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Dynamical Poroplasticity Model with mixed boundary conditions –
theory for LM-type nonlinearity
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Abstract

We investigate the existence theory to the non-coercive fully dynamic model of poroplasticity with non-
homogeneous mixed boundary condition and constitutive equation which belongs to the class LM. Exis-
tence of the solution to this model is proved by using the coercive and Yosida approximations under the
lowest possible assumptions about LM-type nonlinearity of non-gradient type. Under higher assump-
tions about the constitutive equation and boundary conditions (see Section 7) we obtain uniqueness and
higher regularity of the solutions.

Keywords: Yosida approximation, coercive approximation, energy method, inelastic deformation
theory, monotone operator, poroplasticity

1. Introduction

In this paper we discuss the theory of existence and uniqueness of the weak-type solutions of the
non-coercive model describing dynamics of inelastic deformations within the porous media (also known
as the dynamical model of poroplasticity). The origins of this model are dated back to the 1940s, to the
paper of M. Biot [4]. This model was used to describe the soil consolidation.

We assume that the porous media with the material density ρ > 0 lies within the subset Ω ⊂ R3. Let
Te > 0 be the end time, i.e. the time until we seek the solution. We are interested in finding the following
functions

• the displacement field u : Ω× [0, Te]→ R3,

• the pore pressure of the fluid p : Ω× [0, Te]→ R,

• the inelastic deformation tensor εp : Ω× [0, Te]→ S(3) = R3×3
sym,

• the Cauchy stress tensor T : Ω× [0, Te]→ S(3),

satisfying the system of equations:

ρutt(x, t)− divxT (x, t) + α∇xp(x, t) = F (x, t),

c0pt(x, t)− c∆xp(x, t) + αdivxut(x, t) = f(x, t),

T (x, t) = D(ε(u(x, t))− εp(x, t)),

ε(u(x, t)) =
1

2

(
∇u(x, t) +∇Tu(x, t)

)
,

εpt (x, t) = A(T (x, t)).

(1.1)

In this model D : S(3) → S(3) is the elasticity tensor (linear, symmetric and positive-definite), A :
S(3)→ S(3) is the inelastic constitutive function, F : Ω× [0, Te]→ R3, f : Ω× [0, Te]→ R describe the
densities of the external forces (acting on a body and a fluid respectively), ρ, α, c, c0 are the material
constants (for details see [15]).

The first equation of (1.1) is the balance of momentum coupled with the generalized Hooke’s law (the
third equation). The Cauchy stress tensor depends only on the elastic part of the deformation tensor,
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whereas the whole deformation tensor is described by the fourth equation. The inelastic part of the
deformation tensor is given by the fifth equation (we call it the inelastic constitutive equation). The
second equation follows from the Darcy’s law combined with the mass conservation law for a fluid.

The system (1.1) is complemented with the mixed boundary conditions:

u(x, t) = gD(x, t), x ∈ ΓD, t > 0,

(T (x, t)− αp(x, t)I)n(x) = gN (x, t), x ∈ ΓN , t > 0,

p(x, t) = gP (x, t), x ∈ ΓP , t > 0,

c
∂p

∂n
(x, t) = gV (x, t), x ∈ ΓV , t > 0,

(1.2)

where n(x) is the outward normal vector at x ∈ ∂Ω, ΓD, ΓN , ΓP , ΓV are the open subsets of ∂Ω with
the positive two-dimensional Hausdorff measure and such that

∂Ω = ΓD ∪ ΓN = ΓP ∪ ΓV , ΓD ∩ ΓN = ΓP ∩ ΓV = ∅.

We also impose the following initial conditions for x ∈ Ω:

u(x, 0) = u0(x),

ut(x, 0) = u1(x),

p(x, 0) = p0(x),

εp(x, 0) = εp0(x).

(1.3)

We assume that the Ω is open, bounded and smooth subset of R3 and the inelastic constitutive
function A belongs to the LM class, i.e. A is a sum of the globally Lipschitz map l : S(3) → S(3)
with Lipschitz constant L and the continuous, maximal monotone map m : S(3) → S(3). Moreover, we
assume that for the sufficiently large |T | the map m satisfy one of the following growth conditions:

•
|m(T )| 6 C|T |ω and

1

C
|T |ω+1 6 m(T )T for ω > 1, (1.4)

•
|m(T )| 6 C|T |ω for ω = 1. (1.5)

Without the loss of generality one can assume that A(0) = m(0) = 0.

In this paper we do not assume that A is the function of a gradient type, but under sufficiently strong
assumptions about regularity of data, we were able to prove existence of a solution of (1.1)-(1.3) where
equation (1.1)5 is satisfied in a sense of Young measures (see Theorem 7.6). Moreover, under higher
assumptions about the constitutive function A, i.e. A is deviatoric and monotone, there exists a unique
solution of (1.1)-(1.3) such that (1.1)5 is satisfied almost everywhere (see Theorem 7.9, Lemma 7.10 ).

2. Literature review

According to the authors’ knowledge, the poroplasticity models with the mixed boundary conditions
which have been considered so far were only partially dynamical (with c0pt ≈ 0) and equipped with the
non-monotone constitutive equation (see [14]). Unfortunately, the non-monotone constitutive equation
considered in that paper resulted with the low regularity of the solutions. Moreover, despite the method
used (a coercive approximation with models of the monotone-type), existence, uniqueness and regularity
of the solutions in a case of the non-coercive models of the monotone-type were left open for the further
discussion. Papers [13] and [12] discuss the quasistatic poroplasticity model (with ρutt ≈ 0) with the
Dirichlet type boundary conditions. It is worth mentioning that in [12] author considers a gradient-type
model (the constitutive equation is a gradient of a differentiable convex function). It turns out that is
the sufficient condition to obtain the solution without the Young measures theory. In this paper however
we do not assume that the model is of a gradient-type and consequently we need additional assumptions
on the constitutive equations to obtain this kind of result.

It is worth the attention, that there is an obvious similarity between poroplasticity model and the
theoretical models of the inelastic deformation for solids, which have been extensively studied by K.
Che lmiński and P. Gwiazda in [5], [8], [6], [7] (the monotone case). It is clear, based on the research
related to the inelastic deformations in solids, that the essential step to understanding the model is a
meticulous analysis of the monotone models, which may serve as an approximation tool for the non-
monotone models. This motivation underlies our approach.
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3. Structure of the article

In the fourth section, using the Galerkin method and the Banach Fixed Point Theorem, we prove an
existence and uniqueness of the weak solutions of (1.1) in a case when A is a globally Lipschitz function.
In the fifth section we introduce the coercive approximation and the Yosida approximation. Then we
state and prove the energetic estimate independent of the Yosida approximation step. This estimate
allows one to prove the existence of the unique weak solutions for the coercive approximation. In the
sixth section we prove that under better assumptions on the boundary data (and so called safe-load
conditions) there exists a solution (in a sense similar to introduced in [14]) of the approximated model.
The final section is about improving regularity of the solution obtained in the section six. This becomes
possible with an assumption of even higher regularity of the boundary data. Further discussion is based
on the higher assumption on A (the monotonicity and the deviatoricity) which allows one to dispose
of the Young measure that is present in the previously obtained solution. Moreover, one can prove the
uniqueness of such solution. These results underlie further research related to the non-monotone models,
for which the non-monotone constitutive equation may be approximated by the ones discussed in this
paper.

4. Globally Lipschitz Constitutive Equation

We begin the analysis of (1.1) with the globally Lipschitz function A. Therefore we consider the
following system of equations:

ρutt(x, t)− divxT (x, t) + α∇xp(x, t) = F (x, t),

c0pt(x, t)− c∆xp(x, t) + α divxut(x, t) = f(x, t),

T (x, t) = D (a ε(u(x, t))− εp(x, t)) ,

ε(u(x, t)) =
1

2

(
∇xu(x, t) +∇Tx u(x, t)

)
,

(4.1)

with the assumption that εp : Ω× [0, Te]→ S3 is given. Here a > 0 is the auxiliary constant, which will
prove itself useful in the next section.

The model (4.1) is considered with the conditions (1.2) and (1.3) (except the initial condition for εp).
We assume the following data regularity

• For the external forces:

F ∈ H1(0, Te;L
2(Ω;R3)), f ∈ H1(0, Te;L

2(Ω;R)),

F (0) ∈ L2(Ω;R3), f(0) ∈ L2(Ω;R),
(4.2)

• For the boundary conditions:

gD ∈ H3(0, Te;H
1
2 (ΓD;R3)) ∩H2(0, Te;H

3
2 (ΓD;R3)),

gD(0), gD,t(0) ∈ H 3
2 (ΓD;R3), gD,tt(0) ∈ H 1

2 (ΓD;R3),

gN ∈ H2(0, Te;H
− 1

2 (ΓN ;R3)), gN (0), gN,t(0) ∈ H− 1
2 (ΓN ;R3),

gP ∈ H1(0, Te;H
3
2 (ΓP ;R)) ∩H2(0, Te;H

1
2 (ΓP ;R)), gV ∈ H1(0, Te;H

− 1
2 (ΓV ;R)),

gP (0) ∈ H 3
2 (ΓP ;R), gP,t(0) ∈ H 1

2 (ΓP ;R), gV (0) ∈ H− 1
2 (ΓV ;R),

(4.3)

• For the initial conditions:

u0, u1 ∈ H1(Ω;R3), div(ε(u0)) ∈ L2(Ω;R3), p0 ∈ H1(Ω;R), ∆p0 ∈ L2(Ω;R). (4.4)

For (4.1) we assume that the inelastic deformation tensor εp satisfies:

εp ∈ H2(0, Te;L
2(Ω;S(3))), εp(0) ∈ L2

div(Ω;S(3)). (4.5)

Additionally, we require the compatibility conditions of the form:

u0(x) = gD(x, 0), u1(x) = gD,t(x, 0), x ∈ ΓD
p0(x) = gP (x, 0), x ∈ ΓP

(D(a ε(u0(x))− εp(x, 0))− αp0(x)I)n(x) = gN (x, 0), x ∈ ΓN
c∂p0∂n (x) = gV (x, 0), x ∈ ΓV

(4.6)
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The Trace Theorem implies that there exist functions g̃D : Ω × [0, Te] → R3, g̃P : Ω × [0, Te] → R such
that γ(g̃D) |ΓD

= gD, γ(g̃P ) |ΓP
= gP for t ∈ [0, Te], where γ is the trace operator.

Due to the linearity of the equations with respect to u and p one can put ũ(x, t) = u(x, t)− g̃D(x, t),
p̃(x, t) = p(x, t)− g̃P (x, t) and pass to the following equations

ρũtt − divT̃ + α∇p̃ = F̃ := F − ρg̃D,tt − α∇g̃P + adiv (D(ε(g̃D))) ,

c0p̃t − c∆p̃+ α divũt = f̃ := f − c0g̃P,t − α div(g̃D,t) + c∆g̃P ,

T̃ = D (a ε(ũ)− εp) .

(4.7)

with the initial-boundary data:

ũ(x, 0) = ũ0(x) := u0(x)− g̃D(x, 0),
ũt(x, 0) = ũ1(x) := u1(x)− g̃D,t(x, 0),
p̃(x, 0) = p̃0(x) := p0(x)− g̃P (x, 0),
ũ(x, t) = 0,(

T̃ (x, t)− αp̃(x, t)I
)
n(x) = g̃N (x, t),

p̃(x, t) = 0,

c ∂p̃∂n (x, t) = g̃V (x, t) := gV (x, t)− c∂g̃P∂n (x, t),

x ∈ Ω,
x ∈ Ω,
x ∈ Ω,
x ∈ ΓD, t ≥ 0,
x ∈ ΓN , t ≥ 0,
x ∈ ΓP , t ≥ 0,
x ∈ ΓV , t ≥ 0,

where g̃N (x, t) := gN (x, t) − (aD(ε(g̃D(x, t))) − αg̃P (x, t)I)n(x). Prior to the definition of the weak
solution to (4.1) with the conditions (1.2) and (1.3) (except the initial condition for εp) we define the
following subspaces of H1:

V :=
{
v ∈ H1(Ω;R3) : v = 0 on ΓD

}
, W :=

{
w ∈ H1(Ω;R) : v = 0 on ΓP

}
.

Definition 4.1 (Weak solution). We say that the pair (u, p) is the weak solution of (4.1) with the
initial-boundary conditions (1.2)-(1.3) (except (1.3)4) if the pair (ũ, p̃) such that

u = ũ+ g̃D, p = p̃+ g̃P

(ũ, p̃) ∈W 1,∞(0, Te;H
1(Ω;R3))×H1(0, Te;H

1(Ω;R)), ũtt ∈ L∞(0, Te;L
2(Ω;R3)),

satisfy for a.e. t ∈ [0, Te] the following equations

ρ

∫
Ω

ũttvdx+

∫
Ω

D(aε(ũ)− εp)ε(v)dx− α
∫
Ω

p̃divxvdx =

∫
Ω

F̃ vdx+

∫
ΓN

g̃NvdS(x), ∀ v ∈ V, (4.8)

c0

∫
Ω

p̃twdx+ c

∫
Ω

∇xp̃∇xwdx+ α

∫
Ω

divũtwdx =

∫
Ω

f̃wdx+

∫
ΓV

g̃V wdS(x), ∀w ∈W (4.9)

and ũ(x, 0) = ũ0(x), ũt(x, 0) = ũ1(x), p̃(x, 0) = p̃0(x).

In the Definition 4.1 we formally write the boundary integrals which should be understood as the duality
pairings between spaces H

1
2 and H−

1
2 .

In the proceeding discussion the wave symbols are omitted for simplicity.
Due to the separability of the spaces V and W one can find the bases {vk} ⊂ V and {wk} ⊂W such

that both of them are orthonormal in L2. Furthermore one can assume that vk and wk are smooth in
the interior of Ω.

We look for the approximated solutions

um : [0, T ]→ Vm := Span{v1, . . . , vm}; um(t) :=

m∑
k=1

gkm(t)vk,

pm : [0, T ]→Wm := Span{w1, . . . , wm}; pm(t) :=

m∑
k=1

g̃km(t)wk.

Fix the initial conditions um(0), umt (0) ∈ Vm, pm(0) ∈Wm such that:

• um(0)→ u0 for m→∞ in H1(Ω;R3),
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• umt (0)→ u1 for m→∞ in H1(Ω;R3),

• pm(0)→ p0 for m→∞ in H1(Ω;R),

• div(ε(um(0)))→ div(ε(u0)) for m→∞ in L2(Ω;R3),

• ∆pm(0)→ ∆p0 for m→∞ in L2(Ω;R).

We now pick the sequences gmN , g
m
V such that

• {gmN }
∞
m=1 ⊂W

2,∞(0, Te;H
− 1

2 (ΓN ;R3)) satisfies the compatibility condition

gmN (x, 0) = (D(a ε(um(x, 0))− εp(x, 0))− αpm(x, 0)I)n(x)

and gmN → gN for m→∞ in W 2,∞(0, Te;H
− 1

2 (ΓN ;R3)).

• {gmV }
∞
m=1 ⊂ H

1(0, Te;H
− 1

2 (ΓV ;R)) satisfies the compatibility condition:

gmV (x, 0) = c
∂pm

∂n
(x, 0)

and gmV → gV for m→∞ in H1(0, Te;H
− 1

2 (ΓV ;R)).

We require that um, pm satisfy for k = 1, 2, . . . ,m and a.e. t ∈ [0, Te] the following equations

ρ

∫
Ω

umtt v
kdx+

∫
Ω

D(a ε(um)− εp)ε(vk)dx− α
∫
Ω

pm divvkdx =

∫
Ω

Fvkdx+

∫
ΓN

gmN v
kdS(x), (4.10)

c0

∫
Ω

pmt w
kdx+ c

∫
Ω

∇pm∇wkdx+ α

∫
Ω

divumt w
kdx =

∫
Ω

fwkdx+

∫
ΓV

gmV w
kdS(x). (4.11)

The pair (um, pm) will be called the approximated solution to (4.8)-(4.9).

Theorem 4.2. Suppose that the conditions (4.2)-(4.6) are satisfied. Then there exists the approximated
solution to (4.8)-(4.9) for every m ∈ N.

Proof. Plugging um and pm to the equations (4.10)-(4.11) yields the following system of the ODEs:

ρ
(
gkm
)′′

(t) +

m∑
j=1

(
gjm(t)αk,j − g̃jm(t)βk,j

)
= Fmk (t), (4.12)

c0
(
g̃km
)′

(t) +

m∑
j=1

(
g̃jm(t)γk,j +

(
gjm
)′

(t)βj,k

)
= fmk (t). (4.13)

where

αk,j = a
(
D(ε(vj)), ε(vk)

)
, βk,j = α

(
divvk, wj

)
, γk,j = c

(
∇wj ,∇wk

)
Fmk (t) = (F (t), vk) + (εp(t), ε(vk)) +

∫
ΓN

gmN (t)vkdS(x), fmk (t) = (f(t), wk) +

∫
ΓV

gmV (t)wkdS(x).

