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The Fokker–Planck approximation to the Boltzmann equation, solved numerically by 
stochastic particle schemes, is used to provide estimates for rarefied gas flows. This paper 
presents a variance reduction technique for a stochastic particle method that is able to 
greatly reduce the uncertainty of the estimated flow fields when the characteristic speed 
of the flow is small in comparison to the thermal velocity of the gas. The method relies on 
importance sampling, requiring minimal changes to the basic stochastic particle scheme. 
We test the importance sampling scheme on a homogeneous relaxation, planar Couette 
flow and a lid-driven-cavity flow, and find that our method is able to greatly reduce 
the noise of estimated quantities. Significantly, we find that as the characteristic speed 
of the flow decreases, the variance of the noisy estimators becomes independent of the 
characteristic speed.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Recent technological advances have resulted in manufacturing processes that have made possible the production of 
mechanical devices that operate on the scale of microns and nanometers [1]. Such technologies include lab-on-a-chip de-
vices, micro-heat exchangers, gas chromatographers and micro-jet actuators for control in aerospace. At such small scales, 
the Navier–Stokes–Fourier (NSF) equations are no longer able to accurately model gas flows, due to the length scales of 
macroscopic gradients approaching the length of the molecules mean free path, λ. This results in the existence of a region 
known as the Knudsen layer near solid wall boundaries where the gas is prevented from relaxing to thermodynamic-
equilibrium, invalidating the assumption that locally the gas is close to thermal equilibrium required for the NSF equations 
to be valid.

The Boltzmann equation is a mesoscopic model that is considered to provide the most accurate description of rarefied 
gases beyond Newton’s laws. Before the advent of such small-scale technologies, rarefied gas flows’ largest application area 
was in the field of supersonic atmospheric flows, where the Mach number of flow, Ma > 1. Currently, the prevalent method 
for numerically approximating the solution to the Boltzmann equation in such regimes is a stochastic particle method called 
direct simulation Monte Carlo (DSMC) [2,3]. Due to the stochastic nature of the method, DSMC becomes very inefficient for 

* Corresponding author at: Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, UK.
E-mail address: benjamin.collyer@gmail.com (B.S. Collyer).
http://dx.doi.org/10.1016/j.jcp.2016.08.008
0021-9991/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jcp.2016.08.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://creativecommons.org/licenses/by/4.0/
mailto:benjamin.collyer@gmail.com
http://dx.doi.org/10.1016/j.jcp.2016.08.008
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2016.08.008&domain=pdf


B.S. Collyer et al. / Journal of Computational Physics 325 (2016) 116–128 117
low-speed flows. Typically the Mach number, Ma � 1 for flows within micro and nano technologies, and for a given level 
of statistical error, the computational costs of DSMC scale as Ma−2 [4]. This results in very long computation times for such 
calculations, and methods that are able to more efficiently solve for low-speed flows are highly desirable.

Currently, there are two methods that are able to greatly reduce the variance of the desired thermodynamic outputs 
of DSMC calculations. The first, low-variance DMSC (LVDSMC), works by adapting the DSMC collision routine to calculate 
the evolution of the deviation fd = f − f M from a Maxwellian distribution f M [5]. In low speed flows the deviation from 
equilibrium is small, allowing for a dramatic decrease in the variance of samples. An alternative method, variance reduced 
DSMC (VRDSMC), is able to work without significant changes to the DSMC algorithm [6]. The method relies on importance 
sampling, which allows the algorithm to sample from an equilibrium distribution where the thermodynamic variables are 
known a priori, to create estimators with smaller variance.

More recently an alternative method to DSMC, where the Boltzmann collision operator is approximated by a Fokker–
Planck operator, has been developed and shown to be more efficient than the basic DSMC algorithm [7,8]. Like DSMC, 
it is solved stochastically using notional particles that represent a certain number of real particles in the gas to be sim-
ulated, and as such, the basic algorithm suffers from the same inhibitive scaling with the Mach number. Recently Gorji 
et al. [9] have proposed a method to reduce the variance of the Fokker–Planck solution algorithm that relies on creating 
a correlated equilibrium solution using the same set of random numbers that are used in the stochastic solution of the 
non-equilibrium process. The parallel correlated equilibrium process is in effect a control variate for the non-equilibrium 
process.

