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HERMITIAN K-THEORY, DERIVED EQUIVALENCES AND

KAROUBI’S FUNDAMENTAL THEOREM

MARCO SCHLICHTING

Abstract. Within the framework of dg categories with weak equivalences
and duality that have uniquely 2-divisible mapping complexes, we show that
higher Grothendieck-Witt groups (aka. hermitian K-groups) are invariant un-
der derived equivalences and that Morita exact sequences induce long exact se-
quences of Grothendieck-Witt groups. This implies an algebraic Bott sequence
and a new proof and generalisation of Karoubi’s Fundamental Theorem. For
the higher Grothendieck-Witt groups of vector bundles of (possibly singular)

schemes X with an ample family of line-bundles such that 1

2
∈ Γ(X,OX), we

obtain Mayer-Vietoris long exact sequences for Nisnevich coverings and blow-
ups along regularly embedded centers, projective bundle formulas, and a Bass
fundamental theorem. For coherent Grothendieck-Witt groups, we obtain a
localization theorem analogous to Quillen’s K ′-localization theorem.
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Introduction

By a result of Thomason [TT90, Theorem 1.9.8], algebraic K-theory is “invari-
ant under derived equivalences”. This is a tremendously powerful fact. Together
with Waldhausen’s Fibration Theorem [Wal85, Theorem 1.6.4] it implies a Local-
ization Theorem which - omitting hypothesis - says that a “short exact sequence
of triangulated categories” induces a long exact sequence of algebraic K-groups.
This property of algebraic K-theory implies long exact Mayer-Vietoris sequences
for Nisnevich coverings [TT90] and for blow-ups along regularly embedded centers
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2 MARCO SCHLICHTING

[Tho93b]. Both results are fundamental for the recent advances in our understand-
ing of the algebraic K-theory of singular varieties [CHSW08], [CHW08].

In this article, we investigate the problem of “invariance under derived equiv-
alences” for the higher Grothendieck-Witt groups introduced by the author in
[Sch10b]. These groups naturally occur in A1-homotopy theory [Mor12], [AF14]
and are to oriented Chow groups what algebraic K-theory is to ordinary Chow
groups. They are the algebraic analog of the topological KO-groups, or, in the
context of schemes with involution, they are the algebraic analog of Atiyah’s KR-
theory.

Within the framework of dg categories with weak equivalences and duality that
have uniquely 2-divisible mapping complexes, we show in Theorems 6.5 and 8.9
that the higher Grothendieck-Witt groups are invariant under derived equivalences.
This is in some sense the best one can hope for since without an assumption such
as “uniquely 2-divisible homomorphism groups”, there are examples of derived
equivalences that do not induce isomorphisms of Grothendieck-Witt groups; see
Proposition 2.1.

Together with our Fibration Theorem [Sch10b, Theorem 6] this implies Theo-
rems 6.6 and 8.10 which are the analogs for higher Grothendieck-Witt groups of the
Thomason-Waldhausen Localization Theorem mentioned above. We obtain several
new results as application of our Localization Theorem: algebraic versions of the
Bott sequence in topology (Theorems 6.1 and 8.11), a new and more general proof
of Karoubi’s Fundamental Theorem [Kar80] (Theorem 6.2), Nisnevich descent for
(possibly singular) noetherian schemes with an ample family of line bundles (Theo-
rem 9.7), a Mayer-Vietoris property for blow-ups along regularly embedded centers
(Theorem 9.9), projective bundle formulas (Theorem 9.10 and Remark 9.11), a
Bass fundamental theorem for Grothendieck-Witt groups (Theorem 9.13), and an
analog for Grothendieck-Witt groups of Quillen’s K ′-theory localization theorem
based on coherent sheaves (Theorem 9.19).

Special cases of our results have been obtained by other authors using different
methods. Notably, Karoubi proved his Fundamental Theorem for Z[1/2]-algebras
with involution in [Kar80], and Hornbostel proved Nisnevich descent and a version
of the Projective Line Bundle Theorem both in the case of regular noetherian sep-
arated Z[1/2]-schemes in [Hor05]. At the very least all geometric results regarding
singular schemes are new. Our interpretation of Karoubi’s U and V -theories as the
odd shifted higher Grothendieck-Witt groups and our careful study of the multi-
plicative structure of higher Grothendieck-Witt groups in Sections 5 and 8 should
be of independent interest.

Results of this article have already been used in [FS09], [Zib11], [PW10], in the
solution of a conjecture of Suslin on the structure of stably free projective modules
[FRS12] and in the solution of a conjecture of Williams and the analog of the
Quillen-Lichtenbaum conjecture for hermitian K-theory [BKSØ15].

We give an outline of the article. Section 1 doesn’t contain anything essentially
new. We recall definitions and basic facts about dg categories and introduce the
obvious notion of a dg category with weak equivalences and duality. The main point
here is our treatment of the pretriangulated hull Aptr of a dg category A (Definition
1.16) which makes it clear thatAptr is a dg category with weak equivalences and du-
ality whenever A is, and the assignment A 7→ Aptr is symmetric monoidal in some
sense; see Section 5.1. The Grothendieck-Witt group GW0(A ) of a dg category
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with (weak equivalences and) duality is defined to be the Grothendieck-Witt group
of the exact category with weak equivalences and duality in the sense of [Sch10b,
Definition 1] of the category Z0A ptr of closed degree zero maps in the pretriangu-
lated hull of A . When A is a dg algebra A then GW0(A) is the Grothendieck-Witt
group of finitely generated semi-free dg A-modules. When A = sPerf(X) is the
dg category of bounded complexes of vector bundles on a scheme X with weak
equivalences the quasi-isomorphisms, then GW0(sPerf(X)) is the Grothendieck-
Witt group GW0(X) of X as introduced by Knebusch in [Kne77].

In Section 2, we introduce the “duality preserving” cone functor, a version for
dg categories with duality of the functor that sends a map of complexes to its
cone. We use the cone functor to construct in Proposition 2.1 examples of functors
between dg categories with weak equivalences and duality which induce equivalences
of derived categories but the induced map on Grothendieck-Witt groups is not an
isomorphism. Our examples use dg categories for which the mapping complexes
are not uniquely 2-divisible.

In Section 3 we slightly generalize the notion of a triangulated category with
duality given in [Bal00] in that we don’t require the shift of the triangulated category
to be an isomorphism; it is only required to be an equivalence. As in [Bal00]
and [Wal03b] we have a Witt and a Grothendieck-Witt group of such categories,
but, contrary to loc.cit., our presentation doesn’t use shifted dualities. For a dg
category with weak equivalences and duality A , we verify in Lemma 3.6 that the
triangulated category T A of A , that is, the localization of the homotopy category
H0A ptr of the pretriangulated hull of A with respect to the weak equivalences, is
indeed a triangulated category with duality. We show in Proposition 3.8 that the
Grothendieck-Witt group of a dg category with weak equivalences and duality A

agrees with the Grothendieck-Witt group of its triangulated category T A provided
its mapping complexes are uniquely 2-divisible, a condition we denote by 1

2 ∈ A .

Without an assumption such as 1
2 ∈ A , this proposition cannot hold as shown by

the examples in Section 2.
In Section 4, we recall from [Sch10b] the hermitian analog R• (denoted by Se

• in

[Sch10b]) of Waldhausen’s S•-construction and introduce its iterated versions R
(n)
• ,

n ∈ N. The main result here is Proposition 4.9 which is the basis for the construction
of the Grothendieck-Witt spectrum functor to be introduced in Section 5. Together
with Corollary 4.11 it implies Karoubi’s Fundamental Theorem [Kar80].

In Section 5, we construct the Grothendieck-Witt theory functor GW which
is a symmetric monoidal functor from dg categories with weak equivalences and
duality (that have uniquely 2-divisible mapping complexes) to symmetric spec-
tra of topological spaces. The higher Grothendieck-Witt groups of a dg category
with weak equivalences and duality A are the homotopy groups GWi(A ) of its
Grothendieck-Witt spectrum GW (A ). To explain the idea of the construction, re-
call that Waldhausen’s S•-construction can be iterated to yield a symmetric spec-

trum {wA ptr, wS•A
ptr, wS

(2)
• A ptr, ...} which is a positive Ω-spectrum. Similarly,

the R•-construction can be iterated. However, contrary to the K-theory case,

(wR
(2)
• A ptr)h is not a delooping of (wR•A

ptr)h. To construct a spectrum as in
the K-theory case, we note that the pretriangulated hull A ptr can be equipped
with many dualities. For each integer n, we have a dg category with weak equiv-
alences and duality A [n] all having the same pretriangulated hull as A , but they
are equipped with dualities that depend on n. When A = sPerf(X), the categories
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A [n] correspond to the dg categories sPerf(X) equipped with the shifted dualities
E 7→ Hom•

OX
(E,OX [n]). With appropriate models A (n) for A [n], we show in

Theorem 5.5 that the sequence

GW (A ) = {(wA )h, (wR•A
(1))h, (wR

(2)
• A

(2))h, ...}

together with the bonding maps of Definition 5.4 is a positive symmetric Ω-spectrum.
By Proposition 5.6, its infinite loop space is the Grothendieck-Witt space of Z0A ptr

as defined in [Sch10b]. In particular, its zero-th homotopy group is the Grothendieck-
Witt group of Section 1. The spectrum GW (A ) is the Grothendieck-Witt analog of
connective K-theory. However (!), this spectrum is rarely connective: its negative
homotopy groups are Balmer’s triangular Witt groups of T A ; see Proposition 6.3.

Section 6 contains our main results regarding the higher Grothendieck-Witt
groups of dg categories with weak equivalences and duality. Write GW [n](A )
for the Grothendieck-Witt spectrum of A [n]. Then GW [0](A ) ≃ GW (A ) and
GW [n](A ) ≃ GW [n+4](A ). We show in Theorem 6.1 an algebraic version of the
Bott sequence in topology. Our theorem asserts that if 1

2 ∈ A then the sequence

GW [n](A )
F
−→ K(A )

H
−→ GW [n+1](A )

η∪
−→ S1 ∧GW [n](A )

is an exact triangle in the homotopy category of spectra. Here F and H are

forgetful and hyperbolic functors, and η ∈ GW
[−1]
−1 (k) corresponds to the unit

〈1〉 ∈W (k) ∼= GW
[−1]
−1 (k) in the Witt ring of the base ring k. This theorem implies

Karoubi’s Fundamental Theorem for dg categories (Theorem 6.2) and the Local-
ization Theorem 6.6 asserting that a sequence A0 → A1 → A2 of dg categories
with weak equivalences and duality such that 1

2 ∈ Ai and such that the sequence
T A0 → T A1 → T A2 of associated triangulated categories is exact induces a ho-
motopy fibration

GW (A0)→ GW (A1)→ GW (A2)

of Grothendieck-Witt spectra. In particular, our higher Grothendieck-Witt groups
are invariant under derived equivalences (Theorem 6.5).

In Section 7 we generalize results of Kobal and Williams [Kob99] to dg categories
with weak equivalences and duality. For such a category A , its connectiveK-theory
spectrum K(A ) is equipped with a canonical C2-action induced by the duality on
A . When 1

2 ∈ A , we show in Theorem 7.6 a homotopy fibration

K(A )hC2 → GW (A )→ L(A )

and a homotopy cartesian square of spectra

GW (A ) //

��

K(A )hC2

��
L(A ) // Ĥ(C2,K(A ))

where K(A )hC2 , K(A )hC2 and Ĥ(C2,K(A )) denote the homotopy orbit, homo-
topy fixed point and the Tate spectrum of the C2-spectrum K(A ). The spectrum
L(A ) = η−1GW (A ) is 4-periodic and has homotopy groups the Balmer triangular
Witt groups of A . The map GW (A ) → K(A )hC2 is the subject of Williams’
conjecture which predicts it to be a 2-adic equivalence. The results of this section
are essential in the solution of this conjecture for schemes in [BKSØ15].
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In Section 8, we define the analog GW , called Karoubi-Grothendieck-Witt spec-
trum functor, of the non-connective K-theory functor K. As a spectrum it is equiv-
alent to the mapping telescope of a sequence of spectra

GW (A )−→ΩGW (SA )−→Ω2GW (S2
A )−→· · ·

where S denotes the algebraic suspension ring (Remark 8.8). However, this map-
ping telescope does not define a symmetric monoidal functor from dg categories to
spectra for the same reason that the infinite loop space functor Ω∞GW of GW is
not symmetric monoidal. That’s why our symmetric monoidal functor GW takes
values in the category of bispectra. The symmetric monoidal model category of
bispectra is yet another model for the homotopy category of spectra. It contains
the category of symmetric spectra as a full monoidal subcategory, the inclusion
of spectra into bispectra preserves stable equivalences and induces an equivalence
of associated homotopy categories. There is a natural map GW (A ) → GW (A )
which is an isomorphism in degrees ≥ 1 and a monomorphism in degree 0 (Theo-
rem 8.14). If T A is idempotent complete, then this map is also an isomorphism
in degree 0. For instance, for a ring with involution A with 1

2 ∈ A, the group
GW0(A) is the Grothendieck-Witt group of the category of finitely generated pro-
jective A-modules. We show in Theorems 8.9, 8.10 and 8.11 the GW -analogs of the
Invariance, Localization, and Bott Sequence theorems proved for GW in Section 6.

In Section 9 we prove the results regarding the higher Grothendieck-Witt groups
of schemes mentioned above.

In Section 10 we show that our results imply the 8 homotopy equivalences
in Bott’s Periodicity Theorem for the infinite orthogonal group as envisioned by
Karoubi in [Kar73]. Whereas Karoubi’s proof of his Fundamental Theorem in
[Kar80] is based on classical 8-fold Bott periodicity, our new proof of his theorem
actually implies 8-fold Bott periodicity. This is explained in Section 10.1. Of course,
Bott periodicity is not new, but the reader may find it a little reward at the end of
a long paper.

There are two appendices to this article. One, Section A, shows that for a ring
with involution A such that 1

2 ∈ A, the connected component of the infinite loop
space of GW (A) is homotopy equivalent to Quillen’s plus construction BO(A)+ ap-
plied to the classifying space of the infinite orthogonal group of A. This is necessary
if Theorem 6.2 is truly to be a new proof of Karoubi’s Fundamental Theorem. In
[Sch04], we gave proofs of the results of Section A based on Karoubi’s version of the
Fundamental Theorem. Here we avoid Karoubi’s theorem. The other appendix,
Section B, recollects definitions and results about symmetric spectra, homotopy
orbit, homotopy fixed and Tate spectra, and about bispectra used throughout the
paper.

DG-categories versus complicial exact categories. In some preprint ver-
sions of this paper I used “complicial exact categories” (in the sense of, for instance,
[Sch11, Definition 3.2.2]) whereas I decided to work with “dg-categories” here. In
practice, all complicial exact categories have a “dg-enhancement” even though the
exact structures may differ (this, however, doesn’t change the GW -theories, by
[Sch10b, Lemma 7]). The passage from exact categories to complexes which are
complicial exact categories underlying a dg-category is explained in [Sch10b, §6];
see also [Sch10b, Remark 14].
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The advantage of the category of dg-categories is that it has a symmetric monoidal
tensor-product. This considerably simplifies the construction of the GW -spectrum
and the treatment of products in GW -theory.