The parentheses (·, ·) denote the standard inner product in L2(Ω) with the values either in R or R3

(depending on the context). Due to the Carathéodory’s theorem one obtains the local solution to the
system (4.12)-(4.13), i.e. for the fixed m and k = 1, . . . ,m functions gkm(t), g̃km(t) are defined on some
interval [0, Tm).

Next we prove that one can extend these functions up to the time Te, i.e. Tm = Te. It is sufficient to
prove that there is no k0 ∈ {1, 2, . . . ,m} such that∣∣gk0m ∣∣→∞, for t→ Tm. (4.14)

The condition (4.14) simply means that the solution does not explode. The similar results apply to(
gkm
)′

(t) and g̃km(t) as well.
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Multiplying the kth equation of (4.12) by
(
gkm
)′

(t) and adding them up for k = 1, . . . ,m yields

ρ

2

d

dt
‖umt ‖

2
L2 +

a

2

d

dt
(D(ε(um)), ε(um))− α(divumt , p

m) = (F, umt ) + (D(εp), ε(umt )) +

∫
ΓN

gmNu
m
t dS(x).

Similarly, multiplying the kth equation of (4.13) by g̃km(t) and adding them up for k = 1, . . . ,m yields

c0
2

d

dt
‖pm‖2L2 + c ‖∇pm‖2L2 + α(divumt , p

m) = (f, pm) +

∫
ΓV

gmV p
mdS(x).

We now sum above equations and integrate them over (0, t) for 0 < t < Tm

ρ ‖umt (t)‖2L2 + c0 ‖pm(t)‖2L2 + a (D(ε(um(t))), ε(um(t))) + 2c

t∫
0

‖∇pm‖2L2 dτ

= ρ ‖umt (0)‖2L2 + c0 ‖pm(0)‖2L2 + a (D(ε(um(0))), ε(um(0))) + 2

t∫
0

(F, umt )dτ

+ 2

t∫
0

(f, pm)dτ + 2

t∫
0

(D(εp), ε(umt ))dτ + 2

t∫
0

∫
ΓN

gmNu
m
t dS(x)dτ + 2

t∫
0

∫
ΓV

gmV p
mdS(x)dτ.

(4.15)

By using: the properties of the operator D, the convergence of um(0) → u0, u
m
t (0) → u1 in H1(Ω;R3)

and pm(0)→ p0 in H1(Ω;R) one obtains the following estimate (independently of m).

ρ ‖umt (0)‖2L2 + c0 ‖pm(0)‖2L2 + a (D(ε(um(0))), ε(um(0))) 6 C.

Furthermore

t∫
0

∫
ΓN

gmNu
m
t dS(x)dτ = −

t∫
0

∫
ΓN

gmN,tu
mdS(x)dτ +

∫
ΓN

gmN (t)um(t)dS(x)−
∫

ΓN

gmN (0)um(0)dS(x)

6

t∫
0

∥∥gmN,t∥∥H− 1
2
‖um‖

H
1
2

dτ + ‖gmN (t)‖
H−

1
2
‖um(t)‖

H
1
2

+ ‖gmN (0)‖
H−

1
2
‖um(0)‖

H
1
2
.

Using the properties of gmN , the trace operator in H1 and the standard inequalities, one can obtain the
following estimate

t∫
0

∫
ΓN

gmNu
m
t dS(x)dτ 6 ν ‖um‖2L∞(H1) + C(ν)

(
1 + ‖gN,t‖2

L1(H−
1
2 )

+ ‖gN‖2
L∞(H−

1
2 )

)
.

Similarly, integrating by parts in the third integral on the right side (with respect to the time), applying
the properties of the operator D and the standard inequalities provide the estimate

t∫
0

∫
Ω

D(εp)ε(umt )dxdτ 6 ν ‖um‖2L∞(H1) + C(ν)
(

1 + ‖εpt ‖
2
L1(L2) + ‖εp‖2L∞(L2)

)
.

To estimate the left side of (4.15) we use the properties of D, um|ΓD
= um|ΓP

= 0 and the fact that

N(u) = ‖ε(u)‖2 +
∫

ΓD

|u|dS(x) is a norm in H1 equivalent to the standard norm in this space (see [16]).

Using the weighted Schwarz and Young’s inequalities (with the weight ν from the approximated solution)
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one obtains

‖umt (t)‖2L2 + ‖pm(t)‖2L2 + ‖um(t)‖2H1 +

t∫
0

‖pm‖2H1 dτ ≤ ν
(
‖umt ‖

2
L∞(L2) + ‖pm‖2L∞(L2)

+ ‖um‖2L∞(H1) +

t∫
0

‖pm‖2H1 dτ

)
+ C(ν)

(
1 + ‖F‖2L1(L2) + ‖f‖2L1(L2) + ‖εp‖2W 1,∞(L2)

+ ‖gN‖2
W 1,∞(H−

1
2 )

+ ‖gV ‖2
L2(H−

1
2 )

)
.

Taking the supremum of each summand on the left side of the inequality above and putting ν = 1
8 one

obtains the final estimate independent of m

‖umt (t)‖2L2 + ‖pm(t)‖2L2 + ‖um(t)‖2H1 +

t∫
0

‖pm‖2H1 dτ 6 C(Te) for t ∈ [0, Tm] .

From the estimate above one obtains for every k ∈ {1, 2 . . . ,m}

∣∣gkm(t)
∣∣2 6 m∑

j=1

∣∣gjm(t)
∣∣2 = ‖um(t)‖2L2 6 C(Te) for t ∈ [0, Tm] .

One can analogously obtain the similar estimates for (gkm)′(t) and g̃km(t). �

Following the steps form the proof of the Theorem 4.2 one can obtain the first energetic estimate

‖umt (t)‖2L2 + ‖um(t)‖2H1 + ‖pm(t)‖2L2 +

t∫
0

‖pm‖2H1 dτ 6 C(Te) for t ∈ [0, Te] . (4.16)

We still require some information about umtt , p
m
t and divumt .

Lemma 4.3 (Second Energetic Inequality). Under the assumptions of the Theorem 4.2 the follow-
ing estimate (independent of m) holds

‖umtt (t)‖
2
L2 + ‖umt (t)‖2H1 + ‖pmt (t)‖2L2 +

t∫
0

‖pmt ‖
2
H1 dτ 6 C(Te) for t ∈ [0, Te] . (4.17)

Proof. Firstly we differentiate (4.12)-(4.13) and multiply them by (gkm)′′(t) and (g̃km)′(t) respectively.
Summing up the equations for k = 1, 2, . . . ,m yields

ρ

2

d

dt
‖umtt ‖

2
L2 +

a

2

d

dt
(D(ε(umt )), ε(umt )) +

c0
2

d

dt
‖pmt ‖

2
L2 + c ‖∇pmt ‖

2
L2 = (Ft, u

m
tt ) + (ft, p

m
t )

+ (D(εpt ), ε(u
m
tt )) +

∫
ΓN

gmN,tu
m
ttdS(x) +

∫
ΓV

gmV,tp
m
t dS(x).

We integrate the inequality above over time (0, t) (0 < t < Te) and do the similar estimates as in the
proof of the Theorem 4.2

‖umtt (t)‖
2
L2 + ‖umt (t)‖2H1 + ‖pmt (t)‖2L2 +

t∫
0

‖pmt ‖
2
H1 dτ 6 C

(
‖umtt (0)‖2L2 + ‖pmt (0)‖2L2

)
+ C(ν)

(
1 + ‖Ft‖2L1(L2) + ‖ft‖2L1(L2) + ‖εpt ‖

2
L∞(L2) + ‖εptt‖

2
L1(L2) + ‖gN,t‖2

L∞(H−
1
2 )

+ ‖gN,tt‖2
L1(H−

1
2 )

+ ‖gV,t‖2
L2(H−

1
2 )

)
+ ν

(
‖umtt ‖

2
L∞(L2) + ‖pmt ‖

2
L∞(L2) + ‖umt ‖

2
L∞(H1)

+

t∫
0

‖pmt ‖
2
H1 dτ

)
.

7



Choosing the sufficiently small ν and taking the supremum of the inequality above leads to the following
estimate

‖umtt (t)‖
2
L2 + ‖umt (t)‖2H1 + ‖pmt (t)‖2L2 +

t∫
0

‖pmt ‖
2
H1 dτ 6 C(Te) + C

(
‖umtt (0)‖2L2 + ‖pmt (0)‖2L2

)
for t ∈ [0, Te]. In order to finish the proof one has to estimate the expression ‖umtt (0)‖L2 and ‖pmt (0)‖L2

independently of m. To estimate ‖umtt (0)‖L2 we multiply the kth equation of (4.12) by (gkm(t))′′(t), sum
over k = 1, 2, . . . ,m and plug in t = 0.

ρ ‖umtt (0)‖2L2 =

∫
Ω

F (0)umtt (0)dx−
∫
Ω

D(aε(um(0))− εp(0))ε(umtt (0))dx+ α

∫
Ω

pm(0)divumtt (0)dx

+

∫
ΓN

gmN (0)umtt (0)dS(x).

An integration by parts gives

−
∫
Ω

D(aε(um(0))− εp(0))ε(umtt (0))dx+ α

∫
Ω

pm(0)divumtt (0)dx

=

∫
Ω

div (D(aε(um(0))− εp(0)))umtt (0)dx− α
∫
Ω

∇pm(0)umtt (0)dx

−
∫

ΓN

(D(aε(um(0))− εp(0))− αpm(0)I)n︸ ︷︷ ︸
gmN (0)

umtt (0)dS(x).

Hence

ρ ‖umtt (0)‖2L2 6 ‖F (0)‖L2 ‖umtt (0)‖L2 + ‖div (D(aε(um(0))− εp(0)))‖L2 ‖umtt (0)‖L2

+ α ‖∇pm(0)‖L2 ‖umtt (0)‖L2 6 C ‖umtt (0)‖L2 .

Thus we obtain the estimate ‖umtt (0)‖L2 6 C independent of m.
In order to estimate ‖pmt (0)‖L2 we multiply the kth equation of (4.13) by (g̃km(t))′(t) and sum up
for k = 1, 2, . . . ,m

c0 ‖pmt (0)‖2L2 =

∫
Ω

f(0)pmt (0)dx− c
∫
Ω

∇pm(0)∇pmt (0)dx− α
∫
Ω

pmt (0)divumt (0)dx

+

∫
ΓV

gmV (0)pmt (0)dS(x).

Following the same procedure (an integration by parts on the right side) one discards the boundary
integral over ΓV . Hence we obtain

c0 ‖pmt (0)‖2L2 6 ‖f(0)‖L2 ‖pmt (0)‖L2 + c ‖∆pm(0)‖L2 ‖pmt (0)‖L2 + α ‖divumt (0)‖L2 ‖pmt (0)‖L2

6 C ‖pmt (0)‖L2 .

It implies that the estimate for ‖pmt (0)‖L2 is independent of m and ends the proof of the lemma. �

We now have a sufficient information to conclude the existence of the solutions to (4.8)-(4.9).

Theorem 4.4 (Existence and uniqueness of the solution).
Suppose that the conditions (4.2)-(4.6) are satisfied. Then there exists the unique weak solution (u, p) of

(4.1) with the initial-boundary conditions (1.2)-(1.3) (except (1.3)4) such that

(u, p) ∈W 1,∞(0, Te;H
1(Ω;R3))×H1(0, Te;H

1(Ω;R)),

utt ∈ L∞(0, Te;L
2(Ω;R3)), p ∈W 1,∞(0, Te;L

2(Ω;R)).

Proof. In virtue of the energetic inequalities one can conclude that there exist the subsequences {ũmk},
{p̃mk} such that
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• ũmk ⇀ ũ in H1(0, Te;H
1(Ω;R3)),

• ũmk
tt ⇀ ũtt in L2(0, Te;L

2(Ω;R3)),

• p̃mk ⇀ p̃ in H1(0, Te;H
1(Ω;R)).

Combined with an information about the sequences g̃mN and g̃mV it allows passing to the limit in the
equations (4.10)-(4.11). Due to the standard procedure one obtains that the pair (ũ, p̃) satisfy the
equations (4.8)-(4.9), thus the translation (ũ+ g̃D, p̃+ g̃P ) is the weak solution of (4.1).
The energetic inequalities provide us with the expected regularity of the solutions.

It remains to prove the uniqueness. Suppose that there exist two weak solutions, (u1, p1) and (u2, p2).
Denote u := u1 − u2 and p := p1 − p2.
We fix t ∈ [0, Te] such that ut(t) ∈ V and p(t) ∈ W and test the weak formulation (4.8)-(4.9) with
v = ut(t) and w = p(t) respectively. Due to the regularity of the solutions one can do it for a.e. t ∈ [0, Te]

Due to the linearity we can subtract equations related to each solution and obtain

ρ(utt, ut) + a(D(ε(u)), ε(ut))− α(p,divut) = 0,

c0(pt, p) + c ‖∇p‖2L2 + α(divut, p) = 0.

Adding up the equations above and integrating over time (0, t) yields

ρ ‖ut(t)‖2L2 + a(D(ε(u(t))), ε(u(t))) + c0 ‖p(t)‖2L2 + 2c

t∫
0

‖∇p‖2L2 dτ = 0.

Hence ‖u‖H1 = ‖p‖L2 = 0 for a.e. t ∈ [0, Te]. Therefore u ≡ p ≡ 0 a.e. in Ω× [0, Te]. �

Henceforth we focus on the globally Lipschitz constitutive equation. Namely

ρutt(x, t)− divxT (x, t) + α∇xp(x, t) = F (x, t),

c0pt(x, t)− c∆xp(x, t) + α divxut(x, t) = f(x, t),

T (x, t) = D (a ε(u(x, t))− εp(x, t)) ,

T̂ (x, t) = D (ε(u(x, t))− εp(x, t)) ,

εpt (x, t) = G
(
T̂ (x, t)

)
,

(4.18)

where G : S(3)→ S(3) is a globally Lipschitz constitutive function, i.e. there exists L > 0 such that for
all T1, T2 ∈ S(3) the following inequality holds

|G(T1)−G(T2)| 6 L |T1 − T2| .

The model (4.18) is equipped with the same initial-boundary conditions as (1.1).

Definition 4.5 (Weak solution). We say that (u, p, εp) is the weak solution of (4.18) with the initial-
boundary conditions (1.2)-(1.3) if (u, p) is the weak solution of (4.18)1−3 in virtue of the Definition 4.1
and εp ∈W 1,∞(0, Te;L

2(Ω;S(3))) satisfies the equation (4.18)4 with the initial condition εp0.

Theorem 4.6 (Existence and uniqueness of the solution to (4.18)).
Suppose that conditions (4.2)-(4.4), (4.6) and εp0 ∈ L2

div(Ω;S(3)) are satisfied. Then there exists a unique
weak solution (u, p, εp) of (4.18) with initial-boundary conditions (1.2)-(1.3) such that:

(u, p) ∈W 1,∞(0, Te;H
1(Ω;R3))×H1(0, Te;H

1(Ω;R)), εp ∈ H2(0, Te;L
2(Ω;S(3)))

utt ∈ L∞(0, Te;L
2(Ω;R3)), p ∈W 1,∞(0, Te;L

2(Ω;R)).

Proof. The nonlinearity in our setting is globally Lipschitz, therefore it is a natural attempt to apply
the Banach Fixed Point Theorem to prove the existence and uniqueness of the solution. We begin with
a definition of a space X :=

{
ϕ ∈ H2(0, Te;L

2(Ω;S(3))) : ϕ(x, 0) = εp0(x)
}

and an operator S : X → X
given as follows. For z ∈ X we consider the system

ρuztt(x, t)− divxD (a ε(uz(x, t))− z(x, t)) + α∇xpz(x, t) = F (x, t),

c0p
z
t (x, t)− c∆xp

z(x, t) + α divxu
z
t (x, t) = f(x, t).

(4.19)
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Due to the Theorem 4.4 there exists a unique weak solution to (4.19). Now consider the ODE{
εp,zt (x, t) = G(D (ε(uz(x, t))− εp,z(x, t))),
εp,z(x, 0) = εp0(x).

(4.20)

Therefore we define the operator S as Sz = εp,z

Obviously the equation (4.20) has a unique solution εp,z in the space C1([0, Te] ;L2(Ω;S(3))). Furthermore
(Sz)t is a globally Lipschitz map with respect to the variable t. Indeed, we take t1, t2 ∈ [0, t] for t ∈ [0, Te]

‖(Sz)t(t1)− (Sz)t(t2)‖2L2 =

∫
Ω

|G(D (ε(uz(t1))− Sz(t1)))−G(D (ε(uz(t2))− Sz(t2)))|2 dx

6 C
∫
Ω

|ε(uz(t1)− uz(t2))|2 + |Sz(t1)− Sz(t2)|2 dx

6 C
(
‖ε(uzt )‖

2
L∞(0,t;L2) + ‖(Sz)t‖2L∞(0,t;L2)

)
|t1 − t2|2 .

