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Abstract 

The effect of periodic changes in particle velocity on mass transfer to the reacting 

surface of a magnetic particle with a diameter 225 m in laminar flow has been investigated 

in a microfluidic reactor. The periodic particle motion in a fluid was investigated under a 

sinusoidal magnetic field generated by a quadrupole arrangement of electromagnets around 

the reactor. The effect of operating frequency of the rotating magnetic field, intensity of the 

magnetic field, and phase shift between the two sets of magnets on particle dynamics has 

been studied. Three particle motion modes have been observed depending on the frequency 

of the applied field. The mass transfer rate was estimated under steady velocity and variable 

velocity of the particle using a mass transfer correlation by Feng and Michaelides (Int. J. Heat 

Mass Transfer 44 (2001) 4445). The validity of this correlation for the case of variable 

particle velocity has been confirmed with a 2D numerical model, describing actual 

hydrodynamics and mass transfer towards the particle surface. The mass transfer coefficient 
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depends both on the mean particle velocity and the deviation of velocity from the mean value. 

The periodic movement with variable particle velocity reduces the mass transfer coefficient 

by 7.6% as compared to steady state motion with the same mean velocity.  

 

Keywords: Magnetic particle, magnetic actuation, micro reactor, mass transfer. 
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1. Introduction 

 Boundary layer flow around a moving surface represents an important type of flow 

occurring in a number of engineering processes. The applications of moving surfaces include 

cooling of metal plates on a conveyor belt in a vessel with a cooling fluid, extrusion of 

polymer plates from a die and heat treatment of materials traveling between a feed roll and 

wind up roll. The problem has been extensively studied over the last 50 years since the 

pioneering work of Sakiadis [1, 2] who pointed out the differences in boundary conditions 

between a moving surface of finite length and a continuous surface. The essential difference 

between flow with a constant reference velocity and a variable velocity flow is that the 

particle velocity and thickness of the boundary layer change with time. While various aspects 

of boundary layer problems with constant reference velocity have been studied [3-5], the 

effect of non-steady motion of a surface has been explored to a much lesser extent [6-8].  

In recent years, hydromagnetic flows and mass transfer have attracted increased 

research interest due to the exploitation of various magnetic micro and nanostructures. In 

microfluidics, core-shell catalyst particles can be synthesized consisting of a magnetic core 

and a catalytic shell. These magnetically controlled particles have been used for cell 

manipulation, microscopic drug delivery and in microsensor applications [9-11]. Antibody 

coated magnetic microparticles have also been used in the capture of target species flowing in 

a 75 μm wide micro channel [12]. Motion of these magnetic particles can be controlled using 

alternating magnetic fields where the particle velocity depends on the product of the absolute 

value and gradient of magnetic field. As a result, the particle velocity is not expected to be 

uniform or constant. Control of particle velocity and trajectory can be adjusted with a 

feedback control based on video monitoring of the particle location with each time and then 

correcting the motion by adjustments into the actuation protocol [13, 14]. This procedure is 
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rather complex and it requires the use of transparent reactor materials which are not always 

compatible with chemical environment.  

In numerous applications in the fine chemical and pharmaceutical industries [15-18], 

the properties of the final product depends greatly on mass transfer to the catalyst particle 

surface [19]. Due to the laminar flow conditions prevalent in microchannels, the transport of 

reactants to the catalyst surface is often limited by diffusion due to the formation of thick 

hydrodynamic and mass transfer boundary layers around catalytic particles  [20].  

Application of an external magnetic field by a quadrupole arrangement of electromagnets 

allows for the controlled manipulation of magnetic particles orthogonal to the direction of 

flow thus enhancing the mass transfer rates. This, in turn, allows for the use of reactants of 

higher concentration which leads to process intensification [21]. 

A quadrupole arrangement of electromagnets is the most common system used for 

magnetic particle motion control as it allows for a smooth rotational control of the magnetic 

particles by applying sinusoidal electric signals to two pairs of coils [22] or an oscillating 

motion by switching two electromagnets on and off [23]. Remote magnetic actuation 

provides advantages over other methods of energy input in its ability to apply relatively large 

forces at a distance. It can penetrate through most media, including biological material which 

is particularly useful for potential applications in microfluidics [24].  

