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Abstract 

This work presents a novel means of producing dye-sensitized solar cells (DSSCs), 

using an inkjet printing technique. To manufacture a completely inkjet-printed 

DSSC, all layers must be considered and a thorough analysis of the suitability of the 

printing process has previously been unreported.  

For DSSCs to become commercially viable they must have long term operational 

stability, be efficient, have a low environmental impact and low manufacturing cost. 

Inkjet printing is an additive manufacturing process, meaning that material is only 

deposited where needed, minimising the material wastage.  

Several nanoparticle materials were investigated including titanium dioxide (TiO2), 

carbon black as a low cost replacement for platinum and PEDOT:PSS as a low cost 

replacement to the widely used spiro-MeOTAD 92,2' ,7,7'-tetrkis(N,N-di-p-

methoxyphenylamine)-9,9-spirobifluorene) solid-state hole transport material. 

A highly porous network of metal-oxide nanocrystals is a fundamental building 

block to produce DSSCs. The morphology of this layer can greatly influence the 

efficiency of the cell and therefore a significant amount of this project was spent on 

developing suitable ink and printing this layer. Titanium dioxide (TiO2) is widely 

used within the development of photoanodes due to its low cost, stability and low 

impact on the environment. However, it can be difficult to create a stable dispersion 

within water due to the natural tendency for the material to agglomerate.  

An aqueous TiO2 nanoparticle dispersion was developed and several additive 

materials were explored in an effort to optimize the ink. The initial ink was printed to 

produce a layer 2.6 µm thick which, once incorporated into a DSSC, resulted in a 
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promising efficiency of 3.50%. Inkjet printed carbon black counter electrodes with 

thicknesses of 10.24 µm, lead to efficiencies of 2.59%, whilst inkjet printed 

PEDOT:PSS solid state hole transport material resulted in a very low efficiency of 

0.08%. Whilst the PEDOT:PSS and carbon did not produce suitable results for this 

application, it is suggested that further materials are still investigated due to the 

benefits of the manufacturing technique. Therefore, it can be concluded that this 

work shows the capability of inkjet printing for low-cost solar cells, with exciting 

potential application to other printed electronic applications. 
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Chapter 1 

Introduction 

1.1 The research problem 

Conventional silicon solar cells are made from high purity materials and require 

expensive and energy consuming specialist equipment, which incorporate a p-n 

junction to generate electron-hole pairs. The semiconductor within these devices 

assumes both the task of light absorption and charge carrier transport. Dye-sensitized 

solar cells (DSSCs) have a fundamentally different working principle; light is 

adsorbed by a dye, which is attached to the surface of a nanoparticle semiconductor. 

Charge generation then takes place at the materials interface between the dye and the 

semiconductor. These offer the potential of very low materials and fabrication costs 

compared to traditional silicon devices. However up-scaling from small laboratory 

test cells into large prototypes for industrial manufacturing involves overcoming 

several issues including the rapid patterning of the underlying surface or layer [1, 2]. 

Electronics manufacturing generally requires a degree of patterning, which is either 

achieved by masking or selective removal of the material after deposition. These 

steps can be potentially removed through the use of an “additive” patterning process 

such as inkjet printing or spray coating which deposit material only where required, 

resulting in little or no wastage.  Solid state DSSCs (that utilize a gel or solid in-

place of a liquid electrolyte) have a simple multilayer structure which could be 

processed using these techniques. To become commercially viable, DSSCs must 

have long-term operational stability, be efficient, with low-cost materials and 

preparation and minimal impact on the environment. The ideal manufacturing 
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technique should be able to use flexible substrates with as few processing steps as 

possible. In consideration of these requirements, an additive manufacturing 

technique would be ideally suited to the production of solid state DSSCs, however 

there are very few studies that investigate modifying the materials and structure of 

devices to utilise additive or digital manufacturing processes [3]. 

A significant proportion of work in the DSSC research community is focussed on the 

development of new materials. In particular, focus is on new dyes that can be 

manufactured faster and cheaper with the potential to capture wide wavelength 

ranges. Another area of materials research is investigating the modification of the 

TiO2 layer through the use of nanotubes, wires, core-shell materials or template-

based structures [4-6]. Ongoing work is also concentrated on solvent-free or solid 

state electrolytes to replace the liquid electrolyte that is currently the standard 

structure reported [1, 7-16]. Optimization of the device architecture constitutes a 

smaller research field. Some work has been conducted on alternative substrates to 

glass including plastic and steel [17-20]. Other work investigates the replacement of 

fluorine doped tin oxide (FTO) with alternative transparent conductive materials 

using traditional manufacturing procedures [21, 22].  

The nano-structured metal oxide layer within DSSCs plays a critical role in the 

overall performance of the cell, with material choice, processing methods and nature 

of the structure all having influencing factors [16, 23-27]. One of the most important 

requirements for the photoanode is that it needs to exhibit an extremely large surface 

area, this is achieved through the deposition of nanoparticle materials, commonly 

TiO2 [1, 28]. This layer has been fabricated by countless different processes with wet 

coating techniques still the most popular approach, the most common being screen-
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printing and doctor-blading [23, 26, 29].  There are very few published papers that 

have investigated inkjet printing of TiO2 as a deposition route for application in 

DSSCs despite apparent benefits of the processing method [24, 30]. There are also 

few published papers which consider the issue of adhesion of the printed layer with 

the substrate [25, 31-34], which is an essential issue that needs to be addressed for 

larger scale applications and will be discussed in section 4.6. Although single-step 

deposition is beneficial to maintain high manufacturing speeds, multilayer deposition 

has already been shown to improve the conversion efficiency of cells [35]. 

Deposition of a thin, highly dense layer of TiO2 prior to a thicker and more porous 

layer can directly enhance DSSC performance [35]. This enhancement is currently 

achieved through two manufacturing techniques whereas inkjet printing could 

potentially be used to produce both these layers by modifying the ink composition. 

Further layers could also be introduced to produce a density profile that progresses 

from high to low. 

In the existing literature, there are no reports of a DSSC device deposited completely 

by inkjet printing. Having addressed the potential of additive printing, this work 

aims to move toward a fully inkjet printed, low cost DSSC by filling some of the 

gaps in the body of knowledge. It was determined that there were neither the inks 

available nor adequate information on optimising the print parameters to produce a 

fully inkjet printed, low cost device. Therefore, two main objectives for this work 

were established which address current research gaps. The first objective was to 

research the development of nanoparticle inks with the desired degree of stability 

and rheological behaviour to allow additive layer manufacture. The second objective 

was to utilize these optimized inks to produce films and test their functionality once 

they had been deposited by digital printing methods.  
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1.2 Aims of this work 

The main aim of this work was to further develop the science behind functional inks 

for printing DSSC devices using inkjet techniques, and to examine the potential and 

performance of such materials in a fully printed DSSC device. In consideration of 

the knowledge gaps identified in the literature, the following objectives were 

identified: 

 Identify suitable functional materials for the production of DSSCs using inkjet 

techniques 

 Perform fundamental research into the formulation of functional inks by 

evaluating the suitability of the materials for the printing process  

 Analyse the thickness and surface quality of the films once printed 

 Characterise (where necessary) the functionality of the printed films 

 Examine the potential scalability of the proposed process by determining the 

optimal structure which can be produced using inkjet printing techniques 

 Examine the commercial potential of the proposed process by characterizing the 

electrical performance of the DSSC 

1.3 Thesis structure 

This thesis covers several separate disciplines and the structure of the thesis shows 

the consideration given to each of these and the progression of the project through 

them. Chapter 2 provides a literature review on photovoltaic technology and the 

materials used in the manufacture for this project. It continues to introduce the area 

of printed electronics and the potential role it has in the manufacture of DSSC 

technology. Chapter 3 then details the materials and methods which were used in the 

experimental work.  Comprehensive results chapters then follow (Chapter 4, Chapter 
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5 and Chapter 6) highlighting the ink formulation, printing and application to 

photovoltaic DSSCs. Chapter 7 provides an analysis of the cost and environmental 

implications of inkjet printed solid state DSSCs. The key findings are then 

summarised in the conclusions in Chapter 8 along with areas identified for further 

work.  
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Chapter 2 

Literature review 

2.1 Photovoltaic materials 

This section provides a review of the materials used within photovoltaic solar cells, 

which are a technology that convert sunlight into direct current (DC) electricity. 

Researchers have been developing methods to harness solar energy since it was 

observed that distinct chemical transformations occur when materials are exposed to 

sunlight [36]. The types of material that are used within devices designed to capture 

solar energy has a significant influence on how much energy can be converted into 

electricity. Although, there are several ways in which to group solar photovoltaic 

technologies, this section will focus on the materials of manufacture and has 

therefore been split into inorganic and organic based devices. 

2.1.1 Inorganic 

The development of photovoltaic cell design and fabrication can be separated into 

three main categories. First generation, silicon-based devices account for 86 % of the 

current market [37]. High manufacturing costs are associated with first generation 

devices; partly due to the highly purified silicon required. This is obtained by firstly 

reducing silicon dioxide with carbon in a high temperature furnace (≤ 2000 °C). The 

power conversion efficiency of silicon solar cells is largely dependent on impurity 

levels in the raw materials; therefore the material is then further purified to reduce 

impurity levels to less than the parts-per-billion level [38]. 
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Once purified, ingots doped with boron (p-doped) are sliced into wafers.  The second 

side of the photo junction is produced from the same high purity silicon diffused 

with phosphorous (n-doped). To complete the device (illustrated in Figure 2.1), 

metal contacts are screen printed onto the surface and it is encapsulated to protect it 

from damage. 

 

Figure 2.1 - Silicon-based p-n junction 

These silicon-based devices are manufactured from either monocrystalline (single-

crystal) or polycrystalline (metallurgical grade silicon is melted to 1414 °C and 

poured into a square mould to produce a block of multi-crystalline silicon) materials. 

These devices typically have a layer of silicon between 100 and 500 µm, whereas 

newer thin-film devices have been developed which use a layer thickness of between 

1 to 100 µm. However, these thin-film devices are more expensive than that of the 

bulk-material devices due to the cost associated with processing the materials [39]. 

Current research is working on the evolution of a new generation of technology to 

produce high-efficiency thin film technology at low cost [40]. 

Gallium arsenide (GaAs), cadmium telluride (CdTe), and copper indium gallium 

selenide (CIGS) are compound semiconductors that have received significant 



  

16 

 

attention due to the fact they have high absorptivity, present direct band gap energy 

and can be doped to either p-type or n-type [41, 42].Gallium arsenide (GaAs) is a 

mixture of gallium and arsenic which has a bandgap of 1.43 eV.  

 

Figure 2.2 - Theoretical efficiency as a function of semiconductor band gap 

(From [43]) 

Figure 2.2 shows how the bandgap of a semiconductor material in a single junction 

solar cell influences the efficiency. The bandgap of GaAs is almost the same as a 

black body and should therefore be the ideal material to use to maximise efficiency 

[43]. The semiconductor compound is able to capture up to 99.5% of solar energy (in 

the wavelength range from 400–860 nm) and is fairly insensitive to heat [44]. For 

these reasons GaAs is commonly used in space applications and concentrator 

systems [45, 46]. GaAs has been combined with other thin-film materials to produce 

multi-junction cells with laboratory efficiencies of more than 43 % [47]. Gallium is a 

rare earth metal which may be vulnerable to shortages in the future with global 

consumptions rising. Arsenic is not rare but is highly toxic, and there are concerns 
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that arsine or arsenic could be released if cells are not correctly disposed or recycled 

at end-of-life [48]. 

Cadmium telluride (CdTe) can be either used alone or easily alloyed with zinc, 

mercury and others to vary its properties. It is commonly used alongside tin oxide to 

provide a transparent reflective coating. The more efficient CdTe cells employ a 

heterojunction interface with cadmium sulphide (CdS). However, CdTe thin film 

structures can develop high electrical resistances which lead to large internal losses. 

A method commonly used to overcome this is by allowing the CdTe to be intrinsic 

(neither p-type nor n-type) and adding a layer of p-type zinc telluride (ZnTe) 

between the CdTe and the back electrode [49]. 

Copper indium selenide (CIS) is another promising semiconductor material 

composed of copper, indium, and selenium. CIS has a very high absorptivity and can 

capture 99% of the light which shines on the material in the first micrometre. 

Cadmium sulphide is commonly used as the n-type layer and zinc is sometimes 

added to improve transparency. Small amounts of gallium can be added to the lower 

absorbing layer; boosting the band gap which improves the voltage and therefore the 

efficiency of the device [50]. 

2.1.2 Organic 

Organic solar cells can be separated into three main categories; dye-sensitised solar 

cells (DSSCs), small molecule cells and polymer cells.  Cells which use both organic 

and inorganic materials within the active layer are called hybrid cells. As DSSCs are 

the main focus of this work; they will be covered in more detail in section 2.2. 

The active material of an organic solar cell can be designed in three ways: single 

layer, double layer (bilayer heterojunction) or bulk heterojunction (BHJ). Single 
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layer organic solar cells are made by sandwiching an organic layer between two 

dissimilar electrodes; one with a low work function and one with a high work 

function. The work function of an electrode is the minimum energy required to 

remove an electron from a solid to a point immediately outside the solid surface. 

When the device is short-circuited, electrons move from the low work function 

electrode (usually aluminium) to the high work function (usually indium tin oxide, 

ITO) creating an electric field across the organic layer [51]. These single layer 

devices had thicknesses between 100 - 500 nm and resulted in power conversion 

efficiencies between 0.1 - 1.0 % [52].  

A double layer structured cell was first introduced in 1986 where p- and n-type 

organic semiconductor materials were coated one on top of another resulting in a less 

diffused structure. This bilayer structure has several advantages over the single layer 

structure for several reasons. The donor acceptor interface is increased resulting in 

more charge generation and reduced recombination losses due to the fact that 

electron and hole transport is separated into different materials. The most efficient 

organic bilayer structure reported has an efficiency of 3.6 % [52]. However, the most 

successful structure is based on the bulk heterojunction concept [53]. When charges 

are generated within the active layer, they only have a very short lifetime and 

therefore can only travel short distances [54]. The bulk heterojunction is designed to 

capture the charge quickly by reducing the distance that they need to travel before 

they come into contact with a donor-acceptor interface. A large surface area is 

achieved by creating a mixture of donor and acceptor materials within the active 

layer to create a three-dimensional network of junctions [51].  

Organic solar devices have two types of architecture; direct or inverted. In direct 

devices, indium tin oxide (ITO) is commonly used as an anode combined with a 
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cathode which has a lower work function (e.g. calcium, magnesium or aluminium). 

An inverted device will commonly use ITO as cathode and a metal with a work 

function greater than ITO (e.g. silver, gold or copper) [55]. 

2.2 Dye-sensitised Solar Cells (DSSCs) 

DSSCs have three main components (illustrated in Figure 2.3), a dye-sensitized 

metal-oxide photo anode, a hole transport material (traditionally a liquid electrolyte), 

and a highly catalytic counter electrode. These are sandwiched in between 

transparent conductive electrodes [52].  

 

Figure 2.3 - Illustrative structure of a DSSC 

Under illumination, the dye molecules will capture energy in the form of photons. 

The dye molecules then become excited and charge separation occurs at the interface 

of the metal oxide and the dye. Electrons are ejected into the adjacent metal oxide 
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particles and "holes" (an electric charge carrier with a positive charge, equal in 

magnitude but opposite in polarity to the charge on the electron) are left behind on 

the dye molecule. The injected electrons travel through the metal oxide particles and 

reach the transparent conductive electrode. When a load is connected, the electrons 

move to the counter electrode through the external circuit and are finally reunited 

with the holes through the redox couple present in the electrolyte [56]. 

2.2.1 Transparent conductive electrode 

Solar cells require at least one transparent electrode to allow sunlight to reach the 

active components of the cell. The transparent electrode can have a significant 

influence on the overall electrical conversion efficiency of the device and it has been 

reported that ideally the transparency should be at least 90 % and it should have a 

sheet resistance of less than 10 Ω/square [57]. Indium Tin Oxide (ITO) is a widely 

used transparent conductor that has high conductivity, high transparency and good 

environmental stability. Indium is a by-product of zinc production and is one of the 

rarest materials, existing at approximately 0.05 parts per million (ppm) in the Earth's 

crust [58, 59]. The demand for indium-tin oxide has increased dramatically over 

recent years as touch screen technology and liquid crystal displays have become a 

popular household technology. In 2013, the global production of indium was 670 

tons, of which over 75 % was used for ITO [59].  

However,  ITO is known to be brittle, with poor thermal stability resulting in layers 

peeling off and surface defects in modules [60]. Thin film ITO is usually 

manufactured using sputtering, a slow and costly vapour-phase process in which 

only 30 % of the material in the sputtering target is deposited onto the substrate [61]. 

ITO suffers from high ohmic resistance when deposited over large areas; to combat 

this thin conductive metal strips have been successfully applied to improve the 
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performance [62]. However, when applied to solar cells this can reduce the overall 

area exposed to sunlight. For these reasons, the currently preferred transparent 

conductor for DSSC applications is fluoride tin oxide (FTO), which has similar 

properties at a lower cost. 

Alternative materials are also being investigated to optimize the potential for large 

area commercialization of electronic products such as thin film photovolatics and 

organic light emitting diodes (OLEDs). Materials being investigated include 

conductive polymers and carbon-based materials. Conductive polymers alone have 

not resulted in high conductivities and relatively low sheet resistance. A conductivity 

of 900 S/cm and sheet resistance of 300 Ω/square can be produced using a poly(3,4-

ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) with dimethyl 

sulfoxide (DMSO) [63]. This is in comparison to ITO which has conductivities 

between 3000-5000 S/cm and a sheet resistance as low as 5 Ω/square [64]. 

Therefore, conductive polymers are often doped with more conductive materials 

such as carbon nanotubes or graphene to produce higher efficiencies [65-68]. 

2.2.2 Metal oxide materials 

Titanium dioxide (TiO2), zinc oxide (ZnO), and niobium pentoxide (Nb2O5) have 

been identified as the best candidate materials for efficient electron transfer within 

DSSCs in view of their electronic band structure [28]. The use of nanoparticles 

within the metal oxide layer is essential to increase the surface area available for dye 

adsorption. TiO2 is the most widely researched, as it is chemically stable, non-toxic, 

readily available and has delivered the highest conversion efficiencies [69]. The 

conversion efficiency of a solar cell provides a standard measure for comparison and 

is defined as the ratio of energy output from the solar cell to input energy from the 

sun [47].  
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TiO2 is a wide bandgap semiconductor, which is transparent in visible light and 

captures a wide ultraviolet (UV) range. TiO2 has three main crystal phases, anatase, 

rutile and brookite. Of the three phases, anatase has the largest band gap energy of 

3.23 eV, followed by brookite with 3.14 eV and rutile has the lowest of 3.06 eV [70]. 

Brookite is the least studied TiO2 photo catalyst due to the difficulties obtaining it as 

a pure phase [71]. The anatase phase shows higher photo catalytic activity than rutile 

and is the most widely used form used in DSSC applications [72]. When illuminated 

with UV light, charge carriers are created which can be used to generate a current, 

induce chemical reactions or emit light. This is known as photo generated catalysis.  

The photo catalytic activity of TiO2 increases with decreasing particle size, due to an 

increase in the specific surface area [73]. This holds true until it reaches a critical 

particle size of approximately 10 nm, after which a loss in photo catalytic activity 

can be observed [74]. Below a particle size of 10 nm, the “wide bandgap and the 

high probability for electron/hole surface recombination results in a loss of 

photoactivity under visible light” [75]. Figure 2.4 illustrates how the TiO2 particle 

size and layer thickness influence the electrical conversion efficiency of the cell [76]. 

From this we can infer that minimising the particle size within the TiO2 ink layer 

should result in the best photo catalytic activity. The use of small particles also 

increases the surface area per square unit of the TiO2 electrode (roughness factor) 

providing greater porosity. The surface area and porosity of the TiO2 layer is an 

important factor which influences the amount of dye molecules that  can be adsorbed 

within the film and constitutes a key parameter ruling the performances of DSSCs. A 

film with a porosity of 50% can increase the surface area by over a thousand times. 

The specific surface area and mean pore size data can be deduced from Nitrogen 

sorption experiments [77].  
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Figure 2.4 - Influence of TiO2 particle size and layer thickness on efficiency  

(From [76]) 

Following deposition, the TiO2 layer within DSSC is traditionally followed by 

sintering at temperatures of 450 ºC or above. This sintering step has several 

functions. Firstly, it burns off some of the organic binder material to create a porous 

material in which dye can penetrate the film and attach to the TiO2 particles. 

Secondly, it fuses together some of the TiO2 particles to promote the inter-particle 

connection within the material and lastly it improves the contact between TiO2 and 

FTO coated substrate to provide strong adhesion and reduce the risk of delamination 

[31]. These adhesive and mechanical properties significantly affect the overall 

performance of the device. However, high temperature sintering cannot be used 

alongside heat-sensitive substrates and therefore several alternatives are being 

considered. Mechanical compression has been used to replace heat treatment, 

resulting in crack-free films between 7 µm and 14 µm thick [33, 34]. Infra-red 

radiation has also been successfully used to sinter the TiO2 printed layers within 12 

seconds [17]. 
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It has recently been discovered that treatment with titanium tetrachloride (TiCl4) 

prior to and post sintering has been shown to significantly improve the performance 

of TiO2 DSSCs [78]. The first treatment improves the bond between the FTO and the 

TiO2, whilst blocking charge recombination between electrons in the FTO, with 

holes in the electrolyte. The second treatment adds a 1 nm TiO2 coating onto the 

TiO2 particles (as illustrated in Figure 2.5), which increases the surface roughness 

factor resulting in more dye molecules attaching to the surface of the particles [79]. 

TiCl4 is a hazardous material that, when comes into contact with moisture, releases 

hydrochloric acid vapour and titanium oxychloride smoke. Both of which can cause 

chemical and thermal burns on contact with skin or eyes and respiratory damage on 

inhalation. TiCl4 treatment therefore must be undertaken in ventilated areas which 

may not be suitable for roll-to-roll coating [80]. 

 

Figure 2.5 - Influence of TiCl4 post-sintering treatment on the structure of DSSCs  

(From [81]) 

Zirconium oxide (ZrO2) has been utilized as an inexpensive and environmentally 

friendly alternative post-sintering treatment material for photo electrodes. ZrO2 post-

sintering treatment has been shown to improve the connection of nanoparticles, 

reduce the particle size, and increased the specific surface area to improve the dye 

adsorption.  

TiCl4  
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Table 2.1 shows how the energy conversion efficiency of ZrO2 oxide post-treated 

TiO2 films was shown to be similar to that of TiCl4 post-treated films [82]. Thin 

coating of Nb2O5 or ZnO on top of the TiO2 layer prior to dye sensitization has been 

also shown to reduce recombination losses in DSSCs [83].  Furthermore, Nb2O5 

coated with a thickness of approximately 2-3 nm has shown to increase the 

efficiency by 1.4 % [84].  

Table 2.1 - Influence of TiCl4 and ZrO2 treatment on short circuit current, open 

circuit voltage and efficiency of DSSCs (From [82]) 

The thickness and the morphology of the metal oxide layer have a strong influence 

on the photo electrochemical properties of the solar cells. Thicker layers are 

expected to adsorb more dye and therefore result in higher conversion efficiencies. 

However, thicker layers also adversely impact the efficiency in several ways [35]: 

 the electrons within the dye cannot be injected to the electrode effectively due to 

the long distance needed to travel and hence the photocurrent is increased 

 a decrease in the transmittance reduces the incident light intensity to the dye 

 there is a poor charge recombination between the materials 

There is therefore an optimal thickness for the mesoporous oxide material. Several 

studies have investigated the relationship between the thickness of the mesoporous 

Type Short circuit 

current  

(mA/cm
2
) 

Open circuit 

voltage  

(V) 

Fill factor Efficiency 

(%) 

Untreated 8.45 0.7 0.63 4.35 

Post treated with TiCl4 13.19 0.74 0.64 7.28 

post treated with ZrO2 12.61 0.73 0.66 7.03 
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oxide layer and the conversion efficiency. The results vary significantly, with 

optimum film thickness of TiO2 reported is from anywhere between 9.5 µm and 

20 µm [76, 81, 85-89]. Many of these are difficult to compare due to differences in 

materials (e.g. TiO2 particle size and dye adsorption) and architectures reported. 