In this paper we develop an importance sampling variance reduction scheme for the Fokker–Planck method and demon-
strate its effectiveness in simple test cases. The paper is organised in the following way: in section 2 we introduce the 
Fokker–Planck model, and the numerical stochastic particle scheme for which we later create new variance reduced esti-
mators. We then outline the general method that allows one to create variance reduced estimators by exploiting known 
information about how the macroscopic fields behave at equilibrium. In section 3 we describe the variance reduction 
scheme proposed by Gorji el al. [9], which creates a correlated equilibrium scheme. In section 4 we propose our impor-
tance sampling scheme, which we test in section 5 on a homogeneous relaxation, Couette flow and a lid-driven cavity 
flow. We then compare the importance sampling method against the results obtained by using a correlated equilibrium 
solution.

2. Background

2.1. The Fokker–Planck collision operator

The Fokker Planck collision operator has appeared in several different contexts, originally derived for the distribution 
function of a Brownian particle in a fluid [10], but can also be derived from an expansion of a linearised Boltzmann equation, 
when considering the evolution of density function for a particle in a heat bath [11]. It has been used to model electrons, 
dense liquids and has received attention for its ability to model rarefied gas flows [12]. Jenny et al. [7] demonstrated very 
good agreement between the Fokker–Planck model, DSMC and experiment for mean velocities and molecular stresses. More 
recently it has been extended to describe flows of monatomic gas mixtures [13], diatomic molecules [14] and has been 
coupled to DSMC [15]. When used as a model for a rarefied gas, it should be considered to be a phenomenological model 
which retains some of the non-local nature of the collision process described by the Boltzmann equation. The equation for 
the one-particle distribution function f (x, v, t), over a state-space comprised of the position x ∈ R

3, velocity v ∈ R
3 and 

time t ∈R
+ takes the form:

∂ f

∂t
+ v · ∇x f = A( f ) (1)

:= 1

τ
∇v ·

[
c f + RT ∇v f

]
, (2)

where τ is a relaxation time, c = v − u is the local relative molecular velocity, u is the mean velocity:

u(x, t) = 1

ρ

∫
v f (x,v, t)dv, (3)

T is the local temperature given by

T (x, t) = 1

3Rρ

∫
c2 f (x,v, t)dv, (4)

and where R is the specific gas constant and ρ is the local density given by

ρ(x, t) =
∫

f (x,v, t)dv. (5)
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The collision operator A has the property of conserving mass, momentum and energy. That is∫
A( f )ψ dv = 0, (6)

where ψ = {1, v, v2} is the set of collisional invariants. The advantage of having a collision operator which can be written 
as a Fokker–Planck equation is that there exists an equivalent stochastic differential equation (SDE) representation for the 
dynamics of a random variable {Xt , Vt} whose distribution f evolves according to (2):

dXt = Vtdt (7)

dVt = 1

τ
(Vt − U)dt +

√
2RT

τ
dWt, (8)

where Wt is a 3-dimensional Wiener process. An efficient scheme for evolving a collection of representative particles with 
positions and velocities {X j(t), V j(t)}, j = 1 . . . N , distributed according to the distribution f (x, v, t) in time was devised by 
Jenny et al. [7], and can be summarised as:

V i (t + �t) = V i(t) − (
1 − e�t/τ )(

V i(t) − Ui(t)
)

+
√

C2

B
ξ1,i +

√
A − C2

B
ξ2,i (9)

Xi(t + �t) = Xi(t) + Ui(t)�t + τ
(

V i(t) − Ui(t)
)(

1 − e−�t/τ ) + √
Bξ1,i, (10)

where i = 1, 2, 3 indexes the dimension,

A = RT
(

1 − e−2�t/τ
)

, (11)

B = RT τ 2
(

2�t

τ
− (

1 − e−�t/τ ) (
3 − e−�t/τ ))

, (12)

C = RT τ
(
1 − e�t/τ )2

, (13)

�t is the time-step, τ is the relaxation time and ξ are independent standard normal distributed random variables. The 
spatial domain is discretised into cells, and the expectations of macroscopic quantities of interest are calculated during each 
time-step for each computational cell. The correct viscosity is obtained by choosing the relaxation time τ = 2μ/p, where μ
is the viscosity and p is the pressure.

