which exists for all A 2 Cn⇥n. A matrix B is said to be a logarithm of A if it

satisfies A = eB; logarithms need not exist, and are not neccessarily unique.

Proposition B.21. If Spec(A) \ R0

= ? then there exists a logarithm X with

Spec(X) ⇢ {z 2 C : � ⇡ < Im(z) < ⇡}.

See [Hig08], p.20. Under the conditions of the theorem above we refer to X as the

principle logarithm of A, and write X = logA.

Proposition B.22. If Spec(A) \ R0

= ? and ⇢(A) < 1, then log(A) satisfies

log(I �A) = �
1X
k=0

1

k
Ak.

See [Hig08], p.273. Under the same assumptions we can easily confirm the trace

identity for matrix logarithms: Tr log(I �A) = log det(I �A), note

Tr log(I �A) = �
nX

j=1

1X
k=0

1

k
Ak

jj

=
1X
k=0

1

k
TrAk

=
1X
k=0

1

k

nX
j=1

⌘kj

with Spec(A) = {⌘j}nj=1

. Then changing the order of summation again we obtain

=
nX

j=1

log(1� ⌘j)

= log

0@ nY
j=1

(1� ⌘j)

1A.
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Appendix C

Some Analysis on `1(R)

The following results all pertain to Chapter 4 where we considered large deviations

principles for the cycle distribution of a loop soup. Our first aim is to prove that

we can construct the cycle distribution as a measure on `
1

(R).
Let m = (mj)j�1

be a positive summable sequence, mj � 0 and
P

j mj = M <1.

Associated with each mj we have the probability measure Pj ⇠ Poi(mj), the law

of the Poisson distribution with mean mj . We construct a product measure Pm =

⌦1
i=1

Pmj in two stages. We first prove that such a measure exists on the space `
1

(N),
and then extend it to the larger space `

1

(R).
The space `

1

(N) consists of all convergent integer sequences, and as such is iso-

morphic to c
0

(N) the space of terminating sequences. In particular this space is

countable. For n = (nj)j�1

define

ePm(n) =
Y
j�1

Pj(nj)

=
Y
j�1

e�mjm
nj

j

nj !
.

Lemma C.1. ePm defines a probability measure on `
1

(N).

Proof. Since `
1

(N) is countable, a measure is determined by its value at each point

n 2 `
1

(N). As such, ePm is by default a measure. It remains to prove thatePm

�
`
1

(N)
�
= 1. To this end, noting that every subset S ⇢ `

1

(N) is measurable

define the sequence of sets

SJ
.

.= N⇥ · · ·⇥ N| {z }
J times

⇥{0} · · ·

so that SJ is the collection of integer sequences which terminate after at most J

terms, and we have `
1

(N) = [J�0

SJ . Moreover, SJ ⇢ SJ+1

holds for all J � 0 and
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so continuity of measures assures

ePm

�
`
1

(N)
�
= lim

J!1
ePm(SJ)

= lim
J!1

1X
n1=0

· · ·
1X

nJ=0

JY
j=1

e�mjm
nj

j

nj !

Y
j>J

e�mj ,

collating all the exponential terms

= lim
J!1

e�M
1X

n1=0

· · ·
1X

nJ=0

JY
j=1

e�mjm
nj

j

nj !

and since there are only finitely many sums we can factor out the product as

= lim
J!1

e�M
JY

j=1

1X
n=0

mn
j

n!

= lim
J!1

e�M
JY

j=1

emj

= lim
J!1

exp

0@�M +
JX

j=1

mj

1A
= 1,

where the final conclusion follows from continuity of the exponential.

We conclude that we can in fact determine an equivalent measure on `
1

(R).

Theorem C.2. For B 2 B the Borel �-algebra of `
1

(R), define

Pm(B) ..= ePm(B \ `
1

(N)).

Then Pm defines a probability measure on (`
1

(R),B).

Proof. The proof is immediate. For ? 2 B,

Pm(?) = ePm(? \ `
1

(N)) = ePm(?) = 0.