ZnO has been used as a photo anode in DSSCs as it has a band gap energy of 3.3 eV, 

similar to that of TiO2 anatase, which has a band gap of 3.2 eV [90] and both have 

similar electron affinities. ZnO is also stable against photo corrosion and is 

inexpensive. The material is also commonly used as a buffer layer in organic solar 

cells and is therefore a material of significant research [91]. Despite the superior 

transport properties of ZnO, cells developed using the material still result in inferior 

performance; this has been attributed to the fact that ZnO is less efficient at injecting 

electrons from excited dye molecules [92].  

Nb2O5 has also been shown to be a suitable alternative to TiO2 [93], however it is not 

as widely available as TiO2 nanomaterials due to it being produced on a large scale 

as a pigment in paints [94] and as a UV absorber in the cosmetics industry [95]. 

One possible way to improve the transport properties is to grow the electrode 

materials as nanoparticles, nanowires, nanotubes, and nanofibers [28]. However, this 

is a relatively new area of research so the cost and time required undertaking such 

processing is still unknown. 

2.2.3 Dye sensitizers 

The dye is a key component of the DSSC that captures energy from light and injects 

electrons into the conduction band of the metal oxide nanoparticles. Over the past 

two decades several materials have been studied to provide desirable properties [60]: 
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 strong light absorption in the visible and near infrared (IR) range 

 good solubility in organic solvents 

 ability to anchor to the metal oxide surface 

 suitable electronic energy level alignment 

 good thermal and chemical stability 

Metal complex dye sensitizers have been used in DSSC devices to produce 

efficiencies of 12 %, however recently organic-based sensitizers have received more 

attention due to their ease of synthesis [96]. Dyes which function well are often 

polypyridine complexes of ruthenium with one or more carboxylic acid groups as a 

peripheral substituent [60]. These dyes are very good at capturing light at low 

wavelengths (300-550 nm), making them an ideal power source for low light 

environments.  

The conversion of light into electricity at wavelengths within the visible range (390 

to 700 nm) makes DSSCs an attractive power source option for portable and mobile 

electronic devices which are primarily used indoors or outdoors in diffuse light [97]. 

The use of dye sensitizers in a wide range of colours e.g. blue, green, orange, red and 

yellow, also make them aesthetically attractive option for integration into solar 

shading and windows [98]. The use of multiple dyes has also been reported to enable 

absorption of light from a wider wavelength [99]. 

2.2.4 Liquid redox electrolyte 

The most advanced DSSCs incorporate an iodine/triiodide electrolyte to produce 

power conversion efficiencies of more than 11%. These are typically prepared in a 

solution of acetonitrile or neat N-methoxypriopionitrile (MPN) which have low 

boiling points and limit use of devices above 80 ºC, also leading to stability 
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problems such as short lifetimes and leakage issues [10]. For DSSCs to compete 

with current commercially produced silicon solar cells there is the need to increase 

power conversion efficiencies, increase the lifetimes up to 20 years and reduce the 

overall fabrication costs. Therefore, it is assumed by many researchers that the 

current use of a liquid electrolyte is not the ideal architecture to meet these targets.  

2.2.5 Organic hole transporters 

The hole transport material facilitates the transport of charge between the metal-

oxide coated electrode and the counter electrode. Solid state DSSCs (ss-DSSCs) 

were developed to replace the liquid electrolyte with a material which, when dried, 

becomes solid. This is seen as the most likely route to large scale production of 

DSSCs and therefore significant research is being undertaken to investigate gel or 

solid-state electrolytes. These ss-DSSCs also have the potential to achieve higher 

power conversion efficiencies than the traditional liquid- electrolyte [60]. 

The highest reported efficiency for a DSSC incorporating a liquid electrolyte (at the 

time of writing) is 11.9 ± 0.4% [100]. However, the maximum theoretical efficiency 

for these cells (incorporating ruthenium/iodine/triiodide) is 13.8%; to improve 

beyond this will require improved dyes and electrolytes [101]. Dye regeneration with 

solid-state devices occur several orders of magnitude faster than in the 

iodine/triiodide redox couple, therefore efficiencies of more than 20% are 

theoretically possible [101]. Solid state devices typically incorporate indoline dyes 

(such as D102, D149 or D205), which require much thinner films and produce cells 

with efficiencies between 4-6 % [10]. Efficiencies of up to 7% have been achieved 

by using spiro-MeOTAD [2,2' ,7,7'-tetrkis(N,N-di-p-methoxyphenylamine)-9,9-

spirobifluorene] as the hole conductor [1]. However, spiro-OMeTAD, has a 

commercial price that is more than 10 times that of gold and platinum [102]. High 
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device efficiencies for solid-state devices are achieved by incorporating two 

additives into the hole transport material; 4-tert-butylpyridine (tBP) and an ionic salt 

typically lithium bis-trifluoromethanesulfonimide (LiTFSI). 

Solid state devices require much thinner metal oxide layers; with an optimum 

thickness of between 0.65 µm and 2 µm reported (with a spiro-OMeTAD hole 

conductor) [15, 103, 104].There are possibly two reasons for this. The first is that the 

hole conductor, spiro-OMeTAD has relatively large molecules in comparison to 

traditional liquid electrolyte transport materials, which results in insufficient pore 

filling. The second is that the back electron recombination is approximately twice as 

fast than that of the traditional liquid electrolytes, resulting in the effective electron 

diffusion length reduced to 1µm [60]. This opens up opportunities for the use of 

alternative single-step coating techniques to be used to manufacture the TiO2 layer 

such as a dip-coating technique, which has been shown to produce efficiencies 

favourably to that of traditional screen-printed films. Synchrotron x-ray diffraction 

has been used to show that the repeated deposition and thermal treatment of eight 

layers produced larger pore and particles sizes in the bottom layers due to repeated 

calcinations [105].  The resultant film had a thickness of 1.9 µm and was developed 

into a ss-DSSC resulting in an efficiency of 4.63 % [105]. 

Conjugated polymers have also been investigated to replace the liquid electrolyte in 

standard DSSCs due to their high conductivity and tuneable optoelectronic 

properties. The most successful examples include the use of poly(3-

hexylthiophene)(P3HT) and poly(3,4-ethylenedioxythiophene) (PEDOT), which 

result in efficiencies of 3.2 % and 6.8 % respectively [9, 15]. 

2.2.6 Counter electrode 
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The counter electrode plays a very important role in DSSCs by providing a catalytic 

surface that greatly enhances electron transfer to the electrolyte. This in turn 

increases the charge density in the solar cell which directly translates to higher 

photo-currents and efficiencies. To prevent losses at the counter electrode, the rate of 

electrolyte reduction should be comparable to the rate of dye regeneration by the 

electrolyte at the photo anode [106]. The counter electrode within a traditional DSSC 

requires a high catalytic activity and low resistance. Platinum is often used because it 

possesses both of these properties, whilst providing high corrosion stability against 

iodine in the electrolyte. 

Concerns over platinum’s cost and stability has led to research which is investigating 

alternative catalysts [107, 108]. Carbon based nanomaterials (e.g. carbon black 

[109], carbon nanotubes [66, 110], graphite, graphene [65] and graphene oxide [21]) 

have been investigated as a counter electrode in DSSCs due to their good electric 

conductivity and high surface area and are thought to be the most promising low cost 

alternative to platinum. Of these, carbon black is one of the cheapest to produce and 

is widely available due to its use as a colour pigment in ink, paint, and copy 

machines toners, however its main use is as an additive in manufacturing of tyres in 

the rubber industry [111]. Carbon black was first used as a counter-electrode in 

1996, resulting in a power conversion efficiency of 6.7% [112].The efficiency of 

carbon black as a counter electrode in DSSCs greatly depends on the thickness of the 

layer, for example a 14.47 µm layer is reported to result in an efficiency of 9.1%, a 

9.79 µm layer is reported to result in an efficiency of 8.4% and a 3.09 µm layer is 

reported to result in an efficiency of 7.5%  [109]. In solid-state DSSCs the counter 

electrode materials are commonly thermally evaporated metals of silver or gold. 
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Reflective metal contacts have been recognized to increase the short circuit current 

density (Isc) in solar cells by reflecting transmitted light back into the solar cell [113].  

2.3 Printed electronics 

The use of the term printed electronics refers to the manufacture of electronics 

beyond classical silicon approaches [61]. Printed electronics combines non-

traditional materials (often solution-deposition or vacuum-deposition techniques) 

and large area, high volume deposition techniques to manufacture electronic 

components. It is a developing area of research in many fields including PVs, 

flexible displays, lighting (including electroluminescent and organic light emitting 

diode (OLED) products), electronic components and integrated smart systems 

(including sensors and textiles) [61, 114, 115]. Manufacture of a printed electronic 

device requires the understanding of several separate disciplines including materials 

science, chemistry, device physics, system integration, production engineering, 

software, mechanical engineering and electronics. It is therefore a complex, 

multidisciplinary research field. 

Printed electronics opens the possibility to integrate low-cost electronic function 

directly in the production line to add unique features to products. For example, 

components such as batteries or lights can be directly printed within a device to 

reduce the number of manufacturing steps. Although many of the inks and raw 

materials, especially the organic semiconductors are currently still relatively 

expensive, only a small amount of material is needed with minimal waste. In 

contrast, traditional silicon technology needs to use a whole wafer made from highly 

pure material followed by the use of subtractive technologies, which results in high 

material losses. 
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Roll-to roll printing techniques involve a substrate that is unwound from a roll to 

allow for continuous printing or coating. Several treatment steps (including heating, 

drying, UV curing etc.) and further layers can be added as required. A detailed 

comparison of the film-forming techniques for roll-to-roll production can be found in 

a review by Krebs (2009) [3]. 

2.3.1 Screen printing and doctor blade coating 

In screen printing, a stencil is applied to a woven material (synthetic fibre or steel 

mesh) that is stretched over a frame. The stencil is impermeable to the ink and blocks 

all openings except the patterned area. Ink is transferred to a substrate after being 

forced through the openings in the stencil using a squeegee. The thickness of the 

coating is determined by the thickness of the solution and the screen [3]. 

Doctor blade coating is a technique used to form films with well-defined thicknesses. 

The technique works by placing a sharp blade a fixed distance from the surface that 

needs to be covered. The coating solution is then placed in front of the blade and the 

blade is moved across in-line with the surface, creating a wet film. The technique 

should ideally have solution losses of about 5%, however practically it takes time for 

optimal conditions to be found [3].  

 

Figure 2.6 - Illustrative comparison of deposition techniques  

(From [116]) 
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Doctor blade coating and screen printing are the most reported methods to produce 

the nano-structured metal-oxide layer within DSSCs [23, 117]. The inks/pastes used 

in these processes usually require large amounts of binders and thickeners to produce 

the high viscosities (1000 to 10,000 cP) required for reproducible and reliable 

production of films [118]. Viscosities can be increased with the addition of 

polymeric additives such and glycerol or ethylene glycol or ethyl cellulose [119]. 

However, high temperature curing of between 450-500 ˚C are required to completely 

remove these large amounts of material from the printed layers without damaging the 

printed materials or underlying layers [120].  

2.3.2 Inkjet printing 

Inkjet technologies can be described as the “digitally controlled ejection of drops of 

fluid from a print head onto a substrate” [121]. Most systems operate by dispensing 

droplets one at a time as the print head moves in the X direction and the substrate 

moves in the Y. More advanced systems also incorporate a Z movement. It is a non-

contact method that can be used on a wide range of substrates including flexible and 

three-dimensional geometries. Since inkjet printing uses liquid forms of materials 

dispersed in a solvent, it is critical to understand the ink deposition processes to 

determine the limitations of the technique. 

The technology is broadly divided into two categories, continuous inkjet (CIJ) and 

drop-on-demand (DOD). CIJ printers produce a continuous stream of droplets from 

the nozzles whereas DOD printers produce droplets only when prompted to do so. 

There are similarities between the two methods. Firstly, they both use a pump to 

provide suction and to prevent ink leaving the nozzles when they are not in use; it 

can also be used to provide pressure to flush the nozzles with cleaning fluid. They 

both use an electric motor to correctly position the nozzles above the substrate to 
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produce a pattern. This is either done by moving the nozzles (print head) themselves, 

the substrate or both. 

CIJ systems produce a continuous stream of droplets from a nozzle which is directly 

connected to a reservoir. As the stream of droplets fall toward the substrate, they 

pass between two electrostatic charging plates. When required, a selection of these 

electrostatically charged droplets can be deflected, collected in a gutter and recycled. 

The technology does not suffer from nozzle clogging due to the fact that there is a 

constant stream of droplets. This enables a high drop frequency and also has the 

ability to use volatile solvents which allows for a faster drying and increased 

adhesion to substrates. A high pressure pump forces the liquid through the nozzles 

which enables printing at large distances from the substrate due to the high drop 

velocity. These points combined make possible high speed printing for applications 

such as data coding of products and is most commonly used in industry to produce 

expiry dates on pots and bottles [2]. However, CIJ results in a relatively low print 

resolution due to the fact that there is less control over the droplet positioning and 

has limitations due to the requirement for the print fluid to be electrically charged. 

The technique is also known for requiring high maintenance and is perceived to be 

environmentally unfriendly due to the solvents used [121]. CIJ systems are not 

commonly used to manufacture printed electronics due to the fact that the quality of 

the functional inks is compromised when exposed to environmental conditions 

during the ink recycling process [122]. 

As previously mentioned, DOD systems only eject drops when required; generally 

formed by the creation of a pressure pulse. These systems can be further divided into 

thermal and piezoelectric printers. Thermal inkjet printers operate by rapidly heating 

the ink inside a reservoir using a resistor connected to a power supply [123]. A film 
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of ink is developed directly above the heater, which vaporises producing an air 

bubble. The resultant air bubble causes a pressure pulse, which forces a drop of ink 

through the nozzle [122]. Thermal inkjet printing has the potential for small drop 

sizes, high nozzle density and low print head costs. However, the heating element 

can lead to degradation of the functional material and is limited in the range of 

solvents that can be used [124]. 

Piezoelectric printers contain a piezoelectric crystal within the ink reservoir, which 

changes shape when a voltage is applied [2]. This piezoelectric element means that 

the resultant print head is significantly more costly than the thermal print heads. The 

drop size and shape can be carefully controlled by adjusting the waveform, meaning 

that a range of inks and materials can be printed to the pattern required [123]. 

Smaller droplets can produce patterns of high resolution whereas larger droplets can 

be used to cover larger areas and therefore increase the print speed. Adjustment of 

the peak voltage, voltage pulse time and the shape of the waveform applied to the 

piezo-element can affect how the droplets are deposited [2, 123-125].  

The motion of fluid within the ink chamber starts when a positive voltage is applied 

across the piezoelectric element. This causes the ink within the chamber to enlarge, 

creating a negative pressure inside. When the voltage drop is applied to the element, 

the piezo-element expands resulting in a wave of pressure. When the pressure is high 

enough to overcome the viscous drag and surface tension of the ink, a droplet is 

forced out of the nozzle. As the ink is forced out, elongated droplets fall to the 

surface and form spherical drops. The surface tension of the ink determines how 

easily a drop is formed. If the surface tension is too low, the ink will spread over the 

nozzle plate resulting in a skin [126]. If the surface tension is too high, the pressure 



  

36 

 

within the ink reservoir will not be enough to overcome the surface tension and 

produce a drop. 

2.4 Formulation of functional inks 

Inkjet printers require specific fluid properties to enable them to print reliably and 

consistently. As previously mentioned, the two key factors that affect the quality of 

the resultant print are viscosity and surface tension. However, particle based inks 

will also need to ensure that particles and agglomerates are small enough to pass 

through the nozzles [127]. The pH of fluids should also be considered to avoid 

corrosion and damage the print head (usually in the range of 4-9) [128]. It is also 

important to prevent the formation of bubbles during printing; this can be done by 

degassing the ink prior to use [124].  

Ink formulations are often kept a highly guarded secret by manufacturers. Successful 

formulations require good drop formation, wetting and functional performance. 

Table 2.2 provides the key components of inks alongside typical loadings. Usually a 

functional material is dispersed in a solvent with at least one other component to 

make them printable. For example, mixtures of water and common alcohols such as 

ethanol or isopropanol can produce solutions with appropriate surface tensions but 

result in a viscosity which is too low for successful jetting. Therefore, a variety of 

solvents and additives can be used to optimize formulations and an iterative 

approach to achieving proper viscosity and surface tension may be necessary. 
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Table 2.2 - Typical compositions of inks (From [125, 129, 130]) 

2.4.1 Solvent carrier 

The role of a solvent within an ink is a carrier to deliver the functional material to the 

substrate. The solvent is then removed via a drying process. The carrier solvent is 

usually the largest constituent within an inkjet ink and therefore has a huge impact 

on the overall properties of the ink. The choice of solvent is also important to 

determine which additional ingredients can be added. One of the most important 

factors to consider when choosing a solvent is the evaporation rate. Inks should 

contain solvents that evaporate slowly (usually high boiling point solvents) to 

prevent the nozzle from drying out and nozzles from clogging [131]. However, this 

may increase the drying time of the ink when deposited onto the substrate.  A 

common solution for this is to use a mixture of solvents with a high and low 

evaporation rate [122]. The addition of a co-solvent with a higher boiling point and 

lower surface tension than the main solvent, acts as a drying agent. The drying agent 

induces a circulating flow within the ink droplet as the ink evaporates, leading to a 

Component Function 
Loading (w/w%) 

Low High 

Functional material Key component 0.1 10 

Solvent Dispersion medium 50 90 

Co-solvent 
Controls drying 

Modifies surface tension 
0 50 

Surfactant 

 

Modifies surface tension 

Improves wetting 
0 5 

Viscosity modifier Generally increases viscosity 0 30 

Humectant Prevents ink drying 0 30 

Other 

 

pH buffer, dispersant, de-foamer, 

binder 
0 1 
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uniform placement of nanoparticles over the surface of the droplet [24]. Another 

solution is to add a polymeric material such as glycol to reduce the rate of 

evaporation for aqueous solutions [128]. 

A further consideration during ink formulation is the compatibility with the adjacent 

layers. Solvents must be carefully selected to ensure that they do not cause damage 

to the underlying layer during printing. This usually suggests that each layer must 

alternate its solubility, usually based on polar / non-polar pairs. The use of post-

treatment, such as sintering is also likely to reduce the solubility of underlying 

layers. 

2.4.2 Surface tension  

Repeated development of inks has determined certain restraints for fluid properties. 

Table 2.3 outlines some of the problems which can arise if inkjet fluids fall outside 

the desired properties. However, as will be discussed later, the nature of substrate 

will also influence how the ink interacts and the formation of the film. Surface 

tension and viscosity are two of the most important factors to consider when 

formulating an ink. The surface tension of the ink should be matched to the specific 

printer and must be high enough to hold the ink in the nozzle without dropping. A 

surfactant can be added to solutions to increase the surface tension. Water is low-cost 

solvent with low environmental impact which is widely used in the development of 

inks for graphics printing. However it also has a high surface tension; approximately 

72.80 mN/m presenting a challenge for formulation of aqueous inks [132].  

The ideal surface tension of an ink must be high enough to be held in the nozzle and 

avoid a premature droplet, but must also be low enough to allow the droplet to 

spread over the substrate surface resulting in the formation of a continuous film. The 
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interaction of an inkjet printed droplet with a substrate is very important factor when 

considering the quality of the final print. When a droplet hits the substrate, the 

relationship between the surface energy of the substrate and the fluid will mainly 

determine whether wetting will occur. As the droplet impacts the surface of the 

substrate, it will deform as shown in Figure 2.7. Depending on the substrate, the final 

drop diameter on the surface (D3) is generally 2-4 times the drop diameter in flight.  

Table 2.3 - Restrictions on fluid properties (From [127, 128, 133, 134]) 

Property Value Problems Controlled by 

 Min Max   

Viscosity (µ) 2 cP 20 cP 

Low viscosities result 

in droplet breakup and 

excessive spreading 

High viscosities have 

long droplet tails or 

are unable to exit the 

nozzle 

Solvent 

Co-solvent 

Viscosity 

Modifier 

Surface tension 

(γ) 
25 mN/m 40 mN/m 

Too low and the 

nozzle plate becomes 

wetted making it 

difficult to jet 

Too high results in 

poor drop formation 

Solvent 

Co-solvent 

Surfactant 

Particle size 0 nm 

1% of 

nozzle 

diameter 

If the particle sizes are 

too large, it results in 

rapid nozzle clogging 

Dispersant 

Surfactant 

Zeta potential (ζ) 30 mV 

As high 

as 

possible 

Too low and the 

dispersion is not stable 

Dispersant 

Surfactant 

pH 4 9 
Corrosion within the 

print head 
pH buffer 
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Figure 2.7 - Illustration of droplet spreading and contact angle (θ) 

The roughness of the printed materials can have a bearing on the performance of a 

solar cell and other printed electronic devices. Printed conductive electrodes are only 

between 40-300 nm thick and non-smooth layers suffer the risk of failures at 

localized thin or thick points [122]. Surface roughness also dramatically affects the 

electrical conductivity of thin films and therefore is an important parameter to 

consider for the electrode layers. However, as previously discussed for the 

mesoporous layer of metal oxide nanoparticles within DSSCs, good porosity is 

important to adsorb the maximum amount of photosensitizer material. 

Producing smooth, uniform films can be an issue when using solution processing 

techniques such as inkjet printing. With each of these techniques a droplet is 

deposited from a nozzle, producing overlapping discs on a substrate. In an ideal 

situation, each disc overlaps to form a continuous film. Uneven distribution of 

droplets can result in an unsmooth surface and may also leave pinholes in the film. 

Figure 2.8 illustrates how the spacing of drops on a substrate can influence the 

morphology of the deposition. 

θ  

    1. Droplet impact              2. Droplet spreading                 3. Capillary spreading 

D1 D2 D3 
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Figure 2.8 - Illustration of line morphologies occurring from drop spacing. 

2.4.3 Viscosity 

The ideal viscosity of an ink allows a droplet to be ejected from the nozzle and result 

in appropriate spreading of the droplets on the substrate [128]. The viscosity also has 

a huge influence on the reliability of printing and research suggests that for drop-on-

demand printers a viscosity of less 20 cP should provide good droplet formation 

[127]. However, low viscosity inks make it more difficult to maintain particle 

stability and sedimentation is more likely to occur, increasing the potential for jetting 

reliability issues or premature print head failure. Inkjet fluids are commonly 

characterized by their zero shear rate viscosity however shear thinning behaviour can 

be established by measuring apparent viscosity using oscillation rheometers. The 

presence of polymers, particles, dispersants, binders, and other components can all 

Stacked coins 

Drops too close 

 ormal Bulging 

Drops too far 
apart 

Incomplete line 

Drops too far 
apart 
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affect the viscosity and viscoelastic properties of an inkjet fluid. The inkjet printing 

process usually involves high jet speeds, typically more than 6 m/s, considering that 

the process is likely to be moved to high throughput industrial applications, and 

printing speeds are likely to be increased even more. This results in high shear rates 

in excess of 1000 s
−1 

and therefore it is important to investigate how inkjet fluids 

perform under these conditions. 

There are several ways in which the viscosity of an ink can be controlled. Increasing 

the temperature of the ink can decrease the viscosity of the ink significantly. For 

example, a temperature increase of 5.5 °C can reduce the viscosity by more than 

50% [135]. The viscosity of ink depends on the components of the ink, including 

solvent carrier, dispersing agents and additives. Many inks use water as the carrier 

solvent and therefore achieving the relatively high viscosities required for 

piezoelectric printing can be a challenge.  In many printers the print head can be 

heated to lower the working viscosity of the ink, however this severely influences the 

lifetime of the print head and therefore manufacturers of inks often develop inks 

suitable for printing at room temperatures [128]. High temperature may also degrade 

functional components within certain ink formulations. 

Viscosity modifiers can also be added, however these may need to be removed after 

deposition to avoid any negative influence on the films’ performance. The rheology 

of inks and pastes are often controlled by the addition of an organic polymer or 

binder. Binders are an important component to control film thickness, reduce the 

likelihood of cracking and improve substrate adhesion. Polyethylene glycol (PEG), 

polypropylene glycol (PPG), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), 

polyacrylic acid (PAA) or cellulose derivatives are all examples of commonly used 

binder materials. Ethyl cellulose (EC) is a well-known binder used in the formulation 
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of TiO2 pastes for dye sensitized solar cells [29, 32, 136]. EC is insoluble in water 

and therefore methyl cellulose (MC) or hydroxyethyl cellulose (HEC) are used for 

water-based ink formulations [137]. 