2.2. Variance reduction for Monte Carlo sampling

In this section we outline the general framework that allows one to reduce the variance of an estimator of a particular 
random variable. The basic idea is to exploit information about errors in estimates of known quantities, which can be used 
in the construction of estimates of unknown quantities. Let us suppose we have a random variable X , and we wish to 
estimate E[X], let our estimate of E[X] be denoted by X̂ . Let Y be a different random variable with known expectation 
E[Y ] with an estimator denoted by Ŷ (Ŷ in this setting is commonly termed a control variate). Then for any α ∈ R we can 
use the identity

E[X] = E[X + αY ] − αE[Y ], (14)

to create a new unbiased estimator for E[X],
XV R = X̂ + αŶ − αE[Y ]. (15)

The variance of this estimator is

Var[ X̂V R ] = Var[ X̂] + α2Var[Ŷ ] + 2α Cov[ X̂, Ŷ ], (16)

and if we minimise this over possible choices of α, the minimiser α∗ can be calculated and is given by

α∗ = −Cov[ X̂, Ŷ ]
Var[Ŷ ] . (17)

Hence the variance for this choice of α is

Var[ X̂V R ] = Var[ X̂] − Cov[ X̂, Ŷ ]2

Var[Ŷ ] . (18)
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The only condition required for the variance of the estimator to be less than the variance of the original estimator is for 
Cov[ X̂, Ŷ ] > 0, and so X̂ and Ŷ being dependent is a necessary condition for variance reduction. This is all supposing that 
we already know α∗ which presupposes that we already know Cov[ X̂, Ŷ ]. In general this is something not known a priori, 
but can be estimated throughout the simulation. In the next sections we will see how in practice it is possible to exploit 
this.

3. Parallel process variance reduction

We now briefly describe the method proposed by [9]. The objective of the method is to create a stochastic process Zt

that is able to run in parallel to the original particle scheme, where crucially, the macroscopic fields are already known. If 
this is performed in a manner where the parallel process is correlated with the original stochastic process then the variance 
of the estimators can be reduced in the way described in the previous section. The coupling of the new stochastic process 
Zt to the original SDEs (8) is achieved in the following way:

dXt = Vtdt (19)

dVt = 1

τ
(Vt − u)dt +

√
2RT

τ
dWt (20)

dZt = Adt + D dWt (21)

where the coefficients A and D are chosen to keep the marginal distribution of (Xt , Zt), which we denote f0(x, z, t), as a 
solution to a Fokker–Planck equation

∂ f0

∂t
+ ∇x · (U f0) = ∇v ·

[
A f0 + D2

2
∇v f0

]
, (22)

which when supplemented by appropriate boundary conditions, is solved by a Maxwellian

f M(x, z, t) = ρ(x, t)

(2π RT0)
3/2

exp

(
− z2

2RT0

)
. (23)

The way to choose A and D to ensure that (23) is a solution of (22) is discussed in depth in [9]. The coupling of the 
processes Zt and Vt , by the same Wiener process Wt requires that when we use stochastic methods to generate numerical 
solutions, the same set of random numbers is used for both the equilibrium and non-equilibrium processes. This results in 
the correlation of estimates of expected quantities, allowing the kind of variance reduction outlined in the previous section. 
In this method, the parallel equilibrium process, with distribution f M , shares the same density ρ as the non-equilibrium 
process described which has f as its distribution function, and so the method cannot reduce the noise in the density 
calculation directly. Gorji et al. propose that the density ρ is found from the continuity equation for mass, using conventional 
finite difference methods. The results they obtain for a homogeneous relaxation, Poiseuille flow and lid-driven cavity flows 
show the method has the ability to substantially reduce noise. Because this method uses common random numbers to 
reduce the variance, we will refer to this method as a common random numbers (CRN) method.