Thanks to the Rademacher’s Theorem the function (Sz)t is differentiable almost everywhere in (0, t).
Moreover the Lipschitz constant is global on this time interval so

‖(Sz)tt‖2L∞(0,t;L2) 6 CL
(
‖ε(uzt )‖

2
L∞(0,t;L2) + ‖(Sz)t‖2L∞(0,t;L2)

)
. (4.21)

Therefore Sz ∈ X.
Now, observe that (u, p, εp) is a weak solution to (4.18) with the regularity εp ∈ H2(0, Te;L

2(Ω;S(3)))
if and only if εp is a fixed point for the operator S.
Unfortunately we cannot prove that the operator S is a contraction in the standard norm of H2(L2) so
the Banach Fixed Point Theorem cannot be applied directly. Nevertheless this issue can be resolved.
Firstly we prove that if 0 < T ≤ Te is sufficiently small then for the arbitrary z, w ∈ X we have

‖Sz − Sw‖C1([0,T ];L2) 6
1

2
‖z − w‖C1([0,T ];L2) .

Indeed

‖Sz − Sw‖C1([0,T ];L2) = sup
[0,T ]

∥∥∥∥∥∥
t∫

0

G(D (ε(uz)− Sz))−G(D (ε(uw)− Sw))dτ

∥∥∥∥∥∥
L2

+ sup
[0,T ]

‖G(D (ε(uz)− Sz))−G(D (ε(uw)− Sw))‖L2

6 C

T∫
0

‖ε(uz − uw)‖L2 + ‖Sz − Sw‖L2 dτ + C sup
[0,T ]

(‖ε(uz − uw)‖L2 + ‖Sz − Sw‖L2)

C (Te) sup
[0,T ]

‖ε(uz − uw)‖L2 + C (Te)T ‖Sz − Sw‖C1([0,T ];L2) .

The constant C (Te) is independent of T .
To obtain this inequality we used the Poincaré inequality in the form

‖Sz(t)− Sw(t)‖L2 6 T ‖(Sz)t(t)− (Sw)t(t)‖L2 , ∀t ∈ [0, T ]

which holds since Sz, Sw ∈ X and Sz(0) = Sw(0) = εp0.
To end this part of the proof it is enough to show that

sup
[0,T ]

‖ε(uz)− ε(uw)‖L2 6 C̃T ‖z − w‖C1([0,T ];L2) , for some C̃ > 1, independently of T. (4.22)

In order to get that we write the weak formulation for ε(uz) and ε(uw). Obviously uz − uw = ũz − ũw,
so henceforth we shall skip tildas for clarity. We have

ρ(uitt, v) + a(D(ε(ui)), ε(v))− α(pi,divv) = (F, v) +

∫
ΓN

gNvdS(x) + (D(i), ε(v)), ∀v ∈ V,

c0(pit, w) + c(∇pi,∇w) + α(divuit, w) = (f, w) +

∫
ΓV

gV wdS(x), ∀w ∈W,
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where i ∈ {z, w}. Subtracting equations for i = z and i = w, taking v = (uz − uw)t, w = pz − pw and
then summing them up gives

ρ

2

d

dt
‖(uz − uw)t‖2L2 +

a

2

d

dt
(D(ε(uz − uw)), ε(uz − uw)) +

c0
2

d

dt
‖pz − pw‖2L2

+ c ‖∇(pz − pw)‖2L2 = (D(z − w), ε(uzt − uwt )).

Integrating over time (0, t) for t ∈ (0, T ) and using properties of the operator D yields

‖ε(uz(t)− uw(t))‖2L2 6 C

t∫
0

(D(z − w), ε(uzt − uwt ))dτ = C(D(z(t)− w(t)), ε(uz(t)− uw(t)))

−C
t∫

0

(D(zt − wt), ε(uz − uw))dτ 6 C

(
sup
[0,T ]

‖z − w‖2L2 + T 2 sup
[0,T ]

‖zt − wt‖2L2

)

+
1

2
sup
[0,T ]

‖ε(uz − uw)‖2L2 6 CT (Te + 1) ‖z − w‖2C1([0,T ];L2) +
1

2
sup
[0,T ]

‖ε(uz − uw)‖2L2

Where, once again we used the Poincaré Inequality:

‖z(t)− w(t)‖L2 6 T ‖zt(t)− wt(t)‖L2 , ∀t ∈ [0, T ]

which is valid since z, w ∈ X and z(0) = w(0) = εp0.
After taking a supremum we obtain the expected inequality (4.22). Finally

‖Sz − Sw‖C1([0,T ];L2(Ω;S(3))) 6 C (Te) C̃T
(
‖z − w‖C1([0,T ];L2) + ‖Sz − Sw‖C1([0,T ];L2)

)
.

Now for every 0 < T 6 T0 := 1

3C(Te)C̃
we obtain

‖Sz − Sw‖C1([0,T ];L2) 6
1

2
‖z − w‖C1([0,T ];L2) . (4.23)

In the second step of the proof we will define a sequence {zn}∞n=0 ⊂ X such that (up to a subsequence):

zn → ζ in space C1([0, T0];L2(Ω;S(3))), zn ⇀ ζ in H2(0, T0;L2(Ω;S(3))),

We define a sequence zn in a standard way by taking the arbitrary z0 ∈ X and putting zn+1 := Szn.
As in the proof of the Banach Fixed Point Theorem it is easy to obtain from (4.23) that

‖zn+1 − zn‖C1([0,T0];L2) 6

(
1

2

)n
‖z1 − z0‖C1([0,T0];L2) .

Hence zn is a Cauchy sequence in C1([0, T0];L2) and has a limit ζ in this space.
Now we show that ‖zn,tt‖L2(0,T0;L2) 6 C independently of n. Then (up to a subsequence) we obtain that

zn ⇀ ζ in H2(0, T0;L2(Ω;S(3))) (so ζ is also an element of this space).
Since zn is a Cauchy sequence then it is bounded by some constant C0, i.e.

‖Szn‖C1([0,T0];L2) = ‖zn+1‖C1([0,T0];L2) 6 C0, (4.24)

where C0 > 0 is independent of n (but it depends on whole sequence zn). Using (4.21) we obtain

‖(Szn)tt‖2L∞(0,t;L2) 6 CLC0 + CL ‖ε(uznt )‖2L∞(0,t;L2) , ∀t ∈ [0, T0]. (4.25)

The main goal now is to obtain the inequality of the form

‖ε(uznt )‖2L∞(0,t;L2) 6 C(C0) + C(C0)

t∫
0

‖zn,tt‖2L2 dτ, ∀t ∈ [0, T0], (4.26)

where C(C0) depends only on data and C0. Let us assume for a moment that (4.26) holds.
Then from (4.25) and (4.26) one can obtain for every n ∈ N

‖zn+1,tt‖2L∞(0,t;L2) 6 C1 + C1

t∫
0

‖zn,tt‖2L2 dτ, ∀t ∈ [0, T0]. (4.27)
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From (4.27) we also get (for every T̃0 ∈ [0, T0])

t∫
0

‖zn+1,tt‖2L2 dτ 6

t∫
0

C1 + C1

τ∫
0

‖zn,tt‖2L2 dsdτ 6 C1T̃0 + C1T̃0

t∫
0

‖zn,tt‖2L2 ds, ∀t ∈ [0, T̃0].

In the same manner one can obtain the inequality for every n ≥ 1:

‖zn,tt‖2L∞(0,t;L2) 6
1

T̃0

 n∑
i=1

(
C1T̃0

)i
+
(
C1T̃0

)n Te∫
0

‖z0,tt‖2L2 dτ

 , ∀t ∈ [0, T̃0]. (4.28)

It suffices to take T̃0 := min
{
T0,

1
2C1

}
. For such T̃0 we obtain from (4.28) that

‖zn,tt‖2L∞(0,T̃0;L2) 6
1

T̃0

[
1 + ‖z0,tt‖2L2(0,Te;L2)

]
=:

P

T̃0

.

If T̃0 = T0 then it is what had to be proven. If T̃0 < T0 then from (4.27) one can easily derive the
following inequality

‖zn+1,tt‖2L∞(T̃0,t;L2) 6 (1 + P )C1 + C1

t∫
T̃0

‖zn,tt‖2L2 dτ, ∀t ∈
[
T̃0,max

{
2T̃0, T0

}]
(4.29)

which leads to

‖zn,tt‖2L∞(T̃0,max{2T̃0,T0};L2) 6
1

T̃0

(1 + P )

n∑
i=1

(
C1T̃0

)i
+
(
C1T̃0

)n Te∫
0

‖z0,tt‖2L2 dτ


6

1

T̃0

1 + P +

Te∫
0

‖z0,tt‖2L2 dτ

 6 2P

T̃0

,

After finitely many steps one can obtain that ‖zn,tt‖L∞(0,T0;L2) is bounded.

The only thing left in this step is to prove the inequality (4.26).
For the clarity, henceforth we identify un = uzn and pn = pzn . For almost every t ∈ (0, Te) one can write
the weak formulation for (un, pn). We take such t and denote:

(unh(t), pnh(t), znh
(t)) := (un(t+ h), pn(t+ h), zn(t+ h)) ,

where h > 0 is a fixed, sufficiently small constant such that the weak formulation for (unh, p
n
h) can be

written. We also apply the similar notation for functions Fh, fh, gNh
, gVh

.
Note that

‖ε (unt )‖2L∞(0,t;L2) 6 C ‖ũ
n
t ‖

2
L∞(0,t;H1) + ‖ε (g̃D,t)‖2L∞(0,Te;L2) . (4.30)

Because of (4.30) to prove the inequality (4.26) it suffices to get

‖ũnt ‖
2
L∞(0,t;H1) 6 C + C

t∫
0

‖zn,tt‖2L2 dτ, ∀t ∈ [0, T0]. (4.31)

Once again we shall skip tildas in the weak formulation for the clarity.
We write the weak formulations of (4.19) with z = zn in the time t + h and the time t, by substracting
them we obtain

ρ
(
unh,tt − untt, v

)
+ a (D (ε (unh − un)) , ε(v))− α (pnh − pn,divv)

= (Fh − F, v) +

∫
ΓN

(gNh
− gN ) vdS(x) + (D(znh

− zn), ε(v)),

c0
(
pnh,t − pnt , w

)
+ c (∇ (pnh − pn) ,∇w) + α

(
div
(
unh,t − unt

)
, w
)

= (fh − f, w) +

∫
ΓV

(gVh
− gV )wdS(x),
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Taking v = unh,t − unt and w = pnh − pn and summing them up gives

d

dt

ρ

2

∥∥unh,t − unt ∥∥2

L2 +
d

dt

a

2
(D (ε (unh − un)) , ε (unh − un)) +

d

dt

c0
2
‖pnh − pn‖

2
L2 + c ‖∇ (pnh − pn)‖2L2

=
(
Fh − F, unh,t − unt

)
+ (fh − f, pnh − pn) +

∫
ΓN

(gNh
− gN )

(
unh,t − unt

)
dS(x)

+ (D(znh
− zn), ε(unh,t − unt )) +

∫
ΓV

(gVh
− gV ) (pnh − pn) dS(x),

This equality holds for almost every time in the interval [0, Te − h]. By integrating it over (0, t), where
t ∈ [0, Te − h], using properties of the operator D and the standard inequalities and the equivalence of
norms one obtains

∥∥unh,t(t)− unt (t) ‖2L2 + ‖unh(t)− un(t)‖2H1 + ‖pnh(t)− pn(t)‖2L2 +

t∫
0

‖∇ (pnh − pn)‖2H1 dτ

6 C
(∥∥unh,t(0)− unt (0)

∥∥2

L2 + ‖unh(0)− un(0)‖2H1 + ‖pnh(0)− pn(0)‖2L2

+

t∫
0

‖Fh − F‖L2

∥∥unh,t − unt ∥∥L2 dτ +

t∫
0

‖fh − f‖L2 ‖pnh − pn‖L2 dτ

+

t∫
0

‖gVh
− gV ‖

H−
1
2
‖pnh − pn‖H1 dτ +

t∫
0

‖gNh,t − gN,t‖H− 1
2
‖unh − un‖H1 dτ

+ ‖gNh
(t)− gN (t)‖

H−
1
2
‖unh(t)− un(t)‖H1 + ‖gNh

(0)− gN (0)‖
H−

1
2
‖unh(0)− un(0)‖H1

+

t∫
0

‖znh,t − zn,t‖L2 ‖unh − un‖H1 dτ + ‖znh
(t)− zn(t)‖L2 ‖unh(t)− un(t)‖H1

+ ‖znh
(0)− zn(0)‖L2 ‖unh(0)− un(0)‖H1

)
.

Dividing by h2 and passing to the limit with h→ 0+ yields

‖untt(t)‖
2
L2 + ‖unt (t)‖2H1 + ‖pnt (t)‖2L2 +

t∫
0

‖∇pnt ‖
2
H1 dτ 6 C

(
‖untt(0)‖2L2 + ‖u1‖2H1 + ‖pnt (0)‖2L2

+

t∫
0

‖Ft‖L2 ‖untt‖L2 dτ +

t∫
0

‖ft‖L2 ‖pnt ‖L2 dτ +

t∫
0

‖gV,t‖
H−

1
2
‖pnt ‖H1 dτ +

t∫
0

‖gN,tt‖
H−

1
2
‖unt ‖H1 dτ

+ ‖gN,t(t)‖
H−

1
2
‖unt (t)‖H1 + ‖gN,t(0)‖

H−
1
2
‖u1‖H1 +

t∫
0

‖zn,tt‖L2 ‖unt ‖H1 dτ + ‖zn,t(t)‖L2 ‖unt (t)‖H1

+ ‖zn,t(0)‖L2 ‖u1‖L2

)
.

In order to estimate ‖untt(0)‖2L2 and ‖pnt (0)‖2L2 independently of n one must recall the proof of the Lemma
4.3 where the Galerkin approximation of ‖untt(0)‖L2 and ‖pnt (0)‖L2 satisfies estimates in the form

‖un,mtt (0)‖2L2 + ‖pn,mt (0)‖2L2 6 C(initial conditions).

Which gives us the same estimate (independent of n) for the limit function untt(0), pnt (0).
Now, as in the proof of the Lemma 4.3 by using standard inequalities one obtains

‖untt(t)‖
2
L2 + ‖unt (t)‖2H1 + ‖pnt (t)‖2L2 +

t∫
0

‖∇pnt ‖
2
H1 dτ 6 C(ν)

1 +

t∫
0

‖zn,tt‖2L2 dτ + ‖zn‖2C1([0,T1];L2)


+ν

‖untt‖2L∞(0,t;L2) + ‖pnt ‖
2
L∞(0,t;L2) +

t∫
0

‖pnt ‖
2
H1 dτ + ‖unt ‖

2
L∞(0,t;H1)

 ,
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where C(ν) depends only on the data, initial conditions and ν > 0. Taking ν = 1
2 , using (4.24) and

taking a supremum over time (0, t) one obtains (4.31) for t ∈ [0, T0]. Which is the end of second part of
the proof.

Since ζ ∈ H2(0, T0;L2(Ω;S(3))) we can show in a standard way that it is a fixed point of the operator
S (only on the time interval [0, T0]). Obviously ζ = lim

n→∞
zn+1 = lim

n→∞
Szn. But

lim
n→∞

‖Szn − Sζ‖C1([0,T0];L2) 6
1

2
lim
n→∞

‖zn − ζ‖C1([0,T0];L2) = 0.

Hence Sζ = ζ for a.e. (x, t) ∈ Ω× [0, T0].
The proof of the uniqueness of a fixed point is also standard. We assume that ζ1, ζ2 ∈ X are fixed points
of S then

‖ζ1 − ζ2‖C1([0,T0];L2) = ‖Sζ1 − Sζ2‖C1([0,T0];L2) 6
1

2
‖ζ1 − ζ2‖C1([0,T0];L2) ,

which is true only for ζ1 = ζ2 for a.e. (x, t) ∈ Ω× [0, T0].
Under previous considerations one concludes that the operator S has a unique fixed point in

H2(0, T0;L2(Ω;S(3))). If T0 < Te then in a similar way one can extend the solution about T0 in a unique
manner by considering the space X :=

{
ϕ ∈ H2(0, Te;L

2(Ω;S(3))) : ϕ(x, t) = ζ(x, t) for t ∈ [0, T0]
}

.
After the finite number of repetitions one obtains the unique fixed point for the operator S in the space{
ϕ ∈ H2(0, Te;L

2(Ω;S(3))) : ϕ(x, 0) = εp0(x)
}

. This ends the proof. �

5. Coercive Approximation

The significant obstacle for the further analysis of our model (especially in the proof of the Lemma
6.3) is a presence of the non-homogeneous Dirichlet type boundary condition for the pressure p on ΓP .
To avoid this problem we consider the formal translation of (1.1) such that the pressure p ≡ 0 on ΓP .