Advice for the hurried reader. For a first reading, I suggest to skip the
technical sections 1 – 8 while nevertheless bearing in mind Examples 1.28 and 1.38
and the analogies of GW and GW with connective and non-connective K-theory
K and K. Take note, however, that the negative homotopy groups GWi of GW
are the Balmer Witt groups W−i for i < 0 which are non-zero in general; see the
example following Proposition 5.6. Then take the Localization Theorems 6.6 and
8.10 as axioms and use Remark 6.7 to deduce the Bott sequences 6.1 and 8.11. Now
you are ready to jump right into Section 9.

Acknowledgements. This paper is part of a collection of papers published in
honor of Charles A. Weibel’s 65th birthday. Ever since I wrote my PhD, Chuck has
been incredibly supportive; I warmly thank him for that.
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thank them.

1. Grothendieck-Witt groups of dg categories

Let k be a commutative ring. Our work takes place in the framework of differ-
ential graded categories over k. We recall standard notation and terminology; see
also [Kel06].

1.1. Differential graded k-modules. A dg k-module is a k-module M together
with a direct sum decomposition M =

⊕
i∈Z

M i and a k-linear map d : M → M ,

called differential, such that d(M i) ⊂ M i+1 for all i ∈ Z and d ◦ d = 0. Elements
x ∈ M i are said to be homogeneous of degree |x| = i. A morphism f : M → N
of dg k-modules is a morphism of graded k-modules commuting with differentials,
that is, f(M i) ⊂ N i and f(dx) = d(fx) for all x ∈M . Composition is composition
of k-modules. This defines the category dgModk of dg k-modules.

There are additive functors Z0, B0, H0 : dgModk → Modk to the category Modk
of k-modules defined by

Z0M = ker(d :M0 →M1)

B0M = Im(d :M−1 →M0)

H0M = Z0M/B0M.
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The tensor product of two dg k-modules M and N is given by

(M ⊗N)n =
⊕

i+j=n

M i ⊗N j

with differential d(x ⊗ y) = dx ⊗ y + (−1)|x|x ⊗ dy. The function dg k-module
[M,N ] from M to N is the dg k-module given by

[M,N ]n =
∏

−i+j=n

Homk(M
i, N j)

with differential df = d◦f−(−1)|f |f◦d. Note that the dg k-module morphisms from
M to N are precisely the elements of Z0[M,N ]. Tensor product ⊗, function object
[ , ] and unit 1 = k make the category of dg k-modules into a closed symmetric
monoidal category where evaluation, coevaluation and symmetry (or switch) are
given by

e : [M,N ]⊗M → N : f ⊗ x 7→ f(x), ∇ :M 7→ [N,M ⊗N ] : x 7→ (y 7→ x⊗ y),

τ :M ⊗N → N ⊗M : x⊗ y 7→ (−1)|x||y|y ⊗ x.

There is a coherence theorem for closed symmetric monoidal categories [KML71].
This will be convenient when checking the commutativity of diagrams. It is there-
fore important to consider the various categories to be defined below as closed sym-
metric monoidal categories, and it is important to insist that functors and natural
transformations be defined using only the basic building blocks of closed symmetric
monoidal categories such as unit, tensor product, function object, evaluation and
coevaluation.

1.2. Pointed differential graded categories. DG categories are categories en-
riched in the closed symmetric monoidal category of dg k-modules. The category
of small dg-categories is therefore endowed with the structure of a closed symmet-
ric monoidal category [Kel82]. In particular, it is equipped with internal tensor
products, function objects, unit, evaluation and coevaluation. For the purpose of
K-theory and Grothendieck-Witt theory it will be convenient to assume the follow-
ing.

All dg categories in this paper are pointed.

This means that they are equipped with a choice of zero object called base-point.
All dg functors are to preserve base points, and tensor products, function objects
and all other constructions pertaining to dg categories are to be understood to be
performed in the pointed category. The functor A 7→ A+ from dg categories to
pointed dg categories that adds a base point zero object is symmetric monoidal
and doesn’t change K-theory nor Grothendieck-Witt theory. So, there is no loss
in assuming our dg categories to be pointed. To be less repetitive we may drop
the adjective pointed and write “dg category” for what should be “pointed dg
category”.

For the reader’s convenience and to fix notation, we recall what some of this
means in detail.

Definition 1.1. A small pointed dg category A (henceforth called dg category) is
given by the following data:
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• a non-empty set of objects,
• for any two objects A,B of A a dg k-module A(A,B) =

⊕
i∈Z
A(A,B)i,

called mapping complex from A to B,
• for any object A a unit morphism 1A ∈ A(A,A)0,
• for any three objects A,B,C a map of dg k-modules

◦ : A(B,C) ⊗A(A,B)→ A(A,C) : f ⊗ g 7→ f ◦ g

satisfying the usual associativity and unit constraints of a category,
• a choice of zero object 0A called base point.

Note that d(1A) = 0 for every object A ∈ A (since d(1) = d(1 ◦ 1) = d(1) ◦ 1 +
1 ◦ d(1)) and that d(f ◦ g) = 0 whenever df = 0 and dg = 0. In particular, we
have a subcategory Z0A ⊂ A which has the same objects as A and morphism k-
modules (Z0A)(A,B) = Z0(A(A,B)). We call Z0A the underlying category of the
dg category A and think of a dg category A as the k-linear category Z0A together
with the additional homological algebra data of the mapping complexes A(X,Y )
for all pairs of objects X , Y of A.

A morphism of pointed dg categories, also called dg functor, F : A → B from
A to B is given by the following data: to every object A of A is assigned an
object FA of B, for every two objects A,B of A there is given a morphism of dg
k-modules A(A,B) → B(FA,FB) : f 7→ F (f) such that F (1A) = 1F (A) and for
any three objects A,B,C of A and any f ∈ A(B,C) and g ∈ A(A,B) we have
F (f ◦ g) = F (f) ◦ F (g) ∈ B(FA,FC). Moreover, F is required to send the base
point of A to the base point of B. We denote by dgCatk the category of small
pointed dg k-categories. The category of small pointed k-linear categories will be
denoted by Catk. We may drop the index k if the base ring k is understood.

A natural transformation α : F → G between dg functors F,G : A → B is a
collection {αA}A∈A of morphisms αA ∈ Z0B(FA,GA) such that for all A,B ∈ A
and f ∈ A(A,B) we have αB ◦ F (f) = G(f) ◦ αA. A dg functor F : A → B is
an equivalence of dg categories if there exists a dg functor G : B → A such that
FG and GF are naturally isomorphic to the identity functors. If F : A → B is an
equivalence of dg categories, then Z0F : Z0A → Z0B is an equivalence of linear
categories. If F is fully faithful then the converse also holds.

For A,B ∈ dgCatk, the tensor product dg category A ⊗ B has objects the pairs
(A,B) of objects A of A and B of B. The objects of the form (A, 0B) and (0A, B)
are identified with the base point 0A⊗B of A⊗B, that is, Ob(A⊗B) = ObA∧ObB.
We may sometimes write A⊗B or AB for the object (A,B) of A⊗ B. Morphism
complexes are

(A⊗ B)((A1, B1), (A2, B2)) = A(A1, A2)⊗ B(B1, B2)

with composition defined by (f1 ⊗ g1) ◦ (f2 ⊗ g2) = (−1)|g1||f2|(f1 ◦ f2) ⊗ (g1 ◦ g2)
and unit 1(A,B) = 1A ⊗ 1B. The switch dg-functor A⊗B → B ⊗A is the switch of
pointed sets (A,B) 7→ (B,A) on objects and the switch of dg k-modules (§1.1) on
morphism complexes.

The homomorphism dg category dgFun(A,B) ∈ dgCatk for A,B ∈ dgCatk has
objects the dg functors F : A → B (which, by our convention, preserve base
points) and the morphism complex [F,G] in degree n is the set [F,G]n of collections
α = (αA)A∈A with αA ∈ B(FA,GA)

n satisfying G(f) ◦ αA = (−1)|α||f | αB ◦ F (f)
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for all homogeneous f ∈ A(A,B). The differential dα is defined by (dα)A = dBαA

where dB is the differential in B.
If C is a small category and A ∈ dgCatk, we write Fun(C,A) for the dg category

Fun(C,A) = dgFun(k[C]+,A)

where k[C] is the dg category whose objects are the objects of C and the mapping
complex k[C](A,B) in degree 0 is the free k-module k[C](A,B)0 = k[C(A,B)] gen-
erated by the elements of C(A,B) and in degree i 6= 0 we have k[C](A,B)i = 0.
Note that dg functors k[C]+ → A are the same as functors C → Z0A.

The functors Z0, H0 : dgModk → Modk extend to functors

Z0, H0 : dgCatk → Catk .

For example, the category Z0A is the underlying k-linear category of A, and H0A
has the same objects as A and the morphism k-module H0A(A,B) is the module
H0(A(A,B)).

Example 1.2 (The category Ck). Let Ck, or simply C if k is understood, be the
full subcategory of dgModk of those dg k-modules M such that M i = kni for some
ni ∈ N andM i 6= 0 for only finitely many i ∈ Z. In other words, Ck is (a small model
of) the category of bounded complexes of finitely generated free k-modules. Tensor
product, function space and unit in the category of dg k-modules provide Ck with a
structure of a closed symmetric monoidal category where evaluation, coevaluation
and symmetry are as in Section 1.1. This makes Ck into a dg category. We consider
Ck as a pointed dg category with base point the unique zero object in Ck.

In Ck, we have the following distinguished objects 1, C and T and an exact
sequence Γ relating them. The object 1 is the unit k of the tensor product in Ck.
Let C be the dg k-algebra k[ε]/ε2, |ε| = −1, dε = 1. As a graded k-module, we
have C = k · 1 ⊕ k · ε, and the differential is determined by dε = 1. Note that C
is a commutative dg k-algebra containing 1 as a dg submodule. We let T be the
quotient dg k-module C/1. As a graded k-module, we have T = kε, |ε| = −1, and
the differential is zero. If we denote by i : 1 → C : 1 7→ 1 the inclusion and by
p : C → T : 1 7→ 0, ε 7→ ε the projection map, we have an exact sequence of dg
k-modules in Ck

(1.1) Γ 1 // i // C
p // // T.

Often we will write CkA (or CA if k is understood) for the tensor product dg
category Ck ⊗ A. There is a canonical fully faithful embedding of dg categories
A → CkA : A 7→ 1⊗A.

1.3. Exact and pretriangulated dg categories. Recall from [Qui73], [Kel90],
[Sch10a, §2.1] that a small exact category is a small additive category E equipped
with a set of sequences of maps in E , called conflations (or admissible exact se-
quences),

(1.2) X
i
→ Y

p
→ Z

satisfying the properties (Ex0) – (Ex4) below. In a conflation (1.2), the map i is
called inflation (or admissible monomorphism) and may be depicted as , and the
map p is called deflation (or admissible epimorphism) and may be depicted as ։.

(Ex0) Conflations are closed under isomorphisms.
(Ex1) In a conflation (1.2), the map i is a kernel of p, and p is a cokernel of i.
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(Ex2) For any two objects X,Y ∈ E , the following sequence is a conflation

X
( 10 )→ X ⊕ Y

( 0 1 )
→ Y.

(Ex3) Inflations are closed under compositions, and deflations are closed under
compositions.

(Ex4) The pushout of an inflation along any map in E exists and is an inflation.
Dually, the pull-back of a deflation along any map in E exists and is a
deflation.

Example 1.3. A typical example of an exact category is the category Vect(X) of
vector bundles (that is, locally free sheaves of finite rank) on a scheme X . The
conflations are the usual short exact sequence of locally free sheaves.

Example 1.4. If E is a k-linear exact category, we make the category of bounded
complexes in E into a dg category Chb(E ) as follows. Its objects are the bounded
complexes in E (unless stated otherwise, all complexes in this article are cohomo-
logically indexed and thus have their differentials increase degrees). Let M and N

be two objects of Chb(E ). Their mapping complex is the dg k-module [M,N ] with

[M,N ]n =
∏

−i+j=n

E (M i, N j)

and differential df = dN ◦ f − (−1)|f |f ◦ dM . The underlying category Z0Chb(E )
is the usual category of bounded complexes in E and maps the chain maps (that

is, degree 0 maps that commute with differentials). The category H0 Chb(E ) is
the usual homotopy category of bounded complexes in E where the maps are the
homotopy classes of chain maps. Note that the dg category Chb(E ) only depends
on E as an additive category. At this point, the exact structure is irrelevant.

Definition 1.5. Let A be a dg category. A sequence A
f
→ B

g
→ C of morphisms in

the underlying category Z0A with gf = 0 is called exact if there are s ∈ A(C,B)0

and r ∈ A(B,A)0 such that 1A = rf , 1B = fr + sg, and 1C = gs. Note that s
determines r and vice versa. A pointed dg category A is called exact if these exact
sequences make the underlying linear category Z0A into an exact category.

Example 1.6. Let E be a k-linear exact category. Recall from Example 1.4 the
dg category Chb E of bounded complexes in E . This is an exact dg category. The
conflations in the underlying category Z0 Chb E are the short exact sequences of
complexes which degree-wise (that is, forgetting differentials) are split exact. In

particular, the exact structure on Z0Chb E does not depend on the exact structure
of E .

Definition 1.7. A pointed dg category A is called pretriangulated if it is exact
and if the functor A → CkA : A 7→ 1 ⊗ A is an equivalences of dg categories.
Since A → CkA is fully faithful, the last condition is equivalent to requiring that
Z0A → Z0(CkA) be an equivalences of k-linear categories.

Example 1.8. We already noticed in Example 1.6 that for a k-linear exact category
E , the dg category Chb E of Example 1.4 is exact. In fact, it is pretriangulated.
The inverse of the dg functor Chb E → Ck ⊗Chb E is the total complex dg functor
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Ck ⊗ Chb E → Chb E which sends the object (A,E) of Ck ⊗ Chb E to the total
complex object A⊗ E with

(A⊗ E)n =
⊕

i+j=n

Ai ⊗ Ej

and differential restricted to Ai ⊗Ej the map diA ⊗ 1Ej + (−1)i1Ai ⊗ djE . Here, for
A = kn, the expression Ai ⊗ Ej = kn ⊗ Ej stands for (Ej)⊕n. The total complex
dg functor is the ”identity” on mapping complexes.

Remark 1.9. For a dg category to be exact (pretriangulated) is a property, not an
extra structure. Note also that any dg functor A → B preserves exact sequences. In
particular, if A → B is a dg functor between exact dg categories, then the functor
Z0A → Z0B between underlying exact categories is exact.

Lemma 1.10. Let A and B be pointed dg categories.

(1) If B is exact then so is dgFun(A,B).
(2) If B is pretriangulated then so is dgFun(A,B).
(3) If B is pretriangulated then so is CkB.

Proof. We prove part (1). Since B is exact, Z0B, B0 and B are all additive cat-
egories. This implies that Z0 dgFun(A, B), dgFun(A, B)0 and dgFun(A, B) are
all additive categories with (F ⊕ G)(A) = F (A) ⊕ G(A) for F,G ∈ dgFun(A,B)
and A ∈ A. Given a map i : F0 → F1 in Z0 dgFun(A,B) such that there is a
homogeneous degree 0 map r : F1 → F0 with ri = 1, then i is an admissible
monomorphism if and only if for every A ∈ A the map i(A) : F0(A) → F1(A) is
an admissible monomorphism in Z0B. This implies that the composition of two
admissible monomorphisms in Z0 dgFun(A,B) is an admissible monomorphism. It
also implies that the push-out of a map in Z0 dgFun(A,B) along an admissible
monomorphism exists and is an admissible monomorphism, the push-out being de-
fined object-wise and made into a dg functor by functoriality of the push-out and
the fact that the inclusions Z0B ⊂ B0 ⊂ B are exact where the additive categories
B0 and B are equipped with only those exact sequences which split. This shows
(Ex3) and (Ex4) for inflations. By a dual argument, (Ex3) and (Ex4) hold for defla-
tions. The remaining axioms (Ex0) - (Ex2) trivially hold, and thus Z0 dgFun(A,B)
is indeed an exact category.