2.4.4 Functional materials 

Original inks developed in the 1980’s used water soluble colourants; however the 

industry required better colourants to provide quality and durable images. Carbon 

black nanoparticles were introduced as a solution to provide high-colour image 

performance. To make inkjet inks, these nanoparticles needed to be dispersed into a 

stable solution. At the nanometre scale, materials exhibit properties that differ 

significantly to their bulk properties. In particular there is a natural tendency for 

nanoparticles to cluster together. These are known as either aggregates or 

agglomerates, depending on the nature and strength of the bonds between the 

particles (illustrated in Figure 2.9). This poses a particular challenge when 

formulating inkjet inks which incorporate nanoparticles as a functional material. For 

successful jetting, the particles within the fluid should be 100 times smaller than the 

nozzle opening [128]. The fluids should be filtered through the correct size filter just 

before loading into the cartridge to remove large particle agglomerates which can 

clog the nozzles.  

By minimizing the number of these agglomerates, a good quality ink can be 

achieved. The energy of simply stirring particles into a solution is not great enough 

to overcome the particle attractive forces between particles and breakup the 

agglomerates [95]. Ball milling, high shear mixing or ultrasonication are commonly 

used to break up agglomerated nanoparticles [138].  Ultrasonication produces shock 

waves caused by collapsing cavitations. This causes particles to collide and any 

agglomerated particles are eroded and split apart [139]. 
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Figure 2.9 - Illustration of nanoparticles, aggregates and agglomerates  

(From [95]) 

Particle size and dispersion of particles is a significant issue when formulating 

nanoparticle inks and requires a great deal of consideration to avoid irreversible 

blockage or clogging of printer nozzles. Particle-based inks are generally 

thermodynamically unstable and held in long-term suspension by electrostatic, steric 

or electro steric treatments: 

 Electrostatic – charges are generated on the surface of particles to prevent or 

control re-agglomeration. The isoelectric point (IEP) is the pH at which a surface 

carries no net electrical charge [74, 140] 

 Steric – molecules adsorb on to the surface of particles to introduce a barrier  

 Electro steric – a combination of electrostatic and steric mechanisms 

Particle dispersions are known as 'colloidal systems'. A colloidal system is where 

one of the three fundamental states (e.g. solid, liquid or gas) is finely dispersed in 

another. These systems are commonly found in everyday life (e.g. aerosols and 

emulsions) due to the special properties that they provide. A valuable measurement 

to understand the stability of a dispersion is the zeta potential (ζ) [140]. It is an 
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expression of the magnitude of repulsive or attractive forces acting between 

individual particles. A large negative or positive zeta potential suggests that particles 

within a suspension will tend to repel each other and flocculation is less likely to 

occur. Zeta potentials ± 30 mV are normally considered stable and a zeta potential of 

± 15 mV is considered as the threshold for agglomeration [141, 142]. A detailed 

discussion of the theory behind zeta potential is not necessary for this project, only 

an understanding that the surface charge of particles influences how well it can be 

dispersed and that zeta potential provides a good indication of stability. It is 

important to note that zeta potential is generally a term applied to polar suspensions, 

such as aqueous solvents.  One of the simplest ways to adjust the surface charge of 

particles is modify the pH of the solution. As the pH of a suspension is shifted away 

from neutral then the particles tend to acquire more charge, resulting in a more stable 

dispersion. A zeta potential value must always be considered alongside the solution 

conditions (pH, ionic strength, concentration of any additives). Dispersions are 

generally unstable when no charge is present (e.g. when the zeta potential is zero and 

the pH is at the IEP) [140]. 

2.5 Materials for printed electronics 

There are several commercially produced functional inks developed for printing 

electronic components. These include several nano-metal silver inks [143-145] and a 

few sources of copper [146], gold [147, 148] and nickel [149, 150]. However, where 

commercial inks are not available, they must be formulated with the correct 

components to make them suitable. A review of currently available materials was 

undertaken to discover which can be utilised in the printing of DSSC devices. 
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The choice of materials to be used for printed organic and hybrid solar cells are not 

only crucial to the overall efficiency of the technology but also the printability and 

stability of the device. Electronic devices (including solar cells) use the passage of 

electrons to provide the required function. An electrode material is used to transmit 

these electrons through a device. An ideal electrode material, conducts well, with 

low losses in voltage or current due to resistance. In the majority of electronic 

devices two electrodes are used to provide a complete circuit, either made of the 

same material or two different materials. There are many different electrically 

conductive materials available, but only some of them are readily available in a form 

suitable for printing. The three primary groups of these materials are metallic 

colloids, carbon nanostructures, and conductive polymers, which will be covered in 

the following sections. 

2.5.1 Metallic colloids 

The most commonly used method to produce electronic circuitry is a 

photolithographic process. The process starts with a sheet of metal between 9 to 

70 µm thick, which is patterned using a coating material sensitive to ultraviolet (UV) 

light. Once exposed to UV light, the material hardens and 75% of the remaining 

material is etched back off to produce the desired pattern [146]. After etching the 

hardened resist is removed in a strong alkali stripper. The process is very time 

consuming and wasteful, therefore an additive technique offers an alternative where 

the design can be quickly altered for different requirements [147, 151].  

Metal nanoparticles have been investigated for use as conducting materials in 

electronic application due to good electrical properties and the ability to be dispersed 

in high concentration [2]. There are many types of metal nanoparticles available in 
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the market such as silver (Ag), gold (Au), copper (Cu) and nickel (Ni) [2]. Each has 

different benefits and limitations toward the application in printed electronics. 

Table 2.4 - Resistivity and conductivity of common metals (From [152]) 

 

 

 

 

Silver-based inks are frequently used due to bulk silver having the lowest resistivity 

of all the metal elements. Silver nano-particulate inks have been developed which 

incorporate stabilizing materials which decompose at temperatures close to 150 ºC, 

resulting in conductivities close to that of bulk silver [153, 154]. Reactive silver inks 

have also been developed from silver acetate and silver nitrate, which are conductive 

at room temperatures meaning that they can be dried at much lower temperatures 

[155]. Silver nanowires have also been incorporated into inks to produce well-

defined patterns and high conductivities [22, 156, 157]. 

Gold nanoparticles have been widely used due to their excellent thermal stability [2] 

and high conductivity [158]. Gold nanoparticles have been formulated into an ink 

with small particle size (<10 nm) and narrow distribution which when sintered at  

190 °C results in a resistivity of 1.0 x10
-7 
Ωm, lower than that of the bulk material. 

Gold is a very expensive and rare material used in the manufacture of high quality 

electrical components [151].  

 
Specific resistivity, ρ 

(Ω·m) 

Conductivity,  σ 

(S/m) 

Silver 1.59 × 10 
-8

 6.30 × 10 
7
 

Copper 1.68 × 10 
-8

 5.96 × 10 
7
 

Gold 2.44 × 10 
-8

 4.10 × 10 
7
 

Nickel 6.99 × 10 
-8

 1.43 × 10 
7
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Copper has comparable electrical conductivity to silver, is approximately 1% of the 

cost and is 1000 times more abundant [159, 160]. It is therefore being investigated as 

a low cost alternative to silver and gold [158]. However, the material tends to oxidize 

easily under ambient temperature which can affect the electrical performance of the 

material [2].One method to combat this is to coat the copper nanoparticles with a 

thin barrier layer (such as silver) to prevent oxidation of the copper core and 

preserves its metallic characteristic [161].  

With all nanoparticle suspensions, sintering is required to remove unwanted 

materials such as solvent carriers and organic binders. For conductive particles this 

process also transforms the ink into a conductive, solid metal track [162]. Several 

methods have been previously used to sinter nanoparticles including traditional 

thermal sintering [155], infrared sintering [20], and microwave sintering [163]. Each 

of the techniques has different advantages and disadvantages. Thermal sintering can 

be quite time consuming, taking from 30 minutes to a number of hours in a 

conventional oven [164]. This also can result in damage to temperature sensitive 

substrates such as plastic or paper. In contrast, microwave and infrared sintering can 

sinter nanoparticles in a number of seconds speeding up the manufacturing process 

significantly [165]. 

2.5.2 Carbon nanostructures 

Carbon has been explored for several applications as a replacement where metals 

would previously have been used, however, conductivity in carbon itself is 

approximately 200 S/m, significantly lower than in metals [166-168].  However, the 

electro catalytic performance of carbonaceous materials has been improved by 

doping nitrogen into the carbon structure resulting in higher electro catalytic 

activities and better stability than platinum [106]. These materials offer several 
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advantages over metals, including that they are naturally abundant, light weight and 

resistance to corrosion. It's first reported use as an electrode in dye-sensitized solar 

cells was in 1996 as a low cost alternative to the more traditionally used platinum or 

gold [112]. Carbon black is an intense black powder made by incomplete 

combustion or thermal cracking of a hydrocarbon feedstock. The main uses of 

carbon black are as an additive to provide colour in the manufacturer of plastic and 

rubber components, inks and paint [111]. However, it is also in the manufacture of 

electrical components due to its high conductivity, good electrochemical activity, 

and low cost. The resistivity of carbon black depends upon its origin, composition 

and manufacture process. More recently, carbon nanotubes, graphene and graphene 

oxide have all been used in the manufacture of electrical components due to their 

high electrical conductivity [169, 170]. 

2.5.3 Conductive polymers 

Conductive polymers are a distinctive group of organic materials that exhibit the 

electrical and optical properties of both metals and semiconductors [171]. They have 

a wide range of practical applications due to their low cost, flexibility, conductive 

ability and ease of synthesis. Polyaniline, polyacetylene, polypyrroleand poly(3,4-

ethylenedioxythiophene) (PEDOT) are the most intensively studied conducting 

polymers; an overview of each is provide below [172].   

Polyaniline has been around for hundreds of years and was first reported in 1835 as 

“aniline black” [173]. It is a dark green powder in its conductive form and can be 

doped to produce high level conductivities. However one of the major limitations is 

that it has poor solubility in commonly known solvents such as sulphuric acid, 

methane sulfonic acid, formic and acetic acids. Polyaniline has however been 
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successfully used as a coating to prevent the build-up of static energy in electrical 

components [174].  

Polyacetylene is a conducting polymer with one of the simplest structures. It was 

first found to conduct electricity in 1977 and later it was discovered that very heavy 

doping can produce conductivities similar to that of copper. However, the material 

was found to be very difficult to work with as it could not be easily dissolved, 

therefore other synthesis routes have since been investigated to enable the material to 

be dissolved into liquid precursors [175]. This development made it possible for the 

material to be printed or coated, opening up new applications in which the material 

could be used [176]. 

Polypyrrole is a conductive polymer that is commonly used for commercial 

applications due to its long-term stability. It was first reported in 1916 as “pyrrole 

black” by the oxidation of pyrrole with hydrogen peroxide to produce an amorphous 

powder. This powder could then be made into an aqueous solution or dissolved into 

organic solvents [177]. However the formation of films or coatings remains 

problematic, with difficulties in mechanical strength and shape control [178]. 

PEDOT was developed by Bayer in the late 1980s as an antistatic coating [171].It 

has excellent transparency, good electrical conductivity (in excess of 300 S/m) and 

shows good stability in air and humidity. It has also been found to be stable at 

relatively high temperatures, with the ability to withstand 125 °C for several 

thousand hours [179].  However, PEDOT is insoluble and therefore very difficult to 

work with. To enable commercial success PEDOT has been doped with the water 

soluble polyelectrolyte, poly(styrenesulfonate) (PSS) resulting in a good 

conductivity liquid solution known as PEDOT:PSS [180]. In addition, it is important 
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to identify the amount of PSS added into PEDOT as it does effect the stability and 

the quality of the overall dispersion process [181]. With more than 20 years of 

evolution, PEDOT has become one of the most commercially developed conductive 

polymers and has been extensively studied as a transparent conductor in electronics 

devices. Several additives have been found to increase the conductivity of 

PEDOT:PSS. Polar organic solvents, such as dimethyl sulfoxide (DMSO) have been 

shown to improve conductivity by up to three orders of magnitude, however this is 

still low in comparison to inorganic alternatives [63]. The addition of DMSO solvent 

which acts as a secondary dopant in the  PEDOT: PSS solution has resulted in  

improved  morphology and thus improved the conductivity [182]. The improvement 

of conductivity is related to the reduction of coulomb interaction between PEDOT 

and PSS charge [183]. The additive results in better charge transportation within the 

material [184, 185]. The addition of up to 10 wt% DMSO reduces the electrical 

resistance in PEDOT:PSS films while beyond this concentration, the resistance 

remains nearly unchanged [186]. Glycerol has also been used to enhance the 

conductivity whilst also providing better uniformity and smoother surface roughness 

[187, 188]. 

2.5.4 Semiconductor materials 

Semiconductors usually form the main functional material of electronic devices. For 

example, one of the main materials within DSSCs is a large band-gap 

semiconductor. TiO2 has already been identified as one of the best candidates, 

however to be applicable to inkjet processes the nanoparticles first need to be 

incorporated into an ink suitable for printing. The stabilization of metal oxide 

nanoparticles in both aqueous and non-aqueous solutions media requires a good 

understanding of the magnitude of the inter-particle forces and the surface chemistry 
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of the materials. To improve the performance of the cell, the primary particle size of 

the TiO2 should be as small as possible as shown by Jeng, M.-J (2013). However, 

this is difficult due to the natural tendency of TiO2 to form agglomerates. 

Suttiponparnit, K (2011) adjusted the pH of TiO2 solutions by adding hydrochloric 

acid (HCl) and sodium hydroxide (NaOH). They found that the pH at which the 

surface of TiO2 carry no net electrical charge (the isoelectric point) varies depending 

on surface area of the particles [189]. They also reported several critical factors in 

creating stable dispersions for Degussa P25 TiO2 (a widely available commercial 

TiO2 nanopowder).  

 An isoelectric point of approximately 6.2 was found, with significant 

agglomeration and large flocculation occurring near this value. The smallest 

particle size observed was approximately 200 nm with a pH lower than 4.0 or 

higher than 8.2, as shown in Figure 2.10. 

 Higher ionic strength (IS) solutions resulted in larger hydrodynamic 

diameters. The lowest solution strength of 0.001M resulted in the smallest 

particle size and highest zeta potential. 

 As the mass concentration of particles increased, the pH of the solution 

decreased.  

Nitric acid and acetic acid are also investigated within the literature as methods to 

modify the pH of solutions. According to Ito, S (2007) [136] acetic acid is adsorbed 

on the surface of TiO2 reducing the likelihood of agglomeration, whilst at the same 

time altering the surface charge of particles causes particles to repel each other and 

shifting the zeta potential to positive. 
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Figure 2.10 - The influence of pH on TiO2 on the hydrodynamic diameter  

(From [189]) 

Kuscer, D  (2012) reported on the formulation of aqueous TiO2 for inkjet printing 

applications [190]. Commercially available TiO2 powders, with a primary particle 

size of 50 to 100 nm, were milled for 5 hours and adjusted to a pH of 11 to produce 

an average particle size of 190 nm. However as mentioned previously, inkjet 

manufacturers recommend that only fluids with a pH within the range of 4-9 are used 

to avoid the risk of corrosion and damage within the print head [128]. 

Metal oxide nanoparticles can be synthesized in several ways; however, most of the 

commercially available products are produced by gas-phase methods due to the high 

output capacity and low costs compared with the alternatives. Nanopowders 

produced by this method are often heavily aggregated and agglomeration is difficult 

to avoid [74]. Liquid-phase production is able to produce non-agglomerated particles 

by adding organic additives that are adsorbed onto the surface of the particles. 

Deagglomeration occurs through the break-up of bonds between nanoparticles and 

aggregates can be prevented with surface treatment methods (which will be covered 

in more detail later on). Mechanical methods such as milling have also been shown 
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to break-down agglomerates but can also result in the re-agglomeration of particles 

due to the impact between the particles and grinding media. This results in a broader 

particle size distribution and in practice milling is only efficient for particle sizes 

larger than 500 nm. The milling process is also most suited to ‘soft’ agglomerates 

and therefore is not suited to gas-phase-produced metal-oxide nanoparticles which 

contain hard agglomerates [41, 191]. Chemical approaches can be used alongside 

mechanical methods to dissolve the interparticle necks between nanoparticle 

aggregates. 

Adding polymeric dispersants such as polyethleylenimine (PEI), polyvinyl 

alcohol(PVA) or polyacrylic acid (PLA) to TiO2 suspensions has been found to 

significantly reduce sedimentation when present in a 1:2 weight ratio with metal 

oxide nanopowders [192].  The addition of polyethylene glycol (PEG) has found to 

suppress cracking during the calcinations of films [72]. The addition of PEG has also 

been found to increase the porosity of films, an important factor which leads to 

increased dye absorption and conversions efficiencies [193].The optimum dispersant 

concentration (ODC) is typically quantified as dispersant weight per unit particle 

weight. This depends on the surface area of the particles and the type of dispersant. 

A study by Peng, B., et al., (2007) looked at the effects of polymer dispersants on the 

dispersion stability of TiO2 (Degussa P25) aqueous suspensions. They prepared a 

suspension of 1 g TiO2 nanopowder with 100 mL of deionised (DI) water and found 

an optimal mass fraction of 3 % dispersant [194]. 

2.5.5 Substrates 

Glass is a robust, temperature stable material that has been traditionally used as a 

substrate in solar photovoltaics. However, it is fragile, non-flexible, heavy and 

expensive. As a result, flexible alternatives are being intensively investigated. 
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Several glass manufacturers including Schott and Pilkington are developing ultra-

thin glass for photovoltaics in thicknesses of between 25 and 100 μm [195, 196]. 

A wide range of substrates have been utilised for printed electronic applications 

including flexible plastics, metal foils and paper, typically with a thickness less than 

50 μm [61]. For solar applications, at least one transparent electrode is required. 

Polyethylene naphthalate (PEN) is a commercially available as a biaxially oriented 

semi crystalline film, with an upper processing temperature of 180-220 ˚C [197]. 

Polyethylene terephthalate (PET) is also widely available with an upper processing 

temperature of about 150 ˚C. Both suffer with issues of shrinkage when heated. 

Fluorine polyesters and polyimides have high processing temperatures above 350˚C, 

with manufacturers such as DuPont reportedly manufacturing films capable of 

withstanding processing temperatures up to 500 °C [198]. 

Paper is a cellulose-based material emerging as a substrate for printed electronics 

due to its recyclability, biodegradability and low cost. Paper substrates show 

improved ink adhesion and reduced absorption meaning that high resolution prints 

can be achieved with significantly less ink and therefore reduced costs. Several 

manufacturers including Mitsubishi and Arjowiggins, have developed coated paper 

that has a smooth surface and is thermally stable beyond 250 °C. At these 

temperatures, these coated papers show little noticeable change in its physical 

characteristics. The use of cellulose-based substrates in the manufacture of 

photovoltaic (PV) devices is however limited due to its opacity. 

2.6 Summary 

The use of digital printing techniques such as inkjet has the potential to deposit a 

wide range of functional materials. The technique is currently used for the 
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production of single layer conductive materials. However, the ever-growing 

development of printable materials, presents the opportunity to combine printed 

layers into more complex devices. The formulation of inks is a complex process and 

although rough guidelines can be found in the literature the development of stable 

dispersions, careful control of fluid properties and interaction with underlying 

materials is still required to retain functionality. 

Solar photovoltaics have been identified by several authors as one of many electrical 

devices which could potentially be printed from functional inks. DSSCs are very 

good at converting light into energy at low wavelengths (390-700 nm), making them 

an ideal power source for low light environments. This makes them an ideal power 

source option for portable and mobile electronic devices which are primarily used 

indoors or outdoors in diffuse light. They can be manufactured in a wide range of 

colours through the use of different dye sensitizing materials which makes them 

attractive option for integration into solar shading and windows. Digital printing 

techniques could be utilized to manufacture highly customisable DSSCs onto a wide 

range of substrates (both rigid and flexible) for this application. However, further 

research is needed to firstly develop the materials into inks which can be printed and 

then evaluate their performance once deposited and incorporated within a DSSC.  

Following the preceding literature review a number of research opportunities have 

been identified. These opportunities centre on gaps in knowledge that are current 

barriers to the use of liquid printing processes for cost-effective and efficient DSSCs. 

 Inkjet printing potentially offers a high degree of control over the deposition of 

TiO2 nanoparticle suspensions. However, a thorough investigation into the 

formulation of TiO2 inks and printing parameters is required to fully understand 
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whether the technique is suitable. Firstly, TiO2 nanoparticles will be dispersed in 

a suitable solvent. The dispersion will then be modified (through the addition of 

further compatible components) into a form suitable for printing whilst retaining 

the photo catalytic properties required for use within a DSSC.  

 One of the main attractions of DSSC technology are the minimal manufacturing 

requirements and low cost materials. Platinum has a high catalytic activity and 

high corrosion stability and therefore is the commonly used as the counter 

electrode in DSSCs. However, it is expensive and rare, therefore low-cost 

alternatives that exhibit good catalytic are required to fully realize the 

commercial scale-up of the technology. Carbon-based materials have been used 

as a counter-electrode to produce comparable efficiencies to platinum [109, 112]. 

Therefore, a carbon-based dispersion will be developed and produced into a form 

suitable for printing. Once printed, the films will then be characterised to 

determine their suitability for use as a counter electrode in DSSCs.  

 Solid state hole conductors have been highlighted as an option to replace liquid 

electrolytes within traditional DSSCs to address the lifetime and stability issues 

arising from the corrosive nature of iodine/iodide-containing electrolytes. 

However, there is currently little research available on printable electrolytes 

[199]. Consequently, part of this project will investigate the potential for solid-

state electrolytes within printable DSSCs. 

The notable contributions of this work are to further develop the science behind 

inkjet-ready materials development, and to examine the potential and performance of 

such materials in fully-printed devices. The challenges associated with such a novel 

product as printed DSSCs require the development and optimization of specialized 

processes for materials preparation and handling. Furthermore, many of the 
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components used to construct DSSCs may also be used in the construction of other 

electronic devices, meaning that their development can contribute to markets beyond 

that of DSSCs. 
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Chapter 3 

Experimental methods 

Production of DSSCs using digital printing techniques requires the formulation, 

printing and functional testing of several inks. A typical DSSC consists of three key 

parts: a dye-sensitized metal-oxide photo anode, a hole transport material, and a 

highly catalytic counter electrode. Several more layers could potentially be added to 

optimise the device, however only the basic structure was considered necessary in 

this work to demonstrate the capabilities of the printing technique. Materials were 

selected based upon the best available materials used within DSSCs as described in 

section 2.2 and refined by developing those materials into a suitable form for 

printing.  

3.1 Materials 

3.1.1 Substrates 

Inkjet-printing of ITO films for transparent conducting electrodes has been reported 

in the literature [24, 200]. There is also a significant body of work investigating the 

replacement of rare, brittle and expensive ITO with cheaper, more widely available 

materials. Therefore both of these research areas were considered outside the scope 

of this project.  

Printing was mainly carried out onto commercially available FTO sputter coated 

glass substrates (TEC8, Pilkington with a sheet resistance of 8 Ω/sq, transmittance of 

80 %, and glass thickness of 2.3 mm) [201]. Flexible substrates were also considered 

by printing onto plastic films. ITO coated PET (sheet resistance of 60 Ω/sq, 

transmittance of 79% and thickness of 25 μm) was purchased from Sigma-Aldrich 



  

60 

 

[202] and ITO coated PEN (sheet resistance of 15 Ω/sq, transmittance of 78% and 

thickness of 125 μm) was purchased from Peccell [203]. A sample of transparent 

polyimide film was also received from Kurt D. Roberts at Dupont for investigation 

of high temperature flexible substrates.  

3.1.2 Metal oxide material 

The nano-structured metal oxide layer within DSSCs plays a critical role in the 

overall performance of the cell and therefore was considered an important starting 

point to investigate whether digital printing techniques could be used in the 

manufacture of  DSSCs. As previously discussed, several metal-oxide materials have 

been considered for efficient electron transfer within DSSCs. TiO2 has been 

identified as one of the best available candidates and therefore will be the main focus 

in this thesis [69]. TiO2 nanopowder (Degussa, Aeroxide P25) was purchased from 

Sigma Aldrich, which is mix of anatase and rutile crystal phases.  

3.1.3 Dye sensitizer 

Dyes from the ruthenium family have been found to be ideally suited for the 

sensitization of titanium dioxide in DSSC applications. One of the most efficient 

sensitizers in the literature is known as N719 (purchased from Solaronix) which 

effectively sensitizes wide band-gap oxide semiconductors, up to a wavelength of 

750 nm. The TiO2 electrode was soaked in a 0.5 mM solution of N719 dye in ethanol 

for 24 hours and then rinsed with ethanol, as described by Ito (2010) [204]. 