Following the notion from the previous section, g̃P : Ω× [0, Te]→ R denotes a function such that

γ(g̃P ) |ΓP
= gP for t ∈ [0, Te] .

In lieu of the initial model we, as before, discuss the following system

ρutt − divT + α∇p̃ = F := F − α∇g̃P ,
c0p̃t − c∆p̃+ α divut = f := f − c0g̃P,t + c∆g̃P ,

T = D (ε(u)− εp) ,
εpt = A(T ).

(5.1)

with the initial-boundary conditions

u(x, 0) = u0(x),
ut(x, 0) = u1(x),
p̃(x, 0) = p̃0(x) := p0(x)− g̃P (x, 0),
εp(x, 0) = εp0(x),
u(x, t) = gD(x, t),

(T (x, t)− αp̃(x, t)I)n(x) = gN (x, t),
p̃(x, t) = 0,

c ∂p̃∂n (x, t) = gV (x, t),

x ∈ Ω,
x ∈ Ω,
x ∈ Ω,
x ∈ Ω,
x ∈ ΓD, t > 0,
x ∈ ΓN , t > 0,
x ∈ ΓP , t > 0,
x ∈ ΓV , t > 0,

where gN (x, t) := gN (x, t) + αg̃P (x, t)In(x), gV (x, t) := gV (x, t)− c∂g̃P∂n (x, t).

Provided that we find the solution (u, p̃, εp) of the system (5.1), then (u, p̃+ g̃P , ε
p) will be the solution

of (1.1). The inverse result is also true – it means that our goal is to prove the existence of the solution
to the system given above.

Observe that the free energy of (5.1) is given by

ρψ(ε, εp)(t) =
1

2
D(ε− εp)(ε− εp).

The energy is only a positive semi–definite quadratic form and therefore our system is non-coercive (for
details see [1]). The lack of coercivity significantly hinders the analysis; in particular one cannot directly
obtain the suitable energy estimates for the mixed-boundary case.
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As a remedy we introduce a standard idea of the coercive approximation (cf. [5], [8], [12]) of (5.1)
as follows

ρuktt(x, t)− divxT
k(x, t) + α∇xp̃k(x, t) = F (x, t),

c0p̃
k
t (x, t)− c∆xp̃

k(x, t) + α divxu
k
t (x, t) = f(x, t),

T k(x, t) = D
((

1 +
1

k

)
ε(uk(x, t))− εp,k(x, t)

)
,

T̂ k(x, t) = T k(x, t)− 1

k
D(ε(uk(x, t))),

εp,kt (x, t) = A(T̂ k(x, t)),

(5.2)

where k > 1.
To begin, we fix k and write the free energy of (5.2)

ρψk
(
εk, εp,k

)
(t) =

1

2
D
(
εk − εp,k

) (
εk − εp,k

)
+

1

2k
D
(
εk
)
εk.

One can see that now the energy is a positive-definite quadratic form. Models with that type of energy
are called coercive.

We intend to prove the existence of the solution to (5.2). To do that we use the results obtained
in the previous section. Obviously, in this case the constitutive equation does not have to be given by
the globally Lipschitz vector field. Hence, we use the Yosida approximation to A in order to work with
the globally Lipschitz constitutive equation. Observe that it is sufficient to approximate the maximal-
monotone operator m(·), i.e.

Aλ(T ) := mλ(T ) + l(T ),

where mλ denotes the Yosida approximation of the operator m. This approximation is globally Lipschitz
with Lip(mλ) = 1/λ and maximal-monotone (for details see [2]).
Hence, for the fixed k > 1 we introduce the approximation of (5.2) as follows

ρuk,λtt (x, t)− divxT
k,λ(x, t) + α∇xp̃k,λ(x, t) = F (x, t),

c0p̃
k,λ
t (x, t)− c∆xp̃

k,λ(x, t) + α divxu
k,λ
t (x, t) = f(x, t),

T k,λ(x, t) = D
((

1 +
1

k

)
ε(uk,λ(x, t))− εp,k,λ(x, t)

)
,

T̂ k,λ(x, t) = T k,λ(x, t)− 1

k
D(ε(uk,λ(x, t))),

εp,k,λt (x, t) = Aλ(T̂ k,λ(x, t)),

(5.3)

where λ > 0.
The system (5.3) is equipped with the same conditions as in the Theorem 4.6.
Therefore, for k > 1 and λ > 0 in virtue of the Theorem 4.6 there exists a unique weak solution

(uk,λ, p̃k,λ, εp,k,λ) of (5.3) with the initial-boundary conditions (1.2)-(1.3) satisfying

(uk,λ, p̃k,λ) ∈W 1,∞(0, Te;H
1(Ω;R3))×H1(0, Te;H

1(Ω;R)), p̃k,λ ∈W 1,∞(0, Te;L
2(Ω;R)),

uk,λtt ∈ L∞(0, Te;L
2(Ω;R3)), εp,k,λ ∈ C1([0, Te];L

2(Ω;S(3))).

Henceforth k > 1 is fixed. We want to pass to the limit with λ → 0+ (up to the subsequence) and
prove that this limit is the unique solution to (5.2).

To reach this goal we need to obtain several energetic inequalities. It is important to note that systems
(5.2) and (5.3) admit the same energy function.

The total energy of the discussed model is in the form

Ek(uk,λt , εk,λ, εp,k,λ)(t) =
ρ

2

∫
Ω

∣∣∣uk,λt (x, t)
∣∣∣2 dx+

∫
Ω

ρψk
(
εk,λ(x, t), εp,k,λ(x, t)

)
dx.

Remark 5.1. For the sake of simplicity, henceforth we omit k, unless it leads to the confusion.
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To obtain the sufficient estimates we require stronger data regularity assumptions than in the Lips-
chitzian case. Namely:
• Regularities of the external forces remain as before:

F ∈ H1(0, Te;L
2(Ω;R3)), f ∈ H1(0, Te;L

2(Ω;R)), F (0) ∈ L2(Ω;R3), f(0) ∈ L2(Ω;R), (5.4)

• For the boundary conditions we need stronger assumption with respect to time:

gD ∈W 2,∞(0, Te;H
3
2 (ΓD;R3)) ∩W 3,∞(0, Te;H

1
2 (ΓD;R3)), gN ∈W 2,∞(0, Te;H

− 1
2 (ΓN ;R3)),

gP ∈W 2,∞(0, Te;H
3
2 (ΓP ;R)), gV ∈W 2,∞(0, Te;H

− 1
2 (ΓV ;R)),

gD(0), gD,t(0) ∈ H 3
2 (ΓD;R3), gD,tt(0) ∈ H 1

2 (ΓD;R3), gN (0), gN,t(0) ∈ H− 1
2 (ΓN ;R3),

gP (0), gP,t(0) ∈ H 3
2 (ΓP ;R), gV (0) ∈ H− 1

2 (ΓV ;R),

(5.5)

• Regularities for the initial conditions remain the same as in the Theorem 4.6:

u0, u1 ∈ H1(Ω;R3), div(ε(u0)) ∈ L2(Ω;R3), p0 ∈ H1(Ω;R), ∆p0 ∈ L2(Ω;R), εp0 ∈ L2
div(Ω;S(3)). (5.6)

Furthermore, we assume the compatibility conditions (4.6) and also

m(T̂ (0)) = m(D(ε(u0)− εp0)) ∈ L2(Ω;S(3)). (5.7)

Theorem 5.2 (Energetic estimate). Under the assumptions (4.6), (5.4)-(5.7) there exists a constant
C(Te, k) > 0 independent of λ such that

Ek
(
uλtt, ε

λ
t , ε

p,λ
t

)
(t) +

t∫
0

∥∥p̃λt ∥∥2

H1 dτ +
∥∥p̃λt (t)

∥∥2

L2 6 C(Te, k) for a.e. t ∈ [0, Te],

where (uλ, pλ, εp,λ) is a weak solution of (5.3) with the initial–boundary conditions (1.2)-(1.3).

Proof. Let us denote vλ(x, t) := uλt (x, t) and as in the proof of Theorem 4.6 we will use a special

notation for translated in time functions i.e. (vλh(t), ελh(t), εp,λh (t)) := (vλ(t + h), ελ(t + h), εp,λ(t + h))
where h > 0 is the fixed, sufficiently small constant. We also apply the similar notation for functions
Th, T̂h, Fh, fh, p̃h, gNh

, gDh
.

We look at the energy change between the solution translated in time and the non-translated one.

d

dt

(
Ek
(
vλh − vλ, ελh − ελ, ε

p,λ
h − εp,λ

)
(t)
)

=

∫
Ω

(
T̂λh − T̂λ

)(
ελh,t − ελt −

(
εp,λh,t − ε

p,λ
t

))
dx

+

∫
Ω

((
Tλh − Tλ

)
−
(
T̂λh − T̂λ

)) (
ελh,t − ελt

)
dx+ ρ

∫
Ω

(vλh − vλ)(vλh,t − vλt )dx

= −
∫
Ω

(
T̂λh − T̂λ

)(
εp,λh,t − ε

p,λ
t

)
dx+

∫
Ω

(
Tλh − Tλ

) (
ελh,t − ελt

)
dx+ ρ

∫
Ω

(vλh − vλ)(vλh,t − vλt )dx.

By the monotonicity of mλ we have

−
∫
Ω

(
T̂λh − T̂λ

)(
εp,λh,t − ε

p,λ
t

)
dx 6 L

∫
Ω

∣∣∣T̂λh − T̂λ∣∣∣2 dx.

Using the given system of equations

ρ

∫
Ω

(vλh − vλ)(vλh,t − vλt )dx =

∫
Ω

(
Fh − F

) (
vλh − vλ

)
dx+

∫
Ω

div
(
Tλh − Tλ

) (
vλh − vλ

)
dx

− α
∫
Ω

∇(p̃λh − p̃λ)
(
vλh − vλ

)
dx.
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Integration by parts yields∫
Ω

(
Tλh − Tλ

) (
ελh,t − ελt

)
dx−α

∫
Ω

∇(p̃λh − p̃λ)
(
vλh − vλ

)
dx

=−
∫
Ω

div
(
Tλh − Tλ

) (
vλh − vλ

)
dx+ α

∫
Ω

(p̃λh − p̃λ)div
(
vλh − vλ

)
dx

+

∫
∂Ω

((
Tλh − αIp̃λh

)
−
(
Tλ − αIp̃λ

))
n
(
vλh − vλ

)
dS(x).

Using the given system of equations again gives

α

∫
Ω

(p̃λh − p̃λ)div
(
vλh − vλ

)
dx =

∫
Ω

(p̃λh − p̃λ)
(
fh − f

)
dx− c0

2

d

dt

∫
Ω

∣∣p̃λh − p̃λ∣∣2 dx

− c
∫
Ω

∣∣∇(p̃λh − p̃λ)
∣∣2 dx+ c

∫
∂Ω

(p̃λh − p̃λ)n∇(p̃λh − p̃λ)dS(x).

Combining the results above and using the boundary conditions of (5.3) yields

d

dt
Ek
(
vλh − vλ, ελh − ελ, ε

p,λ
h − εp,λ

)
+
c0
2

d

dt

∫
Ω

∣∣p̃λh − p̃λ∣∣2 dx+ c

∫
Ω

∣∣∇(p̃λh − p̃λ)
∣∣2 dx

6 L
∫
Ω

∣∣∣T̂λh − T̂λ∣∣∣2 dx+

∫
Ω

(
Fh − F

) (
vλh − vλ

)
dx+

∫
Ω

(
fh − f

)
(p̃λh − p̃λ)dx

+

∫
ΓD

(
Tλh − Tλ − αI

(
p̃λh − p̃λ

))
n (gDh,t − gD,t) dS(x) +

∫
ΓN

(
gNh
− gN

) (
vλh − vλ

)
dS(x)

+

∫
ΓV

(p̃λh − p̃λ)
(
gVh
− gV

)
dS(x).

Observe that the boundary integrals are well-defined. In particular, from the given system of equations
and the regularity of the solution we have

(
Tλ − αIp̃λ

)
∈ L2

div(Ω), hence the trace of this function in the

direction given by the outward pointing normal on the boundary ∂Ω is well-defined in H−
1
2 (∂Ω;R3).

Integrating the inequality above over (0, t) and dividing both sides by h2 gives

1

h2
Ek
(
vλh − vλ, ελh − ελ, ε

p,λ
h − εp,λ

)
(t) +

c0
2h2

∥∥p̃λh(t)− p̃λ(t)
∥∥2

L2 +
c

h2

t∫
0

∫
Ω

∣∣∇(p̃λh − p̃λ)
∣∣2 dxdτ

6
1

h2
Ek
(
vλh − vλ, ελh − ελ, ε

p,λ
h − εp,λ

)
(0) +

c0
2h2

∥∥p̃λh(0)− p̃λ(0)
∥∥2

L2 +
L

h2

t∫
0

∥∥∥T̂λh − T̂λ∥∥∥2

L2
dτ

+
1

h2

t∫
0

∫
Ω

(
Fh − F

) (
vλh − vλ

)
dxdτ +

1

h2

t∫
0

∫
Ω

(
fh − f

)
(p̃λh − p̃λ)dxdτ

+
1

h2

t∫
0

∫
ΓV

(p̃λh − p̃λ)
(
gVh
− gV

)
dS(x)dτ +

1

h2

t∫
0

∫
ΓN

(
gNh
− gN

) (
vλh − vλ

)
dS(x)dτ

+
1

h2

t∫
0

∫
ΓD

(
Tλh − Tλ − αI

(
p̃λh − p̃λ

))
n (gDh,t − gD,t) dS(x)dτ.

(5.8)

We now want to pass to the limit in the differential quotients. Applying the Dominated Convergence
Theorem and using the regularity of the data we can pass to the limit with h → 0+ with every integral
except the last two. We cannot pass to the limit with these boundary integrals in a straightforward
manner, because:
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• we cannot control vλt in L2(0, Te;H
1
2 (∂Ω;R3)),

• we cannot control
(
Tλt − αIpλt

)
n in L2(0, Te;H

− 1
2 (∂Ω;S(3))).

Hence, we shift differential quotients from the unknown functions to the data as in [14] and obtain the
following inequalities

lim sup
h→0+

1

h2

t∫
0

∫
ΓN

(
gNh
− gN

) (
vλh − vλ

)
dS(x)dτ

6 C(Te) sup
(0,t)

∥∥vλ∥∥
H

1
2 (∂Ω,R3)

(∥∥gN,tt∥∥L∞(H−
1
2 )

+
∥∥gN,t∥∥L∞(H−

1
2 )

)
,

lim sup
h→0+

1

h2

t∫
0

∫
ΓD

(
Tλh − Tλ − αI

(
p̃λh − p̃λ

))
n (gDh,t − gD,t) dS(x)dτ

6 C(Te) sup
(0,t)

∥∥(Tλ − αIp̃λ)n∥∥
H−

1
2

(
‖gD,ttt‖

L∞(H
1
2 )

+ ‖gD,tt‖
L∞(H

1
2 )

)
.

Hence, in virtue of the previous steps, after passing to the limit in (5.8) we obtain:

Ek
(
vλt , ε

λ
t , ε

p,λ
t

)
(t) +

c0
2

∫
Ω

∣∣p̃λt (t)
∣∣2 dx+ c

t∫
0

∫
Ω

∣∣∇p̃λt ∣∣2 dxdτ 6 Ek
(
vλt , ε

λ
t , ε

p,λ
t

)
(0)

+
c0
2

t∫
0

∣∣p̃λt (0)
∣∣2 dxdτ + L

t∫
0

∥∥∥T̂λt ∥∥∥2

L2
dτ +

t∫
0

∫
Ω

F tv
λ
t dxdτ +

t∫
0

∫
Ω

f tp̃
λ
t dxdτ

+ C(Te)

(
sup
(0,t)

∥∥vλ∥∥
H

1
2

+ sup
(0,t)

∥∥(Tλ − αIp̃λ)n∥∥
H−

1
2

)
+

t∫
0

∫
ΓV

p̃λt gV,tdS(x)dτ.

(5.9)

We need the estimates independent of λ for the right hand side of the inequality above. We proceed as
follows:
• Ek

(
vλt , ε

λ
t , ε

p,λ
t

)
(0) 6 C

(
‖u1‖2H1 +

∥∥∥εp,λt (0)
∥∥∥2

L2
+
∥∥uλtt(0)

∥∥2

L2

)
,

We now need to prove that the last two expressions are estimated independently of λ. To bound the first
one we use the properties of the Yosida approximation and the assumption (5.7)∥∥∥εp,λt (0)

∥∥∥
L2
6
∥∥∥mλ

(
T̂λ(0)

)∥∥∥
L2

+
∥∥∥l (T̂λ(0)

)∥∥∥
L2

6

{
T̂ (0) ∈ L2(Ω;S(3)),

the Lipschitz condition l

}
6 C

(∥∥∥m(T̂ (0)
)∥∥∥

L2
+
∥∥∥T̂ (0)

∥∥∥
L2

+ 1
)
6 C.