4. Importance sampling

The method we propose is an importance sampling scheme. It differs from the importance sampling scheme utilised 
by VRDMSC [6] in the way that inter-particle collisions are accounted for. The principle that underpins the importance 
sampling remains the same however. Suppose we are interested in evaluating the expectation of g(V) where V is a random 
variable distributed according to the distribution function f , then given N independent samples 

{
V1, . . . ,VN

}
distributed 

according to f the following definition gives rise to the estimate:

E f [g(V)] :=
∫

g(v) f (v)dv ≈ 1

N

N∑
i=1

g(Vi), (24)

which we know from the Central Limit Theorem has an error of order N−1/2. We now define a weight function

W (v) := fref(v)

f (v)
, (25)

which is a measure of how likely one is to see a particle with velocity v, relative to how likely one is to observe this particle 
if it was distributed to a reference density fref. This definition is well defined if the distribution f is absolutely continuous 
with respect to fref, meaning that fref(S) = 0 whenever f (S) = 0 for any subset S of the state-space. This definition can be 
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viewed as a Radon Nikodym derivative. It can then be observed that the expectation of g(v) with respect to the reference 
distribution can be estimated using the original samples:

E fref [g(V)] =
∫

fref(v)g(v)dv (26)

=
∫

f (v)
fref (v)

f (v)
g(v)dv (27)

=
∫

W (v)g(v) f (v)dv (28)

≈ 1

N

N∑
i=1

W (Vi)g(Vi). (29)

This is significant as it allows one to sample from the reference distribution fref, using the original set of samples from the 
distribution f . If the reference distribution is Maxwellian, fref = fM where one knows the thermodynamic fields analytically, 
then it is possible to create variance reduced estimators as described in section 2. In order to practically apply this, we need 
a method of evolving the set of weights and velocities {Vi, W i} in time, where we use the shorthand notation W i = W (Vi). 
For VRDSMC this is possible because it can be shown directly from the Boltzmann equation, that if two particles are accepted 
to collide with weights W i and W j then the post collision weights must be equal to W i W j (the weight update rule for 
rejected particle pairs is also obtained from the Boltzmann equation). Because the Fokker–Planck dynamics have no explicit 
collisions, a different way to update the weights is needed.

4.1. Weight update rule

Importance weights can be initialised exactly because the initial velocities of the particles are distributed according to 
a prescribed initial distribution f0. Hence, we need only consider how weights are updated during each timestep. Let us 
suppose that a given particle updates its velocity from Vt → Vt+�t , where Vt is distributed according to ft and Vt+�t is 
distributed according to ft+�t , and that we know Wt = W (Vt). In order to update the weight exactly, one would need to 
know ft+�t(Vt+�t), however this distribution function is unknown. A simple method to estimate the updated weight is to 
truncate the Taylor expansions of the joint distributions of Vt and Vt+�t

f (vt,vt+�t) = f (vt+�t,vt+�t) − �t∂t f (vt+�t,vt+�t) + . . . + (−�t)n

n! ∂t(n) f (vt+�t,vt+�t) + . . . (30)

= ft+�t(vt+�t) +O(�t), (31)

after their first term (above we have used the fact that the joint distribution of two identical random variables is equal to 
the marginal). Using this and the form of the joint distribution expressed using the conditional distribution

f (vt,vt+�t) = ft+�t(vt+�t |vt) ft(vt), (32)

allows the creation of the estimate

Wt+�t ≈ Ŵt+�t := feq(Vt+�t |Vt) feq(Vt)

ft+�t(Vt+�t |Vt) ft(Vt)
(33)

= feq(Vt+�t |Vt)

ft+�t(Vt+�t |Vt)
Wt . (34)

This approximation immediately has some desirable properties. Firstly, the error of the approximation decays with �t . Also, 
it is possible to calculate this explicitly from the update rule Vt → Vt+�t given by equation (9). This conditional distribution 
will be a Gaussian centred on Vt plus the deterministic drift, with a temperature dependent variance. Further to this, it 
has the correct conditional expectation E[Ŵt+�t |Wt] = Wt when the distribution is stationary. However, the approximation 
(34) introduces a new source of systematic error into the method, and as a result will bias the estimators. We discuss this 
further in Section 4.3.