Particles move with a variable velocity in a sinusoidal magnetic field due to the 

magnetic forces at play. For example, when a particle (or an array of individual separated 

particles) approaches a magnetic pole at maximum field, the magnetic force increases due to 

the increasing magnetic field gradients and as a result the particle accelerates. As the 

magnetic field reduces the field gradients reduce and the particle decelerates due to the 

resistant drag force in the liquid (          . Thus the Re number changes with time 
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typically in the range between 1 and 50 which in turn which results in varying mass transfer 

rates in the different sections of reactor. 

This problem is analogous to the problem of fluid flow around a stationary isolated 

sphere at varying Reynolds number. Several authors have considered the latter problem 

employing experimental, analytical or numerical methods [25, 26]. The problem was solved 

analytically by using boundary-layer theory along with the concept of similarity solution. The 

obtained ODE still could present a difficult problem to solve due to the lack of well-defined 

physical boundary conditions. Brunn and Isemin neglected inertia effects for small particles 

with diameter below 100 µm at low Peclet (Pe) numbers and derived a correlation for mass 

transfer from a single rigid spherical particle [27, 28]:  

                                                                 (1) 

where                
   

 
,    

 

 
, v is the relative velocity of the microparticle in the 

surrounding fluid,   is the kinematic viscosity of the fluid,    is the particle diameter, and D 

is the diffusion coefficient. 

On the higher end of Pe numbers, Acrivos and Taylor [26] derived a correlation for 

steady mass transfer from a spherical particle in Stokes flow with small or moderate 

Reynolds numbers. They provided a correlation for the average Sherwood number (Sh), 

which describes the rate of mass transfer from the sphere.  

                                                 (2) 

Magarvey and Bishop [29] revealed that the boundary layer around the sphere remains steady 

symmetric up to a Re number of 210. Several authors [30-32] have observed that the 

transition from a steady axisymmetric flow to a steady non-axisymmetric wake flow occurs at 

a Re number of 211. Below this critical Re number, the exact numerical results obtained for a 

rigid sphere can be approximated rather well by the following relation [33, 34]: 

                                                              (3)  
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Equation 3 agrees well with the solution proposed by Acrivos and Taylor [26] (Eq.2) for 

lower range of Re numbers when the flow may be assumed to be steady and axisymmetric. 

 The current work establishes a theoretical basis for quantifying the contribution from 

the acceleration and deceleration of particle motion towards mass transfer rate. The effect of 

the mean particle velocity and the deviation of the mean velocity on mass transfer rate is 

evaluated using a corresponding numerical model. In the second part of the paper, the 

actuation protocol for manipulation of a magnetic microparticle is optimised with a view to 

maximising the rate of mass transfer towards the particle surface where a fast chemical 

reaction takes place.  

 

2. Experimental 

The experiments were carried out in a polydimethylsiloxane (PDMS) flow reactor 

(diameter: 13 mm, depth: 0.60 mm) located in the centre of a quadrupole set of iron bars 

(Figure 1). In other words, the reactor can be seen as a cylinder with a height of 0.6 mm 

(parallel to the gravity vector).  The iron bars (length: 14 cm, cross section: 2.5x2.5 cm
2
) 

were connected to four horizontal coils. A reactor was placed over the X-Y stage of an 

optical microscope (Leica M165 FC) connected to a video camera (Leica DFC310 FX). The 

coils were coupled in two perpendicular pairs (set A and set B) by two conductive iron bases. 

The coil pairs were connected to two direct current (DC) power supply units (Kepco BOP 

100-2ML). The DC current was controlled in the range from -100 to +100 V with a LabView 

software.  

A sinusoidal actuation protocol was applied to induce an alternating magnetic field 

inside the flow cell. The sinusoidal functions were defined as:               and    
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           . The particle velocities and trajectories depended on the applied frequency, 

phase shift and maximum voltage.  

 

Insert Figure 1 here 

 

Magnetic particles with an average diameter of 225m were placed in the reactor filled 

with acetonitrile (Sc number =247). Particle positions were monitored using particle tracing 

analysis of microreactor images. The images were recorded with a Leica camera at a rate of 

20 fps (pixel size of 6.5x6.5 μm
2
). The analysis was carried out using an NI-Vision software 

package producing the x and y pixel positions of the particle as a function of time by 

detecting dark zones in each image. From these coordinates, the particle position and velocity 

were calculated. For each actuation protocol         , the trajectory of the microparticle was 

monitored over several periods of rotation and then the average velocity and the standard 

deviation of average velocity were calculated.  