In order to estimate uλtt(0) observe that due to the steps form the proof of (5.3), this function must satisfy
the same estimate as its Galerkin approximation. Namely

ρ
∥∥uλtt(0)

∥∥
L2 6

∥∥∥F̃ k(0)
∥∥∥
L2

+ ‖div (D(2ε(um(0))− εp(0)))‖L2 + α ‖∇p̃m(0)‖L2 6 C.

We emphasize here that the function F̃ k depends on k (this dependency is hidden in the constant a
introduced in a model from the section four). Observe that the following convergence is true in the L2(Ω)
norm:

F (0)− ρg̃D,tt(0)− α∇g̃P (0) +

(
1 +

1

k

)
div (D (ε (g̃D(0)))) = F̃ k(0)

k→∞−−−−→ F̃ (0),

where F̃ (0) := F (0)− ρg̃D,tt(0)− α∇g̃P (0) + div (D (ε (g̃D(0)))).
Because of that we can obtain that

∥∥uλtt(0)
∥∥
L2 is estimated independently of λ and k.
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Similarly we estimate the second expression on the right hand side of (5.9):

c0
∥∥p̃λt (0)

∥∥
L2 6

∥∥∥f̃(0)
∥∥∥
L2

+ c ‖∆p̃m(0)‖L2 + α ‖divumt (0)‖L2 6 C.

• ∥∥(Tλ(t)− αIp̃λ(t)
)
n‖

H−
1
2
6 C

(∥∥Tλ(t)− αIp̃λ(t)
∥∥
L2 +

∥∥div
(
Tλ(t)− αIp̃λ(t)

)∥∥
L2

)
6 C

∥∥Tλ(0)− αIp̃λ(0)
∥∥
L2 +

t∫
0

∥∥Tλt − αIp̃λt ∥∥L2 dτ +
∥∥F (t)

∥∥
L2 +

∥∥vλt (t)
∥∥
L2


6 C(Te, ν) + ν sup

(0,t)

Ek(vλt , ε
λ
t , ε

p,λ
t )(t) + ν sup

(0,t)

∥∥p̃λt (t)
∥∥2

L2 ,

where we used the Young inequality with the small weight ν.
• ∥∥vλ∥∥

H
1
2 (∂Ω,R3)

6 C
∥∥vλ∥∥

H1(Ω;R3)
6 C

∥∥ελt ∥∥L2(Ω;S(3))

6 Ck
√
Ek(vλt , ε

λ
t , ε

p,λ
t )(t) 6 νEk(vλt , ε

λ
t , ε

p,λ
t )(t) + C(Te, ν, k).

• t∫
0

∫
ΓV

p̃λt gV,tdS(x)dτ 6

t∫
0

∥∥p̃λt ∥∥H 1
2 (∂Ω;R)

∥∥gV,t∥∥H− 1
2 (ΓV ;R)

dτ 6 ν

t∫
0

∥∥∇p̃λt ∥∥2

L2 dτ + C(ν)

t∫
0

∥∥gV,t∥∥H− 1
2

dτ.

In the remaining expressions we use the Schwarz inequality and then use the weighted Young inequality
with the small weight ν. In virtue of (5.9) one obtains

Ek
(
vλt , ε

λ
t , ε

p,λ
t

)
(t) +

c0
2

∥∥p̃λt (t)
∥∥2

L2 + c

t∫
0

∥∥∇p̃λt ∥∥2

L2 dτ 6 C(Te, ν, k) + C

t∫
0

Ek
(
vλt , ε

λ
t , ε

p,λ
t

)
dτ

+ ν sup
(0,t)

Ek(vλt , ε
λ
t , ε

p,λ
t )(t) + ν sup

(0,t)

∥∥p̃λt (t)
∥∥2

L2 + ν

t∫
0

∥∥∇p̃λt ∥∥2

L2 dτ.

Taking the supremum over (0, t) of the every summand on the left hand side of the inequality above,
fixing a sufficiently small ν and applying the Gronwall inequality finishes the proof. �

Theorem 5.3 (Existence and uniqueness of the solution to coercive approximation).
Assume that the initial conditions u0, u1, p0 ε

p
0 and the given functions F, f, gD, gN , gP , gV have the

regularity given by (5.4)-(5.7) and satisfy the compatibility conditions (4.6). Then there exists a unique
weak solution (uk, p̃k, εp,k) of (5.2) with the initial–boundary conditions (1.2)-(1.3) and satisfy

(uk, p̃k) ∈W 1,∞(0, Te;H
1(Ω;R3))×H1(0, Te;H

1(Ω;R)), εp,k ∈W 1,∞(0, Te;L
2(Ω;S(3))),

p̃k ∈W 1,∞(0, Te;L
2(Ω;R)), uktt ∈ L∞(0, Te;L

2(Ω;R3)).

Proof. In virtue of the Theorem 5.2 one obtains that the following sequences are bounded:
{
uλtt
}

,
{
ελt
}

,{
εp,λt

}
and

{
p̃λt
}

in L∞(L2) and
{
p̃λt
}

in L2(H1).

Due to the given regularity, the discussed functions are absolutely continuous with respect to t, hence
using the equality

f(t) = f(0) +

t∫
0

ftdτ

and the Korn inequality yields

•
{
p̃λ
}

is bounded in H1(0, Te;H
1(Ω;R)) ∩W 1,∞(0, Te;L

2(Ω;R)) independently of λ,

•
{
uλ
}

is bounded in W 1,∞(0, Te;H
1(Ω;R3)) ∩W 2,∞(0, Te;L

2(Ω;R3)) independently of λ,

•
{
εp,λ

}
is bounded in W 1,∞(0, Te;L

2(Ω;S(3))) independently of λ.

Hence one can select the subsequences (denoted by the same symbol as original sequence) such that
for λ→ 0+
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• uλ ⇀ u in H1(0, Te;H
1(Ω;R3)), uλtt ⇀ utt in L2(0, Te;L

2(Ω;R3)),

• p̃λ ⇀ p̃ in H1(0, Te;H
1(Ω;R)),

• εp,λ ⇀ εp in H1(0, Te;L
2(Ω;S(3))).

We now want to pass to the limit in the weak formulation of (5.3) and prove that (u, p̃, εp) is the
weak solution of (5.2). Note that the type of a convergence of the sequence uλ remains the same as
ũλ since these functions are only shifted by the function g̃D. (uλ, p̃λ, εp,λ) is a weak solution of (5.3) if
(ũλ, p̃λ, εp,λ) satisfies for a.e. t ∈ (0, Te), all v ∈ V and all w ∈W the following equations

ρ

∫
Ω

ũλttvdx+

∫
Ω

D
(
k + 1

k
ε(ũλ)− εp,λ

)
ε(v)dx− α

∫
Ω

p̃λ divvdx =

∫
Ω

F̃ vdx+

∫
ΓN

g̃NvdS(x), (5.10)

c0

∫
Ω

p̃λt wdx+ c

∫
Ω

∇p̃λ∇wdx+ α

∫
Ω

divũλt wdx =

∫
Ω

f̃wdx+

∫
ΓV

g̃V wdS(x), (5.11)

and εp,λ is the solution to the differential equation

{
εp,λt (x, t) = Aλ(T̂λ(x, t)),

εp,λ(x, 0) = εp0(x).

We can pass to the limit with λ→ 0+ in (5.10)-(5.11) as a consequence of the convergence obtained
above:

ρ

∫
Ω

ũttvdx+

∫
Ω

D
(
k + 1

k
ε(ũ)− εp

)
ε(v)dx− α

∫
Ω

p̃ divvdx =

∫
Ω

F̃ vdx+

∫
ΓN

g̃NvdS(x), ∀v ∈ V,

c0

∫
Ω

p̃twdx+ c

∫
Ω

∇p̃∇wdx+ α

∫
Ω

divũt wdx =

∫
Ω

f̃wdx+

∫
ΓV

g̃V wdS(x), ∀w ∈W

for a.e. t ∈ (0, Te). Furthermore

εpt (x, t) = w− lim
λ→0+

εp,λt (x, t) = w− lim
λ→0+

Aλ
(
T̂λ(x, t)

)
= χ(x, t).

Hence, if we prove that χ(x, t) = A(T̂ (x, t)) for a.e. (x, t) ∈ Ω× [0, Te] then, due to the equalities above,
we will obtain that (u, p̃, εp) is a weak solution of (5.2). It will finish the proof of the existence.

We now prove that
{
T̂λ
}

is a Cauchy sequence in L2(0, Te;L
2(Ω;S(3))).

Lemma 5.4 (Refined convergence of {T̂λ}). Under the assumptions of the Theorem 5.3 for every
λ, µ > 0 and for almost every t ∈ [0, Te] the following estimate holds

Ek(uλt − u
µ
t , ε

λ − εµ, εp,λ − εp,µ)(t) +

t∫
0

∥∥∇(p̃λ − p̃µ)
∥∥2

L2 dτ +
∥∥p̃λ(t)− p̃µ(t)

∥∥2

L2 6 C(Te, k)(λ+ µ),

where C(Te, k) is independent of λ, µ.

Proof. We now look at the energy change for the difference between solutions of (5.3) (with the initial–
boundary conditions (1.2)-(1.3)) considered with a parameter λ := λ and with λ := µ. By similar
calculation as in the proof of Theorem 5.2

d

dt

(
Ek
(
uλt − u

µ
t , ε

λ − εµ, εp,λ − εp,µ
)

(t)
)

=−
∫
Ω

(
T̂λ − T̂µ

)(
εp,λt − εp,µt

)
dx

+

∫
Ω

(
Tλ − Tµ

) (
ελt − ε

µ
t

)
dx+ ρ

∫
Ω

(uλt − u
µ
t )(uλtt − u

µ
tt)dx.

Let us observe

−
∫
Ω

(
T̂λ − T̂µ

)(
εp,λt − εp,µt

)
dx 6 −

∫
Ω

(
T̂λ − T̂µ

)(
mλ
(
T̂λ
)
−mµ

(
T̂µ
))

dx+ L
∥∥∥T̂λh − T̂λ∥∥∥2

L2
.
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Due to the properties of the Yosida approximation of a maximal monotone operator mλ(ω) = m (Jλ(ω)).
Moreover, by the definition of a resolvent (Jλ (ω) = u, where u+ λm(u) = ω) we obtain the equation

T̂λ = Jλ

(
T̂λ
)

+ λm
(
Jλ

(
T̂λ
))

Hence, by monotonicity of m

−
(
T̂λ −T̂µ

)(
mλ
(
T̂λ
)
−mµ

(
T̂µ
))

6 (λ+ µ)m
(
Jλ

(
T̂λ
))

m
(
Jµ

(
T̂µ
))
− λ

(
m
(
Jλ

(
T̂λ
)))2

− µ
(
m
(
Jµ

(
T̂µ
)))2

6

{
(λ+ µ)ab 6

(
λ+

µ

4

)
a2 +

(
µ+

λ

4

)
b2
}
6
λ+ µ

4

((
m
(
Jλ

(
T̂λ
)))2

+
(
m
(
Jµ

(
T̂µ
)))2

)
.

Similar arguments as in the proof of Theorem 5.2 lead to

d

dt
Ek
(
uλt − uλt , ελ − εµ, εp,λ − εp,µ

)
+
c0
2

d

dt

∥∥p̃λ − p̃µ∥∥2

L2 + c
∥∥∇(p̃λ − p̃µ)

∥∥2

L2

6
λ+ µ

4

∫
Ω

(
m
(
Jλ

(
T̂λ
)))2

+
(
m
(
Jµ

(
T̂µ
)))2

dx+ L
∥∥∥T̂λ − T̂µ∥∥∥2

L2
.

(5.12)

We now integrate the inequality (5.12) over time (0, t) and obtain

Ek
(
uλt − uλt , ελ − εµ, εp,λ − εp,µ

)
(t) +

c0
2

∥∥p̃λ(t)− p̃µ(t)
∥∥2

L2 + c

t∫
0

∥∥∇(p̃λ − p̃µ)
∥∥2

L2 dτ

6
λ+ µ

4

(∥∥∥εp,λt ∥∥∥2

L2(L2)
+ ‖εp,µt ‖

2
L2(L2)

)
+ L

t∫
0

∥∥∥T̂λ − T̂µ∥∥∥2

L2
dτ

6 (λ+ µ)C(Te, k) + C

t∫
0

Ek
(
uλt − uλt , ελ − εµ, εp,λ − εp,µ

)
dτ.

The last inequality follows from Theorem 5.2. Applying the Gronwall inequality finishes the proof. �

As a corollary of the Lemma 5.4,
{
T̂λ
}
λ>0

is a Cauchy sequence in L2(0, Te;L
2(Ω;S(3))).

Observe that
(
Jλ

(
T̂λ
)
,mλ

(
T̂λ
))

belongs to the graph of the operator m and therefore converges

strongly–weakly in L2. Due to the strong–weak closedness of the graph of a maximal–monotone operator
m and the properties of the resolvent one obtains(

Jλ

(
T̂λ
)
,mλ

(
T̂λ
))

λ→0+

−−−−→
(
T̂ ,m

(
T̂
))

.

Therefore we have w− limλ→0+ Aλ
(
T̂λ(x, t)

)
= A

(
T̂ (x, t)

)
for a.e. (x, t) ∈ Ω× [0, Te].

This ends the proof of the existence of the solution to (5.2).
It remains to prove the uniqueness of the solution. In order to do that we consider the change of a

total energy in time for the difference of the two distinct solutions (u1, p̃1, ε
p
1) and (u2, p̃2, ε

p
2).

Performing the similar computations as before we obtain

d

dt
Ek (u1,t − u2,t, ε1 − ε2, ε

p
1 − ε

p
2) +

c0
2

d

dt

∫
Ω

|p̃1 − p̃2|2 dx+ c

∫
Ω

|∇(p̃1 − p̃2)|2 dx 6 L
∥∥∥T̂1 − T̂2

∥∥∥2

L2
.

Integration over time and the Gronwall inequality yield
∥∥∥T̂1 − T̂2

∥∥∥2

L2
= 0.

Hence p̃1 ≡ p̃2, εp1 ≡ ε
p
2 and u1,t ≡ u2,t a.e. Additionally u1 may differ from u2 at most by a constant (in

time) vector: u1(x, t)− u2(x, t) = u1(x, 0)− u2(x, 0) = 0 for a.e. (x, t) ∈ Ω× [0, Te]. �
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6. Existence of the solutions

In this section we prove the existence of solutions to (5.1) with initial-boundary conditions (1.2)-(1.3).
Due to the remarks from the previous section this will be equivalent to the existence of solutions to
(1.1)-(1.3).

Our goal is to pass to the limit with the sequences of solutions (uk, pk, εp,k). Unfortunately, without the
coercivity, the energy estimates do not provide sufficient information about the sequences

{
ε(uk)

}
,
{
εp,k

}
but only about the sequence of differences

{
ε(uk)− εp,k

}
. The additional information is obtained due to

the growth conditions imposed on the constitutive equation.
The unpleasant regularity of the solutions requires further weakening of the definition of a weak solution
in the case of a system (1.1)-(1.3). The culprit here is the expression divut.

To proceed with the weaker definition we introduce the following space

W =
{
φ ∈ C1(Ω× [0, Te];R) : φ(x, Te) = 0 ∧ φ(x, t) = 0 for (x, t) ∈ ΓP × [0, Te]

}
and denote by 〈〈·, ·〉〉 the duality pairing between W and W∗. Also, recall that by 〈·, ·〉 we denote the
duality pairing between V and V∗. We are now ready to define the solution to (1.1) - (1.3).

Definition 6.1 (Solution of (1.1) - (1.3)). We say that the quadruple (u, p, εp, T = D(ε(u)− εp)) is
a solution to (1.1) - (1.3) if

1. For a.e. t ∈ [0, Te] the triple (ũ, p̃, εp) satisfies the system of equations:

ρ 〈ũtt, v〉+

∫
Ω

D(ε(ũ)− εp)ε(v)dx− α
∫
Ω

p̃ divvdx =

∫
Ω

F̃ vdx+

∫
ΓN

g̃NvdS(x), ∀v ∈ V, (6.1)

for a.e. t ∈ (0, Te) and

c0 〈〈p̃t, φ〉〉+ c

Te∫
0

∫
Ω

∇p̃∇φdxdτ − α
Te∫
0

∫
Ω

divũ φtdxdτ + α

∫
Ω

divũ0 φ(0)dx

=

Te∫
0

∫
Ω

f̃φdxdτ +

Te∫
0

∫
ΓV

g̃V φdS(x)dτ, ∀φ ∈ W,

(6.2)

2. The fifth equation of (1.1) is satisfied in a sense of Young measures, i.e.

εpt (x, t) =

∫
S3

A(S)dν(x,t)(S),

where {ν(x,t)} is a Young measure satisfying

T (x, t) =

∫
S3

Sdν(x,t)(S) for a.e. (x, t) ∈ Ω× (0, Te).