3.1.4 Hole transport material 

As previously discussed, several hole transport materials have been investigated to 

facilitate the transport of charge between the metal-oxide coated electrode and the 

counter electrode. The most successful cells incorporate an iodine/triiodide liquid 
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electrolyte. Therefore in this work an iodide based low viscosity electrolyte with 

50 mM of iodine/triiodide in acetonitrile was used to make the inkjet printed films 

into DSSCs. The thickness of the electrolyte does not have an effect on the 

conversion efficiency of the DSSC, therefore the thickness was kept constant in all 

devices by using a 60 µm spacer [89]. 

The use of conductive polymers as hole conductors to replace the liquid electrolyte 

in standard DSSCs was also investigated. A PEDOT:PSS solution (Orgacon IJ-1005) 

with a concentration of 0.8 wt% in H2O (purchased from Sigma Aldrich). Dimethyl 

sulfoxide (DMSO) (purchased from Sigma Aldrich) was added to the ink in an effort 

to increase the conductivity [205]. 

3.1.5 Counter electrode 

The role of the counter electrode is to collect electrons from the external circuit and 

to reduce triiodide to iodide in the electrolyte. It should have low resistance and high 

electro-catalytic activity. Platinum is still the most efficient and widely used counter 

electrode in DSSCs and therefore a number of cells were produced using a pre-

coated FTO glass (7 Ω/sq) purchased from Solaronix, prepared by screen-printing 

using a Platisol transparent paste followed by heat treatment at 450 °C [206].  

As previously discussed, platinum is a rare and expensive material which could be 

replaced in the move toward low-cost commercial production of  DSSCs [106]. 

Carbon black was first used as a counter-electrode in 1996 and since then a power 

conversion efficiency of 9.1% has been achieved [109, 112]. A review of the 

photovoltaic performance of DSSCs incorporating different carbon-based counter 

electrodes in section 2.25 found that carbon black and porous carbon usually result in 

higher catalytic activity and efficiency than graphitic carbon materials (graphene and 
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graphite) [106]. Therefore, inkjet printable carbon black was investigated as an 

alternative to the pre-coated platinum coated glass purchased from Solaronix. 

3.2 Manufacturing equipment 

3.2.1 Piezoelectric inkjet printers 

Inkjet printers are capable of printing at the speeds required for producing roll-to-roll 

electronic devices, with commercial speeds up to 244 metres per minute from 1200 

dpi (dots per inch) as standard [207]. Smaller benchtop systems are more suited to 

the research and development of new inks and substrate materials, but the 

fundamental process is the same. The Fujifilm-Dimatix DMP2831 materials printer 

(shown in Figure 3.1) was used at Printed Electronics Ltd in Tamworth and in the 

Engineering department at the University of Warwick. It is a benchtop piezoelectric 

inkjet printer with 1.5 mL cartridges that can be filled up with custom inks. The print 

head moves above a vacuum platen and is capable of creating patterns of 200 mm by 

300 mm onto substrates up to 25 mm with an adjustable height. The print head used 

in this work had sixteen 21.5 µm diameter nozzles which can deposit 10 picolitre 

(pL) droplet volumes. Nozzle to nozzle spacing is 254 microns, equivalent to 100 dpi 

in a single row. However, the print head can be rotated so that the smallest increment 

between drop centres can be 5 µm, which is equivalent to 5080 dpi. As previously 

discussed, the drop spacing can be optimised so that each is deposited to produce an 

even coating. 
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Figure 3.1 - Fujifilm-Dimatix DMP2831 desktop piezoelectric inkjet printer 

The printer had several features which are beneficial for the development of 

functional inks: 

 meniscus control to prevent ink from dripping 

 high frequency "tickling" to prevent the nozzles from drying 

 nozzle temperatures can be heated to 70 ºC to reduce the viscosity of inks 

 the type and frequency of cleaning cycles can be adjusted  

 the printing platen can be heated to 60 ºC to aid drying of the ink once deposited 

One of the best features of this printer is that it has an in-built drop watcher camera 

to provide real-time imaging of drops ejected from the nozzles. This allows the user 

to easily access the quality of the droplets produced, so that print settings (e.g. nozzle 

voltages or print waveforms) can be changed to provide optimal results. The 

Fujifilm-Dimatix printer is therefore the ideal printer for ink development and was a 

useful tool for this project.  
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Figure 3.2 - Dimatix inkjet print cartridge (a) unloaded (b) loaded with ink 

Inks are loaded directly into the cartridges using a syringe and then clicked into place 

in the printer. Fujifilm-Dimatix also produces a cartridge with 1 pL drop size which 

can deposit features as small as 20 μm. The 1 pL print head has a nozzle diameter of 

9.0 µm, so any particle, polymer, or aggregate should be less than 90 nm as 

described in section 2.4.4. A 10 pL cartridge with a nozzle diameter of 21.5 μm was 

chosen for ink development, to reduce the likelihood of nozzle clogging from 

nanoparticles within the inks. The printer is operated through the Drop Manager 

software, which is user-friendly and easy to navigate. 

A low cost printer was also purchased and used within WMG to demonstrate the use 

of the technology to provide economical manufacturing solution using a widely 

available piece of equipment found in most households. Epson and Kodak use 

pigments within their inks instead of dyes, therefore they are the most suited to the 

printing of nanoparticle dispersions for functional applications. The Epson stylus 

photo P50 desktop piezoelectric inkjet printer (shown in Figure 3.3) incorporates a 

"micro piezo" print head with 90 nozzles with an approximate diameter of 19.0 µm 

[208]. The print head technology is able to eject ink droplets of different sizes by 

(a) (b) 
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varying the electrical charge given to the piezoelectric elements. This enables the 

printers to produce droplets as small as 1.5 pl, resulting in high resolution printing. 

 

Figure 3.3 - (a) Epson stylus photo P50 printer (b) Location of ink cartridges 

The printer is designed for use with flexible substrates up to A4 size (210 × 

297 mm
2
) which is loaded into the top of the printer. Refillable cartridges compatible 

with the printer were purchased so that functional ink formulations could be loaded 

and printed. Inks were filtered prior to printing to avoid nozzle blockages and loaded 

into the black cartridge.  

3.2.2 Mechanical compression 

The TiO2 layer within DSSC is traditionally screen printed from a paste followed by 

sintering at temperatures of 450 ºC or above. This sintering step has several 

functions. Firstly, it burns off the organic binder material to create a porous material 

in which dye can penetrate the film and attach to the TiO2 particles. Secondly, it 

fuses together some of the TiO2 particles to promote the inter-particle connection 

within the material and lastly it improves the contact between TiO2 and FTO coated 

substrate to provide strong adhesion and reduce the risk of delamination [31]. These 

adhesive and mechanical properties significantly affect the overall performance of 

the device.  

(a) (b) 
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Following inkjet printing onto polymer films, the samples were dried in a vacuum 

oven at 140 ºC for 30 minutes followed by cooling to room temperature. The films 

were then placed in between two polished aluminium sheets and loaded into a Collin 

200 M laboratory platen press (shown in Figure 3.4). A study on the influence of 

heat treatment during compression has found that no relevant difference can be 

observed, therefore compression temperature was kept constant at 25 ºC [33]. The 

heating/cooling platens are controlled by a uniform temperature distribution over the 

platen surface (± 1°C). Heating/cooling rates up to 30 ºC /minutes are readily 

achieved. Optimal compression of  TiO2 films has previously been found at 30 MPa, 

however the press has a maximum pressure of  25 MPa and therefore films will be 

compressed at this pressure for 60 seconds [31]. 

 

Figure 3.4 - Collin 200 M laboratory platen press  
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3.3 Characterisation of fluid properties 

3.3.1 Particle sizing 

The distribution of particle sizes within prepared particle suspensions and printed 

films is an important part of this project for two main reasons. Firstly if the particles 

are too large, they cannot be printed and secondly once deposited, the particle size 

influences the performance in the application of DSSCs. There are a number of 

particle size measurement techniques applied. In choosing a suitable technique, 

consideration was given to the particle size range which could be measured and the 

measure of particle size returned. When considering the measurement of particles for 

use within inks, it was important to consider the final application and therefore 

samples were measured in the conditions which they were to be used e.g. suspended 

in the same solvent mixtures. In addition it is important to consider the number of 

measurements which must be taken to obtain statistically significant results. Table 

3.1 outlines the techniques available in this project to measure particle size. 

Although these techniques are all capable of measuring other properties, they will 

now be discussed in relation to measurement of particle size. 
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Table 3.1 - Properties of particle sizing techniques 

Optical microscopy was carried out on selected samples using a Carl Zeiss optical 

microscope with an AxioCamMRc5 camera. Image processing was carried out using 

the Zeiss AxioVision 4.2 software package. It had a maximum magnification of 100 

times and has automated image stitching capability. For higher resolution images, 

Scanning Electron Microscopy (SEM) has been used. SEM is a valuable tool used to 

examine a wide variety of samples including powders and thin films where particle 

size, shape and distribution were readily observed.The SEM uses an electron beam to 

detect the properties of the sample including surface topography and material 

composition through penetration of electron beam onto the surface or near-surface of 

a specimen [209]. The technique generated images by capturing electron 

interactions, which produces images in atomic resolution [209]. The main 

Technique Typical size range measured 
Size/property measured 

in this project 

Optical Microscopy 0.8 - 150 µm 

Any which can be 

taken from an image 

e.g. particle diameter 

Scanning Electron 

Microscopy (SEM) 

Wide range of sizes can be 

measured. 

Transmission 

Electron Microscopy 

(TEM) 

Samples must be thin enough 

for electrons to pass through 

(>500 nm) [205] 

Dynamic Light 

Scattering (DLS) 

 

0.3 nm - 10 µm 

 

Hydrodynamic 

diameter and zeta 

potential 

X-ray diffraction 

(XRD) 

Generally applied to a powder 

specimen <10 µm 

Crystallite size can be 

estimated by using the 

Scherrer equation 
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component of an SEM is the electron column which consists of an electron gun and 

two or more lenses to control the path of electrons travelling down an evacuated 

tube. The base of the column is taken up with vacuum pumps that produce a vacuum 

of 10
-4

 Pa; this prevents electrical discharge in the gun and allows the electrons to 

travel freely within the instrument. Electrons are generated in the cathode, and 

accelerated due to a voltage difference between the cathode and anode of 0.1 - 30 

kiloelectron volt (keV) [210]. At high magnification, the technique was used to 

observe the size and distribution of particles in addition to any particle fusing formed 

from sintering at high temperatures or pressure. At lower magnifications the 

technique was used to check the film quality, formation of cracks or inhomogeneous 

areas within the printed films. During the analysis process, the brightness, contrast 

and image magnification were adjusted accordingly in order to obtain a good quality 

image of sample. A detailed understanding of the technique is not required for this 

project however, for more information on SEM, the reader is directed to the texts by 

Goodhew et al [211] and Reimer [212]. 

A Hitachi TM3030 benchtop SEM, with a magnification of up to times 60,000 and a 

gun voltage of 5 kV or 15 kV was used for selected samples. For samples that 

required further magnification a Carl Zeiss Sigma SEM was used, which has a 

magnification of up to times 100,000 to examine nano-scaled features.The samples 

were dried in a vacuum oven to remove any moisture then mounted onto a sample 

holder using carbon tape, they were then sputter coated with gold and to produce a 

conductive coating. 

Dynamic light scattering (DLS) measures the size of particles dispersed in a liquid, 

typically in the sub-micron region. The particle size distribution is calculated by 

measuring the intensity of light scattered when a laser beam is passed through a 
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sample containing particulates. Figure 3.5 illustrates how large particles scatter light 

at small angles and small particles scatter light at large angles. The angle and 

intensity at which the light is scattered is then used to calculate the size of the 

particles within the solution. The calculation requires knowledge of the absorption 

and refractive index of the particles and reports particle sizes as a volume equivalent 

sphere diameter (referred to as the hydrodynamic diameter, Dh), assuming that they 

are spherical in shape [213]. 

 

 

 

 

 

 

 

 

 

Figure 3.5 - Scattering of light from small and large particles 

The presence of non-spherical particles or high particle loadings may result in an 

overestimation of the volume concentration (as shown in Figure 3.6). Good spatial 

separation of individual particles is required to gain an accurate measurement. If the 

sample is too concentrated, then light scattered by one particle will itself be scattered 

Incident light Small angle scattering 

Large angle scattering 
Incident light 
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by another (this is known as multiple scattering).The manufacturers suggest that 

(assuming a density of 1 g/cm
3
) a maximum concentration of: 

 5% mass for particles between 10 nm and 100 nm 

 1% mass for particles between 100 nm and 6 µm  

 

Figure 3.6 - Illustration of how hydrodynamic diameter (Dh) is influenced 

by (a) adsorbed polymer layer (b) formation of agglomerates and (c) particle shape  

According to the equipment manufacturer, measurements are highly reproducible 

(within 2%) and most problems come from inconsistent sample preparation 

techniques. In this work, DLS was carried out using a Zetasizer Nano ZS particle 

size analyser from Malvern Instruments. It had a measurement range of 0.3 nm (+/-

2%) to 10.0 µm (+/-2%) in diameter.  To obtain statistically significant results, each 

sample was dispensed into a cuvette and allowed 120 seconds to stabilize, after 

which 3 measurements were taken from a minimum of 100 runs. 

XRD diffraction patterns can be analysed to determine the crystallite size. A 

crystallite may be made up of several particles; however crystallite size often 

matches grain size. As the crystallite size gets smaller, the diffraction peak gets 

broader. X-ray diffraction (XRD) analysis of the TiO2 was performed using an 

Empyrean diffractometer from PA alytical with a CoKα source of wavelength (λ) 
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1.7890 Angstroms (Å) and data was taken in the 2θ range of 20˚ to 95˚. The Scherrer 

equation [214] can be applied to estimate the crystallite size from the width of the 

diffraction peaks halfway between the background and the peak maximum (FWHM): 

   
  

         
 

Where: 

 K (the Scherrer constant of proportionality) depends on the shape of the 

crystal. For spherical crystals with cubic symmetry, this is equal to 0.94. 

 D is the characteristic crystal size (nm) 

 λ is the wavelength of incident radiation (CoKα = 0.17890 nm) 

 B is the angular width of the peak at half maximum height (radians) 

 θB is the characteristic diffraction angle (radians) 

3.3.2 Viscosity 

Viscosity is a measurement of a fluids resistance to gradual deformation by shear 

stress or tensile stress [215]. Knowledge of a fluids characteristic under stress is 

valuable in predicting the performance in a printing process. In inkjet printing, for 

example, high viscosity fluids require more energy to move, resulting in the need for 

a higher input voltage to produce a drop from a piezoelectric inkjet system. The 

incorporation of nanomaterials within a solution will also influence the bulk 

properties of the mixture. For instance, altering the weight percent of nanoparticles 

will influence the rheological (flow/deformation) behaviour of the formulated 

product.  

A Brookfield DV2T rotational viscometer was used in addition to a small sample 

adapter with a link hanging spindle (SC4-18) using a 6 mL sample size (illustrated in 
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Figure 3.7). The small sample adapter can measure viscosities in the range of 1.5 to 

30,000 cP. The viscometer has a speed range from 0.1 to 200 rpm, however the 

rotational speed is limited by the viscosity of the sample. When combined with the 

SC4-18 spindle, this results in a maximum measureable shear rate of 264 s
−1

. It has 

an accuracy of  ± 1.0 % and repeatability of  ± 0.2 %. 

 

Figure 3.7 - Picture of small sample adapter for Brookfield rotational viscometer 

A Kinexus rotational rheometer from Malvern Instruments was used to measure the 

viscosity and rheology of selected samples. The system works on a similar principle 

to the Brookfield viscometer in that it applies controlled shear deformation to a 

sample, to enable measurement of flow and dynamic properties of a material. 

However, conventional rheometry techniques such as these have limitations in their 

ability to access ultra-high shear rates, particularly for low viscosity liquids. As 

previously mentioned inkjet inks typically have viscosities in the range of 1 to 40 cP 

and therefore rotational viscometers are limited due to flow instability and viscous 

heating at high shear rates.  

The inkjet printing process usually involves high jet speeds, typically more than 

6 m/s. Considering that the ink flows through a channels approximately 60 µm in 

width, according to the equation below this can result in high shear rates up to 
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1×10
5
 s
−1

 and therefore it is important to investigate how inkjet fluids perform under 

these conditions [216].  

                  
               

                 
 

In order to access high shear rate ranges for low viscosity liquids, a microfluidic 

viscometer (m-VROCi) from Malvern Instruments was used. For low viscosity 

samples, shear rates in excess of 1×10
6
 s
−1

 are accessible with an accuracy of ±2% 

[217].  

Figure 3.8 is an illustration of the microfluidic viscometer showing rectangular flow 

channel with embedded pressure sensors along its length. Viscosity measurements 

are made by loading the sample into a 1 mL syringe which is forced through the flow 

channel with a depth of 51.2 µm. Pressure measurements are taken via the sensors 

and a viscosity is calculated from the readings. The process enables stable flow and 

viscous heating is considered negligible within the flow channel. 

 

Figure 3.8 - Illustration of microfluidic viscometer. 

(From [218])  

Sample flow in (volume flow rate controlled) 

Pressure sensor array 

Sample flow out 

Rectangular slit 
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3.3.3 Surface tension 

Surface tension is a measurement of the cohesive energy present at the interface 

between liquid and air. Pendant drop analysis determines the surface tension of a 

liquid from the shape of the drop of that liquid hanging from a needle (illustrated in 

Figure 3.9). The surface tension of inks was determined using a Theta Lite optical 

tensiometer from Biolin Scientific which has an accuracy of 0.01 ±mN/m (shown in 

Figure 3.10). The surface tension at the liquid interface can be related to the drop 

shape through the following equation: 

γ   
 ρ     

 

 
 

where: 

γ = surface tension (m /m) 

 ρ = difference in density between fluids at interface (kg/m
3
) 

G = gravitational constant (Nm
2
/kg

2
) 

R0 = radius of drop curvature at apex (m)  

  = shape factor (dimensionless) 

 

Figure 3.9 - Illustration of pendant drop analysis to measure surface tension 

 ϕ  
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The shape factor can be defined through the Young-Laplace equation, which is 

solved using iterative approximations to provide a solution. Therefore, the surface 

tension can be calculated where the densities of the liquid and gas in contact are 

known. For custom ink formulations, the density of the main solvent was assumed. 

The droplet should have a suitable pendant shape to achieve reliable results; a 

droplet size from 5 to 20 µl is usually sufficient [219]. 

 

Figure 3.10 - Theta Lite optical tensiometer from Biolin Scientific 

3.4 Characterisation of substrate properties 

3.4.1 Surface energy 

A particular issue is adhesion of the upper layers to the substrate. Adhesion occurs as 

a result of the attractive forces that exist between all atoms and which fall into three 

broad categories: primary (chemical); quasi-chemical (hydrogen bond); and 

secondary (van der Waals) [220]. For adhesion to occur, the surface energy of the 

substrate should not exceed the surface tension of the fluid by more than 10-



  

77 

 

15 mN/m [221]. Adhesion occurs through three components: primary chemical 

bonding, secondary (or polar) bonding and mechanical bonding. However, the 

coating must come into intimate physical contact with the substrate before adhesion 

can occur. This interaction is referred to as ‘wetting’, which is an important factor in 

the adherence of two materials and occurs when the surface energy of the substrate is 

able to overcome the surface tension of a liquid. Surface energy is defined as the 

amount of energy required to create a new unit area of surface. Polar liquids such as 

water have high surface energies compared to non-polar liquids such as hexane. 

Surface energies can be calculated based on contact angle measurements [221]. In 

the coating industries, Table 3.2 outlines a simple method of determining whether a 

liquid has wetted a surface. 

Table 3.2 - Determination of wetting by measuring contact angle 

  (From [222]) 

 

 

 

 

Many commonly used polymers often exhibit low surface free energy and 

consequently poor adhesive properties. This makes them difficult materials to wet 

and is one of the many challenges to consider in the pursuit for an alternative 

substrate to glass. The cleaning of substrates prior to coating or printing usually 

involves several steps to unsure uniform deposition. These steps are important to 

consider for the up scaling of any process, especially the consideration of any 

Contact angle Liquid interaction with substrate 

θ = 0 the liquid completely wets the substrate 

θ < 90˚ high wetting occurs 

90˚<≤ θ < 180˚ low wetting occurs 

θ = 180˚ the liquid does not wet the substrate at all 
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materials which may require extra health and safety precautions to prevent harm to 

workers or the environment. Cleaning procedures differ between laboratories 

however the basic procedure usually starts with sonication in a detergent solution, 

sonication in an organic solvent such as ethanol or isopropanol, followed by rinsing 

with deionized water and finally dried with compressed nitrogen. Some suggest 

starting with sonication in a dilute acid to remove oxide impurities and others also 

use ultraviolet ozone cleaning to reduce the surface contamination. Other methods to 

modify a surface and promote adhesion include corona treatment treatment [114], 

plasma treatment [223] and chemical etching [224]. However, each would add cost 

and time to the manufacturing process. 

The surface energy of substrate materials was also determined using a Theta Lite 

optical tensiometer from Biolin Scientific, which can measure contact angle with an 

accuracy of ±0.1˚. The surface energy of the substrates was calculated according to 

the European Standard EN 828 [219] for determining the wettability of a solid 

surface by measuring the contact angle and surface free energy. Drops of three 

different liquids (water, ethylene glycol and diiodomethane) were dispensed onto a 

plane test piece surface. For each drop, the left and right contact angles were 

measured. From the averaged contact angles of each liquid combined with its surface 

tension, the surface free energy of the substrate can be calculated. The OneAttension 

software uses the Fowkes method [216] to calculate the total surface energy (γ) from 

the sum of the contributions from dispersive interactions (γd) and non-dispersive 

interactions (γp).  
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Figure 3.11 - Illustration of measuring contact angle 

The different surface energies of each substrate material mean that droplets dry in 

different ways. If the surface energy of the substrate is too low, de-wetting will occur 

and the coating will not be homogeneously distributed over the whole surface. If the 

surface energy is too high then spreading will occur, resulting in poor resolution. As 

previously discussed, wetting occurs when the surface energy of the substrate is able 

to overcome the surface tension of a liquid. If the contact angle of a liquid onto a 

substrate is between 0 and 90˚, it is considered that high wetting occurs [222].  

3.4.2 Thermal analysis 

Thermogravimetric Analysis (TGA) was performed on plastic substrates and 

selected components within the ink to measure the thermal stability of the materials. 

TGA consists of a sample pan that is supported by a precision balance located within 

a furnace, where nitrogen is used to control the environment. As the sample is heated 

(or cooled), the mass is monitored. The instrument can quantify loss of components 

such as water, solvent or binder material due to thermal decomposition. It can also 

quantify the amount of solid components remaining. The Mettler Toledo TGA2 

(STARe System) used in this study could provide heating up to 1100 ºC with a 

weighing accuracy of 0.005 %. A heating rate of 20 ºC per minute from a 

temperature of 25 ºC up to 600 ºC for all samples, with a sample size of between 
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2 mg and 50 mg. The TGA data was used to explain how the different components 

within an ink decompose in relation to temperature.  

Differential scanning calorimetry (DSC) measures the heat flow change of a sample 

(compared with a reference) due to changes in their physical and chemical 

properties, where nitrogen is used to control the environment. Differences in heat 

flow arise when a sample absorbs (exo) or releases (endo) heat due to thermal effects 

such as melting, crystallization and chemical reactions. DSC was used alongside 

TGA to provide further results for interpretation of glass transition temperature (Tg), 

melt transition temperature (Tm) and degradation temperature (Td) of plastic 

substrates. The glass transition temperature occurs when the bulk material ceases to 

be brittle and glassy and becomes more rubbery. The melting temperature defines the 

upper limit of stability. Investigating the thermal properties of plastic films provides 

important information to predict how they will behave during processing.  The 

Mettler Toledo DSC3 (STARe System) used in this study can provide heating up to 

700 °C measuring heat flow with an error of ± 200 mW. A heating and cooling rate 

of 25 °C per minute from a temperature of  25 ºC up to 600 ºC was used for all 

samples. Standard 40 µl aluminium crucibles will be used for both TGA and DSC 

measurements. 