Next we prove part (2). We already know that dgFun(A,B) is exact. We are left
with proving that dgFun(A,B)→ Ck⊗dgFun(A,B) : F 7→ 1⊗F is an equivalence.
Since that functor is fully faithful, we need to show essential surjectivity. Now, for
any dg categories A and B, the dg functor

Ck ⊗ dgFun(A,B)→ dgFun(A,Ck ⊗ B) : X ⊗ F 7→ (A 7→ X ⊗ F (A))

is fully faithful. This follows from the fact that for any X,Y ∈ Ck the dg k-
module [X,Y ] is finitely generated free as k-module and thus tensoring with [X,Y ]
commutes with arbitrary equalizers of dg k-modules. Therefore, all functors in the
diagram

Z0 dgFun(A,B)

))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚

��
Z0(Ck dgFun(A,B)) // Z0 dgFun(A,CkB)
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are fully faithful. If B is pretriangulated, then the diagonal map is an equiva-
lence. By fully faithfulness of the horizontal functor, the vertical functor is also an
equivalence.

Finally, we prove (3). If A and B are equivalent dg categories, then A is pretri-
angulated if and only if B is. Therefore, if B is pretriangulated, then B and CkB
are equivalent and hence CkB is pretriangulated. �

1.4. The pretriangulated hull. Introduction. Pretriangulated dg categories
are dg categories whose homotopy categories are naturally tringulated. Most dg
categories of interest are pretriangulated, for instance Chb E as noted in Example
1.8. Our treatment of products in GW -theory, in fact, the very definition of the
GW -spectrum, do require us to consider dg categories of the form A⊗B which, in
general, are not pretriangulated even if A and B are. Thus, we need to complete
A ⊗ B into a pretriangulated dg category. Now, for any dg category A there is
a pretriangulated completion Aptr, called pretriangulated hull of A, which was
introduced in [BK90]; see also [Dri04].

In short, the pretriangulated hull of a dg category A is the category of finitely
generated semi-free dg A-modules, that is, those dg A-modulesM : Aop → dgModk
which have a finite filtration

0 = F 0M ⊂ ... ⊂ F rM ⊂ F r+1M ⊂ ... ⊂ FnM =M

by dg submodules such that F r+1M/F rM is finitely generated free (that is, a
finite direct sum of (shifts of) objects of A). In [BK90], [Dri04] the authors give an
explicit model for Aptr. Below, we give a variant of their construction. For us, the
pretriangulated hull of A is the dg category of extensions of CkA; see Definition
1.16. Our treatment here is somewhat heavier than one would expect. This is
because we will need a description of Aptr in the context of dg categories with
dualities which is in some sense symmetric monoidal with respect to the tensor
product of such categories. So, along the way we will take care of the monoidal
structures. We start with the definition of the dg category of extensions.

1.5. The dg category of extensions. Let poSet be the category of small posets
(that is, partially ordered sets) with injective order preserving maps as morphisms.
This is a symmetric monoidal category under the cartesian product as monoidal
product. Recall that the category of small pointed dg categories dgCat is symmetric
monoidal under the tensor product of dg categories (Section 1.2). In particular,
the product category poSet× dgCat is symmetric monoidal with component-wise
monoidal product. We will define a symmetric monoidal functor

(1.3) poSet× dgCat→ dgCat : (P ,A) 7→ PA

as follows. For a poset P and a pointed dg category A the pointed dg category
PA has objects the pairs A = (A, q) where A : ObP → ObA is a function that
sends all but a finite number of elements of P to the base point zero object of A,
and q = (qij)i,j∈P is a matrix of elements qij ∈ A(Aj , Ai)

1 of degree 1 such that
qij = 0 for i ≮ j ∈ P and dq + q2 = 0. The support supp(A) of (A, q) is the set
of indices i ∈ P such that Ai 6= 0. This is a finite set. In particular, only finitely
many entries in q are non-zero, and thus, the matrix product q2 makes sense where
(q2)ij =

∑
k qikqkj . The base point of PA is the pair (A, 0) where the function A

sends all objects of P to the base point of A. For two objects A = (A, qA) and
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B = (B, qB) of PA, the morphism complex is

PA(A,B)n =
∏

i,j∈P

A(Ai, Bj)
n

whose elements are the matrices f = (fji)i,j∈P with entries fji ∈ A(Ai, Bj)
n. The

differential dPAf for such a matrix f is defined by

dPAf = dAf + qB ◦ f − (−1)|f |f ◦ qA

where (dAf)i,j = dA(fi,j) and dA is the differential in A. Composition in PA is
matrix multiplication in A. One checks that PA is indeed a pointed dg category.
Clearly, the assignment (P ,A) 7→ PA is functorial in A. It is also functorial in P
as an embedding P0 ⊂ P1 defines a full embedding of dg categories P0A ⊂ P1A
sending (A, q) ∈ P0A to its extension by zero (Ā, q̄) in P1A where Āi = Ai if i ∈ P0,
Āi = 0 for i /∈ P0, q̄ij = qij if i, j ∈ P0 and q̄ij = 0 otherwise.

The functor (P ,A) 7→ PA is symmetric monoidal with monoidal compatibility
map

(1.4) P0A⊗P1X −→ (P0 × P1)(A⊗X )

sending the object (A, qA)⊗ (X, qX) of P0A⊗P1X to the object (AX, qAX) where
(AX)ax = (Aa, Xx) for a ∈ P0, x ∈ P1, and qAX is the sum of matrix tensor
products qAX = qA⊗ 1X +1A⊗ qX . On morphism complexes the dg functor sends
the tensor product of matrices (f)⊗ (g) to the matrix tensor product (f ⊗ g), that
is, (f ⊗ g)ax,by = fab ⊗ gxy for a, b ∈ P0 and x, y ∈ P1.

Remark 1.11. An embedding of posets P0 ⊂ P1 induces a fully faithful embedding
P0A ⊂ P1A of dg categories. Any two embeddings i0, i1 : P0 ⊂ P1 induce naturally
isomorphic embeddings i0, i1 : P0A ⊂ P1A of dg categories. This is because for
(A, q) ∈ P0A the “identity matrix” induces an isomorphism in Z0P1A between the
two objects i0(A, q) and i1(A, q). In particular, the embedding P0A ⊂ P1A is an
equivalence of dg categories if for every embedding of posets P ⊂ P1 with P finite,
there is an embedding P ⊂ P0. For example, any poset embedding N ⊂ P induces
an equivalence of dg categories NA ⊂ PA since every finite poset can be embedded
into N.

Remark 1.12. Let A be a dg category and P0 and P1 be posets. Then there is a
fully faithful embedding of dg categories

(1.5) P0(P1A)→ (P0P1)A : (A,Q) 7→ (B, q)

where P0P1 = P0 × P1 is equipped with the lexicographic order: (i, r) < (j, s) if
and only if i < j, or i = j and r < s.

To define the functor, recall that an object (A,Q) of P0(P1A) is given by a
map of sets P0 → ObP1A : i 7→ (Ai, q

Ai) with finite support together with a matrix
Q = (Qij)i,j∈P0 where Qij ∈ P1A(Aj , Ai)

1 such that Qij = 0 whenever i ≮ j in P0

and Q2 + dP1AQ = 0. Here (Ai, q
Ai) is an object of P1A, that is, Ai : P1 → ObA :

r 7→ (Ai)r is a finitely supported map of sets, and qAi = (qAi
rs )r,s∈P1 is a matrix with

qAi
rs ∈ A((Ai)s, (Ai)r)

1 such that qAi
rs = 0 for r ≮ s in P1 and (qAi)2 + dAqAi = 0.

The map Qij itself is a matrix with entries (Qij)rs ∈ A((Aj)s, (Ai)r)
1. Now, the

image (B, q) of (A,Q) under the map (1.5) is given by the map of sets B : P0×P1 →
A defined by

Bi,r = (Ai)r, i ∈ P0, r ∈ P1
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and the matrix q = (qir,js)i,j∈P0, r,s∈P1 has entries

qir,js =




(Qij)rs i 6= j

(qAi)rs i = j.

On morphisms, the functor (1.5) is given by the “identity”.

Definition 1.13. Let A be a pointed dg category. The dg category of extensions
of A is the pointed dg category

Z(A)

defined in Section 1.5 where Z is the poset of integers with its usual ordering.
The dg category of extensions is equipped with the fully faithful inclusion of dg
categories A ⊂ ZA induced by the embedding of posets {0} ⊂ Z.

Example 1.14. If we consider an exact category E as a dg category with E 0 = E

and E i = 0 for i 6= 0, then its dg category of extensions ZE is (equivalent) to E . If
we consider a ring R as a dg category with one object, then ZR is the category of
finitely generated free R-modules.

Lemma 1.15. Let A be a pointed dg category. Then the dg category of extensions
ZA is exact.

Proof. The axioms (Ex0) and (Ex1) hold in any dg category. For (Ex2), we have to
show that ZA is an additive category. Every object (A, q) in ZA is isomorphic to
its shift (A[1], q[1]) where A[1]i = Ai+1 and q[1]i,j = qi+1,j+1. Hence, for any two
objects (A, qA) and (B, qB) we can assume that they have disjoint support. Then
(A, qA)⊕ (B, qB) = (C, qC) where

Ci =





Ai i ∈ supp(A)

Bi i ∈ supp(B)

0 otherwise,

qCij =





qAij i, j ∈ supp(A)

qBij i, j ∈ supp(B)

0 otherwise.

We are left with showimg axioms (Ex3) and (Ex4) for inflations, the case of
deflations being dual. Let [2] be a the poset {0 < 1 < 2}. Let B be a dg category
and let

Ai−1

fi
 Ai

gi
։ Bi

be admissible exact sequences in Z0B where i = 1, 2. So, there are ri : Ai → Ai−1,
si : Bi → Ai in B0 such that 1Ai−1 = rifi, 1Ai = firi + sigi, and 1Bi = gisi. Note
that (dri)fi = 0, gi(dsi) = 0 and thus (dri)(dsi) = (dri)(firi+ sigi)(dsi) = 0. Note
also that (dri)si+ri(dsi) = 0 because risi = 0. In Z0([2]B) we have a commutative
diagram

A0
f1 //

1

��

A1
f2 //

( r1g1 )
��

A2

( r1r2
g1r2
g2

)

��

A0
( 10 )

//
(
A0, B1,

(
0 r1(ds1)
0 0

))
(

1 0
0 1
0 0

)

//
(
A0, B1, B2,

(
0 r1(ds1) r1r2(ds2)
0 0 g1r2(ds2)
0 0 0

))
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in which the vertical arrows are isomorphisms with inverses given by 1A0 , (f1, s1)
and (f2f1, f2s1, s2). It follows that the composition f2f1 is an inflation in Z0([2]B)
with cokernel

coker(f2f1) ∼= (B1, B2,
(
0 g1r2(ds2)
0 0

)
).

If h : A0 → X is a map in Z0B, we have a push-out diagram in Z0([2]B) as follows

A0

( 10 ) //

h

��

(A0, B1,
(
0 r1(ds1)
0 0

)
)

( h 0
0 1 )

��
X

( 10 ) // (X,B1,
(
0 hr1(ds1)
0 0

)
).

Therefore, compositions of inflations in Z0B are inflations in Z0([2]B), and push-
outs of inflations in Z0B along any map in Z0B exist in Z0([2]B) and are inflations.

This applies in particular to the dg category B = ZA. We claim that the inclusion
{0} ⊂ [2] induces an equivalence of dg categories ZA ⊂ [2](ZA), and hence, (Ex3)
and (Ex4) hold in ZA for inflations. To prove the claim, note that by Remark
1.12 we have a fully faithful embedding of dg categories [2](ZA) ⊂ ([2]Z)A where
[2]Z = [2]×Z is equipped with the lexicographic order. Since both posets [2]Z and
Z contain N, the full embeddings ZA ⊂ [2](ZA) ⊂ ([2]Z)A are equivalences of dg
categories, in view of Remark 1.11. �

1.6. The pretriangulated hull of a dg category. Finally, we come to the defi-
nition of the pretriangulated hull of a dg category; compare [BK90], [Dri04].

Definition 1.16. Let A be a pointed dg category. The pretriangulated hull of A
is the pointed dg category

Aptr = Z (CkA) .

It is equipped with the full inclusion A ⊂ Aptr induced by the inclusions in Example
1.2 and Definition 1.13: A ⊂ CkA ⊂ Z(CkA). By Lemma 1.20 below, the dg cate-
gory Aptr is indeed pretriangulated, and the inclusion A ⊂ Aptr is an equivalence
if and only if A is pretriangulated.

Remark 1.17. The model of the pretriangulated hull of a dg category A given
in [BK90] and[Dri04] is the dg category Z(Tk ⊗ A) where Tk ⊂ Ck is the full dg
subcategory whose objects are all shifts k[i] of k, i ∈ Z. The canonical inclusion
Z(Tk⊗A) ⊂ Z(Ck⊗A) is an equivalence of dg categories. This follows from Lemma
1.20 below since both dg categories are pretriangulated (hulls of A).

Remark 1.18. There is an action

(1.6) ⊗ : Ck ⊗A
ptr −→ Aptr

of the symmetric monoidal category Ck on Aptr given by the composition of dg
functors

Ck ⊗ Z(CkA) −→ Z(Ck ⊗ CkA) −→ Z(Ck ⊗A)

in which the first map is the monoidal compatibility map (1.4) with P0 = [0] and
P1 = Z, and the second map is induced by ⊗ : Ck ⊗ Ck → Ck.

For objects A of Ck and X of Aptr, we may write AX for the image in Aptr of
the object A⊗X under the map (1.6). In this sense, for any object X of Aptr the
objects CX and TX are defined where C, T ∈ Ck are as in Example 1.2.
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The action (1.6) makes Z0Aptr into a complicial exact category in the sense of
[Sch11, Definition 3.2.2]. By [Sch11, A.2.16], the exact category Z0Aptr is there-
fore a Frobenius exact category, that is, an exact category with enough injective
and projective objects, and injective and projective objects coincide. By [Sch11,
A.2.16(f)], an object of Z0Aptr is injective and projective if and only if it is a direct
factor of an object of the form CX with X ∈ Aptr.

In fact, the exact structure on Z0Aptr coincides with its Frobenius exact structure
defined in [Sch11, A.2.15]. This is because for an inflation f : X  Y in Z0Aptr

with retract r : Y → X in (Aptr)0 and any map g : X → CU in Z0Aptr, the map g
is the composition

X
f
−→ Y

1⊗r−ε⊗dr
−→ CX

1C⊗g
−→ CCU

m⊗1
−→ CU

where m : CC → C is the multiplication in the dga C (use that (dr)f = 0).

Remark 1.19. The action (1.18) of Ck on Aptr plays an important role in the
rest of the paper. This is the reason we chose Aptr = Z(CkA) as our model of the
pretriangulated hull of A rather than the one given in [BK90], [Dri04].