3. εp(x, 0) = εp0(x), u(x, 0) = u0(x), ut(x, 0) = u1(x), p(x, 0) = p0(x).

Furthermore, the following regularities are required

u ∈W 1,∞(0, Te;L
2(Ω;R3)) ∩ L∞(0, Te;W

1,1+ 1
ω (Ω;R3)), utt ∈ L2(0, Te;

(
H1(Ω;R3)

)∗
),

p ∈ L2(0, Te;H
1(Ω;R)) ∩ L∞(0, Te;L

2(Ω;R)), pt ∈ W∗,

εp ∈ L∞(0, Te;L
1+ 1

ω (Ω;S3)) ∩W 1,1+ 1
ω (0, Te;L

1+ 1
ω (Ω;S3)), T ∈ L∞(0, Te;L

2(Ω;S3)).

(6.3)

The similar definitions appear in the papers addressing the non-monotone problems (see [14]). There-
fore the proof of the existence of the solution in the sense of the Definition 6.1 is a natural step in our
discussion in the case of the LM-type constitutive equation.

To obtain the proper energetic estimates we need to restrict the class of the given boundary data.
These additional assumptions are known as the safe-load conditions (see [17] for more details). From
the physical point of view, the safe-load conditions say that the boundary data must be well–tolerated
by the considered material. However, from the mathematical point of view, the safe-load conditions
provide an essential information to the proof of a priori estimates for the coercive approximation (see the
Lemma 6.3).

22



Definition 6.2 (Safe-load conditions). We say that the functions gD, gN satisfy the safe-load condi-
tions with the regularity 1 + ω, if there exist the initial conditions u∗0, u

∗
1 ∈ H1(Ω;R3) and the function

F ∗ ∈ H1(0, Te;L
2(Ω;R3)) such that there exists a solution (u∗, T ∗) of the linear system

ρu∗tt(x, t)− divxT
∗(x, t) = F ∗(x, t),

T ∗(x, t) = D(ε(u∗(x, t))),

with the initial–boundary conditions

u∗(x, 0) = u∗0(x) for x ∈ Ω,
u∗t (x, 0) = u∗1(x) for x ∈ Ω,
u∗(x, t) = gD(x, t) for x ∈ ΓD, t > 0,

T ∗(x, t)n(x) = gN (x, t) for x ∈ ΓN , t > 0,

and the regularity

u∗ ∈W 1,∞(0, Te;H
1(Ω;R3)), T ∗ ∈ L1+ω(0, Te;L

1+ω(Ω;S3)), u∗tt ∈ L∞(0, Te;L
2(Ω;S3)).

We now proceed with the energetic estimate of
{

(uk, p̃k, εp,k, T k)
}∞
k=1

. This result is a main step to prove
the existence of the solution (according to the Definition 6.1).

Lemma 6.3 (Energetic estimate independent of k). Assume the same as in the Theorem 5.3 and
suppose that gD, gN satisfy the safe-load conditions with the regularity 1 + ω. Then for almost every
t ∈ [0, Te] the following inequality holds

Ek
(
ukt − u∗t , εk − ε∗, εp,k

)
(t) +

∥∥p̃k(t)
∥∥2

L2 +

t∫
0

∥∥p̃k∥∥2

H1 dτ +

t∫
0

∫
Ω

m
(
T̂ k
)
T̂ kdxdτ 6 C(Te),

where (uk, p̃k, εp,k) is the solution of (5.2) with the conditions (1.2)-(1.3), u∗ is the function from the
definition of the safe-load conditions and ε∗ = ε(u∗). Furthermore the constant C(Te) > 0 is independent
of k.

Proof. Again we compute the difference of the energy in time. In order to dispose of the boundary
integrals we shift the function uk by u∗.

d

dt

(
Ek
(
ukt − u∗t , εk − ε∗, εp,k

)
(t)
)
ρ

∫
Ω

(
ukt − u∗t

) (
uktt − u∗tt

)
dx−

∫
Ω

T̂ kεp,kt dx+

∫
Ω

T ∗εp,kt dx

−
(

1 +
1

k

)∫
Ω

T ∗
(
εkt − ε∗t

)
dx+

∫
Ω

T k
(
εkt − ε∗t

)
dx.

Observe that

−
∫
Ω

T ∗
(
εkt − ε∗t

)
dx =

∫
Ω

divT ∗
(
ukt − u∗t

)
dx−

∫
ΓN

gN
(
ukt − u∗t

)
dS(x).

Similar computation as in the proofs of Theorem 5.2 and Lemma 5.4 gives

Ek
(
ukt − u∗t , εk − ε∗, εp,k

)
(t) +

c0
2

∥∥p̃k(t)
∥∥2

L2 + c

t∫
0

∥∥∇p̃k(t)
∥∥2

L2 dxdτ +

t∫
0

∫
Ω

m
(
T̂ k
)
T̂ kdxdτ

6 Ek
(
ukt − u∗t , εk − ε∗, εp,k

)
(0) +

c0
2
‖p̃0‖2L2 + C

t∫
0

Ek
(
ukt − u∗t , εk − ε∗, εp,k

)
(τ)dτ

+

t∫
0

∫
Ω

(
ukt − u∗t

) (
F − F ∗

)
dxdτ +

t∫
0

∫
Ω

fp̃kdxdτ +
1

k

t∫
0

∫
Ω

divT ∗
(
ukt − u∗t

)
dxdτ

− α
t∫

0

∫
Ω

divu∗t p̃
kdxdτ +

t∫
0

∫
Ω

T ∗εp,kt dxdτ +

t∫
0

∫
ΓV

gV p̃
kdS(x)dτ − 1

k

t∫
0

∫
ΓN

gN
(
ukt − u∗t

)
dS(x)dτ.

(6.4)
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We now have to estimate the summands on the right hand side of the inequality above.
• Obviously, first two terms can be estimate by constant which depends only on u0, u∗0, εp0, p̃0 and D.
• Applying the Young inequality gives

t∫
0

∫
Ω

T ∗εp,kt dxdτ 6 C(ω, ν)

t∫
0

‖T ∗‖1+ω
L1+ω dτ + ν

t∫
0

∥∥∥εp,kt ∥∥∥1+ 1
ω

L1+ 1
ω

dτ.

By the property of A, there exists a constant D > 0 such that for
∣∣∣T̂ k∣∣∣ > D the following estimate holds

t∫
0

∥∥∥εp,kt ∥∥∥1+ 1
ω

L1+ 1
ω

dτ 6 C

t∫
0

∫
Ω

∣∣∣T̂ k∣∣∣ω+1

dxdτ

6 C

t∫
0

∫
Ω

m
(
T̂ k
)
T̂ kdxdτ + CTe sup

(0,t)

Ek
(
ukt − u∗t , εk − ε∗, εp,k

)
.

(6.5)

If
∣∣∣T̂ k∣∣∣ 6 D, then from the continuity of A it follows that

Te∫
0

∫
Ω

∣∣∣A(T̂ k)∣∣∣1+ 1
ω

dxdτ 6 C(Te).

• To estimate last term we proceed as follows

t∫
0

∫
ΓN

gN
(
ukt − u∗t

)
dS(x)dτ =

∫
ΓN

gN (t)
(
uk(t)− u∗(t)

)
dS(x)−

∫
ΓN

gN (0)
(
uk(0)− u∗(0)

)
dS(x)dτ

−
t∫

0

∫
ΓN

gN,t
(
uk − u∗

)
dS(x)dτ.

Applying the Korn inequality yields

−1

k

t∫
0

∫
ΓN

gN
(
ukt − u∗t

)
dS(x)dτ 6

ν

k
sup
(0,t)

∥∥εk − ε∗∥∥2

L2 + C(Te, ν) ‖gN‖
2

W 1,∞(H−
1
2 )

+ C.

Using elementary estimates for the rest terms in (6.4) gives

Ek
(
ukt − u∗t , εk − ε∗, εp,k

)
(t) +

c0
2

∥∥p̃k(t)
∥∥2

L2 + c

t∫
0

∥∥∇p̃k(t)
∥∥2

L2 dxdτ +

t∫
0

∫
Ω

m
(
T̂ k
)
T̂ kdxdτ

6 C(Te, ν) + C

t∫
0

Ek
(
ukt − u∗t , εk − ε∗, εp,k

)
(τ)dτ + C (Te) ν sup

(0,t)

Ek
(
ukt − u∗t , εk − ε∗, εp,k

)

+ ν sup
(0,t)

∥∥p̃k∥∥2

L2 + 2ν

t∫
0

∥∥∇p̃k∥∥2

L2 dτ + Cν

t∫
0

∫
Ω

m
(
T̂ k
)
T̂ kdxdτ.

The constants on the right hand side are independent of k. Therefore, we can take the sufficiently small ν
then take the supremum over (0, t) and finally apply the Gronwall inequality to finish the proof. �

Theorem 6.4 (Existence of the solutions). Suppose that the initial conditions u0, u1, p0, εp0 and
the given functions F, f, gD, gN , gP , gV satisfy the compatibility conditions (4.6), admit the regularity
(5.4)-(5.7) and gD, gN satisfy the safe-load conditions with the regularity 1 + ω. Then there exists the
solution (u, p̃, εp, T ) of (5.1) with the conditions (1.2), (1.3) (understood as in the Definition 6.1).

Proof. By the Lemma 6.3 one concludes that

• the sequence
{
uk
}∞
k=1

(as well as
{
ũk
}∞
k=1

) is bounded in W 1,∞(0, Te;L
2(Ω;R3)),

• the sequence
{
T̂ k
}∞
k=1

is bounded in L∞(0, Te;L
2(Ω;S3)),
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• the sequence
{

1√
k
εk
}∞
k=1

is bounded in L∞(0, Te;L
2(Ω;S3)),

• the sequence
{
p̃k
}∞
k=1

is bounded in L2(0, Te;H
1(Ω;R)) ∩ L∞(0, Te;L

2(Ω;R)),

• the sequence
{
T k
}∞
k=1

is bounded in L∞(0, Te;L
2(Ω;S3)), indeed: T k = T̂ k + 1

kD
(
εk
)
,

• in virtue of (6.5) the sequence
{
εp,kt

}∞
k=1

is bounded in L1+ 1
ω (0, Te;L

1+ 1
ω (Ω;S3)) ,

• from the absolute continuity of εp,k for every k, we obtain that the sequence
{
εp,k

}∞
k=1

is bounded

in L∞(0, Te;L
1+ 1

ω (Ω;S3)),

• the sequence
{
ε(uk)

}∞
k=1

is bounded in L∞(0, Te;L
1+ 1

ω (Ω;S3)),

• the sequence
{

divuk
}∞
k=1

=
{

tr ε(uk)
}∞
k=1

is bounded L∞(0, Te;L
1+ 1

ω (Ω;S3)),

• due to the higher integrability of εp,kt and the Dunford-Pettis theorem we conclude that it is weakly
relatively compact in L1(0, Te;L

1(Ω;S3)).

Passing to the limit (with k → ∞) in the weak formulation of the approximated system requires more
information about the sequences

{
ũktt
}∞
k=1

and
{
p̃kt
}

. We will prove that they are bounded in L2(0, Te;V∗)
and W∗ respectively. In order to estimate the first sequence we choose any v ∈ V such that ‖v‖V 6 1.
Hence

ρ

∫
Ω

ũkttvdx+

∫
Ω

D
(
ε(ũk)− εp,k +

1

k
ε(ũk)

)
ε(v)dx− α

∫
Ω

p̃k divvdx =

∫
Ω

F̃ kvdx+

∫
ΓN

g̃kNvdS(x),

for a.e. (x, t) ∈ Ω× [0, Te].

Remark 6.5. Note that the right hand side of the equation above depends on k. It was not precisely
stated during the previous calculations, however one can bound the sequences of those functions inde-
pendently of k due to their convergence. For example

F̃ k := F − ρg̃D,tt − α∇g̃P +

(
1 +

1

k

)
div (D(ε(g̃D)))

k→∞−−−−→ F − ρg̃D,tt − α∇g̃P + div (D(ε(g̃D))) =: F̃ .

This convergence holds in H1(0, Te;L
2(Ω;R3)). Similarly one can obtain g̃kN

k→∞−−−−→ g̃N in

W 2,∞(0, Te;H
− 1

2 (ΓN ;R3)). Hence

ρ

Te∫
0

〈
ũktt, v

〉2
dτ 6 C

Te∫
0

∫
Ω

∣∣∣F̃ kv∣∣∣dx
2

dτ + C

Te∫
0

∫
ΓN

∣∣g̃kNv∣∣dS(x)

2

dτ

+ C

Te∫
0

∫
Ω

∣∣∣∣D(ε(ũk)− εp,k +
1

k
ε(ũk)

)
ε(v)

∣∣∣∣ dx
2

dτ + C

Te∫
0

∫
Ω

∣∣p̃k divv
∣∣ dx

2

dτ.

Using the estimates from the Lemma 6.3 and remark above we obtain the estimate independent of k
and v

ρ

Te∫
0

〈
ũktt, v

〉2
dτ 6 C(Te).

Taking the supremum over v such that ‖v‖V 6 1 gives
Te∫
0

∥∥ũktt∥∥2

V∗ dτ 6 C(Te). Proceeding analogously

one can prove that the sequence
{
p̃kt
}

is bounded in W∗ independently of k. In virtue of the discussion
above we can extract the subsequence of uk (denoted by the same symbol) such that

• uk ⇀ u in H1(0, Te;L
2(Ω;R3)), uktt ⇀ utt in L2(0, Te;V∗),

• p̃k ⇀ p̃ in L2(0, Te;H
1(Ω;R)), p̃kt ⇀ p̃t in W∗,
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• T̂ k ⇀ T in L2(0, Te;L
2(Ω;S3)),

• 1
kε(ũ

k) ⇀ 0 in L2(0, Te;L
2(Ω;S3)),

• εp,k ⇀ εp in W 1,1+ 1
ω (0, Te;L

1+ 1
ω (Ω;S3)),

• divuk ⇀ divu in L2(0, Te;L
1+ 1

ω (Ω;R)).

It remains to pass to the limit. Suppose that (uk, p̃k, εp,k) are the solutions of (5.2). Hence, for all v ∈ V
and all φ ∈ W, the following system is satisfied

ρ

∫
Ω

ũkttvdx+

∫
Ω

D
(
ε(ũk)− εp,k +

1

k
ε(ũk)

)
ε(v)dx− α

∫
Ω

p̃k divvdx =

∫
Ω

F̃ kvdx+

∫
ΓN

g̃kNvdS(x),

c0

Te∫
0

∫
Ω

p̃kt φdxdτ + c

Te∫
0

∫
Ω

∇p̃k∇φdxdτ + α

Te∫
0

∫
Ω

divũkt φdxdτ =

Te∫
0

∫
Ω

f̃φdxdτ +

Te∫
0

∫
ΓV

g̃V φdS(x)dτ,

εp,kt = A
(
D
(
ε(uk)− εp,k

))
= A

(
T̂ k
)
.

We integrate by parts (with respect to the time) in the third summand of the second equation. The
standard procedure yields

ρ 〈ũtt, v〉+

∫
Ω

D (ε(ũ)− εp) ε(v)dx− α
∫
Ω

p̃ divvdx =

∫
Ω

F̃ vdx+

∫
ΓN

g̃NvdS(x), ∀v ∈ V,

c0 〈〈p̃t, φ〉〉+ c

Te∫
0

∫
Ω

∇p̃∇φdxdτ − α
Te∫
0

∫
Ω

divũ φtdxdτ + α

∫
Ω

divũ0 φ(0)dx

=

Te∫
0

∫
Ω

f̃φdxdτ +

Te∫
0

∫
ΓV

g̃V φdS(x)dτ, ∀φ ∈ W,

εpt = w − lim
k→∞

εp,kt = w − lim
k→∞

A
(
T̂ k
)

= χ̂.

In virtue of the Fundamental Theorem for the Young Measures (for the proof see [3]) there exists the Young

measure ν(x,t) generated by the sequence
{
T̂ k
}∞
k=1

such that T̂ (x, t) =
∫
S3

Sdν(x,t)(S). Furthermore, the

weak limit χ̂ is in the form

χ̂(x, t) =

∫
S3

A(S)dν(x,t)(S).