3.5 Characterisation of printed films 

3.5.1 Crystal phases 

X-rays are electromagnetic radiation of wavelength about 1 Angstrom (about the 

same size as an atom). X-ray diffraction (XRD) analysis is based upon Bragg's Law, 

which is a relationship developed to describe why crystal faces appear to reflect X-

ray beams at certain angles of incidence.   
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Where: 

 θ is the scattering angle 

 n is a positive integer  

 λ is the wavelength of incident wave 

 d is the interplanar distance 

When a beam of X-rays is directed onto a material, the resultant diffraction of X-rays 

produce a pattern. The diffraction pattern can be analysed to provide information 

about the material, such as crystal phase, particle size and texture. 

As previously discussed in section 2.2.2, TiO2 has three main crystal phases, anatase, 

rutile and brookite. Each of the three phases have different band gap and 

photocatalytic energy. Carbon black is also available in different grades, each of 

which have certain characteristics. Each grade of carbon black may have different 

purities, porosities and carbon content which will affect their use as a conductive 

material. XRD analysis can determine the crystal composition of materials by 

measuring diffraction peak positions and intensities. The measured pattern can then 

be compared to entries within a reference database to identify the crystal phase. This 

is also known as qualitative phase analysis. Analysis was performed using an 

Empyrean diffractometer from PANalytical Empyrean with a cobalt source which 

has a CoKα wavelength (λ) of 1.7890 Angstroms (Å). 

3.5.2 Thickness and surface quality 

As previously discussed, the thickness and morphology of the metal oxide layer 

within a DSSC can influence the amount of dye that can be adsorbed. The thickness 

of conductive materials such as carbon and PEDOT:PSS also has an influence on the 
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properties. Therefore the thickness of the printed layer after thermal treatment was 

an important parameter to measure. Initially, a stylus surface profiler (Ambios XP-

100) was used to measure roughness and step height of the printed layer within a 

precision of 1 nm. The 5 µm stylus has a vertical range to 400 µm and a maximum 

scan length 10 mm. 

In order to better quantify and understand the overall surface topographies a 3D 

optical microscope (Bruker ContourGT) was used. It has a maximum scan length of 

10 mm and a vertical resolution of 0.01 nm. It is fitted with an additional Nano Lens 

atomic force microscope (AFM) module with 1000 times magnification to enable 

imaging of nanometer-scale features. It is capable of measuring steeply sloped 

objects which regular optical microscope would struggle to see. It has a maximum 

scan length of 70 µm and a vertical resolution of 0.34 nm. Automated stitching 

within the Vision64 analysis software can be enabled to produce larger area scans of 

up to 150 mm
2
. Three-dimensional (3D) surface measurement parameters can be 

used to measure roughness and height of printed features. 

3.5.3 Transmittance 

The total transmittance, clarity and transmission haze of the printed PEDOT: PSS 

conductive films was measured using a haze meter (BYK-Gardner haze-gard plus). 

Total transmittance is the ratio of total transmitted light to incident light. It is 

reduced by reflectance and absorbance. Haze is also known as diffuse transmittance 

where the light is reflected due to wide angle scattering. Clarity, on the other hand, is 

due to narrow angle scattering which may cause the image to appear blurred when 

the distance between the sample and the beam is increased. Figure 3.12 shows the 

measurement principle of the haze meter. A beam of light passes through the 

specimen and enters an integrating sphere. The sphere’s interior surface is coated 
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uniformly with a matte white material to allow diffusion. A detector in the sphere 

measures total transmittance (direct transmittance plus diffuse transmittance) and 

transmission haze. A ring sensor mounted at the exit port of the sphere detects 

narrow angle scattered light (clarity) [225]. Before any measurement was taken, the 

equipment was calibrated to ensure that an accurate result could be obtained. 

 

Figure 3.12 - Measurement principle of the haze meter. 

(From [225]) 

Transparent TiO2 electrodes have the potential to be used in applications such as 

windows and solar shades to harness energy while allowing some light to pass 

through [226]. However, the level of transparency has a direct impact on the 

resultant conversion efficiency of the cells. When the TiO2 thickness increases, light 

transmission decreases and the efficiency rises [227]. To measure the transmittance 

of light over a wider wavelength (200-1100 nm), a Cary60 ultraviolet-visible (UV-

Vis) spectroscope from Agilent Technologies was used. The spectroscope measures 

direct transmittance as a percentage (%T); this represents the percentage of the 

incident beam of light transmitted by the sample. A beam of light is separated into its 

component wavelengths through a diffraction grating or a prism. Each single 
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wavelength beam is split into two, with one beam passing through the sample to the 

sample detector and the other internal beam hitting a reference detector. The 

intensity of the reference beam (which should have little or no light absorption) is 

then compared to the sample beam.  

3.5.4 Conductivity 

Bulk resistivity, also referred to as volume resistivity, is the inherent resistance of a 

given material regardless of the shape or size. The resistivity of conductive materials 

is most often determined using a four point probe technique. With this method, four 

equally spaced probes are put in contact with the material, the two outer probes are 

used as a current source and the two outer probes measure the voltage drop across 

the surface of the material (shown in Figure 3.13). This method eliminates 

measurement errors due to the probe resistance, the spreading resistance under each 

probe and the contact resistance between each metal probe. 

Resistivity is calculated using the following equation: 

     
 

   
 

 

 
      

Where: 

ρ = Resistivity (Ωm) 

V = Voltage (V) 

I = Current (A) 

t = Sample thickness (m) 

k = is a correction factor (based on the ratio of probe spacing to sample 

diameter and on the sample thickness to probe spacing) 
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However, if the probe is centred on a very wide (sample diameter>probe spacing) 

and very thin sample (sample thickness<probe spacing), then the correction required 

can be considered negligible and the equation can be simplified. A Jandel cylindrical 

probe with 4 linear probes spaced 0.5 mm apart was used to measure the resistivity 

of the inkjet printed carbon samples [228]. 

Electrical conductivity (measured in S/m) is simply the inverse of resistivity and is a 

measure of the materials ability to conduct an electric current. Sheet resistance 

(measured in Ω/square) is a value used when measuring a thin layer of semi-

conductive material and will change depending on the sample thickness. 

 

Figure 3.13 - Four-point probe resistivity configuration 

Due to the low conductivity of the inkjet printed PEDOT:PSS, the four point probe 

method proved unsuitable and therefore a 2-point method was used. A multimeter 

was connected to either end of the conductive area to measure the average resistance 

across the entire width of the film. Measurement across the sample yielded bulk 

resistance (R). This value is independent of sample geometry. Therefore, the 
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conductivity (σ) was calculated as a meaningful figure for comparison. Resistance is 

related to conductivity by the following expressions [229]: 

   
  

 
 

 

and 

 

   
 

 
 

 

Where: 

ρ = Resistivity (Ωm) 

R = Resistance (Ω) 

A = Cross sectional area (m
2
) 

L = Length (m)  

σ = Conductivity (S/m) 

The equations show that conductivity is the inverse of resistivity; therefore as one 

variable is increased the other variable is decreased.  

3.6 Device characterisation 

PV devices should be characterised directly after fabrication to minimize the effect 

of degradation caused by water and oxygen in the air [230]. There are five electrical 

performance parameters that are used to characterize and compare solar cells [231]. 

Three parameters are derived from the current-voltage (IV) curve, as shown in 

Figure 3.14.  
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Figure 3.14 - I-V diagram for an illuminated inorganic solar cell 

1. Short-circuit current (Isc) – This is the current that flows through an 

illuminated solar cell when there is no external resistance. It is measured at 

the intercept where the curve crosses the current axes. For an organic device 

the Short-Circuit Current (Isc) is negative and therefore the curve is inverted 

[232]. In the dark, there is no voltage or current flow therefore the IV curve 

passes through the origin. When the cell is exposed to light, voltage and 

current is generated, causing the I-V curve to shift downwards. 

2. Open circuit voltage (Voc) – This is the maximum voltage across a 

photovoltaic cell e.g. when light is on the cell but no current is flowing. It is 

measured at the intercept where the curve crosses the voltage axes.  

3. Maximum power point (Pm) - the “knee” point where the product of voltage 

(Vm) and current (Im) is maximum cross on the power curve. 

Pm 

Vm 

Isc 

Im 

Voc 
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4. The values of Isc, Voc and Pm can then be used to determine the Fill Factor 

(FF) and power conversion efficiency (η). 

5. Fill factor (FF) – The ratio of the cell’s actual maximum power output to the 

product of the open circuit voltage and short circuit current [233]. This is a 

key parameter in evaluating the performance of solar cells. A high FF means 

low electrochemical losses, whereas a low FF indicates there is room for 

improvement. Several factors are known to influence the FF including the 

quality and interface of layers within the cell. DSSCs incorporating an 

iodide/triiodide redox couple with record efficiencies report fill factors of 

0.71 [47].The fill factor is illustrated in Figure 3.14 as the red area divided by 

the blue area.  

    
      
       

 

6. Power conversion efficiency (η) can be calculated from the equation below. 

To increase the efficiency of solar cells, one of these 3 factors (Isc, Voc, and 

FF) needs to be improved. 

              

All of these parameters need to be determined under standard test conditions (STC), 

as defined by the National ASTM standard E948 and IEC standard 60904-1 [47] i.e. 

the temperature of the device is to be 25 ˚C ± 1 ˚C, spectral irradiance distribution of 

the light is to be AM1.5 ± 25 %, total irradiance measured (Em) at the solar cell is to 

be 1000 W/m
2  

± 2 % [47]. A solar simulator from Wacom electric company limited 

was used which consists of a 500 W xenon lamp and 150 W halogen lamp to match 

the artificial light closer to the natural solar spectrum than a one lamp system. The 
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resultant spectral irradiance distribution of the simulator matches the air mass (AM) 

1.5 standard within  ± 10% as shown in Figure 3.15. 

 

Figure 3.15 - Spectral irradiance distribution of the solar simulator.  

(From [234]) 
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Chapter 4 

Development of an aqueous titanium dioxide ink to 

produce inkjet printed photo anodes in DSSCs 

4.1 Introduction 

This chapter starts by describing the development of a TiO2 aqueous dispersion. It 

continues by detailing how the dispersion is optimised through ultrasonic processing, 

modification of pH and the addition of dispersants to reduce the size of the 

agglomerates and aid stability within the suspensions. A description of the printing 

trials and optimisation of the print parameters to enable uniform deposition of the ink 

is given. Once printed, the TiO2 films were then characterised to determine the 

crystal phase, particle size, thickness, surface distribution and transmittance. In order 

to overcome the issues of surface cracks and peeling of the coating from the 

substrate, an investigation was performed on the use of compression and the 

incorporation of binder materials within the TiO2 ink. 

Finally, the chapter ends with a description of how the printed films were 

incorporated within DSSCs to evaluate their electrical performance and therefore 

determine the commercial potential of inkjet printing as a manufacturing technique. 

A standard cell was produced as a benchmark using a TiO2 photoelectrodes prepared 

by doctor-blading.  Four key electrical performance parameters (Isc, Voc, FF and 

efficiency) were used to characterize and compare the cells. 

4.2 Identification of crystal phases 
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A study by Suttiponparnit et al. reported on the role of particle surface area, primary 

particle size and crystal phase on the dispersion properties of TiO2 nanoparticles 

[185]. Degussa Aeroxide P25 TiO2 is manufactured on a large scale according to the 

aerosil process. It is used widely because of its relatively high levels of photo 

catalytic activity and commercial availability. A review of the literature finds that 

various particle sizes and phase compositions have been reported indicating 

considerable inhomogeneity, both within and between production batches [235]. The 

nanomaterial will be the functional component within the ink and resultant printed 

layer. Therefore to understand fully the as-delivered material, the AeroxideTiO2 P25 

material used within this work was analysed to determine the phase composition. X-

ray diffraction (XRD) analysis of the TiO2 was performed using an Empyrean 

diffractometer from PA alytical with a CoKα source of wavelength (λ) 1.7890 

Angstroms (Å) and data was taken in the 2θ range of 20˚ to 95˚. Identification of 

crystalline phases for the P25 nanoparticles was achieved by comparison of their 

XRD patterns (shown in Figure 4.1) with those in the Joint Committee on Powder 

Diffraction Standards (JCPDS) database. Based on the XRD data, the distribution of 

anatase and rutile was calculated using the following equation [236]. 

    
  
  

  
  

            
 

WR is the rutile weight percentage, IA and IR are the integrated diffraction peak 

intensities of anatase and rutile. I0 is the total integrated intensity of the anatase (101) 

and rutile (110) peaks. The XRD spectrum has strong diffraction peaks at 29.57˚ 

which indicates TiO2 in the anatase phase [237]. Analysis determined that the phase 

composition is a mixture of anatase (71 %) and rutile (29 %). 
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Figure 4.1 - XRD spectra of P25 TiO2 powder from Degussa. Anatase 101 and rutile 

110 are shown. 

4.3 Analysis of particle size 

The crystallite size can be estimated from measured XRD peak half breadths by 

using the Scherrer equation introduced in 3.3.1. The characteristic diffraction angle 

(from a cobalt source) was taken to be 29.6° for TiO2 anatase which agrees with the 

data above [236]. The angular width of the peak at half maximum height was 

measured from the XRD spectra (shown in Figure 4.1) and subsequently the crystal 

size was calculated to be 23 nm. However, a crystallite may be made up of several 

particles and therefore further analysis of particle size was undertaken.  

Particle size and shape in powders can be readily observed using electron 

microscopy. SEM was performed on the starting powder, Figure 4.2 shows that the 

particle size of the powder (as received) ranges significantly with small primary 
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particles and larger agglomerates and aggregates (>5 µm) which have formed over 

time. 

 

Figure 4.2 - SEM of P25 TiO2 powder 

The average diameter size of the nanoparticle dispersions were characterized using 

the Zetasizer Nano ZS (Malvern Instruments, United Kingdom), utilizing dynamic 

light scattering (DLS).The manufacturers suggest a maximum concentration of 5% 

mass for particles between 10 nm and 100 nm (assuming a density of 1 g/cm
3
). 

According to the supplier, titanium dioxide (Degussa Aeroxide P25) has a density of 

4.26 g/cm
3
, therefore further dilution was required to produce an accurate 

representation.  

As previously discussed, the carrier solvent is usually the largest constituent within 

an inkjet ink and therefore has a huge impact on the overall properties of the ink. The 

choice of solvent will also impact the odour, ventilation requirements, waste 

management procedure and cost of the manufacturing process. Several solvents were 

trialled during this project including water, isopropanol, ethanol, methanol and 

dimethylformamide (DMF). Good dispersions were achieved in all; however work 

100 µm  

NL D8.9 ×800 
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focussed on water as the main solvent to provide a low cost ink with low 

environmental impact. This is one of the most challenging as it has a high surface 

tension of approximately 72.80 mN/m. The surface tension of the ink should be 

matched to the specific printer and must be high enough to hold the ink in the nozzle 

without dropping. Therefore it was noted that the use of a co-solvent or surfactant 

would be required to reduce the surface tension of the ink to be compatible with the 

fluid restrictions of the printer. 

As previously discussed inkjet inks typically contain solid fractions of approximately 

10 wt%, however following extensive trials, it was found that high loading resulted 

in significant sedimentation therefore a 1 wt% solution of TiO2 nanoparticles in DI 

water was prepared. Approximately 1mL of the nanoparticle dispersion was 

dispensed into a polystyrene cuvette. Each sample was allowed 120 seconds to 

stabilize, after which 3 measurements were taken from a minimum of 100 runs. 

From Figure 4.3 it can be seen that the particle size distribution of the TiO2 

nanoparticle suspension prepared, shows a bimodal curve indicating that the 

nanoparticles agglomerate in two size ranges of approximately 531 - 3091 nm and 

4145 - 6439 nm. 
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Figure 4.3 - Particle size distribution of aqueous TiO2 solution  

The particle size distribution measured by DLS differs significantly to the crystal 

size calculated using the Scherrer equation. It must be noted that the size determined 

by diffraction methods corresponds to the areas of the crystal regions where the 

atoms are perfect and continuous i.e. primary particles. The size obtained by 

diffraction cannot always be simply compared to the sizes determined by other 

techniques. DLS represents the measurement from in-situ conditions of TiO2 

nanoparticles within an aqueous dispersion, and clearly shows the formation of 

agglomerates formed from many small crystals due to sample preparation.  The 

larger sizes are attributed to agglomerates, since the technique is unable to 

distinguish between the two.  
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As previously mentioned, particles within the inks should be smaller than 215 nm to 

prevent nozzle clogging. Therefore several methods were investigated to reduce the 

agglomerates found within aqueous dispersion of TiO2, as detailed in the following 

sections. 

4.3.1 Influence of ultrasonic processing 

As previously discussed in section 2.4.4, the energy of simply stirring particles into 

water or binder is not great enough to overcome the particle attractive forces 

preventing the breakup of agglomerates. Ultrasonication produces shock waves 

caused by collapsing cavitations, this causes particles to collide and any 

agglomerated particles are eroded and split apart. Ultrasonic processing can be 

carried out using a probe-type ultrasonic homogenizer or an ultrasonic bath. In an 

ultrasonic bath, the sonication effect is of low intensity and unevenly spread 

resulting in uncontrollable distribution of cavitation throughout the tank. The 

repeatability and scalability of the process is very poor. In contrast, the probe-type 

ultrasonic devices have a high localized intensity and therefore, greater localized 

cavitation effect. 

The use of ultrasonic processing was investigated as a method to break up 

agglomerates within the solution. However, it can cause a temperature increase 

which may result in degradation and reduced quality of the dispersion. The 

sedimentation of TiO2 particles has been observed at temperatures above 45 ˚C 

[238]. Therefore the temperature of the suspensions was monitored during ultrasonic 

processing to ensure that they did not exceed this. The temperature was monitored in 

relation to time, whilst the TiO2 dispersion was processed in an ultrasonic bath 

(Elmasonic) and ultrasonic probe (Hielscher UP200S, 200 watts, 24 kHz). 
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Figure 4.4 - Measured temperature over time during ultrasonic processing  

Figure 4.4 shows that after 30 minutes of processing in an ultrasonic bath, the 

temperature increased from 21˚C to 30 ˚C. In contrast, the temperature increased 

more rapidly with the use of an ultrasonic probe and reached 45˚C after 10 minutes 

at 60% amplitude. Processing with an ultrasonic probe was therefore limited to 10 

minutes to prevent degradation to the material.  
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Figure 4.5 - Influence of ultrasonic processing on particle size distribution in 

aqueous TiO2 suspension  

Figure 4.5 shows the average particle size distribution by DLS after the suspensions 

were ultrasonicated with a probe for 10 minutes at 60% amplitude. After ultrasonic 

treatment, the particle size distribution curve still appeared as a bimodal shape; 

however the most dominant curve was shifted to the left indicating that the average 

agglomerate size was decreased. After ultrasonic treatment, the volume of the most 

dominant curve was also decreased, indicating further breakdown of agglomerates. 

This suggests that the break-up process was a result of a rupture mechanism. 

4.3.2 Influence of pH 

As previously discussed, the long-term stability of particle-based inks can be 

improved through electrostatic treatment. Electrostatic treatment is when charges are 
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generated on the surface of particles to prevent or control re-agglomeration. One of 

the simplest ways to adjust the surface charge of particles is to modify the pH of the 

solution. As the pH of a suspension is shifted away from neutral then the particles 

tend to acquire more charge, resulting in a more stable dispersion. 

To investigate the relationship between pH and particle size, hydrochloric acid (HCl) 

and sodium hydroxide (NaOH) was used to prepare solutions with pH values 

between 2 and 12. TiO2 nanoparticles were then added to the solutions to produce a 

concentration of 1 wt% and stirred for 2 hours using a magnetic stirrer. The particle 

sizes were then measured using DLS. 

Firstly the pH of TiO2 in water (with an average particle size of 380 nm) was 

measured using a pH meter from Hannah instruments. The pH of DI water was 

measured to be 6.59 and the TiO2 dispersion was 5.68. This result is in agreement 

with the literature which suggests that when TiO2 nanoparticles are dispersed in 

water extra hydrogen ions are produced resulting in a decrease in solution pH [189]. 

Figure 4.6 shows that as the solution pH was made more acidic, a reduction in 

particle diameter was observed and similarly, a reduction in the average particle 

diameter was observed as the solution pH was more alkaline. 
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Figure 4.6 - Influence of pH on TiO2 particle size in aqueous solutions 

Although, the results indicate that altering the pH results in a reduction in particle 

size, a significant amount of sedimentation was observed in samples which were left 

over a few weeks. To improve the stability of the inks, steric treatment was 

considered through the use of polymeric dispersant which adsorb onto the surface of 

the particles to provide a barrier against the formation of agglomerates. The results 

of this investigation will be detailed in the next section. 

4.3.3 Influence of polymeric dispersants 

Dispersing agents are designed to stabilize the dispersed particles against 

flocculation. It is particularly important to ensure that enough dispersant is added to 

overcome the attractive forces between the particles; however the addition of too 

much may also result in flocculation and is an unnecessary expense. There are 
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several methods available to approximate the quantity of dispersing additive 

required. The amount of dispersing agent required is generally based on the particle 

surface area and the absorption properties of the material.  

The amount of oil which can be adsorbed onto the surface of a particulate material 

can give an indication of dispersant content. For example, TiO2 adsorbs a moderate 

amount of oil. The oil absorption ratio is 15–20 parts by weight of oil to 100 parts by 

weight of TiO2 [239, 240]. However the surface area of the particle can also provide 

a guide to how much dispersant is required [241]. Larger particle size dispersions 

can be stabilized with a relatively low amount of the dispersant (less than 1-3 wt% of 

the solids). As the particle size is reduced, the surface area is increased and therefore 

a much higher dispersant to particle (D/P) ratio is needed (up to 100-200 wt% of the 

solids) [242]. Other factors also need to be considered including: the application, the 

binder and the particular additive.   

Three different commercially available dispersing additives were trialled to 

determine which was most suited. Zetasperse-1200 [243], Tween-80 (Polysorbate 

80) [244] and Triton X-100 [136] have all been identified from the literature for their 

ability to aid dispersion and increase stability for aqueous polar particle dispersions 

such as TiO2. Table 4.1 outlines the key components, viscosity and boiling point of 

each. 
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Table 4.1 - Active components, viscosity and boiling point of dispersants, provided 

from manufacturers’ datasheets 

As previously discussed, surfactants and dispersants work by forming a layer around 

the dispersed material to prevent them from touching and forming agglomerates. 

However, surfactants and dispersants can also encapsulate air bubbles within the 

liquid, which can later prevent the fluid from jetting through an inkjet nozzle. To 

reduce the problem of stabilized gas bubbles, liquids can be simply degassed by 

ultrasonic processing, therefore the liquid mixtures were sonicated before the 

addition of nanoparticles to remove any air bubbles. Subsequent mixing was then 

undertaken at speeds which prevent the formation of new bubbles. 

Each dispersant was mixed into water using a magnetic stirrer for 8 hours at 50 ºC on 

a hot plate. The dispersant to TiO2 ratio (wt%/wt%)  was varied between 0 and 3 to 

investigate their ability to aid dispersion. Each premixed solution was then slowly 

added to TiO2 nanoparticles to produce a concentration of 1 wt%. 

Dispersant Active components 

Viscosity  

at 25°C, 

cP 

Boiling 

point, 

°C 

Zetasperse-1200 
Tetramethyl-5-decyne-4,7-diol  

Polyethylene glycol  
300 188 

Tween-80  Polyethylene sorbitol ester 400-620 110 

Triton X-100 
Polyethylene glycol tert-octylphenyl 

ether 
270 270 
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Figure 4.7 - Influence of dispersant quantity on average particle size 

Figure 4.7 illustrates the effect of type and amount of dispersant on the average 

agglomerate size within the TiO2 suspensions, measured using DLS. It can be seen 

that the use of Zetasperse-1200 within TiO2 suspensions resulted in the smallest 

average agglomerate size, followed by Triton X-100 and Tween-80. The smallest 

average agglomerates were found after a dispersant to particle (D/P) ratio of 1 for all 

types of dispersant. To minimise the additional cost associated with dispersant, 

further investigation into the optimal dispersant content between a D/P ratio of 0 to 1 

should be considered. However for the purpose of this project, the results show that a 

ratio of polymer dispersant to particle of one is enough to overcome the attractive 

forces between particles. It was noted that in this case, the addition of further 

dispersant did not result in any noticeable change in average agglomerate size.  
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Figure 4.8 - Particle size distribution of aqueous TiO2 solutions with a dispersant to 

particle ratio (wt%/wt%) of 1 

Figure 4.8 shows the distribution of particle size with a D/P of 1, where a reduction 

in average particle size can be observed for all dispersants compared to TiO2 alone. 