Lemma 1.20. (1) Let A ⊂ B be a full inclusion of pointed dg categories with
A pretriangulated. Then if in an exact sequence in Z0B

0→ X → Y → Z → 0,

X and Z are in A then Y is (isomorphic to an object) in A.
(2) If A is a pretriangulated dg category, then the inclusion

A ⊂ ZA

is an equivalence of dg categories.
(3) For any pointed dg category A, the dg category Aptr is pretriangulated.
(4) A pointed dg category A is pretriangulated if and only if the inclusion

A ⊂ Aptr

is an equivalence.

Proof. (1) Embedding B into Bptr, we can assume Z0B to be a Frobenius exact
category as in Remark 1.18. Since A is pretriangulated, there is an admissible
monomorphism i ⊗ 1X : X  CX in Z0A (use the equivalence A ⊂ CA). The
map X → Y is an admissible monomorphism in Z0B, and CX is an injective
object of Z0B (Remark 1.18). It follows that the map X  CX extends to a map
Y → CX , and we obtain a map of exact sequences in Z0B

X // // Y

��

// // Z

��
X // // CX // // TX.

The right hand square is a pull-back square in Z0B. Since A is exact and the maps
CX → TX and Z → TX are in Z0A with CX ։ TX an admissible epimorphism
in Z0A, the pull-back P of CX ։ TX ← Z exists in Z0A. Since A ⊂ B is exact,
it preserves pull-backs along admissible epimorphisms. Hence, Y is isomorphic to
P , an object of A.
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(2) Every object X of ZA has a filtration 0 = X0 ⊂ X1 ⊂ ... ⊂ Xn = X with
Xi ⊂ Xi+1 an admissible monomorphism in ZA and quotients Xi+1/Xi in A. By
(1), the object X is (isomorphic to an object) in A.

(3) By Lemma 1.15, the dg category Aptr is exact. Moreover, the inclusion
Aptr ⊂ CkA

ptr is an equivalence since the fully faithful dg functors in Remark 1.18

ZCkA ⊂ CkZCkA → ZCkCkA
⊗
→ ZCkA

are essentially surjective. Therefore, Aptr is indeed pretriangulated.
(4) If A is pretriangulated, then CA is equivalent to A and pretriangulated.

Therefore, and in light of (2), the inclusions A ⊂ CA ⊂ Z(CA) = Aptr are equiv-
alences of dg categories. Conversely, if A ⊂ Aptr is an equivalence then A is
pretriangulated in view of (3). �

Example 1.21. Let E be an exact category considered as a dg category as in
Example 1.14. Then E ptr = Chb E since every object of the pretriangulated dg
category Chb E has a filtration with quotients shifts of objects of E . If R is a
ring considered as a dg category with one object, then Rptr is the dg category of
bounded complexes of finitely generated free R-modules.

Remark 1.22. If A is a pretriangulated dg category, then we know (Remark
1.18 and Lemma 1.20 (4)) that its underlying category Z0A is a Frobenius exact
category. I claim that a map f in Z0A is zero in H0A if and only if it factors
through some injective projective object of Z0A, and therefore H0A is the stable
category Z0A of the Frobenius category Z0A:

H0A = Z0A.

To prove the claim, note that objects of the form CX are zero in H0A because its
identity morphism 1CX = 1C ⊗ 1X = d(ε ⊗ 1X) is the zero map in H0A. Since
injective projective objects in Z0A are the direct factors of objects of the form CX
(Remark 1.18), this shows that they all are zero in H0A and that a map f in Z0A
which is zero in the stable category is zero in H0A. Conversely, assume that the
map f : X → Y in Z0A is zero in H0A then f = dg for some g ∈ A(X,Y )1. But
then f factors through CX and hence is zero in the stable category since f is the
composition in Z0A

X
i⊗1
−→ CX

ε∨⊗g
−→ Y

where ε∨ ∈ [C,1]1 is the unique degree-one map C → 1 with ε∨(ε) = 1.

1.7. The homotopy category of a dg category. Let A be a dg category. Recall
that the homotopy categoryH0Aptr of its pretriangulated hull is the stable category
of the Frobenius category Z0Aptr (Remark 1.22). Therefore, it is equipped with
the structure of a triangulated category [Hap87], [Kel96]. The shift functor of the
triangulated category is the functor T : H0Aptr → H0Aptr : X 7→ TX defined by
the object T ∈ Ck using the action (1.6). The exact triangles in H0Aptr are those
which are isomorphic in H0Aptr to a triangle of the following form, called standard
exact triangle,

(1.7) X
f
→ Y

g
→ C(f)

h
→ TX
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defined by the following map of exact sequences in Aptr

(1.8) X

�

// i⊗1 //

f

��

CX
p⊗1 // //

��

TX

1

��
Y //

g
// C(f)

h
// // TX

where f : X → Y is any morphism of Aptr. The left-hand square is cocartesian
in Aptr. It exists because Aptr is exact and is equipped with an action of Ck; see
Remark 1.18. The object TX is the shift of X , the object CX is called the cone of
X and the object C(f) is called the cone of f where T and C are the objects of Ck

defined in Example 1.2.

Remark 1.23. As a triangulated category, the category H0Aptr is generated by
A, that is, every object of H0Aptr is obtained from A by iteration of taking finite
direct sums, shifts and cones. This is because every object of ZCkA has a filtration
with quotients in CkA, and every object in CkA is obtained from A by iteration of
taking finite direct sums, shifts and cones (since Ck is obtained from k in this way).

Definition 1.24. A localization pair [Kel99], also called dg pair, is a pair (A,A0)
consisting of a pointed dg category A and a full pointed dg subcategory A0 ⊂ A.
A morphism of localization pairs (A,A0) → (B,B0) is a dg functor A → B which
sends A0 into B0. The associated triangulated category of a localization pair (A,A0)
is the Verdier quotient triangulated category

T (A,A0) = (H0Aptr)/(H0Aptr
0 ).

The associated triangulated category is equipped with an additive functor

Z0A → T (A,A0)

obtained as the composition Z0A ⊂ Z0Aptr → H0Aptr → T (A,A0). Write Asat

for the full dg subcategory of A consisting of the objects A ∈ A which are zero in
the associated triangulated category T (A,A0). The dg pair is called saturated if
A0 = Asat. The saturation of (A,A0) is the dg pair (A,Asat). Note that a dg pair
and its saturation have the same associated triangulated category.

Example 1.25. Let E be an exact category, and let Acb0 E ⊂ Chb E be the full dg
subcategory of those complexes E∗ such that each di : Ei → Ei+1 has a factoriza-
tion Ei

։ Im(di)  Ei+1 in E into a deflation followed by an inflation such that

Im(di−1)  Ei
։ Im(di) is a conflation for all i ∈ Z. Then (Chb

E ,Acb0 E ) is a dg

pair with saturation (Chb
E ,Acb E ) where Acb E ⊂ Chb E is the full dg subcategory

of those complexes which are homotopy equivalent to an object of Acb0 E . If E is
idempotent complete (or more generally, if every map that admits a retraction is

an inflation), then Acb0 E = Acb E , and (Chb
E ,Acb E ) is saturated. The associ-

ated triangulated category T (Chb E ,Acb E ) is the usual bounded derived category
Db(E ) of the exact category E . For details; see [Nee90].

1.8. DG categories with weak equivalences. Let A be a pointed dg category,
and let w ⊂ Z0Aptr be a set of morphisms containing all isomorphisms. Let Aw

be the full dg subcategory of A consisting of those objects A for which the map
0A → A is in w. Such objects are called w-acyclic objects (in A). Note that the
base point zero object 0A is in Aw since the identity on 0A is in w. We call the
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set w saturated in A if a map f in Z0Aptr is in the set w if and only if the functor
A → T (A,Aw) sends f to an isomorphism.

Definition 1.26. A dg category with weak equivalences is a pair A = (A, w) where
A is a pointed dg category and w ⊂ Z0Aptr is a set of morphisms which is saturated
in A. A map f in w is called weak equivalence. The triangulated category of a dg
category with weak equivalences A = (A, w) is the triangulated category

T A = T (A, w) = T (A,Aw)

of the associated saturated dg pair (A,Aw).

Example 1.27. Continuing Example 1.25, denote by quis the set of chain maps in
Z0Chb E which are quasi-isomorphisms, that is, whose cones are in Acb E . Then
(Chb E , quis) is a dg category with weak equivalences. The associated triangulated

category T (Chb E , quis) is the usual bounded derived category DbE of the exact
category E .

A dg functor F : A → B between dg categories with weak equivalences (A, w)
and (B, w) is called exact if it sends weak equivalences to weak equivalences, or
equivalently, if it sends Aw to Bw. Such a functor induces a triangle functor
T (A, w) → T (B, w) which strictly commutes with the shifts in both categories.
We write

dgCatW

for the category of small dg categories with weak equivalences. Note that this
category is the same as the category of saturated dg pairs where a dg category
with weak equivalences (A, w) corresponds to the saturated dg pair (A,Aw). This
allows us to switch freely between the two concepts.

A pointed dg category A is considered a dg category with weak equivalences
where the weak equivalences are the homotopy equivalences, that is the maps which
are isomorphisms in H0A ⊂ H0Aptr. Equivalently, it is the saturation of the
localization pair (A, 0).

The category dgCatW is closed symmetric monoidal. The tensor product

(A, w) ⊗ (B, w)

is the saturation of the dg pair (A⊗ B,Aw ⊗ B ∪ A⊗ Bw). The function object

dgFun(A, w;B, w)

is the saturation of the dg pair (dgFunw(A,B), dgFun(A;Bw)) where dgFunw(A,B)
is the full dg subcategory of dgFun(A,B) of those dg functors that preserve weak
equivalences. The unit is the pointed dg category k+ associated with the base ring
k.

1.9. Categories with duality. Recall from [Sch10a], [Sch10b] that a category with
duality is a triple (C, ∗, η) with C a category, ∗ : Cop → C a functor, η : 1→ ∗◦∗op a
natural transformation, called double dual identification, such that 1A∗ = η∗A ◦ ηA∗

for all objects A in C. If η is a natural isomorphism, we say that the duality is
strong. In case η is the identity (in which case ∗∗ = id), we call the duality strict.

A symmetric form in a category with duality (C, ∗, η) is a pair (X,ϕ) where
ϕ : X → X∗ is a morphism in C satisfying ϕ∗ηX = ϕ. A map of symmetric forms
(X,ϕ) → (Y, ψ) is a map f : X → Y in C such that ϕ = f∗ ◦ ψ ◦ f . Composition
of such maps is composition in C. For a category with duality (C, ∗, η), we denote
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by Ch the category of symmetric forms in C. It has objects the symmetric forms in
C and its morphisms are the maps of symmetric forms as defined above.

A form functor from a category with duality (A, ∗, α) to another such category
(B, ∗, β) is a pair (F, ϕ) with F : A → B a functor and ϕ : F∗ → ∗F a natural trans-
formation, called duality compatibility morphism, such that ϕ∗

AβFA = ϕA∗F (αA) for
every object A of A. There is an evident definition of composition of form functors;
see [Sch10a, 3.2]. We write CatD for the category of small categories with duality
and form functors as morphisms. A natural transformation f : (F, ϕ) → (G,ψ) of
form functors A → B is a natural transformation of functors f : F → G such that
for all objects A of A we have f∗

A ◦ ψA ◦ fA∗ = ϕA.
If A and B are categories with duality, then the category Fun(A,B) of functors

A → B is a category with duality, where the dual F ♯ of a functor F is ∗F∗, and
the double dual identification ηF : F → F ♯♯ at an object A of A is the map
βF (A∗∗) ◦ F (αA) = F (αA)

∗∗ ◦ βFA. To give a form functor (F, ϕ) is the same as to
give a symmetric form (F, ϕ̂) in the category with duality Fun(A,B) in view of the
formulas ϕA = F (αA)

∗ ◦ ϕ̂A∗ and ϕ̂A = ϕA∗ ◦ F (αA). A natural transformation

(F, ϕ)→ (G,ψ) of form functors is the same as a map (F, ϕ̂)→ (G, ψ̂) of symmetric
forms in Fun(A,B).

A duality preserving functor between categories with duality (A, ∗, α) and (B, ∗, β)
is a functor F : A → B which commutes with dualities and double dual identifi-
cations, that is, we have F∗ = ∗F and F (α) = βF . In this case, (F, id) is a form
functor. We write CatDstr for the category of small categories with strict duality
and duality preserving functors as morphisms.

A k-linear exact category with duality is a k-linear category with duality (E , ∗, η)
where E is an exact category, ∗ : E op → E is a k-linear exact functor, and η is a
natural isomorphism.

Example 1.28. Let X be a k-scheme, L a line bundle on X , and Vect(X) the
exact category of vector bundles on X . Then

(Vect(X), ♯L, can
L)

is a k-linear exact category with duality where E♯L is the sheaf of OX -module
homomorphisms HomOX (E,L) for E ∈ Vect(X), and canLE : E → E♯L♯L is the
canonical double dual identification which (locally on X) is the evaluation at x for
x ∈ E(U) and U ⊂ X an affine open subset. Note that (Vect(X), ♯L,− canL) is
also a k-linear exact category with duality.

1.10. DG categories with duality. If A is a pointed dg category, its opposite
pointed dg category Aop has the same objects and base point as A and the map-
ping complexes are Aop(X,Y ) = A(Y,X). Composition is defined by fop ◦ gop =
(−1)|f ||g|(g ◦ f)op where fop and gop are the maps in Aop corresponding to the ho-
mogeneous maps f and g in A. For a dg functor F : A → B, the assignment F op :
Aop → Bop : X 7→ F (X), fop 7→ F (f)op defines a dg functor between opposite cate-
gories. The identity Aop⊗Bop → (A⊗B)op : (A,B) 7→ (A,B), fop⊗gop 7→ (f⊗g)op

is an isomorphism of dg categories and lets us identify these two dg categories. Note
that (Aop)op = A.

Definition 1.29. A pointed dg category with duality is a triple (A,∨, can) where
A is a pointed dg category, ∨ : Aop → A is a dg functor, called duality functor, and
can : 1→ ∨ ◦ ∨op is a natural transformation of dg functors (that is, an element of
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Z0[1,∨ ◦ ∨op]), called double dual identification, such that can∨A ◦ canA∨ = 1A∨ for

all objects A in A. Note that the duality functor satisfies (f ◦g)∨ = (−1)|f |·|g|g∨◦f∨

for composable homogeneous morphisms f and g of degrees |f | and |g|. Any dg
category with duality (A,∨, can) defines a category with duality (Z0A,∨, can) by
restriction of structure along the inclusion Z0A ⊂ A.

Example 1.30. Let (E , ∗, η) be a k-linear exact category with duality. We will

endow the dg category Chb E of bounded complexes in E (Example 1.4) with the
structure

(Chb
E , ∗, η)

of a dg category with strong duality such that the canonical embedding E → Chb E

is duality preserving. On objects, the dg functor ∗ : (Chb E )op → Chb E is given by

(E∗)i = (E−i)∗, (d∗)i = (−1)i+1(d−i−1)∗

for (E, d) ∈ Chb E . On function complexes, the dg functor ∗ is the map of complexes
∗ : [M,N ]→ [N∗,M∗] given by

E (M i, N j)→ E (N−i,M−j) : f 7→ (−1)i(j−i)f∗

for M,N ∈ Chb E . The canonical double dual identification on E ∈ Chb E is
(ηE)

i = (−1)iηEi . The signs occurring in these formulas are chosen to be compat-
ible with Subsection 1.11. In case E = Vect(X), they agree with the signs coming

from the closed symmetric monoidal structure on Chb Vect(X) as in Section 9. The
signs here differ from the choices in [Bal01a]. For a comparison isomorphism; see
[Sch10b, Section 6.1].