This characterisation of the non-linearity ends the proof, since (u, p̃, εp, T ) is the solution to (5.1) with
the initial–boundary conditions (1.2)-(1.3) according to the Definition 6.1. �

Remark 6.6. Due to the remarks before, the Theorem 5.3 is a final step of the existence problem
for (1.1)-(1.3). This is true, since if (u, p̃, εp, T ) is the solution to (5.1) with (1.2)-(1.3), then (u, p =
p̃+ g̃P , ε

p, T ) is the solution to (1.1)-(1.3).

7. Higher regularity of the solutions

The regularity of the weak solution (as in Definition 6.1) obtained in the previous section is not
satisfactory. The constitutive equation is satisfied only in terms of Young measures and there is no
information of its uniqueness whatsoever.

In this section we improve the previous definition of the safe-load conditions by demanding higher
regularity of the solution to the auxiliary linear problem and we redefine the weak solution accordingly.
Consequently, we obtain an additional information about the regularity and the uniqueness.

We begin with the definition of the improved safe-load conditions.
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Definition 7.1 (Improved safe-load conditions). We say that gD, gN satisfy the improved
safe-load conditions with the regularity 1 + ω if gD, gN satisfy safe-load conditions with regularity 1 + ω
(Definition 6.2) and u∗, T ∗ have the following regularity

u∗ ∈W 2,∞(0, Te;H
1(Ω;R3)) ∩W 3,∞(0, Te;L

2(Ω;R3)), T ∗ ∈W 2,∞(0, Te;L
1+ω(Ω;S(3))).

We can now proceed with the energy estimate for time derivatives of the solutions to coercive approxi-
mation (5.2) which is independent of k.

Lemma 7.2 (Energy estimate of time derivatives). Under the assumptions of the Theorem 5.3 and
gD, gN satisfying the improved safe–load conditions with the regularity 1+ω, the following estimate holds

t∫
0

Ek
(
ukττ − u∗ττ , εkτ − ε∗τ , εp,kτ

)
(τ)dτ +

t∫
o

∥∥p̃kτ (τ)
∥∥2

L2 dτ +

t∫
0

s∫
0

∥∥p̃kτ (τ)
∥∥2

H1 dτds 6 C(Te),

for t ∈ [0, Te], where (uk, p̃k, εp,k) is a solution to (5.2) with the initial-boundary conditions (1.2)-(1.3),
u∗ is a function from the Definition 7.1, ε∗ = ε(u∗). Moreover, the constant C(Te) > 0 is independent of
k and t.

Proof. Throughout the proof we follow the notation introduced in the proof of the Theorem 5.2 and
also denote v∗(x, t) := u∗t and v∗h(x, t) := v∗(x, t + h), F ∗h (x, t) := F ∗(x, t + h). Let k > 1 be fixed.
Proceeding analogously to the proof of the Theorem 5.2 one obtains

d

dt

(
Ek
(
vkh − vk − (v∗h − v∗), εkh − εk − (ε∗h − ε∗), ε

p,k
h − ε

p,k
)

(t)
)

=

∫
Ω

(T ∗h − T ∗)
(
εp,kh,t − ε

p,k
t

)
dx

−
∫
Ω

(
T̂ kh − T̂ k

)(
εp,kh,t − ε

p,k
t

)
dx−

(
1 +

1

k

)∫
Ω

(T ∗h − T ∗)
(
εkh,t − εkt − (ε∗h,t − ε∗t )

)
dx

+

∫
Ω

(
T kh − T k

) (
εkh,t − εkt − (ε∗h,t − ε∗t )

)
dx+ ρ

∫
Ω

(vkh − vk − (v∗h − v∗))(vkh,t − vkt − (v∗h,t − v∗t ))dx.

Similar calculation as in the proof of Theorem 5.2 and Lemma 6.3 gives

d

dt
Ek
(
vkh − vk − (v∗h − v∗) , εkh − εk − (ε∗h − ε∗), ε

p,k
h − ε

p,k
)

+
c0
2

d

dt

∥∥p̃kh − p̃k∥∥2

L2 + c
∥∥∇(p̃kh − p̃k)

∥∥2

L2

6L
∥∥∥T̂ kh − T̂ k∥∥∥2

L2
+

1

k

∫
Ω

div (T ∗h − T ∗)
(
vkh − vk − (v∗h − v∗)

)
dx+

∫
Ω

(
fh − f

) (
p̃kh − p̃k

)
dx

− α
∫
Ω

div (v∗h − v∗)
(
p̃kh − p̃k

)
dx+

∫
Ω

(
Fh − F − (F ∗h − F ∗)

) (
vkh − vk − (v∗h − v∗)

)
dx

+

∫
ΓV

(
gVh
− gV

) (
p̃kh − p̃k

)
dS(x) +

∫
Ω

(T ∗h − T ∗)
(
εp,kh,t − ε

p,k
t

)
dx

− 1

k

∫
ΓN

(
gNh
− gN

) (
vkh − vk − (v∗h − v∗)

)
dS(x).

We now multiply the result above by 1
h2 and integrate twice over time: the first one over (0, t) and the
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second one over t in range (0, b) where b ∈ [0, Te − h]. Hence

1

h2

b∫
0

Ek
(
vkh − vk − (v∗h − v∗), εkh − εk − (ε∗h − ε∗), ε

p,k
h − ε

p,k
)

(t)dt

+
c0

2h2

b∫
0

∥∥p̃kh(t)− p̃k(t)
∥∥2

L2 dt+
c

h2

b∫
0

t∫
0

∥∥∇(p̃kh − p̃k)
∥∥2

L2 dτdt

6
b

h2
Ek
(
vkh − vk − (v∗h − v∗), εkh − εk − (ε∗h − ε∗), ε

p,k
h − ε

p,k
)

(0) +
bc0
2h2

∥∥p̃kh(0)− p̃k(0)
∥∥2

L2

+
L

h2

b∫
0

t∫
0

∥∥∥T̂ kh − T̂ k∥∥∥2

L2
dτdt+

1

kh2

b∫
0

t∫
0

∫
Ω

div (T ∗h − T ∗)
(
vkh − vk − (v∗h − v∗)

)
dxdτdt

+
1

h2

b∫
0

t∫
0

∫
Ω

(
fh − f

) (
p̃kh − p̃k

)
dxdτdt− α

h2

b∫
0

t∫
0

∫
Ω

div (v∗h − v∗)
(
p̃kh − p̃k

)
dxdτdt

+
1

h2

b∫
0

t∫
0

∫
Ω

(
Fh − F − (F ∗h − F ∗)

) (
vkh − vk − (v∗h − v∗)

)
dxdτdt

+
1

h2

b∫
0

t∫
0

∫
ΓV

(
gVh
− gV

) (
p̃kh − p̃k

)
dS(x)dτdt+

1

h2

b∫
0

t∫
0

∫
Ω

(T ∗h − T ∗)
(
εp,kh,t − ε

p,k
t

)
dxdτdt

− 1

kh2

b∫
0

t∫
0

∫
ΓN

(
gNh
− gN

) (
vkh − vk − (v∗h − v∗)

)
dS(x)dτdt.

(7.1)

Due to the regularity of the data as in the Theorem 5.2 and the Lebesgue’s Dominated Convergence The-
orem one can pass to the limits with h→ 0+ in every integral except the last two. This is due to the fact
that, as in the proof of the Theorem 5.2, we do not control the difference vkt −v∗ in L2(0, Te;H

1
2 (∂Ω;R3)).

Moreover, we do not have any information of εp,ktt . Therefore, for those two integrals we apply a similar
reasoning.

As an example we consider one of these integrals. Firstly, observe that for a fixed k integrating by
parts yields for a.e. t

t∫
0

∫
Ω

(T ∗h − T ∗)
(
εp,kh,t − ε

p,k
t

)
dxdτ = −

t∫
0

∫
Ω

(
T ∗h,t − T ∗t

) (
εp,kh − ε

p,k
)

dxdτ

+

∫
Ω

(T ∗h (t)− T ∗(t))
(
εp,kh (t)− εp,k(t)

)
dx−

∫
Ω

(T ∗h (0)− T ∗(0))
(
εp,kh (0)− εp,k(0)

)
dx.

Hence, the Lebesgue’s Dominated Convergence Theorem gives

1

h2

b∫
0

t∫
0

∫
Ω

(T ∗h − T ∗)
(
εp,kh,t − ε

p,k
t

)
dxdτdt

h→0+

−−−−→
b∫

0

∫
Ω

T ∗t (t)εp,kt (t)dxdt− b
∫
Ω

T ∗t (0)εp,kt (0)dx

−
b∫

0

t∫
0

∫
Ω

T ∗ttε
p,k
t dxdτdt.
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Proceeding similarly one obtains

1

h2

b∫
0

t∫
0

∫
ΓN

(
gNh
− gN

) (
vkh − vk − (v∗h − v∗)

)
dS(x)dτdt

h→0+

−−−−→
b∫

0

∫
ΓN

gN,t(t)
(
vk(t)− v∗(t)

)
dS(x)dt

−b
∫

ΓN

gN,t(0) (u1 − u∗1) dS(x)−
b∫

0

t∫
0

∫
ΓN

gN,tt
(
vk − v∗

)
dS(x)dτdt.

Combining these results we obtain from the inequality (7.1) the estimate

b∫
0

Ek
(
vkt − v∗t , εkt − ε∗t , ε

p,k
t

)
(t)dt+

c0
2

b∫
0

∥∥p̃kt (t)
∥∥2

L2 dt+ c

b∫
0

t∫
0

∥∥∇p̃kt ∥∥2

L2 dτdt

6 bEk
(
vkt − v∗t , εkt − ε∗t , ε

p,k
t

)
(0) +

bc0
2

∥∥p̃kt (0)
∥∥2

L2 + L

b∫
0

t∫
0

∥∥∥T̂ kt ∥∥∥2

L2
dτdt

+
1

k

b∫
0

t∫
0

∫
Ω

divT ∗t
(
vkt − v∗t

)
dxdτdt+

b∫
0

t∫
0

∫
Ω

f tp̃
k
t dxdτdt− α

b∫
0

t∫
0

∫
Ω

div (v∗t ) p̃kt dxdτdt

+

b∫
0

t∫
0

∫
Ω

(
F t − F ∗t

) (
vkt − v∗t

)
dxdτdt+

b∫
0

t∫
0

∫
ΓV

gV,tp̃
k
t dS(x)dτdt+

b∫
0

∫
Ω

T ∗t (t)εp,kt (t)dxdt

− b
∫
Ω

T ∗t (0)εp,kt (0)dx−
b∫

0

t∫
0

∫
Ω

T ∗ttε
p,k
t dxdτdt− 1

k

b∫
0

∫
ΓN

gN,t(t)
(
vk(t)− v∗(t)

)
dS(x)dt

+
b

k

∫
ΓN

gN,t(0) (u1 − u∗1) dS(x) +
1

k

b∫
0

t∫
0

∫
ΓN

gN,tt
(
vk − v∗

)
dS(x)dτdt.

(7.2)

Now we proceed with estimates of the expressions on the right hand side of (7.2).
• First two integrals can be estimate by initial conditions i.e.

bEk
(
vkt − v∗t , εkt − ε∗t , ε

p,k
t

)
(0) +

bc0
2

∫
Ω

∣∣p̃kt (0)
∣∣2 dx

6 C(Te)

(∥∥uktt(0)
∥∥2

L2 + ‖u∗tt(0)‖2L2 + ‖ε(u1)‖2L2 ‖ε(u∗1)‖2L2 +
∥∥∥εp,kt (0)

∥∥∥2

L2
+
∥∥p̃kt (0)

∥∥2

L2

)
To obtain this estimates independent of k one can use a similar argument as in the proof of Theorem 5.2.
•

1

k

b∫
0

t∫
0

∫
ΓN

gN,tt
(
vk − v∗

)
dS(x)dτdt− 1

k

b∫
0

∫
ΓN

gN,t(t)
(
v∗(t)− vk(t)

)
dS(x)dt

6
Cb

k

b∫
0

∥∥gN,tt∥∥H− 1
2 (ΓN )

∥∥εkt − ε∗t∥∥L2(Ω)
dτ +

C

k

b∫
0

∥∥gN,t∥∥H− 1
2 (ΓN )

∥∥εkt − ε∗t∥∥L2(Ω)
dt

6 2ν

b∫
0

Ek
(
vkt − v∗t , εkt − ε∗t , ε

p,k
t

)
(τ)dτ + C(Te, ν)

(∥∥gN,tt∥∥2

L2(H−
1
2 )

+
∥∥gN,t∥∥2

L2(H−
1
2 )

)
.

• Using the Lemma 6.3 we get

b∫
0

∫
Ω

T ∗t (t)εp,kt (t)dxdt−
b∫

0

t∫
0

∫
Ω

T ∗ttε
p,k
t dxdτdt

6
(
‖T ∗t ‖L1+ω(L1+ω) + b ‖T ∗tt‖L1+ω(L1+ω)

)∥∥∥εp,kt ∥∥∥
L1+ 1

ω (L1+ 1
ω )
6 C(Te),

29



By using standard estimates for the rest terms in (7.2) one obtains

b∫
0

Ek
(
vkt − v∗t , εkt − ε∗t , ε

p,k
t

)
(t)dt+

c0
2

b∫
0

∥∥p̃kt (t)
∥∥2

L2 dt+ c

b∫
0

t∫
0

∥∥∇p̃kt ∥∥2

L2 dτdt

6C(Te, ν, ρ) + CL

b∫
0

t∫
0

Ek
(
vkt − v∗t , εkt − ε∗t , ε

p,k
t

)
(τ)dτdt+ 2ν

b∫
0

∥∥p̃kt (t)
∥∥2

L2 dt

+ 4ν

b∫
0

Ek
(
vkt − v∗t , εkt − ε∗t , ε

p,k
t

)
(t)dt+ ν

b∫
0

t∫
0

∥∥∇p̃kt (τ)
∥∥2

L2 dτdt.

(7.3)

Taking a sufficiently small ν gives, for all b ∈ [0, Te), the following estimate

b∫
0

Ek
(
vkt − v∗t , εkt − ε∗t , ε

p,k
t

)
(t)dt+

b∫
0

∥∥p̃kt (t)
∥∥2

L2 dt+

b∫
0

t∫
0

∥∥∇p̃kt ∥∥2

L2 dτdt

6 C(Te) + CL

b∫
0

t∫
0

Ek
(
vkt − v∗t , εkt − ε∗t , ε

p,k
t

)
(τ)dτdt,

(7.4)

where the constants C(Te) and C are independent of k.

Remark 7.3. The time interval can be closed, as the reasoning can be done (with some minor amend-
ments) for b = Te − h.

Applying the Gronwall’s inequality to (7.4) ends the proof. �

The estimate from the Lemma 7.2 allows us to raise the regularity of a solution. Note that in the special
case when one considers the Dirichlet boundary conditions instead of the mixed boundary conditions it
is possible to obtain a better estimate without the safe–load conditions, i.e.

Proposition 7.4 (Time-derivatives estimate for the Dirichlet-type problem). Consider
(1.1)-(1.3) only with the Dirichlet-type boundary conditions for u and p (i.e. ΓD = ΓP = ∂Ω in (1.2)).
Then, under the assumptions of the Theorem 5.2, the following estimate holds

Ek
(
uktt, ε

k
t , ε

p,k
t

)
(t) +

t∫
0

∥∥p̃kt ∥∥2

H1 dτ +
∥∥p̃kt (t)

∥∥2

L2 6 C(Te), for a.e. t ∈ [0, Te],

where (uk, p̃k, εp,k) is the weak solution of (5.2) with the initial-boundary conditions (1.2)-(1.3). Further-
more C(Te) is independent of k.

To prove this proposition one has to follow the proof of the Theorem 5.2. We omit this procedure here.
Let us introduce the new space of test functions, i.e.

Wk :=
{
w ∈W 1,k(Ω;R) : v = 0 on ΓP

}
.

Recall that W = W2 and Wk ⊂ W for k > 2. We can now define the higher regularity solutions to
(1.1)-(1.3).

Definition 7.5 (Higher regularity solution of (1.1)-(1.3)). We say that the quadruple
(u, p, εp, T = D(ε(u)− εp)) is a solution to (1.1)-(1.3) with the higher regularity, if

1. For a.e. t ∈ [0, Te] the triple (ũ, p̃, εp) satisfies the system of equations:

ρ

∫
Ω

ũttvdx+

∫
Ω

D(ε(ũ)− εp)ε(v)dx− α
∫
Ω

p̃ divvdx =

∫
Ω

F̃ vdx+

∫
ΓN

g̃NvdS(x), ∀v ∈ V, (7.5)

c0

∫
Ω

p̃twdx+ c

∫
Ω

∇p̃∇wdx+ α

∫
Ω

divũt wdx =

∫
Ω

f̃wdx+

∫
ΓV

g̃V wdS(x), ∀w ∈W1+ω. (7.6)
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2. The fifth equation of (1.1) is satisfied in a sense of the Young measures, i.e.