4.2. Weight spreading

The update rule (34) on its own is not a suitable choice, because if such a rule is repeated the variance of this approx-
imation diverges, which is a common problem for this type of particle weight importance sampling method [6,16]. This is 
a problem, because to reduce the variance of our estimators in a meaningful way, we require the weights to be close to 
unity. To avoid this problem we use the same kernel density estimator approach as used by the VRDSMC method [6]. This is 
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a non-parametric alternative to the linear-regression based method proposed by [17]. Kernel density estimation (KDE) is a 
method that allows one to obtain an estimate f̂ of a density function f from samples distributed according to that density 
function in the following way:

f̂ (v) = 1

N

N∑
i=1

Kr(v − vi), (35)

where Kr is a kernel function that integrates over the state-space to 1, and r is a smoothing parameter that controls the 
width of the kernel function. We use the same spherical kernels as [6]:

Kr(v − vi) =
{

3/(4πr3) if ‖v − vi‖ < r
0 otherwise,

(36)

which returns the reciprocal of the volume of a sphere of radius r if vi lies within the sphere of radius r centred on v, and 
otherwise returns a zero. If we combine this with (34), the update rule that is obtained is

Wt+1(Vi) ≈
∑N

j=1 Kr(Vi − V j)Ŵt+1(V j)∑N
j=1 Kr(Vi − V j)

(37)

= 1∣∣Sr(Vi)
∣∣ ∑

V j∈Sr(Vi)

Ŵt+1(V j), (38)

where Sr(Vi) = {
V j : ‖V j − Vi‖ < r

}
is the set of samples whose members lie within the sphere of radius of r centred on Vi . 

This KDE step prevents the weights from diverging, making the scheme more stable. Increasing the smoothing parameter r
results in an estimator with a smaller variance, however it also increases the bias of the estimation, so ideally r should be 
chosen to be as small as possible whilst maintaining an acceptable level of variation.

4.3. Bias

The bias introduced by the approximation of the weights given in equation (34) is a source of error not present in the 
original algorithm. For a fixed interval of time, this is an error that does not decay with the size of the time discretisation. 
However there is no error in the approximation at equilibrium, so for initial conditions close to equilibrium this bias of 
the estimators is small. To demonstrate this numerically in 1D, we have used a generalised Gaussian distribution f g defined 
by:

f g(v) = β

2γ 
(1/β)
e
−

( |v − μ|
γ

)β

, (39)

where μ, γ and β are the location, scale and shape parameters, to produce initial distributions of particles with the same 
mean and variance but differing sizes of kurtosis. For β = 2.0 the generalised Gaussian distribution reduces to a Gaussian 
distribution, and for β < 2.0 produces distributions with heavier tails (see Fig. 1(a)). When left to relax to equilibrium, the 
kurtosis of these particle distributions will decay to zero, which allows the measurement of the size of the bias in the 
sample kurtosis, κ , for particle ensembles with initial conditions that vary in their departure from equilibrium.

Fig. 1(b) shows the level of bias measured after the gas is allowed to relax to equilibrium. The estimates at equilibrium 
were produced after letting the distributions relax for a time period 10τ , with the sample kurtosis averaged over a further 
1000 time-steps, and 10 ensembles. The initial conditions were varied by changing the shape parameter β , and adjusting 
the scale parameter γ so the temperature is fixed. As β approaches 2, the level of bias decreases to zero. The number of 
time-steps �s between using KDE to stabilise the weights is also varied. The more often the stabilisation is performed, the 
smaller the bias in the estimator.

4.4. Boundary conditions

We use the same boundary condition methodology as prescribed by the VRDSMC method, that is for diffusely reflecting 
fully accommodating walls, with temperature T wall and tangential velocity uwall . Supposing that the Maxwellian distribution 
at the boundary is given by f wall(v) = ρwall P M B(v), where P M B is a Gaussian probability density, and the boundary is the 
plane x = 0, then the no flux boundary condition is given by

ρwall

∫
vx>0

vx P M B(v)dv +
∫

vx<0

vx f (v)dv = 0, (40)
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Fig. 1. The size of bias at equilibrium when measuring the kurtosis κ , for different generalised Gaussian initial distributions. The initial distributions were 
produced with mean μ = 0 and variance σ 2 = 1. Simulation parameters: τ = 1, �t = 1/100, relaxation time: 1000 time-steps, averages taken over 1000
time-steps and 10 ensembles.