A large spread of particle sizes can still be observed; indicating that filtration prior to 

printing is still advisable to remove any large agglomerates within the solution. 

According to the datasheets Tween-80 has the highest molar mass of 1310 g/mol, 

followed by Triton X-100 with a molar mass of 647 g/mol. The molar mass of 

Zetasperse-1200 could not be found, however, the molar mass of the two active 

components tetramethyl-5-decyne-4,7-diol and polyethylene glycol are 22.36 g/mol 

and 76.09 g/mol respectively indicating that it has the lowest molar mass of the three 

dispersants trialled. This suggests that the dispersants with a lower molar mass 
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resulted in suspensions with the smallest average agglomerate size. Polymers of high 

molecular weight have longer carbon chain that can adsorb onto the surfaces of 

many nanoparticles. This could likely result in bonding between nanoparticles, 

resulting in larger agglomerates. 

 

Figure 4.9 - Particle size distribution of TiO2 aqueous suspensions with polyethylene 

glycol of varying molecular weight  

To further investigate the link between molar mass and average agglomerate size, 

polyethylene glycol in varying molecular weight was added as a dispersant to an 

aqueous solution of TiO2, with D/P ratio of 1. Each dispersant was mixed into water 

using a magnetic stirrer for 8 hours at 50 ºC on a hot plate. Each premixed solution 

was then slowly added to TiO2 nanoparticles to produce a concentration of 1 wt%. 

Figure 4.9 shows the measured size distribution of agglomerates for each. The results 
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show that there is a small difference between each particle size distribution, with a 

standard deviation of 19.72 nm between the average hydrodynamic diameters. This 

can be more easily observed in Figure 4.10, where the average particle size is plotted 

against the molecular weight of PEG. The figure shows a small increase in average 

agglomerate size as the molecular weight of PEG increases. 

 

Figure 4.10 - Average particle size of TiO2 aqueous suspensions with polyethylene 

glycol of varying molecular weight 

As previously mentioned, surface tension and viscosity are two of the most 

important factors to consider when formulating an ink. The use of dispersing agents 
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rheological behaviour of the solutions were investigated using a microfluidic 

viscometer / rheometer from Malvern Instruments.  Figure 4.11 shows that the 

average shear viscosity of 3 wt% TiO2 nanoparticles in water was found to be 1.0 cP 

compared with 0.9 cP for water alone, indicating that the addition of nanoparticles 

results in a small increase in viscosity. This is to be expected since the literature 

suggests that the viscosity of nanoparticle suspensions depends on the nanoparticle 

size and concentration [245]. 

 

Figure 4.11 - Dynamic viscosity of TiO2 dispersion compared to water 

The surface energy of the ink must be reduced to between 25 mN/m and 40 mN/m to 

ensure that it is compatible with the inkjet printer. The addition of 3 wt% Zetasperse-

1200 dispersant in water was calculated and resulted in a drop in surface energy from 

72.80 mN/m to an average of 26.5 mN/m. A liquid will wet a solid surface when its 
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surface energy is lower than the solid’s surface energy. The surface energy of the 

substrate was measured to ensure wettability and the results are outlined in the next 

section. 

Deionised (DI) water was mixed with Zetasperse-1200 content from 0 to 5 wt% to 

investigate the influence on the dynamic viscosity. Figure 4.12 shows the dynamic 

viscosity of the solutions measured using a Brookfield viscometer with a small 

sample adapter at a shear rate of 264 s
−1

. The figures shows how viscosity increases 

with Zetasperse-1200 content, however since the error bars are very significant 

further testing would need to be performed before an upward trend can be 

confidently reported.   

 

Figure 4.12 - Influence of dispersant content on dynamic viscosity  

(at a shear rate of 264 s
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4.4 Inkjet printing trials and optimisation of the print parameters 

Ink formulations underwent iterative testing of fluid properties while adjusting the 

specific components and proportions of each component until an optimal was 

reached. A TiO2 nanoparticle aqueous ink was prepared using the following method: 

 A 0.0001 M aqueous solution of hydrochloric acid (HCl) was prepared to 

produce a pH of approximately 4 

 3 wt% of Zetasperse-1200 dispersing additive  

 The solution was mixed for 8 hours using a magnetic stirring bar to ensure 

homogeneity 

 3 wt% of titanium dioxide (TiO2) nanoparticles was added to the solution  

 The mixture was transferred into a round bottom flask and sonicated using a 

Hielscher UP200S ultrasonic probe for 10 minutes at a frequency of 60 Hz 

The solution was left overnight, after which a thin layer of nanoparticles was 

observed at the bottom of the flask. The stable part of the suspension was removed 

using a syringe and sonicated again for a further 10 minutes to degas the ink. The ink 

was passed through two polyvinylidene fluoride (PVDF) filters, firstly 5 m and 

secondly 1.2 m to remove any large particulates and injected into a 1.5 ml Fujifilm-

Dimatix cartridge. 

On initial trials the TiO2 dispersion jetted through the nozzles but quickly stopped. 

This was thought to be due to the evaporation of water at the nozzles such that the 

remaining particles produced a visible film on the surface of the nozzle which 

prevented jetting.  
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Humectants leave a thin wet film on the surface of the nozzle when it is idle to 

prevent a dry film from forming. Typical humectant materials are glycols such as 

diethylene glycol, polyethylene glycols, and propylene glycol methyl ethers [121]. 

Polyethylene glycol with a molecular weight of 400 (PEG 400), is a non-hazardous, 

water soluble polymer and liquid at 20 ˚C, making it compatible with the current ink 

formulation. The ink was prepared again with the addition of 25 wt% PEG 400 

(purchased from Sigma-Aldrich) to act as a humectant to investigate whether it 

would prevent drying at the nozzles and enable long-term printing.  

After the addition of PEG 400, it was observed that a layer of foam formed within 

the ink which did not appear to dissipate over several minutes. As previously 

discussed, air bubbles trapped within the ink can cause major problems for 

piezoelectric inkjet printers. They can counteract the pressure build-up at the nozzle, 

which prevents the formation of droplets [7]. Therefore 0.5 wt% defoaming agent 

from Airproducts was added which showed improvement. Increasing the content to 1 

wt% reduced the foam completely. PEG 400 has a viscosity of 120 cP at 20 °C and 

therefore is expected to result in an increase in viscosity [246]. An average viscosity 

of 2.6 cP was measured using a microfluidic viscometer from Malvern instruments, 

up to a shear rate of 20,000 s
−1

 as shown in Figure 4.13.  
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Figure 4.13 - Flow curve (viscosity vs. shear rate) for TiO2 aqueous ink with 

25 wt% PEG 400. 

The new ink formulation was then sonicated again for a further 10 minutes in an 

ultrasonic bath, passed through a 1.2 m polyvinylidene fluoride (PVDF) filter and 

injected into a 1.5 ml Fujifilm-Dimatix cartridge. Printing was carried out onto 

commercially available FTO sputter coated glass substrates.  

As previously discussed in section 3.4.1, ‘wetting’ is an important factor in the 

adherence of two materials and occurs when the surface energy of the substrate is 

able to overcome the surface tension of a liquid. Therefore to further understand the 

interaction between the ink and the substrate surface, the surface energy of the 

substrate material was calculated based on contact angle measurements. The surface 

energy of the substrate materials was determined using a Theta Lite optical 
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cleaning detergent (Decon90) in deionized water for an hour to remove any surface 

contaminants. It was then rinsed thoroughly with deionized water to remove traces of 

the cleaning detergent. Three drops of water, ethylene glycol and diiodomethane 

were dispensed onto the test piece and the Fowkes method was used to calculate the 

total surface energy (γ). 

The surface energy was calculated using a Theta Lite optical tensiometer from Biolin 

Scientific as described in section 3.4.1, to determine whether the ink would wet the 

substrate. The Fowkes method resulted in a surface free energy of 26.5 mN/m for the 

FTO coated glass. The surface tension of the TiO2 ink was previously calculated to 

be an average of 26.3 mN/m. For adhesion to occur, the surface energy of the 

substrate should not exceed the surface tension of the fluid by more than 10-

15 mN/m [221]. The surface tension of the ink and surface energy of the substrate 

are very similar, therefore the temperature of the substrate was heated to 60 ºC to 

encourage wetting of the ink.  

 

Figure 4.14 -  Dimatix model fluid waveform. 
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The Drop Manager software was used to evaluate the quality of jetting from the 

nozzles. The "Dimatix Model Fluid" waveform (shown in Figure 4.14) was designed 

to work with model fluids (e.g. with a viscosity of 10-12 cP and a surface tension of 

28-33 mN/m) and therefore was loaded and used as a starting point to monitor drop 

formation from the nozzles using the built-in camera. A jetting frequency of 5 kHz 

was set and the voltage waveform was adjusted to 10V to produce stable jetting of 

droplets with small tails (as shown in Figure 4.15) The nozzle temperature was 

maintained at 25 ºC. Elevated nozzle temperatures up to 60 ºC were investigated. 

However, the droplets deposited onto the substrate appeared less white and therefore 

it was assumed that the elevated temperatures was causing the inkjet nozzle to 

dispense the liquid components (e.g. solvent and humectants) leaving behind the 

TiO2 nanoparticles. 

 

Figure 4.15 - TiO2 ink droplet formation 
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To produce the optimal coating, the inkjet droplets should be dispensed from the 

nozzle so that overlapping discs are formed on the substrate. The Fujifilm-Dimatix 

printer is capable of altering the drop spacing between 5 µm to 100 µm. The drop 

size was used to determine the spacing; if they are too far apart it would result in 

holes within the printed layer. Generally, a drop spacing equal to the drop size is 

enough to form a uniform line. A drop size of 100 µm was used to print a single 

layer onto FTO coated glass, and a drop diameter of 40 µm was measured for 

individual drops using an optical microscope. A drop spacing of 40 µm did not form 

a uniform line and a drop spacing of 30 µm resulting excessive overlap resulting in 

bulging. Therefore a drop spacing of 35 µm was selected. Squares 5 mm by 5 mm 

were printed onto FTO coated glass which were placed on a hot plate at room 

temperature and then heated to 150 ºC for 30 minutes, followed by 250 ºC for a 

further 30 minutes. 

4.5 Characteristion of the printed films 

X-ray diffraction (XRD) analysis of the inkjet printed TiO2 was performed using a 

Empyrean diffractometer from PA alytical with a CoKα wavelength (λ) of 1.7890 

Angstroms (Å) and data was taken in the range of 20˚ to 95˚. Identification of TiO2 

crystalline phases for the printed film was achieved by comparison of their XRD 

patterns (shown in Figure 4.16) with those in the Joint Committee on Powder 

Diffraction Standards (JCPDS) database. Although the diffraction signal is 

dominated by the FTO-glass substrate, the XRD spectrum shows diffraction peaks at 

29.57˚, which indicates TiO2 in the anatase phase [237]. As previously mentioned, 

the crystallite size can be estimated from measured XRD peak half breadths [29.57˚ 

peak for anatase] by using the Scherrer equation. The angular width of the peak at 

a) b) c) 
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half maximum height was calculated from the XRD spectra to be 0.00680 radians 

and subsequently the crystal size was calculated to be 25 nm.  

 

Figure 4.16 - XRD spectra of inkjet printed TiO2 onto FTO glass. 

The thickness of the printed layer was determined with a stylus surface profiler 

(Ambios XP-100). The diameter of the printed samples (after two printed layers) was 

found to be 4818 m, with an average z-height of 1.8 m (between the values of 

1000 µm and 5500 µm on the x-axis) and a maximum z-height of 2.6 m, as shown 

in Figure 4.17. 
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Figure 4.17 - Surface profile of inkjet printed TiO2 onto FTO coated glass after 2 

layers. 

The printed films were analysed using a Carl Zeiss SEM, with an operating voltage 

of 5 kilovolts (kV). The SEM image of the printed TiO2 film in Figure 4.18 and 

Figure 4.19, shows that the majority of particles retain the average size obtained 

from DLS, however many of the particles are connected into larger agglomerates. 

This will reduce the available surface area available for dye to be adsorbed onto the 

TiO2 particles which could therefore negatively affect the overall conversion 

efficiency of the cell. The SEM images also show that the films were homogeneous 

without any cracks. 
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Figure 4.18 - SEM image of 2 layers of inkjet printed TiO2 at low magnification.  

 

Figure 4.19 - SEM image of 2 layers of inkjet printed TiO2 at high magnification. 

The transmittance of the TiO2 printed films was measured to determine how much 

sunlight would pass through the printed film. The transmittance was measured using 

a cary60 ultraviolet-visible (UV-Vis) spectrophotometer from Agilent Technologies, 
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in the wavelength range of 200-1100 nm. Visible light is defined as the wavelengths 

that are visible to most human eyes (390 to 700 nm) [247]. At a wavelength of 

600 nm the FTO coated glass has a transmittance of 77.72 % compared with 48.66 % 

with the 2 layers of inkjet printed TiO2. This indicates that a significant proportion of 

light is still being transmitted through the printed TiO2 films. 

 

Figure 4.20 - Transmittance of light through 2 layers of inkjet printed TiO2 films. 

As previously mentioned, the efficiency of DSSCs is directly influenced by the 

thickness of the TiO2 layer. The optimal thickness has been reported in several 

studies and it is widely accepted that somewhere between 9.5 - 20 µm produces the 

best results for traditional DSSCs incorporating an iodide/tri-iodide electrolyte [76, 

85-89, 204, 248]. Therefore, the number of prints was increased to investigate the 
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deviation in relation to the number of printed layers. As the thickness increases, so 

does the standard deviation indicating an increase in the surface roughness. 

 

Figure 4.21 - Relationship between number of printed layers and thickness. 

The same ink formulation was then used to print 10 layers onto FTO glass, which 

was then heated from room temperature to 250 ˚C to remove the solvent and 

humectant. However, this resulted in significant cracking and peeling from the glass 

substrate as shown in Figure 4.22 which was obtained using a Bruker ContourGT 3D 

Optical Microscope. The printed layer also had poor adhesion to the glass substrate 

and quickly peeled away, indicating that they would be unsuitable for dye-

sensitization. 
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Figure 4.22 - Surface scan of the inkjet printed TiO2 onto FTO coated glass (after 10 

layers) using a Bruker ContourGT 3D Optical Microscope 

4.6 Improving adhesion 

4.6.1 Compression  

One of the advantages of additive printing is that a range of rigid and flexible 

substrate materials can be used for printing. The use of flexible, thin and lightweight 

conducting plastic for DSSC applications has received significant attention recently 

for potential commercial applications [33]. However, due to the thermal instability of 

many plastic materials, high temperature sintering cannot be used. Mechanical 

compression has been reported to improve adhesion between the TiO2 and the 

substrate and to promote interparticle connection within the printed layer resulting in 

crack-free films between 7 µm and 14 µm thick [33, 34]. This section investigates 

the use of compression for low-temperature preparation of the TiO2 layer. The use of 
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the technique to overcome the issues of surface cracks and peeling of the coating 

from the substrate (seen in the previous section) is also considered. 

 TGA and DSC were performed to determine the thermal stability of the plastic 

substrates. PEN, PET and polyimide are commercially available films widely used in 

printed electronics applications. PET is reported to have an upper processing 

temperature of 150 ˚C and PE  is reported to have a slightly higher upper processing 

temperature of 180 ˚C [197]. However, both suffer with issues of shrinkage when 

heated. Polyimides, on the other hand, have high processing temperatures above 

350˚C. 

Figure 4.23 shows the DSC for ITO coated PET. The first change in heat flow is 

observed at 58 ºC which can be attributed to the glass transition temperature (Tg). A 

peak occurs at 260 ºC, which can be attributed to the melt transition temperature 

(Tm) and the TGA shows that it has fully degraded (Td) at 464 ºC.  

Figure 4.24 shows the DSC for ITO coated PEN. The first change in heat flow is 

observed at 47 ºC which can be attributed to the glass transition temperature (Tg). A 

peak occurs at 267 ºC, which can be attributed to the melt transition temperature 

(Tm) and the TGA shows that it has fully degraded (Td) at 470 ºC.  

Figure 4.25 shows that the polyimide film received from Dupont has excellent 

thermal stability. There are no clear peaks (positive or negative) until a small peak is 

observed at 521 ˚C. According to the literature, a second order transition occurs in 

polyimide between 360 °C and 410 °C and is assumed to be the glass transition 

temperature [249]. The sample provided was a non-commercial clear prototype film 

and was expected to perform well at high temperatures. It was therefore assumed that 
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the Tg occurred at 521 ˚C. Degradation (Td) then occurred at a temperature of 

600 ˚C. 

 

Figure 4.23 - Thermal analysis of ITO coated PET film 
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Figure 4.24 - Thermal analysis of ITO coated PEN film 

 

Figure 4.25 - Thermal analysis of Dupont polyimide film 
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To further understand the likely interaction between the ink and the substrate 

material, the surface energy of the each was calculated based on contact angle 

measurements as described in section 4.4. The use of surface treatment using 

methods such as corona [114], plasma [250] and chemical etching [125] could also 

be used to modify the surface energy and improve wettability.  

Table 4.2 shows a comparison of the calculated surface energy for the plastic and 

glass substrate materials. The results indicate that ITO and FTO coatings reduce the 

surface energy of the substrates significantly. The high standard deviation observed 

for the glass microscope slide highlights significant irregularity with the surface and 

therefore further cleaning may have been required.  

The surface tension of the aqueous TiO2 ink was previously calculated to be an 

average of 26.3 mN/m. For adhesion to occur, the surface energy of the substrate 

should not exceed the surface tension of the fluid by more than 10-15 mN/m [221]. 

To enable good printing onto the plastic materials with a high surface energy, the 

surface tension of the ink could be increased to enable compatibility with the 

substrate. This may influence the printability of the ink, for example, high surface 

tension fluids have been shown to result in the formation of satellites [134]. The use 

of surface treatment using methods such as corona [114], plasma [223] and chemical 

etching [224] could also be used to modify the surface energy and improve 

wettability. 
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Table 4.2 - Surface energy of substrates 

Substrate Surface energy 

[mN/m] 

Standard deviation 

[mN/m] 

FTO coated glass 26.45 0.74 

ITO coated PET 29.21 0.74 

ITO coated PEN 32.82 0.61 

PET 46.78  1.23 

Dupont Polyimide 47.99 0.81 

Glass microscope slide 63.03 7.52 

 

Although the polyimide showed excellent thermal stability, a film pre-coated with a 

transparent conductive material could not be identified. The thermal performance of 

the PET and PEN were found to be similar and the surface energy of the ITO coated 

PET was closer to that of the FTO coated glass. Therefore the rest of this section 

continues with work printing onto ITO coated PET. 

PEG 400 has a glass transition temperature (Tg) of -63 °C and a melting temperature 

(Tm) of 5.5 °C and is reported to degrade between 220 and 240ºC [251]. Ethylene 

glycol has a boiling point of between 195 and 198 °C. Differential scanning 

calorimetry (DSC) was conducted to find the temperature at which PEG 400 and 

ethylene glycol degrades to determine which would be most compatible with plastic 

substrates. Figure 4.26 shows the measured heat flow change of a PEG 400 

(compared with a reference) with a peak observed at 221 ˚C. The DSC of ethylene 

glycol in Figure 4.27 shows a large peak which starts at 175 ˚C, indicating that the 

material starts degrading at a lower temperature than PEG 400. 
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Figure 4.26 - Thermal analysis of PEG 400 

 

Figure 4.27 - Thermal analysis of ethylene glycol 
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Therefore, the ink was reformulated replacing PEG 400 with ethylene glycol as a 

humectant. The ink was passed through a 1.2 µm filter and injected into an ink 

cartridge. Printing was carried out as before, using the Dimatix Model Fluid 

waveform, a jetting frequency of 5 kHz, and the voltage waveform was adjusted to 

10V and the nozzle temperature was maintained at 25 ºC. Since the surface energy of 

the FTO coated glass and ITO coated PET are similar, a drop spacing of 35 µm was 

maintained. Following inkjet printing onto ITO coated PET films, the samples were 

dried in a vacuum oven at 140 ºC for 30 minutes to remove the solvent carrier 

followed by cooling to room temperature. The films were then placed in between 

two polished aluminium sheets and loaded into a Collin200 M laboratory platen 

press and compressed at 25 MPa for 60 seconds. 

 

Figure 4.28 - Surface profile of inkjet printed TiO2 onto ITO coated PET before 

compression 
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Figure 4.29 - Surface profile of inkjet printed TiO2 onto ITO coated PET after 

compression 

The surface of the printed layer was scanned using a 3D optical microscope (Bruker 

ContourGT). Figure 4.28 and Figure 4.29 show the surface profile of the TiO2 films 

before and after compression. Before compression, it is clear that several cracks 

propagate through to the PET substrate and after compression the cracks appear to 

disappear. There is not a noticeable reduction in thickness after compression;   

however it does appear that the TiO2 particles have been redistributed over the 

substrate so that voids within the coating are visibly reduced. 
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Figure 4.30 - SEM image of TiO2 printed films onto ITO coated PET after 

compression 

Figure 4.30 shows an SEM image of the films after compression. Although cracks 

can be observed on the surface, the inter-particle connection appears to have 

improved resulting in a less defined crack. However, the films still lacked sufficient 

adhesion with the substrate and separated upon sensitized in dye/ethanol solution. 

Therefore to further try and overcome the issue of adhesion, the next section will 

investigate the use of binder materials within the ink formation. 

4.6.2 Evaluation of binder materials 

In order to overcome the issues of surface cracks and peeling of the coating from the 

substrate seen in the previous section, an investigation was performed on binder 

materials. The incorporation of binders within inks enable crack free films to be 

printed. Without the binder, it is very difficult to control the film consistency over 

larger areas [32]. Binder-free formulations also suffer from poor inter-particle 

adhesion which can lead to cracking and poor substrate adhesion which can in turn 

lead to delamination. To improve the adhesion of the TiO2 films, the addition of 

organic binders was investigated. Cellulose-based binders are commonly 

30 µm  
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incorporated in large quantities into pastes for screen printing or doctor blading to 

produce the high viscosities of between 1000 and 10,000 cP [118] [119]. However, 

heat treatment is required post-deposition to completely remove these large amounts 

of material from the printed layers [120]. Cellulose-based binders have degradation 

temperatures higher than 300 ºC, however if used in small quantities within an ink 

any residue may aid adhesion without compromising too much on the functionality 

of the printed device [137, 252, 253]. 

Figure 4.31 shows the TGA results of methyl cellulose (MC), hydroxyethylcellulose 

(HEC) and ethyl cellulose (EC) (purchased from Sigma Aldrich). During heat 

treatment, the cellulose binders melt and decompose. Higher temperature heat 

treatment result in more of the cellulose being removed; however a small amount of 

binder residue remains after heat treatment at 600 ºC. HEC has a lower initial 

degradation temperature then the other two cellulose materials tested and therefore 

was investigated further.

 

Figure 4.31 - TGA data for cellulose binders from 25 ºC to 450 ºC at 10 ºC/min. 
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HEC with an average molecular volume of 90,000 was added to DI water according 

the product information sheet. Approximately one third of the required water was 

heated to 80 ºC after which the cellulose powder was added with agitation until it 

was evenly dispersed. The remainder of the water was then added and the mixture 

was cooled to room temperature with continued agitation for a further 30 minutes. In 

order to determine the ideal quality required within an ink formulation, the HEC 

content was increased from 1-6 wt% to create 6 samples. Once cooled to room 

temperature, the viscosity of each was measured using a Brookfield rotational 

viscometer with a small sample adapter at a shear rate of 19.8 s
−1

. As expected, 

Figure 4.32 shows that the viscosity increases with respect to HEC content.  

 

Figure 4.32 - Influence of HEC content in DI water on dynamic viscosity  

(at a shear rate of 19.8s
−1

).  
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20 cP should provide good droplet formation [127]. The viscosity at 3 wt% was 

23.8 cP, therefore the HEC content within an ink formulation should be less than this 

to enable successful drop formation. 

The aqueous TiO2 ink was formulated the same as before (in section 4.4) with the 

addition of 2.5 wt% HEC. However after thorough mixing and sonication, the inks 

were unable to pass through a PVDF 1.2 µm syringe filter. The HEC content was 

reduced to 1.5 wt%, which successfully passed through the filter and therefore would 

be less likely clog the print head nozzles. The ink was loaded into a 1.5 ml Fuijifilm-

Dimatix ink cartridge and printing was carried out onto commercially available FTO 

sputter coated glass substrates (TEC8, Pilkington with a sheet resistance of 8 Ω/sq). 