Similarly since `
1

(N) ⇢ `
1

(R)

Pm

�
`
1

(R)
�
= ePm

�
`
1

(R) \ `
1

(N)
�
= ePm

�
`
1

(N)
�
= 1.
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And if (Bi)i�1

is a collection of pairwise disjoint measurable sets, Bi 2 B, then

Pm

�
[1i=1

Bi

�
= ePm

��
[1i=1

Bi

�
\ `

1

(N)
�

= ePm

�
[1i=1

�
Bi \ `1(N)

��
and since these sets are disjoint in `

1

(N)

=
1X
i=1

ePm(Bi \ `1(N))

=
1X
i=1

Pm(Bi).

Having established that the measure Pm is well defined, the second technical chal-

lenge to overcome in Section 4.1 is proving exponential tightness for the measures

P
⇤

= (|⇤|�1 ⇤Pm), where now we have assumed mj = µB
�,h,⇤(�j). The proof of this,

Proposition 4.8, relies on the following topological result.

Lemma C.3. Let x 2 `
1

(R), and define the set

Kx
..= {y 2 `

1

(R) : |yj |  |xj | 8j � 1}.

Then Kx is closed and bounded, and moreover is a compact subset of `
1

(R).

Proof. We proceed by first confirming that Kx is closed and bounded, which will

subsequently be used to show compactness. We recall that the metric on `
1

(R) is

given by d(y, z) =
P

j�1

|yj � zj |, and that a subset S ⇢ `
1

(R) is bounded if there

exists s 2 S, and M � 0 such that: d(y, s)  M for all y 2 S. Denoting 0 for the

sequence of all zeros, then 0 2 Kx, and writing M =
P

j�1

|xj |

d(0, y) =
X
j�1

|yj | 
X
j�1

|xj | = M, 8y 2 Kx,

which is to say that Kx is bounded.

Suppose that Kx is not closed, then there exists a sequence y(n) 2 Kx, which

converges to y 2 `
1

(R)\Kx. Considering such y 62 Kx, there is a k � 1 such that

|yk| > |xk|. Set " = 1

2

(|yk|�|xk|), and note that since y(n) ! y, then for n su�ciently

large d(y(n), y) < ". Then

|y(n)k � yk| 
X
j�1

|y(n)j � yj |

<
1

2
(|yk|� |xk|).
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Then using the reverse triangle inequality

��|y(n)k |� |yk|
��  |y(n)k � yk| <

1

2
(|yk|� |xk|),

from which we have

��y(n)k

�� > |yk|�
1

2
(|yk|� |xk|)

=
1

2
(|yk|+ |xk|)

> |xk|,

contradicting that y(n) 2 Kx, and so Kx is closed.

Turning to compactness we note that given a complete set, then if it is closed and

totally bounded, then it is also compact [Sut81] p.141. In our instance, since `
1

(R)
is a Banach space it is, by definition, complete and consequently so to is Kx. We

recall that Kx is totally bounded if for any " > 0 we can find a finite collection of

sequences z(1), . . . , z(I) 2 Kx such that Kx ⇢ [Ii=1

B(z(i), "), where B(z, ") denotes

the "-open ball around z; we say that the z(i) form a finite "-net.

Fix " > 0, and let N � 1 be such that
P

j>N |xj | < "/2, and let KN
x ⇢ Kx be the

set of sequences

KN
x

.

.= {y 2 Kx : yj = 0, j > N}.

The set KN
x is isomorphic to

⇥
� |x

1

|, |x
1

|
⇤
⇥ · · ·

⇥
� |xN |, |xN |

⇤
⇢ RN , which is a

closed and totally bounded subset of RN : hence KN
x is totally bounded. Hence we

can find an "/2-net z(1) . . . , z(I) 2 KN
x for KN

x . For y 2 Kx let yN 2 KN
x be the

sequence which agrees with y on the first N terms, and choose z(i) from the "/2-net

of KN
x such that yN 2 B(z(i), "/2). Then

d(y, z(i)) =
X
j�1

|yj � z(i)j |

=
NX
j=1

|yNj � z(i)j |+
X
j>N

|yNj |

<
"

2
+
"

2

where the first term is bounded by "/2 since yN 2 B(z(i)), whilst the second is

similarly bounded by the definition of N . In particular we have shown that the

sequences z(1), . . . , z(I) are a finite "-net forKx, and hence the set is totally bounded.