and similarly for the equilibrium solution

ρwall,eq

∫
vx>0

vx P M B,eq(v)dv +
∫

vx<0

vxW (v) f (v)dv = 0. (41)

The second integrals in the above equations are the particle fluxes, and can be estimated by counting the number of 
particles Nin that cross through a wall of area �s in a time period �t by (1/�s�t)Nin , and at equilibrium are estimated by 
(1/�s�t) 

∑Nin
i W i . Also, we can use the analytical properties of the Gaussian distribution to evaluate the first integrals:∫

vx<0

vx P M B(v)dv = 1√
2π

√
kT

m
. (42)

Therefore, a particle that changes velocity from V to V′ when colliding with a wall, changes its weight according to

W ′ = W (V′) = feq(V′)
f (V′)

(43)

= ρwall,eq P M B,eq(V′)
ρwall P M B(V′)

(44)

=
√

T wall

T wall,eq

∑Nin
i W i

Nin

P M B,eq(V′)
P M B(V′)

, (45)

where typically, we choose the temperature of the equilibrium wall boundary condition to be equal to the temperature of 
non-equilibrium wall boundary condition, i.e. T wall = T wall,eq .

5. Results

5.1. Homogeneous relaxation to equilibrium

We will demonstrate the effectiveness of this method first with a homogeneous relaxation to equilibrium, i.e. when 
f (t, x, v) = f (t, v) has no spatial component. We start from an initial distribution of particles

f0(v) = (1/2)
(

f M(v1; c0, c0) + f M(v1;−c0, c0)
)

f M(v2;0, c0) f M(v3;0, c0), (46)
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Fig. 2. Homogeneous relaxation towards equilibrium, (a) without KDE, (b) with KDE, smoothing parameter r = 0.05c0. The green squares represent the 
time-series of the standard MC estimator of the non-equilibrium process; the blue triangles represent the time-series of the standard MC estimator of 
the process biased to sample from equilibrium; the red diamonds represent the time-series of the VRFP estimator of non-equilibrium process; the black 
line represents the exact expectation at equilibrium. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

which we know to relax towards the Maxwellian distribution f M(v, 0, 
√

(4/3)c2
0). In Figs. 2(a)–2(b) we show how the 

variance reduced estimator performs against the standard estimator, when estimating 〈|v1|〉 using 100 particles, with and 
without the KDE stabilisation procedure. In both cases, the variance of the new estimator is smaller than the standard 
estimator, but the estimator with stabilisation from the KDE reduces the variance even further.

5.2. Couette flow

To test the particle weight variance reduction, we have applied the scheme to sample from a steady-state planar Couette 
flow, and compare to results obtained using a common random number scheme. A Couette flow is a flow where the fluid 
is bounded by two parallel walls moving in opposite directions within their planes, with velocity ±Uwall . For Knudsen 
numbers Kn = 0.05, 0.5, 1.0 respectively, Figs. 3, 4, 5 show the variance reduced and standard Monte Carlo estimators of 
the steady-state flow velocity field parallel to the wall, v2(x1), (left) as well as the temperature profile across the channel 
T (x1), for a Couette flow with wall velocity vwall = 0.01c0, Kn = 0.5, 20 cells and 100 particles per cell. All the results show 
a significant improvement of performance over the unweighted standard Monte Carlo estimator.

Next we compare the VRFP importance sampling scheme to the CRN correlated equilibrium scheme. Because we are 
interested in the noise of the estimate of the velocity profile across the channel, and the speed of the flow is small, we 
make the simplifying assumption that the steady-state density across the channel is constant. This allows us to choose the 
coefficients A = z/τ and D = √

2RT wall/τ so that the correlated equilibrium process is distributed according to the global 
Maxwellian

f M(x, z, t) = ρ

(2π RT wall)
3/2

exp

( −z2

2RT wall

)
. (47)