 

3. Mathematical formulation 

While a correlation for the mass transfer coefficient has been proposed for a reactive 

solid particle (Eq. 3) [33], this equation was obtained for stationary flow conditions and 

therefore it cannot be directly translated to unsteady state flow conditions. Under steady state 

conditions, the thickness of the boundary layer does not change with time. In the present 

work, the particle velocity changes with time, therefore the thickness of the velocity 

boundary layer is also time dependent. In the case of a fast reaction on the particle surface, 

the thickness of concentration boundary layer also varies with time. To verify the validity of 

the mass transfer correlation suggested in [33] under hydrodynamic conditions of interest, a 
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numerical model has been developed. The schematic of the present system and the 

coordinates are shown in Figure 2.  

The numerical model describes the hydrodynamics and mass transfer in case of a fast 

chemical reaction on the surface of a particle moving with a periodic velocity throughout the 

reactor. In the flow reactor, particle motion is dictated by a combination of forces, namely the 

magnetophoretic force due to the magnetic field gradients produced by the magnets, a 

convective force due to the laminar flow passing through the reactor and the drag force due to 

the viscous resistance of the fluid. Therefore, the resultant particle velocity is the sum of the 

particle displacement in the laminar flow and its translation in the time dependent magnetic 

field. It should be mentioned that under typical experimental conditions the displacement in 

the laminar flow contributes less than 5% to the total particle velocity and can be omitted.  

The numerical model was developed in COMSOL. The depth of the channel 

perpendicular to the plane of the diagram is assumed to be much larger than the other two 

dimensions. Hence, the flow can be assumed to be two-dimensional. To simplify the 

computational procedure, an inverse numerical model was adopted in which the fluid flow 

was moving around a static circular particle as opposed to the real case of a particle moving 

throughout the fluid. Actually such situation fully resembles the case where a solid particle is 

moving in an incompressible fluid flow. However, using a static particle in a periodic fluid 

flow case significantly simplifies the formulation of the numerical model.  

 

Insert Figure 2 here 

 

The computational domain represents a square region of 0.5 mm x 0.5 mm with a 

spherical solid particle positioned in the middle (Figure 2). The bottom line (y= ‒0.25 mm) 

represents the flow inlet with a periodic velocity in the y-direction and zero velocity in the x-
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direction. The top line (y= 0.25 mm) represents the flow outlet with a constant pressure of 1 

atm. The left (x= ‒0.25 mm) and right (x= 0.25 mm) boundaries are symmetry planes. The 

particle surface (         ) has a no slip boundary condition.     

The hydrodynamics of fluid flow around the fixed particle were governed by the 

continuity and Navier-Stokes equations for incompressible laminar flow under isothermal 

conditions (4-6).  
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where   is the density of the fluid, μ is viscosity of the fluid,    and    are the components of 

superficial velocity in the x and y direction, respectively, p is the absolute pressure. 

The boundary conditions were as follows: 

                            (7) 

    0                      (8) 

      0                      (9) 

                                       (10) 

  

  
                                 (11) 

  

  
                                 (12) 

Mass transfer is described using a convection and diffusion model with a fast 

chemical reaction of hydrolysis of benzaldehyde aryl methyl acetal (species A) at the acidic 

surface of the solid particle:   

   

  
   

   

  
   

   

  
   

    

    
    

                     (13) 
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where CA is the concentration of reacting species,   is the molecular diffusivity throughout 

the domain and R is the reaction rate for an acid catalysed hydrolysis of benzaldehyde aryl 

methyl acetal.  

In the mass transfer model, the bottom line (x= ‒0.25 mm, see Figure 2) represents a constant 

concentration boundary condition (Eq. 14). The top line represents a convective flux 

boundary condition. Similar to the fluid flow domain, the left (y= ‒0.25 mm) and right (y= 

0.25 mm) boundaries are symmetry planes (Eq. 15). A fast catalytic reaction takes places on 

the particle surface (         , Eq. 16).  

The following boundary conditions were set for reacting species A  

                                                 (14) 

   

  
                                                    (15) 

    
                     

                             

                                                                                       (16) 

where     is the reaction rate constant (29.6 m s
-1

) [35], Co is the initial concentration of  

reacting species A, and ap is the particle surface area per unit volume. 