The analysis in Chapter 4 of the rate functions associated with LDPs rely on convex

analysis on `
1

(R). We recall that a functional f : `
1

(R)! R is said to be convex on
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a domain D ⇢ `
1

(R) if for all x, y 2 D

f
�
tx+ (1� t)y

�
� tf(x) + (1� t)f(y), 8 t 2 [0, 1].

We say that f is strictly convex if the above holds with strict inequality when x 6= y,

and t 2 (0, 1). The following result is used implicitly when we are solving for minima

of rate functions. Recall that f has a local minimum at x if there is an " > 0 such

that for all y 2 `
1

(R) such that y 2 B"(x), f(x) < f(y). In the following we write

`
1

(R
+

) for the space of convergent positive series.

Proposition C.4. Let f : `
1

(R
+

) ! R be strictly convex, then f achieves at most

one local minimum.

Proof. Suppose that f has a local minimum at both x, y 2 `
1

(R
+

), and let f(x) =

a � b = f(y). Then for all t 2 (0, 1)

f
�
tx+ (1� t)y

�
< ta+ (1� t)b  a.

In particular: f
�
tx+(1� t)y) < f(x) for all t 2 (0, 1), so it su�ces to show that for

t su�ciently close to 1, tx+ (1� t)y 2 B"(x). But this is apparent on writing

d
�
x, tx+ (1� t)y

�
= (1� t)

X
j�1

|xj � yj |,

which tends to 0 as t! 1.

In Section 4.1 we introduced the Gâteaux derivative of a functional f : `
1

(R) ! R
via the formula

df(x; y) .

.=
d

d"
f(x+ "y)|"=0

,

when the right hand side exists we say that f is Gâteaux di↵erentiable at x, in

direction y. As with derivatives of functions, the Gâteaux derivative can be used to

identify the extrema of functionals. This is the content of the following lemma.

Lemma C.5. Let f : `
1

(R
+

)! R be strictly convex and Gâteaux di↵erentiable. The

point x 2 int `
1

(R
+

) is a unique minimum for f if and only if df(x; y) = 0 for all

y 2 `
1

(R).

Proof. Suppose that f has its unique minimum at x 2 int `
1

(R
+

). Let y 2 `
1

(R)
then

df(x; y) = lim
"!0

f(x+ "y)� f(x)

"

and for " su�ciently small x+"y 2 `
1

(R
+

), and since x is the unique local minimum

the numerator is positive, and hence: df(x; y) � 0 for all y 2 `
1

(R). But now
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considering �y = (�y
1

,�y
2

, . . .) 2 `
1

(R)

df(x;�y) = lim
"!0

f(x� "y)� f(x)

"
,

substituting "̃ = �"

= � lim
"̃!0

f(x+ "̃y)� f(x)

"̃

= �df(x; y)

But since df(x;�y) � 0, the above asserts both df(x; y) � 0 and�df(x; y) � 0,

from which the claim follows.

Conversely, suppose that df(x; y) = 0, for all y 2 `
1

(R). In particular choose

y 2 `
1

(R
+

),then

df(x; y � x) = lim
"!0

f
�
x+ "(y � x)

�
� f(x)

"

= lim
"!0

f
�
(1� ")x+ "y

�
� f(x)

"
Since both terms are in `

1

(R
+

), using the convexity of f

 lim
"!0

1

"

�
"f(y)� "f(x)

�
= f(y)� f(x).

Rearranging the above, and relying on the hypothesis that df(x; y) = 0

f(x)  f(y) 8y 2 `
1

(R
+

),

which is to say x is a local minimum. The claim follows on appealing to Proposi-

tion C.4.
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