A morphism (A,∨, can) → (B,∨, can) of dg categories with duality, also called
dg form functor, is a pair (F, ϕ) where F : A → B is a dg functor and ϕ : F ◦ ∨ →
∨ ◦ (F op) is a natural transformation of dg functors, called duality compatibility
morphism, such that ϕA∨ ◦ F (canA) = ϕ∨

A ◦ canFA for all objects A of A. Compo-
sition of (F, ϕ) : (A,∨, can) → (B,∨, can) and (G,ψ) : (B,∨, can) → (C,∨, can) is
(G◦F, ψF ◦G(ϕ)) : (A,∨, can)→ (C,∨, can). Composition is associative and unital
with unit on A the identity dg form functor (idA, id). This defines the category

dgCatDk

whose objects are the small pointed dg categories with duality (over k) and whose
morphisms are the dg form functors.

The category dgCatDk is closed symmetric monoidal. The tensor product

(A,∨, canA)⊗ (B, ∗, canB) = (A⊗ B,∨⊗ ∗, canA⊗ canB)

has duality functor ∨ ⊗ ∗ : (A ⊗ B)op = Aop ⊗ Bop → A ⊗ B and double dual
identification canAA ⊗ canBB : (A,B) → (A∨∨, B∗∗). The unit of the tensor product
is the dg category k+ equipped with the trivial duality. The switch τ : A⊗B → B⊗A
in dgCatDk is the switch in dgCatk with identity as duality compatibility map.
The internal function object of (A,∨, canA) and (B, ∗, canB) is the dg category
dgFun(A,B) of dg functors equipped with the duality

♯ : dgFun(A,B)op → dgFun(A,B) : F 7→ F ♯ = ∗ ◦ F op ◦ ∨op

and double dual identification canBF ◦F (can
A) : F → F ♯♯. Note that a dg form

functor (F, ϕ) : A → B between dg categories with duality is the same as a sym-
metric form in the dg category with duality dgFun(A,B) of dg functors from A to
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B, or, in the notation of Section 1.9, an object of the category (Z0 dgFun(A,B))h
of symmetric forms in Z0 dgFun(A,B).

If C is a category with duality and A a pointed dg category with duality, we
write Fun(C,A) for the pointed dg category with duality

Fun(C,A) = dgFun(k[C]+,A).

1.11. Dualities in Ck. Recall that tensor products and function complexes make
the category Ck of bounded complexes of finitely generated free k-modules into a
closed symmetric monoidal category. Therefore, an object A in Ck defines a pointed
dg category with duality

C
[A]
k = (Ck,∨A, can

A).

On objects the duality is defined by

∨A : C
op
k → Ck : X 7→ [X,A].

On morphism complexes it is the unique admissble natural transformation

[X,Y ]
∇
→ [[Y,A], [X,Y ]⊗ [Y,A]]

[1,τ ]
−→ [[Y,A], [Y,A]⊗ [X,Y ]]

[1,◦]
−→ [[Y,A], [X,A]],

that is, the map

[X,Y ]→ [[Y,A], [X,A]] : f 7→
{
g 7→ (−1)|g||f |gf

}

for homogenerous composable f ∈ [X,Y ] and g ∈ [Y,A]. The canonical double
dual identification canAX : X → X∨A∨A : x 7→ canAX(x) is given by

canAX(x)(f) = (−1)|x||f |f(x)

for homogeneous f ∈ [X,A] and x ∈ X .
Tensor product of complexes defines an equivalence of dg categories with duality

(1.9) (⊗, can) : C
[A] ⊗ C

[B] ≃
−→ C

[A⊗B]

where the duality compatibility isomorphism is

(1.10) can : [X,A]⊗ [Y,B]→ [X ⊗ Y,A⊗B] : f ⊗ g 7→ f ⊗ g

with (f ⊗ g)(x ⊗ y) = (−1)|x||g|f(x) ⊗ g(y). For later reference, we note that the
following diagram of dg form functors commutes up to a natural isomorphism of
form functors defined below

(1.11) C [A] ⊗ C [B]
(⊗,can)//

τ

��

C [A⊗B]

(id,τ)
��

C [B] ⊗ C [A]
(⊗,can)// C [B⊗A]

In the diagram, the left vertical dg form functor is the switch in the symmetric
monoidal dgCatDk and the right vertical dg form functor is the identity functor
equipped with the duality compatibility map [1, τ ] : [X,A ⊗ B] → [X,B ⊗ A]
induced by the switch τ : A⊗B → B⊗A in Ck. The isomorphism of form functors
between the two compositions in the diagram is given by the switch isomorphism
τ : X ⊗ Y → Y ⊗X in Ck.
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Remark 1.31. As in any closed symmetric monoidal category, a map µ : X⊗Y →
A in Ck defines, by adjunction, a map

ϕµ : X
∇
→ [Y,X ⊗ Y ]

[1,µ]
→ [Y,A] = Y ∨A

which satisfies ϕ∨A
µ ◦can

A
Y = ϕµ◦τ where µ◦τ : Y ⊗X

τ
→ X⊗Y

µ
→ A. In particular,

a map µ : X ⊗X → A with µ ◦ τ = µ defines a symmetric form ϕµ on X , that is,
a map ϕµ : X → X∨A satisfying ϕ∨A

µ canAX = ϕµ.

1.12. C [n] and shifted dualities. For n ∈ Z, we write C
[n]
k , or simply C [n], for

the dg k-category with duality C k[n] where k[n] is the dg k-module with k[n]−n = k
and k[n]i = 0 for i 6= −n. Tensor product defines an equivalence of dg categories
with duality

(1.12) µi,j : C
k[i] ⊗ C

k[j] (⊗,can)
−→ C

k[i]⊗k[j] (1,µ)
−→ C

k[i+j]

where the second form functor is the identity together with the duality compatibility
map [X, k[i] ⊗ k[j]] → [X, k[i + j]] induced by the isomorphism of dg k-modules
k[i]⊗k[j]→ k[i+j] : x⊗y 7→ xy. Note that under this isomorphism, the switch map
k[j]⊗k[i]→ k[i]⊗k[j] is identified with multiplication by (−1)ij : k[i+j]→ k[i+j].
Therefore, in the following diagram, the left hand square commutes up to the
natural isomorphism of dg form functors as in diagram (1.11), and the right hand
square commutes

(1.13) C k[i] ⊗ C k[j]

τ

��

(⊗,can)// C k[i]⊗k[j]

(1,τ)

��

(1,µ) // C k[i+j]

(1,(−1)ij)
��

C k[j] ⊗ C k[i]
(⊗,can)// C k[j]⊗k[i]

(1,µ) // C k[i+j].

Remark 1.32. Let (X,ϕ) be a symmetric form in C [n] and assume that ϕ : X →
[X, k[n]] is an isomorphism. The symmetric form defines a dg form functor

(X,ϕ) : k+ → C
[n] : k 7→ X, [k, k]→ [X,X ] : a 7→ a · 1X

with duality compatibility map the isomorphism ϕ : X → [X, k[n]]. Therefore, we
obtain dg form functors

(X,ϕ)⊗ : C
[m] ∼= k+ ⊗ C

[m] (X,ϕ)⊗1
−→ C

[n] ⊗ C
[m] µn,m
−→ C

[n+m].

Lemma 1.33. The following diagram in dgCatDk commutes up to natural isomor-
phism of dg form functors

C k[i] ⊗ C k[j]

τ

��

µi,j // C k[i+j]

〈−1〉ij⊗
��

C k[j] ⊗ C k[i]
µj,i // C k[i+j]

where 〈−1〉 is the inner product space (k,−1) in C [0] given by x, y 7→ −xy.

Proof. This follows from diagram (1.13) and the identification of its right vertical
map with the right vertical map in the Lemma. �
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Remark 1.34. If we denote by m : k[2]⊗k[2]→ k[4] the multiplication map, then
tensor product with the symmetric form (k[2],m) in C [4] induces isomorphisms of
dg categories with duality

(1.14) (k[2],m)⊗ : C
[n] ∼=
−→ C

[n+4];

compare [Sch10b, Proposition 7].

Definition 1.35. Let A be a dg category with duality. The n-th shifted dg category
with duality is

A[n] = C
[n]
k ⊗A.

The equivalences (1.12) and isomorphisms (1.14) induce equivalences and isomor-
phisms of dg-categories with duality

(A[n])[m] = C
[m]
k ⊗A[n] ≃

−→ A[m+n] and

A[n] ∼= A[n+4].

The dg categories with duality A[n] all have the same underlying dg category but
are equipped with a duality depending on n ∈ Z. If the dg-category with duality
A is pretriangulated, then so is A[n], n ∈ Z, and A → A[0] is an equivalence of dg
categories with duality. In general, the dg form functor A → A[0] always induces
an equivalence on pretriangulated hulls for any dg category with duality A.

1.13. The pretriangulated hull of a dg category with duality. Let A be
a dg category with duality. We will make its pretriangulated hull Aptr into a dg
category with duality such that the inclusion A ⊂ Aptr is duality preserving.

For that, let (A,∨, can) be a dg category with duality. Consider the ordered set
Z as a category with strict duality Zop → Z : n 7→ −n. Then the dg category of
extensions ZA is equipped with the duality

∨ : (ZA)op → ZA : (A, q) 7→ (A, q)∨ = (A∨,−q∨)

where (A∨)i = (A−i)
∨ and q∨ has entries (q∨)ij = (q−j,−i)

∨. On morphism
complexes, the duality sends a matrix f to the matrix f∨ with entries (f∨)ij =
(f−j,−i)

∨. The double dual identification can : (A, q) → (A, q)∨∨ = (A∨∨, q∨∨) is
the matrix with entries (can(A,q))ij = canAi for i = j ∈ Z and (can(A,q))ij = 0 for
i 6= j ∈ Z; see §1.15 below. Clearly, the inclusion A ⊂ ZA preserves dualities.

For a dg category with duality A, the category C
[0]
k A is a dg category with dual-

ity, and the inclusion A ⊂ C
[0]
k A : X 7→ 1⊗X is duality preserving. Therefore, the

pretriangulated hull Aptr = ZC
[0]
k A is a pretriangulated dg category with duality

containing A as a full dg subcategory with duality. If A is a pretriangulated dg
category with duality then the inclusion A ⊂ Aptr is an equivalence of dg categories
with duality.

Example 1.36. Let (E , ∗, η) be a k-linear exact category with duality. Recall from

Example 1.30 and the above discussion that Chb E and E ptr are naturally equipped
with the structure of a dg category with strong duality. Since both dg categories
are pretriangulated hulls for E , the natural dg form functors

E
ptr → (Chb

E )ptr ← Chb E

are equivalences of dg categories with dualities.
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Definition 1.37. A dg category with weak equivalences and duality is a quadruple
A = (A, w,∨, can) where (A, w) is a dg category with weak equivalences and
(A,∨, can) is a dg category with duality such that the dg subcategory Aw ⊂ A of
w-acyclic objects is closed under the duality functor ∨ and canA : A → A∨∨ is a
weak equivalence for all objects A of A. Note that then f ∈ w if and only if f∨ ∈ w.
We may sometimes omit w, ∨ or can from the notation when they are understood.

Example 1.38. Let (E , ∗, η) be an exact category with duality. From Examples
1.27 and 1.30 we obtain the dg category with weak equivalences and (strong) duality

(Chb
E , quis, ∗, η).

A morphism of dg categories with weak equivalences and duality (also called
exact dg form functor) is a dg form functor (F, ϕ) where F an exact dg functor.
Compositions of exact dg form functors are exact dg form functors. This defines the
category dgCatWDk of small dg k-categories with weak equivalences and duality.
Note that if A = (A, w) is a dg category with weak equivalences and duality, then
so is its pretriangulated hull A ptr = (Aptr, w).

Tensor product and function object given in Definition 1.26 and 1.29 make
dgCatWDk into a closed symmetric monoidal category. If A = (A, w) is a dg
category with weak equivalences and duality, then so is A [n] = (A[n], w) which is
the saturation of the dg pair (A[n], (Aw)[n]).

1.14. Grothendieck-Witt groups of dg categories. A dg category with weak
equivalences and duality A = (A, w,∨, can) defines an exact category with weak
equivalences and duality (Z0Aptr, w,∨, can) in the sense of [Sch10b, §2.3] with exact
sequences as defined in Section 1.3. As such its Grothendieck Witt group GW0(A )
was defined in [Sch10b, Definition 1]. We will remind the reader of the definition
below. But first, recall that a symmetric space in A ptr is a pair (A,ϕ) where
ϕ : A → A∨ is a weak equivalence in A ptr (in particular ϕ ∈ Z0A) such that
ϕ∨ canA = ϕ.

Definition 1.39 ([Sch10b]). Let A = (A, w,∨, can) be a dg category with weak
equivalences and duality. The Grothendieck-Witt group GW0(A ) of A is the
abelian group generated by symmetric spaces [X,ϕ] in (Z0Aptr, w,∨, can), subject
to the following relations

(1) [X,ϕ] + [Y, ψ] = [X ⊕ Y, ϕ⊕ ψ]
(2) if g : X → Y is a weak equivalence, then [Y, ψ] = [X, g∨ψg], and
(3) if (E•, ϕ•) is a symmetric space in the category of exact sequences in Z0Aptr,

that is, a map

E• :

ϕ•≀

��

E−1
// i //

ϕ−1≀

��

E0
p // //

ϕ0≀

��

E1

ϕ1≀

��
E∨

• : E∨
1

//
p∨

// E∨
0

i∨
// // E∨

−1

of exact sequences with (ϕ−1, ϕ0, ϕ1) = (ϕ∨
1 can, ϕ∨

0 can, ϕ∨
−1 can) a weak

equivalence, then

[E0, ϕ0] =
[
E−1 ⊕ E1,

(
0 ϕ1

ϕ−1 0

)]
.
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Similarly, the Witt group W0(A ) of A is the abelian group generated by sym-
metric spaces [X,ϕ] in (Z0Aptr, w,∨, can), subject to the relations (1), (2) and

(3’) if (E•, ϕ•) is a symmetric space in the category of exact sequences in
(Z0Aptr, w,∨, can), then [E0, ϕ0] = 0.

Furthermore, we define the shifted Witt and Grothendieck-Witt groups of A as

W [n](A ) =W0(A
[n]) and GW

[n]
0 (A ) = GW0(A

[n]).

Note that for n = 0 we have GW
[0]
0 (A ) = GW0(A ) and W [0](A ) =W0(A ).

Example 1.40. Let (E , ∗, η) be a k-linear exact category with duality. Then

the Grothendieck-Witt group GW0(Ch
b
E , quis, ∗, η) of the dg category with weak

equivalences and duality from Example 1.38 is naturally isomorphic to Knebusch’s
Grothendieck-Witt group GW0(E , ∗, η); see [Sch10b, Remark 1]. This follows for
instance from [Sch10b, Proposition 6 and Remark 14]. The same applies to the
associated Witt groups.