A free triangular mesh scheme was used throughout the model. Mesh dependency was 

investigated analysing solutions with decreasing mesh elements. It was found that the 

maximum and minimum element size required for mesh independence was 1.5 µm in the 

bulk fluid and 0.01µm in the boundary layer.  

The solution was obtained for two velocity components, pressure field and 

concentration of species A. A transient COMSOL solver was used and solution was 

converged up to residuals of 1.0×10
-6 

for all components. 

 

4. Results and discussion 

4.1 Particle motion in a periodic magnetic field 
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Particle trajectories at three different frequencies of applied magnetic field are shown in 

Figure 3a. Particle motion can be assigned to three different forms of cyclic movement shown 

as modes I, II, and III (Figure 3b). In the frequency range between 0.1 and 0.4 Hz, the particle 

is pulled towards the nearest magnetic pole by the rotating magnetic field producing circular 

motion around the outside of microreactor. This motion was very reproducible and will be 

referred as mode I hereafter.  At frequencies of magnetic field between 0.4 and 0.6 Hz, the 

particle made several rotations near a single pole prior to moving further to the adjacent pole. 

This type of motion (mode II) was a transition between mode I and mode III, where the 

particle was oscillating back and forth near a single magnetic pole. This oscillation is due to 

the particle not having sufficient magnetic response to move along the fast rotating gradients 

to the neighbouring pole. Mode III was observed at frequencies above 0.6 Hz. In the 

subsequent discussion, we will mainly consider modes I and II as the particle motion can be 

described with a simple equation of motion. 

 

           

Insert Figure 3 here 

 

Due to phase shift (ϕ) between the two sets of coils (Figure 4a), the particle sees a 

varying magnetic field. This results in a periodic change of the particle velocity between the 

minimum and maximum values. Figures 4 b and c show the velocities and angular positions 

determined during the observed circular motion of the particle.  

  

Insert Figure 4 here 

 

Figure 5 shows the effect of magnetic field frequency on particle velocity during a full 

cycle of field oscillation. The particle experiences intervals of accelerated motion followed 
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by pauses (Figure 5a). As the frequency increases, the duration of each pause decreases 

(Figure 5b) and finally a smooth and continuous motion pattern is observed at higher 

frequencies (Figure 5c).  

 

Insert Figure 5 here 

 

4.2 Mass transfer around a solid particle 

In the numerical model described in section 3, the fluid velocity is a periodic function 

of time  

                               (17)  

where   is angular frequency of rotational magnetic field,      , F is the frequency of  

rotational magnetic field,    is the average particle velocity and b is the difference between the 

maximum and average particle velocity. As the chemical reaction occurs solely on the surface 

of the particle, the concentration of the rate limiting reactant decreases in the boundary layer 

from the surface concentration to the bulk concentration. The concentration gradient was 

obtained as a function of angular position around the particle in the range from 0 to 180
o 

at 

different times corresponding to a single cycle of particle velocity. The four characteristic 

positions corresponding to the maximum (point A), minimum (point C), and two average 

velocities (pounds B and D) are shown in Figure 6 and the corresponding concentration 

profiles for reacting species A are shown in Figure 7. 

 

Insert Figures 6 and 7 here 

 

From these concentration profiles, the local (   ) and average (    mass transfer 

coefficients were obtained by Eqs. 18 and 19, respectively. 
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                                                                                                 (18) 

    
 

 
      
 

                                                                                                        (19) 

where      is the surface concentration of species A at an angular coordinate  ,    is 

diffusivity of species A, position          corresponds to the particle surface and S is 

the surface area in the direction of the flux.  

The corresponding local and space averaged Sh numbers were obtained by Eqs. 20 

and 21, respectively, at different times corresponding to a single cycle of particle velocity. 

      
     

  
                                      (20) 

    
    

  
                   (21)

 Finally, time averaged Sh number was calculated by integration of Eq. 22 over one 

cycle of velocity oscillation (from zero to the time corresponding to point D (  ) in Figure 6). 