The Drop Manager software was used to evaluate the quality of jetting from the 

nozzles. The dimatix model fluid waveform (with a jetting frequency of 5 kHz) was 

used as a starting point to observe drop formation. High viscosity fluids require more 

energy to dispense a droplet e.g. a higher voltage is required. Following trials, the 

voltage waveform was increased to 18V to produce stable jetting of droplets. The 

nozzle temperature was maintained at 25 ºC. 

Drop spacing was investigated between 50 µm to 10 µm using a 3D optical 

microscope (Bruker Contour GT) to observe surface roughness and height of printed 

features (shown in Figure 4.33). As before, the printed films were placed on a hot 

plate at 150 ºC for 30 minutes, followed by 250 ºC for a further 30 minutes.  From 

Figure 4.33 it can be seen that the drops remained unconnected at 50 µm, at 40 µm 

the drops started to overlap and at 30 µm there was excessive overlap. As the lines 

were brought closer together, more of the material was deposited in a ridge. 

Excessively close spacing also resulted in an increase in film thickness as well as 

roughness. A drop-spacing of 35 µm was found to be optimal. 
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Figure 4.33 - Drop spacing of TiO2 ink (with HEC binder) onto FTO glass 

investigated using a Bruker 3D optical microscope 

(a) 10 µm (b) 20 µm (c) 40 µm (d) 50 µm 
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10 layers were printed and heated on a hot plate at 150 ºC for 30 minutes, followed 

by 250 ºC for a further 30 minutes to remove the solvent carrier and humectant. 

After heating to 250 ºC the films appeared a brown colouration as shown in Figure 

4.34. This is likely to be due to residual organic matter, which will reduce dye uptake 

by blocking surface sorption sites. TiO2 anatase eventually develops into rutile after 

heat treatment above 500 ºC [254]. Therefore, the films were placed into a vacuum 

oven from room temperature up to 450 ºC and maintained there for 60 minutes after 

which it was brought back down to room temperature and removed from the oven. 

The films then appeared white in colour indicating that that the majority of the 

cellulose binder had been burnt off. 

 

Figure 4.34 - Colour of TiO2 after heating to (a) 150 ºC (b) 250 ºC 

From Figure 4.35 it can be seen that the addition of the cellulose binder appeared to 

cause non-uniform drying. TiO2 nanoparticles were transferred to the perimeter of 

the droplet resulting in a "coffee-ring" effect. However, the addition of the cellulose 

was successful in increasing the thickness. The thickness of printed layers was 

measured using a Bruker 3D optical microscope and found to have an average z-

height of 7.64 m (between the values of 1200 µm and 7000 µm on the x-axis) and a 

maximum z-height of 10.08 m. The thicker areas were concentrated around the 

edges. 

(b) (a) 
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Figure 4.35 - Inkjet printed TiO2 with HEC binder 

The transmittance of the TiO2 printed films was measured to determine how much 

sunlight would pass through the printed film. The transmittance was measured using 

a cary60 ultraviolet-visible (UV-Vis) spectrophotometer from Agilent Technologies, 

in the wavelength range of 200-1100 nm.At a wavelength of 600 nm the FTO coated 

glass has a transmittance of 77.72% compared with 48.66% with the 2 layers of 

inkjet printed TiO2. Figure 4.36 shows that after 10 layers of inkjet printed TiO2 with 

HEC, this is further decreased to 42.04%. However this still shows that a large 

proportion of visible light is able to pass through the printed film. 
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Figure 4.36 - Transmittance through 10 layers of inkjet printed TiO2 films 

4.7 DSSC manufacture and characterisation 

To examine the commercial potential of inkjet printing in the manufacture of 

DSSCs, the printed films were produced into cells based on learning from previous 

sections. The key electrical performance parameters were used to characterize and 

compare the cells. Although hundreds of cells are customarily fabricated to ensure 

the reproducible performance of cells, to demonstrate the application of this work, 

efficiencies are reported as the mean of 3 devices. 

In order to benchmark the proposed inkjet printed DSSC, a standard doctor-bladed 

cell was produced. TiO2 photoelectrodes were prepared by doctor-blading a DSL 

18NR-AO paste purchased from Dyesol, which has a blend of anatase particles of 

between 20 nm and 450 nm in size onto FTO glass (TEC8, Pilkington with a sheet 

resistance of 8 Ω/sq). The coatings must be heated slowly to avoid both cracking of 
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the glass substrate and on the surface of the TiO2 film. The several heated stages 

were performed; the films were placed onto a hot plate and heated at 150 ˚C for 15 

minutes, 250 ˚C for 15 minutes, 350 ˚C for 15 minutes, and 450 ˚C for 45 minutes 

and then returned to room temperature [78]. The thickness of the printed layer was 

determined with a stylus surface profiler (Ambios XP-100) and an average thickness 

value was calculated to be 18.0 µm as shown in Figure 4.37.  

 

Figure 4.37 - Surface profile of the doctor-bladed TiO2 onto FTO coated glass  

The TiO2 samples were made into a DSSC (illustrated in Figure 4.38) by soaking the 

printed substrates in a mixture solution of 20 ml of ethanol and 2 mg of N719 dye 

(Ruthenizer 535-bisTBA, Solaronix) at room temperature for 24 hours and dried in 

air. Surlyn film (Meltonix 1170 25 series, Solaronix) was then cut to size and 

sandwiched between the TiO2 coated glass and the platinum coated glass 

(Solaronix). Iodide based low viscosity electrolyte with 50 mM of tri-iodide in 
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acetonitrile (AN-50, Solaronix) was used as the electrolyte and injected into a pre-

drilled hole in the glass.  

 

Figure 4.38 – Example of a DSSC incorporating a liquid electrolyte 

The IV characteristics were measured under one sun (air mass 1.5, 100 mW/cm
2
) by 

a source meter (Model 2400, Keithley Instrument, Inc.). These devices produced an 

average short circuit current (Jsc) of 11.12 mA/cm
2
, open circuit voltage (Voc) of 

756 mV and a fill factor (FF) of 0.57, resulting in a power conversion efficiency 

(PCE) of 4.8 ± 0.04%. This is similar to the performance of other cells reported 

using the same fabrication procedure, therefore was considered as a benchmark to 

which all further cells can be compared [255-257]. 

The inkjet printed TiO2 samples were also made into a DSSC using the same method 

described above. Firstly, the glass substrates were cut into smaller manageable sizes 

(approximately 20 mm square) using a diamond glass cutter as shown in Figure 4.39.  
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Figure 4.39 – Cutting the FTO glass with a diamond glass cutter  

The IV characteristics were again measured under one sun (air mass 1.5, 

100 mW/cm
2
) by a source meter (Model 2400, Keithley Instrument, Inc.). The key 

performance characteristics of the cells are compared in Table 4.3 and Figure 4.40. 

Table 4.3 - Performance of DSSCs with an active of 0.25 cm
2

  

 

Inkjet 

printed 

(No binder) 

Inkjet printed 

(HEC binder) 

Doctor 

bladed 

benchmark 

Isc [mA/cm
2
] 9.42±0.33 6.02±0.56 11.12±0.05 

Voc [mV] 756±2.50 706±2.92 756±4.90 

FF 0.49±0.03 0.60±0.04 0.57±0.01 

Efficiency [%] 3.50 ± 0.50 2.45 ± 0.42 4.80 ± 0.04 

Average thickness [µm] 1.8 7.6 18.0 
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Figure 4.40 - Performance curves for DSSCs with inkjet printed TiO2  

The results show that when incorporated into traditional DSSCs, the ink without 

binder has a higher efficiency than the one with the HEC binder. There are several 

likely explanations for this. During heat treatment, the cellulose binders melt and 

decompose with higher temperatures resulting in more of the HEC being removed. A 

significant amount of binder residue (∼25 wt %) remains after heat treatment at 

450 ºC. This residue material reduces the amount of area available for dye to attach 

onto the surface of the TiO2 particles. Additionally, it has been reported that with 

increasing sintering temperatures, the specific surface areas and porosity of TiO2 

nanoparticles steadily decreases [258]. This again reduces that amount of dye which 

can be adsorbed. Further testing to observe the dye absorption and desorption would 

need to be performed to confirm this. On the other hand, increased fill factor were 
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observed which may be due to better adhesion with the substrate which enables 

better charge transfer between the TiO2 and FTO. Electrochemical Impedance 

Spectroscopy (EIS) testing would provide more information on whether this is the 

case. However the overall conclusion is that the inkjet printed variant has similar 

performance to the benchmark.  
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Chapter 5 

Inkjet printed carbon black aqueous nanoparticle 

ink as a low cost replacement to platinum 

5.1 Introduction 

As previously discussed, there is a significant amount of research focussed on 

finding a replacement for the rare and expensive platinum material currently used as 

DSSCs. Carbon-based materials have been incorporated as counter electrodes in 

DSSCs to produce comparable efficiencies [109, 112]. This section reports on the 

inkjet printing of carbon nanoparticles. Once printed, the films will then be 

characterised to determine their suitability for use as a counter electrode in DSSCs.  

5.2 Ink development 

Carbon black is composed of nanometre sized primary particles which are bonded 

together to form aggregates or larger agglomerates of various shapes and structure. A 

sample of high conductivity carbon black (Vulcan XC72R) was received from James 

M. Brown Ltd, United Kingdom. This is a commercially available furnace black, 

which is made from petroleum feedstocks. “In the manufacturing of furnace black, 

the feedstock being injected into a high-temperature reactor where the hydrocarbon 

is cracked and dehydrogenated to form carbon with a quasi-graphitic microstructure” 

[259]. The isoelectric point has previously been found to be 5.36, therefore the pH 

needs to be raised to slightly above ten to improve the ease and stability of the 

dispersion [260]. In order to improve the dispersion of the nanoparticles within the 

ink, it is preferable to use a surfactant, generally of a non-ionic or anionic type. For 



  

143 

 

aqueous dispersions the percent of dispersing agent is dependent on both the particle 

size and percent of particles within the dispersion. The creation of a stable dispersion 

of carbon black particles is arguably the most challenging step in producing a high 

quality inkjet ink. 

Following trials to determine the optimal components, a carbon nanoparticle aqueous 

ink was prepared using the following method: 

 An aqueous solution of sodium hydroxide (NaOH) was prepared to produce a pH 

of approximately 11.The solution was mixed for 12 hours at 40 ºC using a large 

magnetic stirrer. 

 1 wt% of Zetasperse 3100 polymer dispersant was added to the base solution 

 25 wt% of PEG 400 was added to act as a humectant preventing drying at the 

nozzles and the blockage of nozzles. 

 The solution was mixed for 8 hours using a magnetic stirring bar to ensure 

homogeneity. 

 A few drops of the premixed solution was added to the carbon black (1 wt%) to 

create a concentrated paste, whilst stirring with a large magnetic stirrer. A 

dispersion of carbon black was created by slowly adding the remaining solution 

to the paste.  

 The mixture was transferred into a round bottom flask and sonicated using a 

Hielscher UP200S ultrasonic probe for 10 minutes at a frequency of 60 Hz. 

The particle size distribution was measured using DLS and was found to contain 

aggregates ranging in size up to 1122 nm with an average diameter of 430 nm, which 

have been formed from carbon spheres with a primary particle size of 30 nm. Further 

sonication was unable to break up the agglomerates and the dispersion proved 
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impossible to pass through a 1.2 µm filter. The addition of further surfactant did not 

result in a reduction of particle size and therefore the ink would likely result in 

significant nozzle clogging. The particles may need further surface treatment to 

overcome the attractive forces between them resulting in the formation of 

agglomerates. As an alternative, there are a number of carbon-based inks 

commercially available which can be used as an alternative. 

Common fountain pen inks incorporate carbon black particles to provide long lasting 

durable colour. The ink has a highly uniform dispersion, is stable for several years 

and is made from environmentally friendly materials (mainly water). The ink has 

previously been applied to DSSCs fabrication and is ideally suited to wet processing 

methods such as spray coating and inkjet printing [261]. A fountain pen ink (Calli 

calligraphy ink made by Daler-Rowney in the United Kingdom) was purchased and 

the key fluid properties; particle size, carbon content, dynamic viscosity, surface 

tension, were characterised to determine printability and suitability for use in 

DSSCs. The average particle size was measured using DLS and found to be 146 nm 

as shown in Figure 5.1. 
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Figure 5.1 - Average particle size distribution of carbon particles in fountain pen ink 

TGA was used to estimate the percentage of carbon black that is dispersed within the 

ink. Figure 5.2 shows the results, which indicate a very large weight loss peaking at 

around 165 ºC corresponding to the loss of solvent (Ic), a second significant weight 

loss peaks at around 230 ºC which is likely to be a polymeric component (IIc) and a 

third weight loss which peaks at around 425 ºC which corresponds to the burn-off of 

a binder material (IIIc). There was 12.7 wt% of solids left after the ink was heated to 

600 ºC; the majority of this will be carbon black, with some remains of a binder 

material. According to the manufacturer information, the density of the ink (before 

modification) was 1.25 g/mL at 25 °C. The TGA confirms that there is a high 

percentage of carbon within the ink to enable a good deposition of material within a 

few print passes. 
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Figure 5.2 - TGA of carbon fountain pen ink 

The carbon ink was further diluted with 10 wt% water (to enable the solution to be 

easily passed through a 1.2 µm and 0.45 µm filter) and approximately 20wt% 

ethylene glycol was added, which from previous work has been found to perform 

well as a humectant to prevent the ink from drying at the nozzles. TGA analysis 

found that this solution contained 10 wt% solids after heating to 600 ºC. The 

dynamic viscosity of the ink was measured using a Brookfield DV2T viscometer in 

addition to a small sample adapter with a link hanging spindle (SC4-18) using a 

6 mL sample size. Measurements were taken up to the maximum measureable shear 

rate of 264 s
−1 

resulting in a shear rate of 10.83 cP (± 0.15) as shown in Figure 5.3. 
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Figure 5.3 - Dynamic viscosity of carbon ink. 

The surface energy was calculated using a Theta Lite optical tensiometer from Biolin 

Scientific as described in section 3.4.1, to determine whether the ink would wet the 

substrate. As a general guideline for adhesion to occur, the surface energy of the 

substrate should not exceed the surface tension of the fluid by more than 10-

15 mN/m [221]. 

 Table 5.1 - Average surface tension of carbon black ink 

Surface tension 

mN/m 

Volume 

µL 

27.52 2.64 

29.76 5.58 

29.61 3.77 
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A surface free energy of the FTO coated glass was previously calculated, using the 

Fowkes method, to be 26.5 mN/m. Table 5.1 shows the surface tension 

measurements of the modified carbon ink, which was calculated to be an average of 

28.96 mN/m. This  resulted in an average contact angle of 25.88 ˚ on FTO glass 

measured 10 seconds after dispensing the drop, an example of how this was 

calculated is shown in Figure 5.4. 

 

Figure 5.4 - Example contact angle measurement of carbon ink on FTO coated glass 

These results indicate that the carbon ink should wet onto the FTO surface and 

therefore the next section details the optimisation of the print parameters to enable 

successful deposition of the ink. 

5.1 Inkjet printing trials and optimisation of the print parameters 

The carbon ink was passed through a 1.2 µm and 0.45 µm filter and loaded into a 

cartridge. Drop spacing was investigated as before and a drop spacing of 25 µm was 

selected to produce drops which overlapped on the FTO coated glass. The Drop 

Manager software was used alongside the dimatix model fluid waveform to monitor 



  

149 

 

drop formation from the nozzles using the built-in camera. A jetting frequency of 

5 kHz, a cartridge temperature of 30 ˚C, a platen temperature of 60 ˚C and the 

voltage waveform was adjusted to 16 V to produce stable jetting of droplets. Each 

layer was printed onto the next without any further heating in-between. The films 

were then placed on a hot plate at 100˚C for 30 minutes followed by 250 ˚C for a 

further 30 minutes to remove all of the solvent material. Three thicknesses were 

printed to investigate the influence on the performance once the layers were 

incorporated within a DSSC. 

The surface roughness and thickness of the printed films were characterised using a 

Bruker Contour GT laser profiler. The surface profile is shown in Figure 5.5. It is 

clear that as the number of prints increases toward 20 layers, the surface becomes 

rougher and the edges start to lose definition. The measured distance across the x-

axis was 5.2 mm for both 5 and 15 layers, which then increased to 5.8 mm at 20 

layers of printing. Sintering would be beneficial between layers to create more 

defined features from multiple prints. 
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Figure 5.5 - Surface profile of the printed carbon samples 

The SEM images in Figure 5.6 show that the printed film has well distributed 

nanoparticles, with no crack formations after annealing at 250 C. Figure 5.7 show a 

magnified image of the porous layer formed from the carbon ink. 
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Figure 5.6 - SEM image of inkjet printed carbon onto FTO glass at low 

magnification 

 

Figure 5.7 - SEM image of inkjet printed carbon onto FTO glass at high 

magnification 
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The resistance and sheet resistance was measured using a Jandel four point probe 

with a tip spacing of 0.5 mm. Table 5.2 shows the sheet resistance in comparison 

with the thickness of the carbon. The sheet resistance of the FTO coated glass 

substrate was also measured for comparison. According to the manufacturer it should 

have a sheet resistance of 8 Ω/square whereas the measured value was 

7.56 Ω/square; an error of 5.5 %. As the thickness of the carbon is increased, there is 

a small decrease in resistance. However, to provide an accurate measurement of 

sheet resistance, the ink would need to be printed onto another substrate of equal 

surface energy to produce the same quality of coating. 

Table 5.2 - Measured thickness and resistance of inkjet printed carbon 

  
FTO glass 5 layers 15 layers 20 layers 

Thickness µm - 3.10 6.80 10.24 

Resistance Ω 1.667 1.647 1.644 1.632 

Sheet resistance Ω/square 7.56 7.46 7.45 7.40 
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5.2 Evaluation of performance as a counter electrode  

The aim of this section is to compare the performance of the inkjet printed carbon 

with that of platinum with a DSSC. Firstly, the TiO2 photoelectrodes were prepared 

by doctor-blading onto FTO glass (TEC8, Pilkington with a sheet resistance of 

8 Ω/sq) to produce a layer 18.0 µm thick. These were then soaked in a premixed 

solution of 20 ml of ethanol and 2 mg of N719 dye (Ruthenizer 535-bisTBA, 

Solaronix) at room temperature for 24 hours in the dark and dried in air. Surlyn film 

(Meltonix 1170 25 series, Solaronix) was then cut to size and an iodide based low 

viscosity electrolyte was sandwiched between the TiO2 coated glass and the carbon 

counter electrode.  

Figure 5.8 shows the IV density characteristics for DSSCs made with an inkjet 

printed carbon electrode of varying thicknesses. The curve does not have the same 

smooth profile as the cell with a platinum counter electrode, which indicates there 

are energy losses occurring within the cell. This may be due to the fact that the 

resistivity of the carbon counter electrodes was significantly larger than that of the 

platinum counter electrodes. This high internal resistance may also be the reason for 

the low FF produced by the devices with carbon counter electrodes compared to the 

platinum devices. 
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Figure 5.8 - Comparison of the IV density curves of cells with platinum and inkjet 

printed carbon counter electrodes 

Table 5.3 presents the key parameters calculated from the IV curve.  As previously 

mentioned, three different thicknesses were investigated to determine the influence 

on the performance of the DSSCs. As the thickness of the carbon layer increases, so 

does the open-circuit voltage (Voc), short-circuit current (Isc), fill factor and 

efficiency. However, the increase in performance between 3.10 µm to 6.80 µm is 

significantly larger than that between 6.80 µm to 10.24 µm, indicating that the 

optimal thickness is slightly higher than 10 µm. This is in agreement with the work 

by Murakami, T.N (2006) who investigated doctor-bladed samples and found that 

the cell performance improved with carbon thickness up to an approximately 15 µm, 

where it reached a plateau [109]. Carbon layers that are too thick result in an increase 

in the device’s internal resistance, which has a negative effect on the fill factor (FF) 

and efficiency [261]. 
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Table 5.3 - Comparative performance of DSSCs  

 

Inkjet 

printed 

Carbon black 

Inkjet 

printed 

Carbon black 

Inkjet printed 

Carbon black 

Doctor bladed 

platinum 

benchmark 

Isc  

[mA/cm
2
] 

10.09±0.02 9.66±0.33 8.94±0.04 11.12±0.05 

Voc  

[mV] 
665±2.56 659±14.94 631±8.06 756±4.90 

FF 0.39±0.01 0.39±0.00 0.36±0.01 0.57±0.01 

Efficiency 

 [%] 
2.59 ± 0.07 2.50 ± 0.16 2.02 ± 0.06 4.80 ± 0.04 

Average  

thickness [µm] 
10.24 6.80 3.10 18.0 

 

In conclusion, this work shows that the counter electrode can be printed using inkjet 

technology. Carbon black shows promising properties as catalyst for the counter 

electrode of the DSSC, however the results indicate there are still areas of 

improvement to reduce the losses within the cells.   
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Chapter 6 

Inkjet printed PEDOT:PSS conductive polymer as a 

hole-conductor for solid-state dye sensitized solar 

cells  

6.1 Introduction 

As previously discussed, traditionally DSSCs are electro-chemical cells, 

incorporating a liquid iodide/triiodide redox couple. However, substantial research is 

focussed on using gel and solid-state electrolytes to enable industrial 

commercialization. The key components of a ss-DSSC are the sensitizer, electron-

transporting metal oxide and the molecular hole transporter. There are also several 

notable differences in architecture: 

 Current solid state devices require a much thinner metal oxide layer (1-2 µm). 

 They typically have a high work function metallic electrode such as gold or 

silver. 

 The redox levels of the dye and p-type materials have to be adapted carefully and 

therefore indoline dyes (such as D102, D149 or D205) are typically used. 

Conductive polymers have been successfully utilized as solid state hole transporters 

in DSSCs [9, 262]. This section describes the use of an Epson stylus photo P50 

desktop inkjet printer to print conductive polymers. The research highlights the 

potential for low cost manufacturing using a household piece of equipment to 

produce customisable electronics. 
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The Epson printer can only take flexible substrates due to the design and therefore a 

PET film with a thickness of 100 µm was chosen. The PET was cleaned by soaking 

with isopropyl alcohol (IPA) to remove dirt, dust and any other contaminants. The 

surface energy was determined using a Theta Lite optical tensiometer from Biolin 

Scientific. Three drops of water, ethylene glycol and diiodomethane were dispensed 

onto the test piece and the Fowkes method was used to calculate the total surface 

energy (γ). The average surface energy of three measurements was calculated to be 

46.78 mN/m, with a standard deviation of 1.23. The results are outlined in Table 6.1. 

Table 6.1 - Surface energy of PET substrate 

  

Surface 

energy 

mN/m 

Contact 

angle 

θ [°] 

Surface 

tension 

γtot [mN/m] 

Dispersive 

interactions 

γd [mN/m] 

Non-

dispersive 

interactions 

γp [mN/m] 

1 

Water 72.80 55.64 

47.55 33.50 14.05 Ethylene glycol 48.00 40.19 

Di-iodomethane 50.80 45.86 

2 

Water 

Ethylene glycol 

Di-iodomethane 

72.80 

48.00 

50.80 

60.67 

47.06 

42.97 

45.36 34.72 10.65 

3 

Water 

Ethylene glycol 

Di-iodomethane 

72.80 

48.00 

50.80 

60.67 

47.06 

34.58 

47.45 38.32 9.12 

 

6.2 Conductive polymer ink 

PEDOT:PSS solution (Orgacon IJ-1005) was purchased from Sigma Aldrich with a 

concentration of 0.8 wt% in water. The formulation has 1 -5 wt% ethanol and 5 - 
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10 wt% diethylene glycol to aid uniform coating. PEDOT:PSS is commonly doped 

with solvents, such as ethylene glycol (EG), glycerol, dimethyl sulfoxide (DMSO), 

and sorbitol to increase the conductivity [205]. This increase in conductivity has 

been attributed to a phase segregation of the excess PSS resulting in the formation of 

a three-dimensional conducting network [183]. Therefore, the PEDOT:PSS was 

mixed with 5 wt% DMSO for 12 hours using a magnetic stirrer to ensure 

homogeneity.  