1.15. More on extension categories. Let poSetDstr be the category of posets
with strict duality. Morphisms in that category are the order preserving embed-
dings which commute with dualities. Cartesian product makes poSetDstr into a
symmetric monoidal category. We will extend the symmetric monoidal functor
(1.3) to a symmetric monoidal functor

(1.15) poSetDstr× dgCatD→ dgCatD : P , (A,∨, can) 7→ (PA,∨, can).

Let P be a poset with strict duality Pop → P : x 7→ x′, and let (A,∨, can) be
a pointed dg category with duality. Then PA is equipped with the duality ∨ :
(PA)op → PA : (A, q) 7→ (A, q)∨ = (A∨,−q∨) where (A∨)i = (Ai′ )

∨ and q∨ has
entries (q∨)ij = (qj′i′)

∨. Note that (−q∨)2 − d(q∨) = 0 because (q2)∨ = −(q∨)2

and d(q∨) = (dq)∨. On morphism complexes, the duality sends a matrix f to
the matrix f∨ with entries (f∨)ij = (fj′i′)

∨. The double dual identification can :
(A, q) → (A, q)∨∨ = (A∨∨, q∨∨) is the matrix with entries (can(A,q))ij = canAi for
i = j ∈ P and (can(A,q))ij = 0 for i 6= j ∈ P . In the obvious way this construction is
functorial in posets with strict duality P and in pointed dg categories with duality
(A,∨, can). The monoidal compatibility map (1.4) is duality preserving and thus
equipped with the identity as duality compatibility map.

Let A = (A, w) be a dg category with weak equivalences. Then we define PA as
the saturation of the dg pair (PA,PAw). If A = (A, w) is a dg category with weak
equivalences and duality, then the duality on PA makes PA into a dg category
with weak equivalences and duality. Finally, the symmetric monoidal functor (1.3)
extends to a symmetric monoidal functor

poSetDstr× dgCatWD→ dgCatWD .

2. The cone functor and a counter-example to invariance

Let A be a pretriangulated dg category with duality. Any morphism f in A has
a cone C(f) in A defined by diagram (1.8). This defines a (dg) functor

Cone : Fun([1],A)→ A : f 7→ C(f)

where [n] denotes, as usual, the category (with unique duality) 0 → 1 → · · · → n
associated with the poset 0 < 1 < ... < n. Thus, both categories Fun([1],A) and
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A are exact dg categories with duality. In what follows, we make the cone functor
into a dg form functor

Cone : Fun([1],A)→ A[1]

with double dual identification a natural isomorphism. Note that the target will
be equipped with a shifted duality. The construction of the cone functor and its
properties will be fundamental for the rest of this paper. In this section, we will
use it in Proposition 2.1 to give a counter-example to invariance under derived
equivalences.

2.1. The mapping cone as a dg form functor. Recall from Example 1.2 the
commutative dg k-algebra C and the exact sequence (1.1) in Ck. For a dg category
A, let S2A denote the full dg subcategory of Fun([2],A) of those functors A : [2]→
A for which the sequence A0 → A1 → A2 is exact in A. Thus, Γ defines an object
in S2Ck.

Recall from Remark 1.31 that the multiplication map µ : C ⊗ C → C of the
commutative dg k-algebra C together with the composition pµ : C⊗C → T defines

a symmetric form (C, µ ◦ p) in C
[1]
k . Note that its adjunction ϕµ◦p : C → [C, T ]

is an isomorphism. In this way we obtain a symmetric isomorphism of short exact
sequences

(2.1) Γ :

γ

��

k // i //

∇γ−1=

��

C
p // //

ϕµ◦pγ0=

��

T

idγ1=

��
[Γ, T ] : [T, T ] // [p,1] // [C, T ]

[i,1] // // [k, T ].

In other words, the pair (Γ, γ) defines a symmetric space in S2C
[1]
k Tensoring with

(Γ, γ) defines a dg form functor

(Γ, γ)⊗ id : A → (S2C
[1])A ⊂ S2(C

[1]A) = S2A
[1].

with duality compatibility map a natural isomorphism. Note that S2(A[n]) =
(S2A)[n].

Next, for any exact dg category with duality A we define a dg form functor

(∆, δ) : Fun([1], S2A)→ A

as follows. The exact dg-category with duality Fun([2], S2A) has objects the se-

quences A0
•

f0

→ A1
•

f1

→ A2
• of morphisms of short exact sequences Ai

• : Ai
0  Ai

1 ։ Ai
2

of objects in A. The evaluation at (1, 1)

e : Fun([2], S2A)→ A : (A0
•

f0

→ A1
•

f1

→ A2
•) 7→ A1

1

preserves dualities and thus defines a dg form functor between exact dg categories
with duality.

LetM(A) ⊂ Fun([2], S2A) be the full dg-subcategory of those sequences A0
•

f0

→

A1
•

f1

→ A2
• for which the maps f1

0 : A1
0 → A2

0 and f
0
2 : A0

2 → A1
2 are the identity maps.

The duality on Fun([2], S2A) preserves the subcategory M(A) and thus makes
M(A) into a dg category with duality. The dg-functor M(A) → Fun([1], S2A) :
(f0, f1) 7→ f1 ◦ f0 preserves dualities. If A is exact then this is an equivalence
of dg-categories. By Lemma 2.3 below, we can choose an inverse dg form functor
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Fun([1], S2A) → M(A) which is unique up to natural isomorphism of dg form
functors. The dg form functor (∆, δ) is the composition

(∆, δ) : Fun([1], S2A)
≃
−→M(A) ⊂ Fun([2], S2A)

e
−→ A

Finally, the mapping cone dg form functor is the composition

(2.2) Cone : Fun([1],A)
(Γ,γ)⊗id
−→ Fun([1], S2A

[1])
(∆,δ)
−→ A[1].

More precisely, it is the zigzag

(2.3) Fun([1],A)
(Γ,γ)⊗id
−→ Fun([1], S2A

[1])
≃
←−M(A)

e
−→ A[1]

of dg form functors in which the arrow in the wrong direction is an equivalence of dg
categories with dualities for which we may choose an inverse if we wish. Replacing
A with A[n] we obtain the dg form functor

Cone : Fun([1],A[n])→ A[n+1]

for any exact dg category with duality and n ∈ Z. Note that the duality compati-
bility morphism for this form functor is an isomorphism.

2.2. A counter-example to invariance under derived equivalences. The
following proposition shows that an exact dg form functor A → B between pre-
triangulated dg categories with weak equivalences and duality which induces an

equivalence of associated triangulated categories T A
∼=
→ TB need not induce an

isomorphism of Grothendieck-Witt groups GW0(A ) → GW0(B) contrary to the
situation in K-theory.

To state the proposition, let R be commutative ring. Equip the exact dg category
CR of bounded complexes of finitely generated free R-modules with the set of
weak equivalences which are the quasi-isomorphisms, that is, the morphisms which
become isomorphisms inH0CR, or in other words, which are homotopy equivalences
of bounded complexes. Recall from §2.1 the cone dg form functor

(2.4) Cone : Fun([1],C
[−1]
R )→ C

[0]
R .

Let w be the set of morphisms f in Fun([1],C
[−1]
R ) for which Cone(f) is a quasi-

isomorphism.

Proposition 2.1. Let R be a commutative ring.

(1) The cone functor (2.4) induces an equivalence of triangulated categories

w−1 Fun([1],C
[−1]
R )

≃
→ quis−1

C
[0]
R

(2) If 2 is not a unit in R, then the map

GW0(Fun([1],C
[−1]
R ), w)→ GW0(C

[0]
R , quis)

induced by the cone functor (2.4) is not surjective.

Proof. An inverse to the functor in (1) is given by the functor CR → Fun([1],CR)
sending and object A of CR to the map 0 → A. Of course, this does not preserve
dualities.

For part (2), recall that GW0(C
[0]
R , quis) is isomorphic to the usual Grothendieck-

Witt group GW free
0 (R) of non-degenerate symmetric bilinear forms on finitely gen-

erated free R-modules [Sch10b, Proposition 6]. The isomorphism is induced by the
map that sends a finitely generated free R-module equipped with a non-degenerated
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symmetric bilinear form to the complex concentrated in degree zero where it is that
R-module together with the induced form on the complex. Let m ⊂ R be a maxi-
mal ideal containing 2 which exists since 2 is not a unit in R. Then k = R/m is a
field of characteristic 2. The composition

rkm : GW free
0 (R)→ GW free

0 (k) = GW0(k)
rk
→ Z : [M,ϕ] 7→ dim(M ⊗R k)

is surjective since [R, 1] is sent to 1. We will show that for every symmetric space

(M,ϕ) in (C
[−1]
R , w), the rank rkm(ConeM) of ConeM at m is even. For that, we

can assume R = k and it suffices to show that the composition

(2.5) W0(Fun([1],C
[−1]
k ), w)

Cone
−→ W0(k)

rk
−→ Z/2

is zero. Since k has characteristic 2, we will ignore all signs. As mentioned
above, inclusion as complexes concentrated in degree zero induces an isomorphism

W0(k)→W0(C
[0]
k , quis). The inverse W0(C

[0]
k , quis)→W0(k) is given by the zero-

homology functor [M,ϕ] 7→ [H0M,H0ϕ]. Let (M,ϕ) = (P
f
→ Q,ϕP , ϕQ) be a

symmetric space in (Fun([1],C
[−1]
k ), w). We have to show that the symmetric space

(N,ψ) = H0 Cone(M,ϕ)

in Vectk has even rank. Symmetry of the map (ϕP , ϕQ) : (P,Q)→ (Q∗[−1], P ∗[−1])

means that ϕQ
i = (ϕP

1−i)
∗ηQi where V ∗ = Homk(E, k) is the usual dual of a k-

vector space V and η is the usual canonical double dual identification ηV : V → V ∗∗.
The cone symmetric space of (M,ϕ) in degree zero is the symmetric map of k-vector
spaces

(2.6)
(
α 0
0 α∗η

)
: Q0 ⊕ P1 → P ∗

1 ⊕Q
∗
0, where α = ϕQ

0 .

The particular shape of the symmetric map shows that Q0⊕P1 has a basis v1, ..., vn,
n = dimQ0 + dimP1, of isotropic vectors, that is, of vectors vi for which the
(possibly singular) associated symmetric bilinear form (2.6) satisfies 〈vi, vi〉 = 0,
i = 1, ..., n. Since the field k has characteristic 2 this implies that every vector
v ∈ Q0 ⊕ P1 has to be isotropic. As a subquotient, the non-singular symmetric
space (N,ψ) also consists of isotropic vectors. Hence, the symmetric space (N,ψ)
over the field k of characteristic 2 is symplectic. Every symplectic inner product
space has even rank [MH73], hence, the map (2.5) is the zero map. �

We conclude this section with two lemmas used in the construction of the cone
dg form functor. Recall terminology and notation from §1.9.

Lemma 2.2. Let (F, ϕ) : (A, ∗, α)→ (B, ∗, β) be a form functor between categories
with duality. If F is an equivalence of categories and ϕ a natural isomorphism,
then (F, ϕ) induces an equivalence of categories of symmetric forms

(F, ϕ)h : Ah
≃
−→ Bh.

Proof. Easy verification left to the reader. �

Lemma 2.3. Let (F, ϕ) : (A, ∗, α)→ (B, ∗, β) be a form functor between categories
with duality. If F is an equivalence of categories and ϕ a natural isomorphism, then
(F, ϕ) is an equivalence of categories with duality, that is, there is a form functor
(G, γ) : (B, ∗, β)→ (A, ∗, α) such that (F, ϕ)◦(G, γ) and (G, γ)◦(F, ϕ) are naturally
equivalent to the identity form functors. Moreover, any two inverses of (F, ϕ) are
naturally isomorphic.
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Proof. Composition with (F, ϕ) induces a form functor between categories with
duality

(F, ϕ) : Fun(B,A)→ Fun(B,B) : G 7→ F ◦G

which is an equivalence of underlying categories (since F is) and whose duality
compatibility map is an isomorphism (since ϕ is). By Lemma 2.2, the induced
functor between categories of symmetric forms is an equivalence of categories

Fun(B,A)h
≃
−→ Fun(B,B)h : (G, γ) 7→ (F, ϕ) ◦ (G, γ).

In particular, there is an object (G, γ) of Fun(B,A)h such that (F, ϕ) ◦ (G, γ) is
naturally isomorphic to the identity form functor on B. This object is unique up to
natural isomorphism of form functors. Thus, we have shown that any form functor
(F, ϕ) with F an equivalence and ϕ an isomorphism has a right inverse (up to
natural isomorphism of form functors) which is unique up to natural isomorphisms
of form functors. Let (G, γ) be such an inverse. Then since F is an equivalence,
so is G, and since, furthermore, ϕ is an isomorphism, so is γ. Therefore, (G, γ)
has a right inverse, too, say (H, η). But then (F, ϕ) is naturally isomorphic to
(F, ϕ) ◦ [(G, γ) ◦ (H, η)] = [(F, ϕ) ◦ (G, γ)] ◦ (H, η) which is naturally isomorphic to
(H, η). Hence, (G, γ) is not only a left but also a right inverse of (F, ϕ). �

3. Grothendieck-Witt groups of triangulated categories

The theory of Witt groups has experienced a renaissance some 15 years ago due to
the introduction of triangulated category methods by Balmer [Bal00], [Bal01a]. The
purpose of this section is to associate to every dg category with weak equivalences
and duality a triangulated category with duality (Lemma 3.6), and to show that
both have isomorphic Grothendieck-Witt groups (Proposition 3.8). This is the base
case of the Invariance Theorem 6.5 which plays an important role in applications.
Unfortunately, Balmer’s framework is too restrictive for our purpose. So, part of
this section recasts some of the definitions in [Bal00].

Our reference for triangulated categories is [Kel96]. In particular, we will only
assume that the shift functor T : K → K in a triangulated category K is an
equivalence of categories.

Definition 3.1. A triangulated category with duality is a triangulated category K

together with an additive functor ♯ : Kop → K and natural isomorphisms λ : ♯
∼=
→

T ♯T and ̟ : 1
∼=
→ ♯♯ satisfying (1) - (3) below.

(1) The following diagram commutes

T
̟T //

T̟

��

♯♯T

λ♯T

��
T ♯♯ T ♯T ♯T.

T♯λ
oo

(2) For all objects X of K we have ̟♯
X ◦̟X♯ = 1X♯ .

(3) If

(3.1) X
f
−→ Y

g
−→ Z

h
−→ TX
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is an exact (also called distinguished) triangle in K. Then the following
triangle, called dual triangle, is also exact in K

(3.2) Z♯ g♯

−→ Y ♯ f♯

−→ X♯ T (h♯)◦λX
−→ T (Z♯).

Remark 3.2. Given a triangulated category K, an additive functor ♯ : Kop → K,
a natural transformation ̟ : 1 → ♯♯ and a natural isomorphism λ : ♯ → T ♯T
satisfying (1) and (2) of Definition 3.1. Then (3) is equivalent to requiring that the
following triangle be exact

(3.3) (TY )♯
(Tf)♯

−→ (TX)♯
h♯

−→ Z♯ λY ◦g♯

−→ T (TY )♯.

Indeed, under the natural isomorphism λ, the triangle (3.2) becomes the triangle
(3.3) shifted twice.