   
 

  
      

  

 
                  (22) 

Figure 8a shows the values of  the local mass transfer coefficient in terms of Sh 

number as a function of angular coordinate ( ) at different times within a single cycle of 

particle motion at a frequency of oscillation of 0.3 Hz (points A-D, Figure 6). As can be seen 

in Figure 8a, the mass transfer rate remains rather constant in the range of angular positions 

between 0 and 60
o
 and then starts to decrease gradually in the downstream direction as the 

angle increases from 60 to 180
o
. The space averaged values over the entire particle surface 

are shown in Figure 8b as a function of Re number. The dependence of Sh number at a 

constant velocity case (case 0) is also shown for comparison. As it was discussed in the 

introduction section, the numerical results obtained for a rigid sphere can be approximated 

rather well by Eq. 3 which is also presented in Figure 8b. Indeed, a good agreement is 

observed between the numerical values and Eq. 3 in the entire rage of Re numbers of interest. 
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The maximum difference between our numerical results and those obtained by Eq.3 does not 

exceed 20%. The difference can be explained by the fact that we actually used a 2D 

numerical model instead of 3D analysis performed by Feng and Michaelides [33].  

 

Insert Figure 8 here. 

 

As opposed to a constant velocity case such motion cannot be described with a single 

hydrodynamic parameter (Re number) as the thickness of hydrodynamic boundary layer 

changes with time. Therefore, next to the average velocity, an additional parameter should be 

introduced to characterise particle motion under the oscillating magnetic field. The 

normalized standard deviation of average velocity (Eq. 23) was chosen in this study as an 

additional parameter to characterise the time dependent particle velocity.   

     
 

  
 

 

 
          

                               (23) 

A superparamagnetic particle (χ > 0) suspended in a diamagnetic medium is attracted 

towards a magnetic field. The maximum particle velocity in a weak oscillating magnetic field 

can be calculated by equalizing the magnetic actuation force (Eq. 24) [36] to the 

hydrodynamic drag force (Eq. 25):     =   . 

       
  

   
                     (24) 

                                (25) 

where    is the difference in susceptibility between the particle and the fluid, Vp is the 

particle volume,    is the vacuum permeability, and    is the gradient of magnetic flux 

density,   is the dynamic viscosity of the fluid,    is the particle radius, and      is the 

maximum velocity of the particle relative to the surrounding fluid. The maximum generated 

magnetic field of 125 kA m
-1 

corresponds to a particle velocity of 10.8 mm s
-1

. The minimum 
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time-averaged particle velocity observed at the minimum gradient of magnetic field (     ) is 

1.02 mm s
-1

.  

It is convenient to introduce the dimensionless average velocity (  ) which is the ratio of 

the average particle velocity to the highest particle velocity (     ) observed at the specific 

value of the intensity of magnetic field. 

   
  

    
                      (26) 

This parameter can vary from 0.1 to 1.0, the latter extreme value corresponding to the 

maximum velocity.  

Using Eq.3, the corresponding minimum (     ) and maximum (     ) values of Sh 

number were found to be 6.23 and 13.94, respectively (Table 2). Figure 9 shows the upper 

part of the range of possible time-averaged Sh numbers as a function of Re number and   . It 

can be seen that the minimum value of    observed in this range is 0.08 while the maximum 

value is 0.65. Following the approach for particle velocity, the standard deviation parameter 

(Eq. 27) was made non-dimensional by taking the ratio of the standard deviation to its 

maximum value.  

 

     
   

       
                   (27) 

 

The normalised standard deviation (   ) changes from 0.12 to 1.0, the former value 

corresponding to motion with the minimum acceleration, and the latter to the case when the 

particle velocity drops by five times as compared to the average value prior to the next 

acceleration cycle (see Figure 9).  

  

Insert Figure 9 here. 
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It can be seen from Figure 9b that in reference case 1 the particle velocity fluctuates 

between 6.0 and 16 mm s
-1 

while in reference case 2 it changes between 2.0 and 20 mm s
-1

. In 

the both cases, the time-averaged Re number calculated over a single period of particle 

rotation remains the same. However, the time-averaged Sh number (Eq. 28) decreases as 

compared to the ideal case (Table 2). The higher     values result in lower values of mass 

transfer coefficient. 

 

Insert Table 2 here. 

 

      
 

  
                                                         

  

 
          (28) 

As the possible range of values of                                 it is convenient to introduce a 

new parameter of       that should be maximised to get the highest possible mass transfer 

rate. The optimised protocol for actuation of magnetic microparticles should provide the 

maximum of the following objective function (Eq. 29, Figure 7).  