Although inkjet printing of PEDOT:PSS has been widely reported, the particle size 

of the ink was still tested to make sure that it would pass through the printer without 

significant loss of conductive material. Since PEDOT:PSS is a polymer rather than a 

rigid particle, any nozzle clogging could be more easily cleaned and therefore was 

not thought to cause any significant problems during printing. DLS analysis of the 

modified PEDOT:PSS showed that the average particle size was 246 nm, with peaks 

at 68 nm and 396 nm as shown in Figure 6.1. 
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Figure 6.1 - Particle size distribution of PEDOT:PSS with 5 wt% DMSO 

A Kinexus rotational rheometer from Malvern Instruments was used to measure the 

dynamic viscosity and rheology of the PEDOT:PSS/DMSO mixture. A shear 

viscosity of 8.19 cP was found at a shear rate of 264 s
−1

, as shown in Figure 6.2. The 

addition of 5 wt% DMSO resulted in an increase in dynamic viscosity to 8.48 cP. 
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Figure 6.2 - Dynamic viscosity of PEDOT:PSS ink 

The surface tension of the inks was determined using a Theta Lite optical 

tensiometer from Biolin Scientific. The addition of 5 wt% DMSO resulted in a drop 

in surface tension from 39.21 mN/m (standard deviation of 0.53) to 37.32 mN/m 

(standard deviation of 0.22). As previously discussed a surface tension less than 

40 mN/m should enable reliable printing. As a general guideline for adhesion to 

occur, the surface energy of the substrate should not exceed the surface tension of 

the fluid by more than 10-15 mN/m [221]. The measured surface energy of the PET 

substrate was 46.78 mN/m (a difference of 9.46 mN/m) therefore good wetting 

should occur between the ink and the substrate [263]. 

The ink was then passed through a 0.45 µm PVDF filter and injected into an empty 

cartridge using a syringe. The PET was cleaned by soaking with isopropyl alcohol 

(IPA) to remove dirt, dust and any other contaminants. A simple square pattern with 
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dimensions of 20 mm x 20 mm was printed from a Bitmap image onto the PET 

substrate. After each layer was printed, the PET film was placed in a vacuum oven 

130 ˚C for 6 minutes to remove the solvent carrier as recommended by the supplier. 

The process was then repeated to produce 10 layers. 

6.3 Analysis of the printed films 

The surface of the PET film was investigated using a Carl Zeiss optical microscope 

as shown in Figure 6.3. The image shows several pits (indicated by the red arrows) 

on the surface of the PET film. Figure 6.4 shows that after 10 layers of inkjet printed 

PEDOT:PSS, some of these pits are still visible (indicated by the red arrows). 

 

Figure 6.3 - Optical microscope image of the PET substrate  
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Figure 6.4 - Optical microscope image of the PET with inkjet printed PEDOT:PSS 

The printed PEDOT:PSS film was analyzed in order to evaluate the thickness, 

transparency and conductivity. Conductivity is commonly measured using the 4-

point probe method as described earlier in section 3.5.4, however due to the low 

conductivity of the samples a 2-point probe method was used. The resistance was 

measured using a Keithley multimeter at two points at a distance of 2 cm. The 

average resistance measured from 35 samples was found to be 0.12 MΩ. 

The laser profiler failed to measure the thickness of the samples. this is due to the 

fact that both the PEDOT:PSS coating and the PET substrate are partially 

transparent, therefore the laser passed through them both without being able to 

differentiate between the two. The stylus was also used to measure the thickness of 

the samples most likely because the material was too soft. Therefore, 5 samples were 

selected as representatives and cut in half down the centre, sputtered with gold and 

the thickness was measured using SEM. A good quality image of the thickness was 
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obtained with correct adjustment of the image resolution as well as the 

brightness.The average thickness taken from 5 samples was found to be 4 µm.  

 

Figure 6.5 - SEM cross-sectional image of inkjet printed PEDOT:PSS 

Using the previously measure resistance of 0.12 MΩ and taking the distance between 

the probes to be 2 cm, the equations below can be used to calculate the conductivity 

in the following way. 

  
  

 
 

                                               

                                 

These values are lower than expected, which may be due to ingress of air and 

moisture due to the ambient processing conditions. The use of PET as a substrate 

may also have compromised the performance of the printed films. A conductivity as 

high as 900 S/cm has been reported in the literature, using a PEDOT:PSS 

formulation PH1000 from H. C. Starck [63]. A similar study by S. Ummartyotin in 

2011 reported a conductivity of 0.04 S/cm after 10 layers of printing to produce a 

thickness of 4.94 µm [264]. To determine whether the DMSO influenced the 

PET film PEDOT:PSS 
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conductivity of the PEDOT:PSS solution , 10 layers of the PEDOT:PSS without 

DMSO were printed. The results, shown below, indicate that the addition of DMSO 

improved the conductivity by over 200 times. 

                                                      

  
 

 
 

 

      
                        

To analyse how much visible light is transmitted through the printed PEDOT:PSS 

(with 5 wt% DMSO) films, the total transmittance, clarity and haze was measured 

using a haze meter (BYK-Gardner haze-gard plus). The results are shown in Table 

6.2.  

Table 6.2 - Optical measurements of inkjet printed PEDOT:PSS 

 

PET film PET film + PEDOT:PSS 

(with 5 wt% DMSO) 

Transmittance (%) 91.30 76.60 

Haze (%) 1.55 3.27 

Clarity (%) 98.27 93.27 
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Figure 6.6 - SEM image of inkjet printed PEDOT:PSS (with 5 wt% DMSO) at low 

magnification  

 

Figure 6.7 - SEM image of inkjet printed PEDOT:PSS (with 5 wt% DMSO) at high 

magnification 
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The SEM images shown in Figure 6.6 and Figure 6.7 show a good deposition of the 

PEDOT:PSS over the PET film. The printed films showed visibly good adhesion 

with the substrate. The magnified image shows the clusters of agglomerated 

particles. Even though the films show improved conductivity with the addition of 

DMSO, this may not be high enough to facilitate the transport of charge between the 

metal-oxide coated electrode and the counter electrode. 

6.4 Characterisation of performance as a solid state hole transporter in 

DSSCs 

This section reports on the performance of the printed conductive polymers when 

utilized as solid state hole transporters in DSSCs. The Epson p50 printer used in the 

previous section would need further modification to allow solid substrates to be 

used. However, to provide fair comparison with the benchmark cell (which was 

made using glass substrates), printing was carried out using the Fujifilm-Dimatix 

DMP2831 materials printer onto pre-coated glass substrates. Typically ss-DSSCs 

have a different structure to DSSC which incorporate a liquid redox electrolyte, to 

maintain consistency the same structure has been adopted as previous chapters. 

The TiO2 photoelectrodes were produced by screen printing onto FTO glass (2.2 mm 

thick with a sheet resistance of 7 Ω/sq) were purchased from Solaronix. TiO2 

thickness of 18.0 µm was measured using a surface profiler. These were then soaked 

in a premixed solution of 20 ml of ethanol and 2 mg of N719 dye (Ruthenizer 535-

bisTBA, Solaronix) at room temperature for 24 hours in the dark and dried in air.  

The ink was passed through a 0.45 m PVDF filter to remove any large particulates 

and injected into a 1.5 ml Fujifilm-Dimatix cartridge. Printing was carried out using 

a model waveform at 16 V with a drop spacing of 20 µm. 10 layers of the 
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PEDOT:PSS ink (with 5 wt% of DMSO) was printed onto the dye soaked TiO2 after 

which they were then left to dry at room temperature for 60 minutes.  They were 

then placed on a hot plate at 130 ˚C for 60 minutes to remove the solvent carrier. A 

platinum coated counter electrode was placed on top of a pre-cut 60 µm thick 

thermoplastic sealing spacer so that the active sides of the anode and the cathode 

were facing each other. The glass was then heated on a hot plate to a temperature of 

110 ˚C whilst applying light pressure by hand over the area of the sealing spacer for 

approximately 30 seconds to seal the cell together. The key performance parameters 

and IV density curve are shown in Table 6.3 and Figure 6.8. 

Table 6.3 - Performance of DSSCs with inkjet printed PEDOT:PSS 

Jsc (mA/cm
2
) Voc (mV) FF Efficiency (%) 

0.22±0.02 589±132 0.61±0.12 0.08 ± 0.01 

 

The solar cells showed very low Jsc values, which is an indication that one or several 

of the charge transfer processes in the solar cell do not work efficiently. In solid state 

devices, the role of the transport material is to receive holes from the oxidised dye 

and transport them out of the device. The conductivity is defined by how well a 

material can transport charge; in the case of PEDOT:PSS only holes contribute to 

charge transport. Highly conductive PEDOT:PSS films with a conductivity of 

1000 S/cm have a hole mobility of approximately µp = 20 cm
2
/Vs [179]. Since the 

conductivity of the printed films was significantly lower than this, we can assume 

that the hole mobility was also significantly less, resulting in poor conversion 

efficiencies within the cell. However, further testing would need to be conducted to 

confirm this.  
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Figure 6.8 - IV density characteristics of the DSSCs incorporating inkjet printed 

PEDOT:PSS as a solid state hole conductor 

In conclusion, the results indicate that there are still areas of improvement to utilise 

conductive polymers as solid state hole transporters in DSSCs . However, the work 

does show the potential for development of an inkjet-printable solid state hole 

transporter, which would ultimately lead to a fully printable DSSC. 
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Chapter 7 

Analysis of the cost and environmental implications 

of inkjet printed solid state DSSCs 

The potential market for DSSCs has been reported to include several indoor and 

outdoor applications including portable electronics, motorised blinds and rooftop 

systems. However, for DSSCs to become commercially viable they must have long 

term operational stability, be efficient, have a low environmental impact and low 

manufacturing cost.  

Inkjet printing is an additive manufacturing process, meaning that material is only 

deposited where needed, minimising the material wastage. The technology can be 

custom-made for industrial scale roll-to-roll manufacturing or more modest desktop 

printing. Although the systems differ in accuracy and quality, the technology is 

accessible to most people and with the development of functional inks could enable 

the manufacture of electronic components within the home or in more remote areas. 

One of the advantages of inkjet printing is that it can be operated under ambient 

conditions. Although the contamination of materials should be avoided to prevent a 

negative impact on the performance of the device, only moderate control of 

atmospheric dust and moisture is required and therefore high cost cleanroom 

facilities should not be required for the manufacture of DSSCs [60, 265].  

After the initial capital costs there are three key costs associated with the 

manufacture of DSSCs; processing costs, labour costs and materials. For large roll-

to-roll manufacturing of DSSCs, all processing steps should be designed for 

moderate to high line speeds (2 to 20 m/min) to obtain maximum production yield 
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[32, 60]. Inkjet printers are capable of printing at the speeds required for producing 

roll-to-roll electronic devices, with commercial speeds up to 244 m/min from 1200 

dpi (dots per inch) as standard [207]. High speed printing (18m/min) of TiO2 for 

DSSCs applications has been also been reported [266]. Additionally, two significant 

challenges that have recently been overcome have been achieved through firstly the 

use of infra-red radiation to sinter the TiO2 printed layers within 12 seconds and 

secondly the reduction of the dyeing process to within minutes through ultra-fast dye 

sensitisation [17, 267]. At this scale the majority of coating and printing processes 

are automated, it can also be assumed that the labour costs will be minimal. The 

production of the technology is therefore dominated by the material costs. A 

reduction in the material costs can be achieved by minimizing material wastage and 

replacing or reducing the amount of high-cost components within a device. 

The carrier solvent is usually the largest constituent within an inkjet ink and 

therefore has significant environmental and cost implications. Solvents are an 

integral part of any manufacturing and processing industry, with almost 15 billion 

kilograms of organic and halogenated solvents produced worldwide each year [268]. 

Recently there have been concerns about the release of toxins into the environment 

and therefore several industries have eliminated solvents from key process steps to 

reduce the environmental impact [268]. The use of water in applications such as 

coatings is preferable to organic solvents. For these reasons, although other solvents 

were initially considered, the inks in this work were formulated using water as the 

main solvent.  

There are a wide range of materials reported in the literature for use within DSSCs, 

often evaluated individually rather than holistically as part of a cell. As previously 

discussed, solid-state devices have been identified by many researchers as the most 
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likely route to large scale production of DSSCs [60]. Optimisation of the electrolyte 

will enable the long term stability of devices. Solid state devices also require much 

thinner metal oxide layers, which will reduce the cost associated with the 

manufacture of the TiO2 layer [15, 103, 104]. The main factors that limit the 

efficiency of solid-state devices are similar to that encountered with devices that 

incorporate a liquid electrolyte. However, the main reason why solid-state devices 

may result in low efficiencies is due to low conductivity within the hole transport 

material (HTM), resulting in a higher resistance which impedes the flow of charge. 

The highest efficiencies have been achieved by using spiro-MeOTAD as the hole 

conductor [1]. However, spiro-OMeTAD, has a commercial price that is more than 

10 times that of gold and platinum [102]. Hole conducting polymers can also be used 

to replace the volatile, toxic electrolyte currently used within liquid DSSCs. 

Conducting polymers have a significantly lower commercial price and also benefit 

from being dispersable in water, which has low volatility and is non-toxic. 

PEDOT:PSS conducting polymer was inkjet printed and incorporated into a DSSC, 

showing the potential for development of an inkjet-printable solid state hole 

transporter. The most efficient solid-state DSSCs contain a metal counter electrode 

deposited by vacuum co-evaporation of the elements [1]. The cost of owning large 

area vacuum evaporation technology is high and therefore to minimize the 

manufacturing cost of solid-state DSSC, the use of such equipment to should be 

avoided. 

Platinum is still the most efficient and widely used counter electrode in DSSCs, with 

a reported cost of 32,000-70,000 $/kg [60]. Although it is a high-value component, 

due to the small amount currently required to produce a photo catalytic layer, it is not 

the most expensive component within a DSSC. However, platinum is a rare metal 
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with rising demand from a number of industries, most notibly the automotive 

industry [269]. This is likely to impact the future price and availability of platinum. 

Concerns over platinum’s cost and stability have led to a research investigating 

alternative catalysts [107, 108]. Carbon-based materials (e.g. carbon black, carbon 

nanotubes, graphite, graphene and graphene oxide) are low cost and widely 

available, which show promising potential as a replacement to platinum as counter 

electrodes in DSSCs [109, 110]. This work investigated the development and 

printing of an aqueous carbon black nanoparticle ink for use as a counter electrode. It 

showed that inkjet printing can be used to manufacture a platinum-free coating, 

demonstrating the exciting potential of additive printing to produce one of the key 

components within a DSSC. 

Silicon solar panels are manufactured from a number of batch processing steps that 

are both time consuming and costly. The majority of silicon panels are produced 

onto inexpensive soda-lime glass, however glass with low iron content has a higher 

transmittance and therefore achieves higher efficiencies [270]. Solution processing 

methods, such as inkjet, allow for roll-to-roll processing to be used. The processing 

costs are thought to have significant cost reduction in terms of ease of manufacture 

and transportation of lightweight panels. Inexpensive polymeric substrates such as 

polyethylene terephthalate (PET) could provide a cost effective alternative to glass. 

Thermal analysis of the PET film shows that the glass transition temperature (Tg) 

occurred at approximately 58 ˚C and is reported to have an upper processing 

temperature of 150 ˚C [197]. The polyimide showed much better thermal stability, 

however the high cost of the film may limit its application to the production of 

DSSCs. Although the production of plastic films are more costly and energy 
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intensive, the overall energy consumption is considerably reduced due to savings in 

transportation costs [271]. 

In summary, there are several materials within a traditional DSSC that can be 

replaced to minimise the cost and environmental impact of the device. The work has 

also demonstrated the exciting potential of additive printing to produce devices with 

minimal wastage and processing costs. The next section will continue by 

summarising the key findings from the results along with areas identified for further 

work. 
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Chapter 8 

Conclusions  

The aim of this research project was to further develop the scientific knowledge of 

functional inks for printing DSSC devices using inkjet techniques. A literature 

review was performed to understand the materials required in the manufacture of 

DSSCs, the inkjet technology and the requirements for functional inks. Following 

the literature review several research opportunities were identified. These centre on 

gaps in the knowledge required to develop suitable inks for liquid processing and 

optimisation of the print parameters for a high-quality deposition of material. 

During initial trials, inkjet printing was used to produce several layers within a 

DSSC to establish the capability of the technique to produce a printed device. This 

demonstrates the use of additive techniques to manufacture complex electronic 

devices. To examine the potential and performance of such materials in a fully 

printed DSSC, demonstrator devices were manufactured and evaluated. 

The perceived scientific contribution of this work is the development of novel inks 

that are compatible both with the inkjet process and for use within a DSSC. The 

complexity and time-consuming nature of ink development is often over-looked in 

reports on inkjet printing of functional materials. It requires the selection of suitable 

materials, dispersion within a fluid and the investigation of suitable additives to 

enable printing. Nanoparticles can be introduced into inks to incorporate 

functionality within a printed layer. Any particles within an ink must be less than 

100 times smaller than the nozzles size; therefore detailed characterisation of particle 

size using several techniques was undertaken.  
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This work has shown that the (as received) Degussa Aeroxide P25 TiO2 

nanoparticles are highly agglomerated, and the particle size depends strongly on the 

degree of dispersion carried out prior to measurement. XRD analysis determined that 

the phase composition is a mixture of anatase (71 %) and rutile (29 %). The angular 

width of the peak at half maximum height was measured from the XRD spectra and 

subsequently the crystal size was calculated to be 23 nm. From SEM analysis it was 

seen that the particle size of the powder (as received) ranges significantly with small 

primary particles and larger agglomerates and aggregates (>5 µm) which have 

formed over time. DLS analysis of the nanoparticles in water also showed a large 

spread or particle sizes with peaks at 1281 nm (indicating the formation of 

agglomerates) and 5560 nm (indicating the formation of aggregates). Ultrasonic 

processing de-agglomerated the nanoparticles to give a reasonably fine size 

distribution, with a reduction in the average particle size of 380 nm after 10 minutes. 

Modification of the solution pH provided further stabilisation of the nanoparticle 

suspensions and the addition of polymeric dispersants reduced the average particle 

size further to 80 nm.  

From the literature review, carbon black was identified as a widely available, low-

cost alternative to platinum for use as the counter electrode. An aqueous dispersion 

was purchased and DLS analysis determined an average particle size of 146 nm, 

suitably small enough for printing. The first printing trials demonstrated the 

necessity of adding humectant into the ink formulations, to prevent the ink drying 

and blocking the surface of the nozzles. PEG with a molecular weight of 400 was 

added at 25 wt% as the humectant. The surface tension and dynamic viscosity of 

each ink was evaluated to ensure that they met the fluid constraints of the inkjet 

printing process. In conclusion, carbon black shows promising properties as a 
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catalyst for the counter electrode of the DSSC, however further carbon-based 

materials should be investigated for their potential to produce better results. The 

results indicate there are still areas of improvement to reduce the electrical losses 

within the cells. The work also shows that the counter electrode can be printed using 

inkjet technology. 

With all three of the materials investigated (TiO2, carbon black and PEDOT:PSS), 

previous research has shown that the thickness has a major bearing on the 

functionality. The optimal thickness for TiO2 within conventional DSSCs has 

previously been reported in the literature to be between 9.5 µm and 20 µm. Multiple 

layers were printed to increase the thickness of the deposited material, however 

cracking and peeling was observed upon drying of the printed films. The addition of 

cellulose binders was investigated to enhance the binder strength, increase the 

thickness of the printed layers and prevent the formation of cracks during drying. 

Analysis of the surface quality of the printed films under optical microscope found 

that the films suffered an uneven topography due to solid migration during drying. 

Likewise with carbon, multiple layers were printed to produce three thicknesses 

(3.10 µm, 6.80 µm and 10.24 µm). As the printed thickness was increased, the 

surface appeared rougher and the edges were less defined. However, increased 

thickness resulted in lower sheet resistance and subsequently higher conversion 

efficiencies when incorporated as a counter electrode in cells. 

Solid state devices, which replace the liquid electrolyte with a solid hole transport 

material are seen as the most likely route to large scale production. They require 

much thinner metal oxide layers (less than 2 µm) and would therefore be more suited 

to inkjet manufacturing due to the thin layers which it is able to deposit. Solid-state 

devices which use PEDOT as a hole conductor have been previously investigated in 
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the literature and inkjet printing of PEDOT:PSS has also been widely reported. 

However, the use of inkjet printing to deposit PEDOT:PSS as a hole conductor in 

solid-state DSSCs is unreported. A 0.8 wt% solution of PEDOT:PSS in water 

(formulated with ethanol and diethylene glycol) was purchased and modified with 

the addition of 5 wt% DMSO. A desktop piezoelectric printer was used to print 10 

layers of the ink solution onto PET to produce a layer 4 µm thick when dry. The 

addition of DMSO was found to improve the conductivity of the printed film by 

more than 200 times. However, this was still significantly less than the value of 

1000 S/cm previously reported in the literature. Since the conductivity of the printed 

films was significantly lower than this, it was assumed that the hole mobility will 

also be negatively affected. However, characterising the films in this way provides 

further understanding on the performance of the material so that more suitable hole 

transport polymers can be selected if required in the development of future DSSC 

devices. 

Demonstrator devices were manufactured based on the research outcomes. The 

functionality of the printed devices was shown to be entirely dependent on careful 

ink formulation and optimization of the print parameters, which highlighted the 

difficulty of inkjet manufacturing. The devices were characterised directly after 

fabrication to minimize the effect of degradation caused by water and oxygen in the 

air. Four key electrical performance parameters (Jsc, Voc, FF and efficiency) were 

used to characterize and compare the cells produced. Each layer was printed 

separately to determine the influence of each on the performance of the cell.  

An initial aqueous titanium dioxide nanoparticle dispersion was formulated and two 

layers were printed to produce a layer 2.6 m thick. Once integrated into a cell, this 
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resulted in an efficiency of 3.50 %. In an effort to improve the performance, a HEC 

binder was incorporated to increase the layer thickness. Although the thickness and 

adhesion were improved, the printed layers resulted in reduced DSSC efficiency. 

From TGA analysis it was seen that a significant amount of the HEC binder residue 

(∼25 wt %) remained after heating to 450 ºC. This could have led to poor dye 

absorption on the surface of the TiO2 particles leading to reduced performance. 

Further testing to observe the dye absorption and desorption would need to be 

performed to confirm this.  

Of the DSSCs tested with carbon black counter electrodes, those with a layer 

thickness of 10.24 µm resulted in the highest efficiency of 2.59 %. These devices 

had an average FF of 0.39 compared with an average of 0.57 from the devices made 

with platinum counter electrodes. This indicates a high amount of electrical energy 

losses within the cell, most likely due to high internal resistance. Electrochemical 

analysis would provide further information on the interfacial properties and may help 

to identify ways in which the efficiencies of the cells can be improved to match the 

values of more than 7% reported in the literature for traditionally manufactured 

DSSCs.  

The performance of the devices incorporating PEDOT:PSS as a hole conductor in 

solid-state DSSCs was also tested. The efficiencies of these devices were poor and 

further work is needed to find an alternative formulation which is better as a hole 

conductor or investigate the use of alternative solid state HTMs. The work does 

show the potential for development of an inkjet-printable solid state hole transporter, 

which would ultimately lead to a fully printable DSSC. 
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This work has identified exciting potential for the use of inkjet technology in the 

manufacture of DSSCs. Further work is required to unlock the potential and 

alternative materials should be considered to further improve the conversion 

efficiencies. Some suggestions which have been gathered from the literature are 

provided in the next section. 

8.1 Recommendations for future work 

This project has made a significant step forward by showing how inkjet technology 

can be used to manufacture DSSCs; however there are many ways in which this 

work can be further extended to take the technology closer to market. In order to 

improve the poor fill factors (FF) of the devices reported in this work, post-treatment 

of the porous TiO2 anodes with zirconium oxide (ZrO2) would prevent charge 

recombination thus enhancing the efficiency of the cells [82]. There are also many 

nanomaterials that could be investigated to replace the traditional ones.  

Although FTO/ITO replacements were not used within this work, several 

nanomaterial solutions were identified which could provide similar performance. 

Silver nanowires, graphene and single walled carbon nanotubes have produced 

promising results and appear to be the best candidates so far [65-68]. For these 

materials to succeed, they need to be specially formulated to be used as a coating. 

The stability of the inks is vital to provide repeatability and reliability of the print 

and therefore further work is required to establish the industrial viability of the inks. 

Improving the performance of the printed devices would further demonstrate the 

commercial potential of the process. 
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