Remark 3.3. There is an evident category ∆K of exact triangles in K. The duality
functor ♯ on K makes ∆K into a category with duality (∆K, ♯,̟) where the duality
functor

♯ : (∆K)op → ∆K

sends the exact triangle (3.1) to the exact triangle (3.2). The double dual identi-
fication for the exact triangle (3.1) is the map of triangles (̟X , ̟Y , ̟Z) which is
indeed a map of triangles in view of the commutative diagram in Definition 3.1 (1).

Definition 3.4. A morphism of triangulated categories with duality

(F, ρ, ϕ) : (K1, ♯,̟, λ)→ (K2, ♯,̟, λ)

is a triple (F, ρ, ϕ) where F : K1 → K2 is an additive functor, ρ : FT
∼=
→ TF and

ϕ : F♯
∼=
→ ♯F are natural isomorphisms such that (F, ρ) : K1 → K2 is a triangle

functor and such that the following diagrams commute

F
F̟ //

̟F

��

F♯♯

ϕ♯

��

F♯
F (λ)//

ϕ

��

FT ♯T
ρ♯T // TF♯T

T (ϕT )

��
♯♯F

ϕ♯

// ♯F ♯ ♯F
λF

// T ♯TF
T♯(ρ)

// T ♯FT.

Composition is defined as

(F̄ , ρ̄, ϕ̄) ◦ (F, ρ, ϕ) = (F̄ ◦ F, ρ̄F ◦ F̄ ρ, ϕ̄F ◦ F̄ϕ).

In this way we obtain the category TriD of small triangulated categories with duality
and their morphisms. Note that a morphism of triangulated categories with duality
(F, ρ, ϕ) as above induces morphisms of additive categories with duality (F, ϕ) :
(K1, ♯,̟)→ (K2, ♯,̟) and (F, ρ, ϕ) : (∆K1, ♯,̟)→ (∆K2, ♯,̟).

For the purpose of the next definition, an inner product space in an additive
category with duality (A, ♯,̟) will mean a pair (A,ϕ) where ϕ : A → A♯ is an
isomorphism satisfying ϕ♯̟A = ϕ. An isometry from (A,ϕ) to (B,ψ) is an iso-
morphism f : A → B in A such that ϕ = f ♯ψf . This applies in particular to the
additive categories with duality K and ∆K associated with a triangulated category
with duality K.
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Definition 3.5. The Grothendieck-Witt group

GW 0(K)

of a triangulated category with duality K = (K, ♯,̟, λ) is the abelian group gener-
ated by isometry classes [X,ϕ] of inner product spaces (X,ϕ) in K, subject to the
following relations

(1) [X,ϕ] + [Y, ψ] = [X ⊕ Y, ϕ⊕ ψ]
(2) Given an inner product space in the category of exact triangles ∆K

E−1
f //

ϕ−1∼=
��

E0
g //

ϕ0∼=
��

E1

ϕ1∼=
��

h // T (E−1)

Tϕ−1∼=
��

E♯
1

g♯

// E♯
0

f♯

// E♯
−1

T (h♯)◦λX

// T (E♯
1),

that is, (ϕ−1, ϕ0, ϕ1) = (ϕ♯
1̟,ϕ

♯
0̟,ϕ

♯
−1̟) is an isomorphism, then

[E0, ϕ0] =
[
E−1 ⊕ E1,

(
0 ϕ1

ϕ−1 0

)]
∈ GW 0(K).

The Witt group
W 0(K)

of K is the abelian group generated by isometry classes [X,ϕ] of inner product
spaces (X,ϕ) in K, subject to the relation (1) above and [E0, ϕ0] = 0 for every
inner product space (ϕ−1, ϕ0, ϕ1) in the category of exact triangles as in (2).

3.1. The functor T : dgCatWD → TriD. Next we want to verify that the trian-
gulated category of a dg category with weak equivalences and duality is canonically
a triangulated category with duality. For that, consider the natural transformation
in Ck

αB,X,Y : B[BX, Y ]→ [X,Y ] : α(b ⊗ f)(x) = (−1)|b||f |f(b⊗ x)

where b ∈ B, f ∈ [BX, Y ] and x ∈ X . It is the unique admissible natural transfor-
mation of this shape in the sense of [KML71]. For B = T = k[1] ∈ Ck, this map is
an isomorphism.

Let A = (A, ♯,̟) be a dg category with duality. To simplify notation, we may

write (♯,̟) for the duality of C
[0]
k A though it is strictly speaking (∨ ⊗ ♯, can⊗̟)

where (∨, can) = ([ ,1], can) is the duality on C [0]. We define a natural transfor-

mation λ : ♯→ T ♯T of functors C
[0]
k A → C

[0]
k A by

λAX = λ⊗ 1 : (AX)♯ = [A,1]⊗X♯ → T ♯T (AX) = T [TA,1]⊗X♯

where λ : [A,1]→ T [TA,1] is the inverse of αT,A,1.

Lemma 3.6. Let A = (A, w, ♯,̟) be a dg category with weak equivalences and
duality. Then the datum

T A = (T A , ♯,̟, λ)

defines a triangulated category with duality.

Proof. As a localization of a category with duality Z0Aptr where ̟ is a natural
weak equivalence, the datum (T A , ♯,̟) defines a category with duality where ̟
is a natural isomorphism. We are left with checking conditions (1) and (3) of
Definition 3.1.
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For the first condition, consider the following diagram in Ck

BX
canY

BX //

1⊗canY
X

��

[[BX, Y ], Y ]

B[[X,Y ], Y ]
1⊗[αB,X,Y ,1]

// B[B[BX, Y ], Y ].

αB,[BX,Y ],Y

OO

The diagram commutes for every X , Y , B in Ck. This can be checked directly
by a diagram chase. Alternatively, it also follows from Kelly-MacLane’s Coher-
ence Theorem [KML71] as there is a unique admissible natural transformation
BX → [[BX, Y ], Y ]. Since in T A , we have ̟T A = ∨Ck

⊗ ̟A and λ = λ ⊗ id,
commutativity of the diagram for B = T and Y = 1 implies the commutativity of
diagram (1) in Definition 3.1.

We are left with checking condition (3) of Definition 3.1. The condition is in-
variant under isomorphisms of exact triangles. Therefore, it suffices to check it for
the standard triangles (1.7). For that, let f : X → Y be a morphism in Z0Aptr,
and consider the commutative diagram

X

f

��

// i⊗1 //

�

CX
p⊗1 // //

��

TX

1

��
Y // g //

γ−1⊗1

��

C(f)
h // //

��
�

TX

γ1⊗f

��
[T, T ]Y //

[p,1]⊗1
// [C, T ]Y

[i,1]⊗1
// // [1, T ]Y

in which the outer diagram is the map of exact sequences (2.1) tensored with f .
The rest of the diagram is given by the definition of the cone C(f). As usual, the
squares with a �-sign in it are bicartesian. Applying the (exact) duality functor
♯ to the lower two squares of the diagram yields the lower part of the following
commutative diagram

(TY )♯ // i⊗1 //

β̃ ∼=

��

C(TY )♯
p⊗1 // //

β̃∼=

��

T (TY )♯

β̃∼=

��
([1, T ]Y )♯ // ([i,1]⊗1)♯ //

(γ1⊗f)♯

��
�

([C, T ]Y )♯
([p,1]⊗1)♯ // //

��

([T, T ]Y )♯

(γ−1⊗1)♯

��
(TX)♯ //

h♯

// (Cf)♯
g♯

// // Y ♯.

The upper vertical arrows are given by the natural isomorphism β̃ : ([B,D]Y )♯ →
B(DY )♯ with B,D ∈ Ck and Y ∈ CkA. For Y = E ⊗ Y0 with E ∈ Ck and Y0 ∈ A
the natural transformation β̃ has the form

β̃ = β ⊗ id : B(DE)♯ ⊗ Y ♯
0 → ([B,D]E)♯ ⊗ Y ♯

0
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where β : B⊗ (DE)♯ → ([B,D]E)♯ is the unique admissible natural transformation
of this shape in Ck. It is given by the formula

β : B[DE,A]→ [[B,D]E,A] : β(b ⊗ f)(g ⊗ e) = (−1)|f ||b|+|g||b|f(g(b)⊗ e).

The map β is an isomorphism for A,B,D,E ∈ Ck.
Composition of the left two vertical arrows is (Tf)♯. This is because (γ1⊗ f)♯ =

(Tf)♯ ◦ (γ1⊗ 1Y )
♯ reducing the claim to verifying (γ1⊗ 1Y )

♯ ◦β = 1(TY )♯ which can
be checked within Ck where, by adjunction, it boils down to the composition

T ⊗ 1
γ1⊗1
−→ [1, T ]⊗ 1

e
−→ T

being the usual isomorphism T ⊗1 ∼= T . Similarly, the composition of the right two
vertical arrows is the natural transformation α : T ♯T → ♯, inverse of λ. Again, this
can be checked within C where, by adjunction, it boils down to the composition

1⊗ T
γ−1⊗1
−→ [T, T ]T

e
−→ T

being the usual identification 1⊗T ∼= T . The outer part of the diagram shows that
the following is an exact triangle in T A

(TY )♯
(Tf)♯

−→ (TX)♯
h♯

−→ (Cf)♯
λY ◦g♯

−→ T (TY )♯.

By Remark 3.2, we are done. �

Next, we want to show that the Grothendieck-Witt group of a pretriangulated dg
category with weak equivalences and duality A coincides with the Grothendieck-
Witt groups of its derived category T A when 1/2 ∈ A . For that, let A =
(A, w, ♯,̟) be a pretriangulated dg category with weak equivalences and duality,
and consider the localization functor

(3.4) Z0A → T A : A 7→ A

sending weak equivalences to isomorphisms. This functor preserves dualities and
thus defines a form functor between categories with duality. Similarly, consider the
functor

(3.5) S2Z
0A → ∆T A

from exact sequences in A to exact triangles in T A . It sends an exact sequence

(3.6) X
f
 Y

g
։ Z

to the exact triangle

(3.7) X
f // Y

g // Z
q◦r−1

// TX

where the maps q = q(f, g) : C(f) → TX and r = r(f, g) : C(f) → Z are defined
by the commutative diagram

(3.8) X // f //
��

i⊗1

��
�

Y
g // //

��

��

Z

CX // //

p⊗1
����

C(f)

r(f,g)

== ==④④④④④④④④

q(f,g)||||①①
①①
①①
①①

TX,
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in which the square is cocartesian, and the map r(f, g) : C(f) → Z is an isomor-
phism in T A since it is an admissible epimorphism in CkA with contractible kernel
CX . It follows from the following lemma that the functor (3.5) equipped with the
identity as duality compatibility map is a form functor between categories with
dualities.

Lemma 3.7. Given an exact sequence (3.6) in a pretriangulated dg category A,
then the following diagram is a map of exact triangles in T A

Z♯ g♯

//

1

��

Y ♯ f♯

//

1

��

X♯ q̄◦r̄−1

//

1

��

T (Z♯)

1

��
Z♯

g♯

// Y ♯

f♯

// X♯

T (h♯)◦λX

// T (Z♯)

where h = q ◦ r−1 with q = q(f, g), r = r(f, g) and q̄ = q(g♯, f ♯), r̄ = r(g♯, f ♯)
defined by the commutative diagram (3.8).

Proof. The only thing that needs justification is the commutativity of the right
hand square in the diagram, that is, the commutativity of

X♯

λX

��

C(g♯)
r̄oo q̄ // T (Z♯)

1

��
T ♯TX

T (q♯)

// T ♯C(f) T (Z♯).
T (r♯)

oo

This diagram commutes due to the following two facts.
Firstly, in the following diagram

(3.9) ♯X // i⊗1 //

λX

��

C♯X
p⊗1 // //

��

T ♯X

1

��
T ♯TX //

T♯(p⊗1)
// T ♯CX

T♯(i⊗1)
// // T ♯X,

the left square anti-commutes and the right square commutes where the middle
vertical map is the natural transformation

C ⊗X♯ γ0⊗1

∼=
// [C, T ]⊗X♯ T [C,1]⊗X♯β⊗1

∼=
oo

with γ0 : C → [C, T ] the map defined in §2.1 and β : T [C,1]→ [C, T ] the (admis-
sible) natural transformation

β : A[B,E]→ [B,AE] : β(a⊗ f)(b) = a⊗ f(b).

Since all maps in diagram (3.9) are of the form ?⊗ 1X♯ , (anti-) commutativity can
be checked in Ck with X = k in which case it is a direct verification.
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Secondly, given a commutative diagram in an exact category

A00
// //

��

��

A01
// //

��

��

A02
��

��
A10

// //

����

A11
// //

����

A12

����
A20

// // A21
// // A22

with exact rows and columns, let E be the push-out of the upper left corner, and
P the pull-back of the lower right corner, and let cij : E → Aij , and pij : Aij → P ,
i = 0, 1, 2, i+ j = 2, be the natural maps given by the universal properties defining
E and P . Then we have the equation

(3.10) p11c11 = p20c20 + p02c02.

This can be checked by composing both sides of the equation with P → A12,
P → A21, A01 → E and A10 → E.

We apply the second fact to the diagram obtained by tensoring the (column)
exact sequence (1.1) with the (row) exact sequence (g♯, f ♯). Then E = C(g♯),
c20 = q̄, c02 = r̄. Applying the exact functor T ♯ to diagram (3.8) and using the first
fact, we obtain P = T ♯C(f), p20 = T (r♯), and p02 = −T (q♯)λX . In the equation
(3.10), the map p11c11 is zero in T A because it factors through the object C♯Y
which is zero in T A. Therefore, equation (3.10) yields

0 = T (r♯) ◦ q̄ − T (q♯)λX ◦ r̄.

�

Since we have checked that the functors (3.4) and (3.5) preserve dualities, we
obtain a well-defined map of abelian groups

(3.11) GW0(A )→ GW 0(T A ) : [A,ϕ] 7→ [A,ϕ]

for any dg category with weak equivalences and duality A . Recall that 1
2 ∈ A

means that A is a dg category over a Z[1/2]-algebra.

Proposition 3.8. Let A = (A, w, ♯,̟) be a dg category with weak equivalences
and duality such that 1

2 ∈ A . Then the map (3.11) is an isomorphism of abelian
groups

GW0(A )
∼=
−→ GW 0(T A ).

Proof. We can assume A to be pretriangulated. For a small category C, write π0C
for its set of connected components, that is, the quotient of the set of objects of C
modulo the relation (generated by) A ∼ B whenever there is a morphism A → B
in C. If C is a symmetric monoidal category, then π0C is an abelian monoid, and
we write K0(C) for the Grothendieck group of the abelian monoid π0C. Recall
from Section 1.9 the category Ch of symmetric forms in a category with duality
C. So, K0Ch denotes the Grothendieck group of symmetric forms in C, that is, the
Grothendieck group of π0(Ch) in case Ch is symmetric monoidal.
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From Definitions 1.39 and 3.5, we have a map of short exact sequences of abelian
groups

K0(wS2A)h //

��

K0(wA)h //

��

GW0(A ) //

��

0

K0(i∆T A )h // K0(iT A )h // GW 0(T A ) // 0

where the vertical maps are induced by the functors (3.4) and (3.5) and the left
horizontal maps are the differences of the two sides of the equations in Definitions
1.39 (3) and 3.5 (2). Let R1 and R2 be the images of the top left and the bottom
left horizontal maps. So, R1 is generated by [E0, ϕ0] − H(E−1) where (E∗, ϕ∗)
is a symmetric space in the category of exact sequences as in Definition 1.39 (3),
and R2 is generated by [E0, ϕ0]−H(E−1) where (E∗, ϕ∗) is a symmetric space in
the category of exact triangles as in Definition 3.5 (2). By Lemma 3.9 below, the
middle vertical arrow in the diagram is an isomorphism. Hence, we are left with
showing that the induced map R1 → R2 is surjective.