 

                                                    (29) 

Here coefficients a1 and a2 show the effect of the normalised particle velocity and the 

normalised standard deviation on the mass transfer rate:  

 

        

    
 
        

                               (30) 

        

   
 
         

                                 (31) 
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In other words, these coefficients show the relative change in mass transfer as the     changes 

at constant    and vice versa. It can be seen in Figure 10, that the influence of oscillatory 

particle behaviour on the mass transfer rate remains rather small as compared to the effect of 

the average velocity magnitude as a relatively small change in    results in a wider range of 

possible Sh numbers. The values of   = 0.076 and    = 0.924 were obtained from equations 

30 and 31 (Figure 10).  

 

Insert Figure 10 here. 

 

It can be seen that the highest time-averaged Sh number and the absolute maximum of 

objective function f would be achieved in case    = 1 and     = 0. However, such a case 

cannot be realised in practice due to the presence of the time dependent magnetic force which 

is responsible for the particle acceleration during its approach to the magnetic pole and a 

deceleration period shortly afterwards. The shortest approach to the maximum value is shown 

in Figure 10 with a solid line (design line). Therefore, in the following experiments the 

design parameters have been changed in such a way that those values of the objective 

function are centred along the design line. The effect of magnetic field frequency and 

amplitude and the phase shift on the normalised average particle velocity and normalised 

velocity deviation have been studied in a series of experiments where one of these parameters 

was systematically changed while the other two remained constant. For each individual 

experiment, the values of objective function f were calculated.  

Figure 11a shows the effect of operating voltage and phase shift, while Figure 11b 

shows the effect of the frequency and phase shift. The maximum of objective function is 

reached at the maximum operating frequency of 0.6 Hz, maximum voltage of 100 V and a 

phase shift of 90
o
. 
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Insert Figure 11 here. 

5. Conclusions 

Periodic velocity patterns of a single microparticle with a diameter of 225 m have 

been observed in a rotating magnetic field generated by two pairs of electromagnets. Due to 

the symmetric orientation of the magnetic poles, three modes of particle motion have been 

observed corresponding to the frequency range of 0.1-0.4, 0.4-0.6 and 0.6-1.0 Hz. Due to 

non-steady velocity profile, the mass transfer coefficient towards the reacting surface depends 

on both the time-averaged Re number and its normalised standard deviation. The sensitivity 

coefficients were estimated for both parameters and it was found that the contribution of the 

average velocity is more important as compared to the contribution of the periodic 

acceleration/deceleration due to time dependent magnetic field. The absolute value of particle 

velocity contributes by 92.4% towards the mass transfer while the effect of the deviation is 

relatively small and accounts for 7.6%. In other words, the periodic movement with variable 

particle velocity could reduce the mass transfer coefficient up to 7.6% as compared to steady 

state motion with the same mean velocity. Based on this information, the actuation protocol 

was optimized by adjusting the operating frequency and phase shift between two sets of coils 

to obtain the maximum possible velocity with a minimum standard deviation. The optimised 

protocol requires a phase shift of 90
o
 and a frequency of 0.6 Hz.  

The corresponding mass transfer coefficient can be estimated with an accuracy of 

20% taking the time averaged value of Sh number calculated from the Feng and Michaelides 

[33] correlation for a spherical particle in laminar flow.  At low frequencies of the rotating 

magnetic field, both velocity and concentration boundary layers have enough time to readjust 

to the new hydrodynamic conditions. Therefore, the correlation derived for steady state 

conditions can be directly translated to the periodic motion conditions.  
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Nomenclature 

a1 sensitivity coefficient for mass transfer rate with respect to normalised standard 

deviation from the average velocity 

a2 sensitivity coefficient for mass transfer rate with respect to average velocity 

ap particle surface area per unit volume 

b difference between the maximum and average particle velocity 

   magnetic flux density 

   concentration of benzaldehyde aryl methyl acetal (species A)  

   initial concentration of benzaldehyde aryl methyl acetal 

    molecular diffusivity of benzaldehyde aryl methyl acetal 

    particle diameter 

   rotation frequency of external magnetic field 

    local mass transfer coefficient 

   average mass transfer coefficient 

   reaction rate constant 

n number of measurement point 

p pressure 

r  radius (in polar coordinates) 