Fig. 6 compares the noise-to-signal ratio of the CRN scheme, VRFP scheme and standard Monte Carlo estimator against 
signal strength for the samples taken from steady state Couette flow estimator. The results were obtained with parameters 
Kn = 0.5, 20 cells and 50 particles per cell, with steady-states velocity profiles averaged over 50 time-steps. The results 
show that the CRN attains a noise-to-signal ratio that is constant over the range of Mach numbers tested, and because 
of this the relative accuracy over the standard Monte Carlo estimator increases as the Mach number decreases. Similarly, 
the importance weighted variance reduced estimator has a noise-to-signal ratio that is independent of the signal size as 
the signal size decreases. The importance sampling estimator, however, achieves a standard deviation which is on average 
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Fig. 3. Couette flow with wall velocity vwall = 0.01c0, Kn = 0.05, 20 cells and 100 particles per cell.

Fig. 4. Couette flow with wall velocity vwall = 0.01c0, Kn = 0.5, 20 cells and 100 particles per cell.

a factor of 0.24 smaller than the average size of the standard deviation of the CRN estimator. This increase in perfor-
mance over the CRN scheme is achieved with a time-step with a duration of 0.21 seconds, whereas the CRN scheme 
had a time-step lasting 0.12 seconds. Hence the VRFP scheme is almost twice as computationally expensive as the CRN 
scheme.

5.3. Lid-driven cavity

To further demonstrate the effectiveness of the method, we apply it to a lid-driven cavity flow, where the fluid is 
bounded in two dimensions by a square box in the (x, y) plane, with translational symmetry in the z axis. Three of the 
bounding walls are stationary, and one of the bounding walls moves within its plane at constant velocity Uwall , giving rise 
to a circulatory flow within the cavity.

Figs. 7(a)–7(b) show the velocity and non-dimensional temperature field (T /T0 − 1) of the steady state flow, with a lid 
velocity of Uwall = 0.001c0 for the standard Monte Carlo and variance reduced sampling schemes. The results have been 
averaged over 5000 time-steps, and 10 independent ensembles on a 50 × 50 grid, with an average of 30 particles per cell. 
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Fig. 5. Couette flow with wall velocity vwall = 0.01c0, Kn = 1.0, 20 cells and 100 particles per cell.

Fig. 6. Comparison of noise-to-signal ratio vs signal size, between standard Monte Carlo, CRN, and our importance sampling method (VRFP).

The standard Monte Carlo scheme is not able to pick up the signal, whereas we see clearly that the importance sampling 
scheme is able to recover the signal. In Fig. 8 we compute the streamlines of the variance reduced flow, and the shear 
stress π12.

Fig. 9 shows results from lid-driven cavity flows with lid speeds 0.1c0, 0.01c0, 0.001c0 and 0.0001c0. As was the case 
with the Couette flow, the level of noise in each calculation is independent of the lid-speed.

6. Conclusion

In this paper we have developed an importance sampling method for the Fokker–Planck rarefied gas model, that assigns 
weights to each stochastic particle allowing one to sample from an equilibrium distribution. We have demonstrated its 
effectiveness in reducing the variance of estimates of thermodynamics quantities for low Mach number flows over a range of 
Knudsen numbers. The level of noise in the estimators becomes independent of the Mach number for low-speed flows. Our 
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Fig. 7. Lid-driven cavity flow. Velocity field and non-dimensional temperature (T /T0 − 1)/Ma. Kn = 1.0, Uwall = 0.001c0, with and without importance 
sampling variance reduction.

Fig. 8. Lid-driven cavity flow. Streamlines and non-dimensional shear stress π12/(ρ0 RT0Ma) of the variance reduced estimate.

results show that although the importance sampling algorithm is more computationally expensive than the CRN method, 
the relative noise reduction is enough to outweigh the cost. We believe it to be a versatile and robust method, and because 
it doesn’t alter the basic algorithm of the particle solution scheme, can be used in conjunction with other variance reduction 
schemes such as the CRN method.
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Fig. 9. Lid-driven cavity flows with different wall-speeds. 50 ×50 grid, 25 particles per cell on average, 5000 time steps to reach steady-state, thermodynamic 
fields averaged from 5000 further time steps. The level of noise is independent to the wall-speed.
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