εpt (x, t) =

∫
S(3)

A(S)dν(x,t)(S),

where {ν(x,t)} is the Young measure.

3. εp(x, 0) = εp0(x), u(x, 0) = u0(x), ut(x, 0) = u1(x), p(x, 0) = p0(x).

Furthermore, the following regularities are required

u ∈ H2(0, Te;L
2(Ω;R3)) ∩W 1,1+ 1

ω (0, Te; (W 1,1+ 1
ω (Ω;R3))),

p ∈ L2(0, Te;H
1(Ω;R)) ∩H1(0, Te;L

2(Ω;R)), εp ∈W 1,1+ 1
ω (0, Te;L

1+ 1
ω (Ω;S(3))),

T ∈ H1(0, Te;L
2(Ω;S(3))) ∩ L1+ω(0, Te;L

1+ω(Ω;S(3))).

(7.7)

It appears that with the sufficiently high regularity of the data one can prove the existence of such
solution.

Theorem 7.6 (Existence of the higher regularity solutions). Assume that the initial values u0,
u1, p0, εp0 and given functions F, f, gD, gN , gP , gV satisfy the compatibility conditions (4.6), have the
regularities (5.4)-(5.7) and gD, gN satisfy the improved safe–load conditions with the regularity 1 +
ω. Then, there exists a solution (u, p, εp, T ) of (1.1)-(1.3) with the higher regularity according to the
Definition 7.5.

Proof. Firstly, we prove the existence of a solution (u, p̃, εp, T ) with the higher regularity (according to
the Definition 7.5) in a case of (5.1), then by the previous remarks the existence of the solution in a case
(1.1) will immediately follow.

By the Lemma 6.3 and the Lemma 7.2 we can extract the subsequences of k (denoted with the same
symbol) such that

• uk ⇀ u in H2(0, Te;L
2(Ω;R3)) ∩W 1,1+ 1

ω (0, Te;W
1,1+ 1

ω (Ω;R3)),

• p̃k ⇀ p̃ in L2(0, Te;H
1(Ω;R)) ∩H1(0, Te;L

2(Ω;R)),

• T̂ k ⇀ T in H1(0, Te;L
2(Ω;S(3))) ∩ L1+ω(0, Te;L

1+ω(Ω;S(3))),

• 1
kε(ũ

k) ⇀ 0 in H1(0, Te;L
2(Ω;S(3))),

• εp,k ⇀ εp in W 1,1+ 1
ω (0, Te;L

1+ 1
ω (Ω;S(3))),

• divuk ⇀ divu in W 1,1+ 1
ω (0, Te;L

1+ 1
ω (Ω;S(3))).

Let (uk, p̃k, εp,k) be the solution of (5.2). The following system is satisfied for a.e. t ∈ [0, Te] and for all
v ∈ V, w ∈W ∩ C∞(Ω)

ρ

∫
Ω

ũkttvdx+

∫
Ω

D
(
ε(ũk)− εp,k +

1

k
ε(ũk)

)
ε(v)dx− α

∫
Ω

p̃k divvdx =

∫
Ω

F̃ kvdx+

∫
ΓN

g̃kNvdS(x),

c0

∫
Ω

p̃ktwdx+ c

∫
Ω

∇p̃k∇wdx+ α

∫
Ω

divũkt wdx =

∫
Ω

f̃wdx+

∫
ΓV

g̃V wdS(x),

εp,kt (x, t) = A
(
T̂ k(x, t)

)
, for a.e. (x, t) ∈ Ω× [0, Te].

We multiply the first and the second equation by ϕ1, ϕ2 ∈ C∞([0, Te]) (respectively) and integrate over
time. Now, due to the weak convergences stated above we can pass to the limit with k:

Te∫
0

ρ ∫
Ω

ũttvdx+

∫
Ω

D (ε(ũ)− εp) ε(v)dx− α
∫
Ω

p̃ divvdx−
∫
Ω

F̃ vdx−
∫

ΓN

g̃NvdS(x)

ϕ1dτ = 0,

Te∫
0

c0 ∫
Ω

p̃twdx+ c

∫
Ω

∇p̃∇wdx+ α

∫
Ω

divũt wdx−
∫
Ω

f̃wdx−
∫

ΓV

g̃V wdS(x)

ϕ2dτ = 0,
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where the first equation is satisfied for every v ∈ V and the second equation for every w ∈W ∩ C∞(Ω).
Due to the density argument and the regularity of the limit functions we can write the second equation
for every w ∈W1+ω. By the du Bois-Reymond Lemma one can omit the time integrals. The rest of the
proof is as in the Theorem 6.4. �

Proposition 7.7. Considering only the Dirichlet-type boundary conditions one does not require the com-
patibility conditions to prove the Theorem 7.6. Moreover, one can obtain the following regularity of the
solution

u ∈W 2,∞(0, Te;L
2(Ω;R3)), p ∈W 1,∞(0, Te;L

2(Ω;R)), T ∈W 1,∞(0, Te;L
2(Ω;S(3))).

Unfortunately, even redefining the meaning of the solution (see the Definition 7.5) is not satisfactory
from the applications point of view, since the constitutive equation is satisfied merely in the sense of the
Young measures. This is also the main culprit responsible for the handicap with uniqueness theorems for
the higher regularity solutions. Therefore our main goal is to dispose of the Young measures and prove
the existence of the regular solutions to (1.1)-(1.3).

Definition 7.8 (Regular solution to (1.1)-(1.3)). We say that the quadruple (u, p, εp, T ) is
a regular solution of (1.1)-(1.3), if it is the solution according to the Definition 7.5 and the fifth equation
of (1.1) is satisfied a.e. in Ω× [0, Te], i.e.

εpt (x, t) = A(T (x, t)) for a.e. (x, t) ∈ Ω× (0, Te).

One can prove the existence of such solutions assuming more about A, namely the monotonicity plays
crucial role. Unfortunately, the monotonicity is still not sufficient to proceed with the desired operations
in the proof. We wish to do the integration by parts in the expressions of the form:

t∫
0

∫
Ω

(ut − u∗t )∇p̃dxdτ,

t∫
0

∫
Ω

p̃∆p̃dxdτ.

In order to make this kind of operations properly justified, we assume the following property of a field A

A : S(3)→ PS(3), (7.8)

where P is projection onto the deviatoric part of the tensor given by the formula PT = T − 1
3 tr(T ) · I.

The condition 7.8 allows one to raise the regularity of divut and ∆p̃ up to L2(L2) by the reasoning:

divut = trε(ut) = trD−1 (Tt) + trεpt = trD−1 (Tt) ∈ L2(0, Te;L
2(Ω;R)),

Hence, the weak Laplacian of the pressure is equal to

−c∆p̃ = f − c0p̃t − αdivut ∈ L2(0, Te;L
2(Ω;R)).

Moreover, upon the remark above (assuming the condition 7.8) the equation (7.6) from the Definition
7.5 and from the Definition 7.8 can be tested by a larger class of functions, namely W. The condition 7.8
is natural, since it is common to assume that the inelastic deformation tensor is deviatoric (see [8], [12]).

Theorem 7.9 (Existence of regular solutions of (1.1)-(1.3)). Assume the same as in the Theo-
rem 7.6 and let A be monotone, satisfying the condition 7.8. Then there exists the regular solution
(u, p, εp, T ) of (1.1)-(1.3).

Proof. In the proof we exploit the Minty’s Monotone Trick (see [11]). We take the subsequence of
solutions to the coercive model (the same as in the proof of the Theorem 7.6). We know that the weak
limit of this subsequence is the solution with the higher regularity. We only need to prove that the
constitutive equation is satisfied almost everywhere.
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Proceeding similarly as in the beginning of the proof of the Lemma 6.3 we obtain

t∫
0

∫
Ω

A
(
T̂ k
)
T̂ kdxdτ = −Ek

(
ukt − u∗t , εk − ε∗, εp,k

)
(t)− c0

2

∥∥p̃k(t)
∥∥2

L2 − c
t∫

0

∥∥∇p̃k(t)
∥∥2

L2 dxdτ

+ Ek
(
ukt − u∗t , εk − ε∗, εp,k

)
(0) +

c0
2
‖p̃0‖2L2 +

t∫
0

∫
Ω

(
ukt − u∗t

) (
F − F ∗

)
dxdτ +

t∫
0

∫
Ω

fp̃kdxdτ

+
1

k

t∫
0

∫
Ω

divT ∗
(
ukt − u∗t

)
dxdτ − α

t∫
0

∫
Ω

divu∗t p̃
kdxdτ +

t∫
0

∫
Ω

T ∗εp,kt dxdτ +

t∫
0

∫
ΓV

gV p̃
kdS(x)dτ

− 1

k

t∫
0

∫
ΓN

gN
(
ukt − u∗t

)
dS(x)dτ.

(7.9)

Observe that f(S) := D(S)S is weakly lower semi-continuous, since it is convex and continuous. The
convexity may not be clear, however

f(µS1 + (1− µ)S2) = µ2D(S1)S1 + µ(1− µ)(D(S1)S2 +D(S2)S1) + (1− µ)2D(S2)S2,

Thus, by the linearity and the positive-definiteness one has

0 6 D(S1 − S2)(S1 − S2) = D(S1)S1 +D(S2)S2 −D(S1)S2 −D(S2)S1.

Combining the expressions above yields

f(µS1 + (1− µ)S2) = µD(S1)S1 + (1− µ)D(S2)S2 = µf(S1) + (1− µ)f(S2).

We now take the lower limit as k → ∞ of the equation (7.9), use the weak lower semi-continuity of the
norm and the Fatou’s lemma leads to the inequality

lim inf
k→∞

t∫
0

∫
Ω

A
(
T̂ k
)
T̂ kdxdτ 6 −E (ut − u∗t , ε− ε∗, εp) (t)− c0

2
‖p̃(t)‖2L2 − c

t∫
0

‖∇p̃(t)‖2L2 dxdτ

+ E (ut − u∗t , ε− ε∗, εp) (0) +
c0
2
‖p̃0‖2L2 +

t∫
0

∫
Ω

(ut − u∗t )
(
F − F ∗

)
dxdτ +

t∫
0

∫
Ω

fp̃dxdτ

− α
t∫

0

∫
Ω

divu∗t p̃dxdτ +

t∫
0

∫
Ω

T ∗εptdxdτ +

t∫
0

∫
ΓV

gV p̃dS(x)dτ.

Due to the result of the Theorem 7.6 the weak limit (u, p̃, εp, T ) is the solution of (5.1) with the initial-
boundary conditions (1.2)-(1.3) (according to the Definition 7.5). The regularity of such solutions is large
enough to allow the first two equations of (5.1) to hold a.e. in Ω× [0, Te]. Because of that we can proceed
similarly as before with (u, p̃, εp, T ).

E (ut − u∗t , ε− ε∗, εp) (t)− E (ut − u∗t , ε− ε∗, εp) (0)

=ρ

t∫
0

∫
Ω

(ut − u∗t ) (utt − u∗tt) dxdτ +

t∫
0

∫
Ω

(T − T ∗) (εt − ε∗t − ε
p
t ) dxdτ

=

t∫
0

∫
Ω

(ut − u∗t ) div (T − T ∗) dxdτ +

t∫
0

∫
Ω

(ut − u∗t )
(
F − F ∗

)
dxdτ − α

t∫
0

∫
Ω

(ut − u∗t )∇p̃dxdτ

+

t∫
0

∫
Ω

(T − T ∗) (εt − ε∗t ) dxdτ +

t∫
0

∫
Ω

T ∗εptdxdτ −
t∫

0

∫
Ω

Tεptdxdτ.
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Similar calculation as in the proof of Lemma 7.2 gives

t∫
0

∫
Ω

(T − T ∗) (εt − ε∗t ) dxdτ−α
t∫

0

∫
Ω

(ut − u∗t )∇p̃dxdτ

=

t∫
0

∫
Ω

fp̃dxdτ − c
t∫

0

‖∇p̃(t)‖2L2 dxdτ +

t∫
0

∫
ΓV

gV p̃dS(x)dτ − c0
2
‖p̃(t)‖2L2

+
c0
2
‖p̃0‖2L2 − α

t∫
0

∫
Ω

divu∗t p̃dxdτ −
t∫

0

∫
Ω

div (T − T ∗) (ut − u∗t ) dxdτ.

Our discussion leads to the following inequality

lim inf
k→∞

t∫
0

∫
Ω

A
(
T̂ k
)
T̂ kdxdτ 6

t∫
0

∫
Ω

εptTdxdτ. (7.10)

To end the proof we use the Minty’s Monotone Trick. Take any S ∈ L1+ω(0, Te;L
1+ω(Ω;S(3))), due to

the monotonicity of A we have

t∫
0

∫
Ω

(
A(T̂ k)−A(S)

)(
T̂ k − S

)
dxdτ > 0.

By splitting the integral above into four parts, using the convergence results and (7.10) one obtain

t∫
0

∫
Ω

(εpt −A(S)) (T − S) dxdτ > 0.

Now put S = T − µW , where W ∈ L1+ω(0, Te;L
1+ω(Ω;S(3))), µ > 0 are arbitrary. It gives

t∫
0

∫
Ω

(εpt −A(T − µW ))Wdxdτ > 0.

Using the linear growth we can dominate the integrand by the integrable function. Indeed,
(εpt −A(T − µW )) ∈ L1+ 1

ω (L1+ 1
ω ). Due to the continuity of the operator A

t∫
0

∫
Ω

(εpt −A(T ))Wdxdτ > 0.

Because the sign of W is arbitrary, we can replace the inequality above with the equality. Moreover, this
result is true for a.e. t ∈ [0, Te]. Thus, we take the sequence of such proper times t→ Te and obtain

Te∫
0

∫
Ω

(εpt −A(T ))Wdxdτ = 0, ∀W ∈ L1+ω(0, Te;L
1+ω(Ω;S(3)).

Since W is arbitrary, we obtain εpt (x, t) = A(T (x, t)) for a.e. (x, t) ∈ Ω× [0, Te]. �

It appears that the regular solutions are unique, although the proof of this fact involves, as before,
the integration by parts. Thus we must additionally assume the condition 7.8.

Lemma 7.10 (Uniqueness of regular solutions to (1.1)-(1.3)). Let A satisfy 7.8 and let
(u1, p1, ε

p
1, T1) and (u2, p2, ε

p
2, T2) be the two distinct regular solutions of (1.1)-(1.3). Then

(u1, p1, ε
p
1, T1) = (u2, p2, ε

p
2, T2).

34



Remark 7.11. In the Lemma 7.10 we do not assume the monotonicity of A (unlike in the previous
lemma).

Proof. The similar calculations as in the proof of Theorem 7.9 yield

E (u1,t − u2,t, ε1 − ε2, ε
p
1 − ε

p
2) (t)

= −
t∫

0

∫
Ω

(T1 − T2)
(
εp1,t − ε

p
2,t

)
dxdτ − c0

2
‖p1(t)− p2(t)‖2L2 − c

t∫
0

‖∇ (p1 − p2)‖2L2 dτ.

Using the properties of the functions m, l gives

E (u1,t − u2,t, ε1 − ε2, ε
p
1 − ε

p
2) (t) + c

t∫
0

‖∇ (p1 − p2)‖2L2 dτ +
c0
2
‖p1(t)− p2(t)‖2L2

6 CL

t∫
0

E (u1,t − u2,t, ε1 − ε2, ε
p
1 − ε

p
2) (τ)dτ.

By the Gronwall’s inequality for a.e. t ∈ [0, Te] we obtain

E (u1,t − u2,t, ε1 − ε2, ε
p
1 − ε

p
2) (t) = 0.

Hence p1 = p2 and u1 = u2 a.e. thus

1

2

∫
Ω

D (εp1 − ε
p
2) (εp1 − ε

p
2) dx = E (u1,t − u2,t, ε1 − ε2, ε

p
1 − ε

p
2) (t) = 0.

Due to the positive-definiteness of D the proof of the uniqueness is finished. �

Remark 7.12. Under the assumptions of the Theorem 7.9, there exists the unique regular solution of
(1.1)-(1.3).

One can easily replace the condition 7.8 in the Theorem 7.9 and in the Lemma 7.10 by the following

ω 6 5 in growth conditions (1.4). (7.11)

The condition 7.11 combined with the Sobolev Embedding Theorem leads to p̃ ∈ L1+ω(L1+ω) which
allows one to integrate by parts and so to repeat steps from the previous proofs.

An open question remains: is this result true, provided that one omits the conditions 7.8 or 7.11? It
is worth noticing that these assumptions can be replaced by the assumption: p ∈ L1+ω(L1+ω). Hence,
the promising approach is either an attempt to raise the regularity of the pressure p or usage of the more
sophisticated methods, to obtain the result above.

Remark 7.13. One can obtain similar results (with the lesser regularity of p) with the partially dynamic
model (provided that c0pt ≈ 0). This requires very similar arguments, hence we omit details.
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