R reaction rate  

     Reynolds number 

S surface area in the direction of the flux of species A 

    Schmidt number 

       local Sherwood number 

     space-averaged Sherwood number for the whole particle surface  
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   time-averaged Sherwood number for a single period of velocity oscillation 

t time 

   period of velocity oscillation 

  particle velocity  

    x component of the particle velocity 

    y component of the particle velocity 

V  voltage on the coils 

    maximum voltage on the coils 

Vp   particle volume 

    average particle velocity  

    normalised average particle velocity  

      maximum particle velocity 

Greek letters 

    boundary layer thickness 

   angle (in polar coordinates)  

   fluid viscosity  

    vacuum permeability 

   kinematic fluid viscosity 

   fluid density  

     difference in magnetic susceptibility between the particle and the fluid 

     standard deviation from average velocity 

       maximum standard deviation 

     normalised standard deviation from the average velocity 

   phase shift of external magnetic field 

ω angular frequency of external magnetic field, ω=2πF  
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Figure captions 

 

Figure 1.  Schematic of the magnetic actuation system showing electromagnets A1-A2 and 

B1-B2 surrounding the reactor. 

 

Figure 2.  Computational domain in the numerical model representing periodic fluid flow 

around a solid particle. All dimensions are given in mm.  

 

Figure 3.  (a) Particle positions under an applied field for frequencies: 0.2, 0.4 and 0.6 Hz. 

The red line shows to the outer reactor wall. (b) Particle trajectories in the three 

modes of particle motion. The actual movies corresponding to each motion mode 

are available in Supplementary Material. 

 

Figure 4.  Time dependencies of (a) applied voltage on the two pairs of electromagnets, (b) 

particle velocity and (c) particle angular position and total distance travelled.   

 

Figure 5.  Particle velocity as a function of time for one cycle at three frequencies of 

rotating magnetic field: (a)        Hz, (b)       Hz, and (c)   =0.6 Hz. 

 

Figure 6.  Particle velocity in two modes of particle motion: constant velocity (case 0) and 

periodic velocity (case 1). The individual positions representing the concentration 

gradients in Figure 7 are designated with points A, B, C, and D. 

 

Figure 7.  (a) Concentration profile near the reacting particle surface corresponding to point 

A of a single periodic cycle (see Figure 6). (b-e) Magnified views of 
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concentration profiles near the reacting particle surface in the range of angular 

positions between 90 and 180
o
 at different times within a single periodic cycle 

(points A, B, C and D, respectively, see Figure 6). 

 

Figure 8.  (a) Local Sh number as a function of angular position for a periodic particle 

motion (case 1, Figure 6) obtained at four different times designated with points 

A, B, C, and D. (b) Average Sh number as a function of mean particle velocity for 

a constant particle motion (case 0, Figure 6); periodic particle motion (case 1, 

Figure 6). Sh number correlation [33] is given for comparison. 

 

Figure 9.  (a) Calculated Sherwood number as a function of Re number and normalised 

standard deviation of velocity; (b) particle velocity and corresponding Sh number 

as a function of time for periodic particle motion with minimum standard 

deviation (case 1); periodic particle motion with maximum standard deviation 

(case 2) and constant particle motion (case 0). 

 

Figure 10. Effect of normalised mean particle velocity and normalised mean standard 

deviation of particle velocity on value of objective function f. 

 

Figure 11.  The values of objective function f as a function of different combinations of 

design parameters: (a) voltage amplitude and phase shift at a constant frequency 

of oscillating magnetic field, (b) frequency of oscillating magnetic field and phase 

shift at constant voltage amplitude of magnetic field.  
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Tables  

Table 1. Time-averaged and maximum velocity and the corresponding Reynolds and 

Sherwood number for different types of circular motion 

Case    (mm·s
-1

) vmax (mm·s
-1

)                 

0 10.8 10.8 0.00 5.56 14.0 

1 10.8 15.7 0.33 5.56 13.8 

2 10.8 19.8 0.60 5.56 13.3 

 

 

Table 2. Time-averaged values for the minimum and maximum velocity and the 

corresponding Reynolds and Sherwood number for different types of circular motion 

         Maximum 

    (mm·s
-1

) 1.02 10.8 

   ( - ) 0.08 1.0 

    
a 
( - ) 0.12 1.0 

         ( - ) 0.51 5.56 

      b 
( - ) 6.21 13.94 

   

a
 observed at      10.8 mm·s

-1  

b
 calculated by Eq. 28 
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