Let (E∗, ϕ∗) be a symmetric space in the category of exact triangles in T A

as in Definition 3.5 (2). Recall that we can assume A to be pretriangulated, so
T A = w−1H0A. By the definition of exact triangles in w−1H0A, we can assume
that (f, g, h) is an exact triangle in H0A. The maps ϕi are fractions ϕi = αis

−1
i

where αi : Ai → E♯
−i and si : Ai → Ei are weak equivalences in A. By the

calculus of fractions, there is a map a : A−1 → A0 in Z0A such that s0f =
as−1 and α0a = g♯α−1 in H0A. Furthermore, replacing a : A−1 → A0 with the
homotopy equivalent (a, i) : A−1 → A0 ⊕CA−1, we can assume that a : A−1 → A0

is an inflation with quotient map b : A0 → A1 = A0/A−1 in Z0A. The pair
(s−1, s0) extends to a map of exact triangles (s−1, s0, s1) in H0A from A∗ to E∗.
Since s−1 and s0 are weak equivalences, so is s1. Therefore, the symmetric exact
triangle (E∗, ϕ∗) is isometric in w−1H0A to the symmetric exact triangle (A∗, ψ∗)

where ψi = s♯iϕisi. In particular, [E0, ϕ0] − H(E−1) = [A0, ψ0] − H(A−1) in
R2. We will show that the latter expression is in the image of R1 → R2. Since

(s♯1ϕ−1s−1, s
♯
0ϕ0s0, s−11

♯ϕ1s1) = (s♯1α−1, s
♯
0α0, α

♯
−1s1) in w

−1H0A, we can assume

that the components of (ψ−1, ψ0, ψ1) = (s♯1α−1, s
♯
0α0, α

♯
−1s1) are maps in Z0A.

In H0A we have ψ0a = s♯0α0a = s♯0g
♯α−1 = b♯s♯1α−1 = b♯ψ−1. Therefore, the

difference ψ0a − b♯ψ−1 : A−1 → A♯
0 in Z0A factors through an injective object of

Z0A. Since a : A−1 → A0 is an inflation in the Frobenius exact category Z0A,

there is a map ε : A0 → A♯
0 in Z0A which factors through that injective object

such that (ψ0 + ε)a = b♯ψ−1 in Z0A. Replacing ψ0 with ψ0 + ε we can assume
that ψ0a = b♯ψ−1 in Z0A without changing the image of ψ0 in H0A. From the
last equality, we see that the pair (ψ−1, ψ0) induces a unique map on quotients

ψ0/−1 : A1 → A♯
0 in Z0A. In particular, we have two maps of exact triangles in

w−1H0A extending (ψ−1, ψ0), namely (ψ−1, ψ0, ψ1) and (ψ−1, ψ0, ψ0/−1). Since

ψ1 and ψ0/−1 are isomorphisms in w−1H0A, [Bal00, Lemma 4.6] provides us with

an endomorphism x : A♯
−1 → A♯

−1 such that x3 = 0 and ψ0/−1 = (1 + x)ψ1.

In w−1H0A, the maps ψ0/−1 + ψ♯
−1̟ = (2 + x)ψ1 and ψ0 + ψ♯

0̟ = 2ψ0 are
isomorphisms since x is nilpotent and 1/2 ∈ A. It follows that

(γ−1, γ0, γ1) =
1

2
(ψ♯

0/−1̟A−1 + ψ−1, ψ0 + ψ♯
0̟A0 , ψ0/−1 + ψ♯

−1̟A1)
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is a symmetric weak equivalence in the category of exact sequences in (Z0A, w, ♯,̟).
This defines an element [A0, γ0]−H(A−1) ∈ R1 which maps to [A0, ψ0]−H(A−1) ∈
R2 since ψ0 = γ0 in w−1H0A. �

Lemma 3.9. Let A = (A, w, ♯,̟) be a pretriangulated dg category with weak
equivalences and duality such that 1

2 ∈ A . Then the functor (wA)h → (iT A )h :
(X,ϕ) 7→ (X,ϕ) induces a bijection

π0 (wA)h
∼=
→ π0 (iT A )h.

Proof. The map is surjective by the following argument. Let (A,α) be a symmetric
space in T A = w−1Z0A. We can write α as a fraction α = a◦s−1 with a : B → A♯

and s : B → A weak equivalences in A. Let ϕ = (s♯a + a♯̟s)/2 : B → B♯. Then
(B,ϕ) is a symmetric weak equivalence in A, and s : B → A defines an isometry in
T A between (B,ϕ) and (A,α).

The map in the lemma is injective by the following argument. Let (A,α) and
(B, β) be objects of (wA)h, and let [fs−1] be an isometry in T A from (A,α) to
(B, β) where f : E → B and s : E → A are weak equivalences in A. Using
the calculus of fractions in T A = w−1H0A, we can assume that α0 = s♯αs and

β0 = f ♯βf are homotopic. Therefore, the difference α0−β0 factors as E
ε
→ I

δ
→ E♯

where I is an injective object in Z0A. Then the pair (E ⊕ I, ϕ) with

ϕ =
(

β0 δ/2

δ♯̟/2 0

)
: E ⊕ I → E♯ ⊕ I♯

defines an object of (wA)h. The string of maps in (wA)h

(A,α)
s
← (E,α0)

( 1ε )→ (E ⊕ I, ϕ)
( 10 )← (E, β0)

f
→ (B, β)

shows that [A,α] = [B, β] ∈ π0(wA)h. �

Definition 3.10 (Shifted dualities). Let K = (K, ♯,̟, λ) be a triangulated cat-
egory with duality. The first shifted triangulated category with duality K[1] =
(K, ♯[1], ̟[1], λ[1]) has the same underlying triangulated category as K and

♯[1] = T ♯, ̟[1] = −λ♯ ◦̟, λ[1] = −T (λ).

One checks that this defines indeed a triangulated category with duality in the
sense of Definition 3.1. Similarly, we have a triangulated category with duality
K[−1] = (K, ♯[−1], ̟[−1], λ[−1]) defined by

♯[−1] = ♯T, ̟[−1] = (λ♯)−1 ◦̟, λ[−1] = −λT .

Iterating, we obtain triangulated categories with duality K[n] for n ∈ Z where
K[n] = (K[n−1])[1] for n > 0, K[0] = K, and K[n] = (K[n+1])[−1] for n < 0. For
m,n ∈ Z, there are natural isomorphisms (K [m])[n] ∼= K[m+n]. For instance

(id, 1, λ) : K[0] = (K, ♯,̟, λ)
∼=
−→ (K[−1])[1] = (K, T ♯T, λT♯T ◦ (λ

♯)−1 ◦̟,TλT ).

A morphism (F, ρ, ϕ) : K1 → K2 of triangulated categories with duality induces

another such morphism (F, ρ, ϕ[1]) : K
[1]
1 → K

[1]
2 where ϕ[1] = T (ϕ) ◦ ρ♯.

Definition 3.11. For a triangulated category with dualityK, one defines the shifted
Witt and Grothendieck-Witt groups for n ∈ Z by

Wn(K) =W 0(K[n]) and GWn(K) = GW 0(K[n]).
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Finally, we want to construct for n ∈ Z equivalences of triangulated categories
with duality T (A [n]) ≃ (T A )[n]. It suffices to construct such equivalences for
n = ±1. Consider the following (admissible) natural transformation in Ck

β : A[B,E]→ [B,AE] : β(a⊗ f)(b) = a⊗ f(b).

For A = T , E = 1 and A ∈ dgCatWD it defines a natural transformation β : T ♯→
♯T which for A⊗X ∈ Ck ⊗A is

β ⊗ 1 : T [A,1]⊗X♯ → [A, T ]⊗X♯.

Similarly, the natural isomorphism in Ck

φ : [EA,BD]
can
←−
∼=

[E,B][A,D]
ϕ
−→
∼=

[A, [E,B]D]

with E = T and B = D = 1 defines a natural isomorphism of functors φ : ♯T →
♯T−1 which for A⊗X ∈ Ck ⊗A is

φ⊗ 1 : [TA,1]⊗X♯ → [A, [T, 1]]⊗X♯

where T−1 = [T,1] ∼= k[−1].

Lemma 3.12. Let A be a pretriangulated dg category with weak equivalences and
duality. Then (id, 1, β) and (id, 1, φ) define equivalences of triangulated categories
with duality

(T A )[1]
≃
−→ T (A [1]) and (T A )[−1] ≃

−→ T (A [−1]).

Proof. The functors (id, 1) are equivalences of triangulated categories. So, the
only thing to prove is commutativity of the two diagrams in Definition 3.4. Since
all natural transformations involved are of the form ? ⊗ 1 it suffices to check the
commutativity of the corresponding diagrams in Ck.

For the first equivalence, the first diagram in Definition 3.4 is is the outer diagram
in

A
̟ //

̟

��

[[A,1],1]

ε[A,1] ))❙
❙

❙
❙

❙
❙

❙
T [T [A,1],1]

−α[A,1]

∼=
oo

β

��
[[A, T ], T ]

β
// [T [A,1], T ]

where the dashed arrow is the (admissible) natural transformation

εB : [B,E]→ [TB, TE] : εB(f)(t⊗ b) = (−1)|t||f |t⊗ f(b)

with B = [A,1] and E = 1. Commutativity of this diagram can be checked directly,
or by coherence. Similarly, commutativity of the second diagram in Definition 3.4
for the first equivalence requires us to check commutativity in Ck of the diagram

B[A,E]

β

��

BT [TA,E]
1⊗αoo TB[TA,E]

c⊗1oo

1⊗β

��
[A,BE] T [TA,BE].α

oo

with B = T and E = 1. Since cT,T = −1, commutativity of the diagram follows
from coherence, or by diagram chase. This proves the first equivalence of triangu-
lated categories with duality in the lemma. The second is proved similarly, and we
omit the details. �
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Corollary 3.13. Let A be a pretriangulated dg category with weak equivalences
and duality such that 1

2 ∈ A. Then for all n ∈ Z there are natural isomorphisms

GW
[n]
0 (A ) ∼= GWn(T A ) and W [n](A ) ∼=Wn(T A ).

�

Remark 3.14. Let (K, ♯,̟, λ) be a triangulated category with duality. Our defi-
nition of the Witt and Grothendieck-Witt groups Wn(K) and GWn(K) of K agree
with Balmer’s and Walter’s definitions in [Bal00] and [Wal03b]. This is because
for an inner product space in the category ∆K of exact triangles as in Definition
3.5 (2), the map (Tϕ−1)h : Z → T (Z♯) is a symmetric map in the category with
duality

(K, T ♯, λ♯̟) = (K, ♯[1],−̟[1])
T
≃ K[−1]

which shows that the map from our definition to Balmer’s definition is well-defined.
Conversely, Balmer shows in [Bal00] that any (K, T ♯, λ♯̟)-symmetric map Z →
T (Z♯) is part of a symmetric space in ∆K as in Definition 3.5 (2) (with ϕ−1 = id).
This shows that the map from his definition to our definition is well-defined. Since
both maps are the identity maps on generators, they are isomorphism.

4. The multi-simplicial R•-construction

4.1. Waldhausen’s iterated S•-construction. To fix notation and to motivate
our construction of the Grothendieck-Witt spectrum in Definition 5.4 below, we
remind the reader of Waldhausen’s definition of the K-theory of an exact category
with weak equivalences [Wal85] and its explicit deloopings [Wal85, Proposition
1.5.3]. Recall that an exact category with weak equivalences is a pair (E , w) where
E is an exact category and w is a set of morphisms in E called weak equivalences
satisfying certain properties; see for instance [Sch10b, §2.2]. It is called pointed if
it is equipped with a choice of zero object in E which we will call base point.

For an integer n ≥ 0, let [n] be the totally ordered set

[n] = {0 < 1 < ... < n}

of n+2 elements. As usual, an ordered set is considered as a category with unique
non-identity morphism a → b if a < b. Let Ar[n] = Fun([1], [n]) be the category
of arrows in [n]. For an integer n ≥ 0 and a pointed exact category with weak
equivalences (E , w), Waldhausen constructs another pointed exact category with
weak equivalences SnE as the full subcategory of Fun(Ar[n], E ) of those functors

A : Ar[n]→ E : (p ≤ q) 7→ Ap,q

for which Ap,p = 0 (the base point zero object of E ) for all p ∈ [n] and 0 →
Ap,q → Ap,r → Aq,r → 0 is an admissible short exact sequence in E whenever
p ≤ q ≤ r ∈ [n]. A sequence in SnE is exact if it is exact at each (p, q)-spot
and a morphism in SnE is a weak equivalence if it is a weak equivalence at each
(p, q)-spot, p ≤ q ∈ [n].

Recall [Wal85, p. 330 Definition] that the K-theory space of (E , w) is the loop
space Ω|wS•E | of the topological realization of the simplicial category n 7→ wSnE .
The connective K-theory spectrum K(E , w) of (E , w) is the spectrum

{|wE |, |wS•E |, ..., |wS
(n)
• E |, ...}
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with bonding maps defined in [Wal85, p. 341] where i 7→ S
(n)
i E denotes the n-th

iterate of the S•-construction:

S
(n)
i E = Si . . . Si︸ ︷︷ ︸

n

E .

This is a positive Ω-spectrum [Wal85, Proposition 1.5.3 and Remark thereafter]. It
was given the structure of a symmetric spectrum in [GH99].

4.2. The R•-construction. Recall [Sch10b, §2.3] that an exact category with weak
equivalences and duality is a quadruple (E , w, ∗, η) with (E , w) an exact cate-
gory with weak equivalences and (E , ∗, η) a category with duality such that ∗ :
(E op, w) → (E , w) is an exact functor (in particular, ∗(w) ⊂ w) and η : id→ ∗∗ is
a natural weak equivalence. Note that if E is an exact category with weak equiv-
alences and duality, the category wE of weak equivalences in E is a category with
duality.

For an integer n ≥ 0, let n be the totally ordered set of 2n+ 1 elements

n = {n′ < (n− 1)′ < · · · < 0′ < 0 < · · · < n}.

This is a category with unique (strict) duality n ↔ n′. The assignment [n] 7→ n
defines a simplicial category with strict duality where for θ : [n]→ [m] the induced
map θ : n → m is θ(i) = θ(i) and θ(i′) = θ(i)′. Let Ar(n) = Fun([1], n) be the
category of arrows in n. When n varies, this is a simplicial category with strict
duality.

For a pointed exact category with weak equivalences and duality E , the assign-
ment

[n] 7→ Fun(Ar(n), E )

is a pointed simplicial exact category with duality with base point the unique func-
tor Ar(n)→ 0. As in Section 4.1, we write

RnE ⊂ Fun(Ar(n), E )

for the full subcategory of those objects A : Ar(n) → E for which Ai,i = 0 (the
base point zero object of E ), and for which for all i ≤ j ≤ k ∈ n the sequence
0 → Ai,j → Ai,k → Aj,k → 0 is a admissible exact sequence in E . A map or
sequence in RnE is a weak equivalence or admissible exact sequence if it is at each
(p, q)-spot for all objects (p, q) of Ar(n). The duality on Fun(Ar(n), E ) makes RnE

into a pointed exact category with weak equivalences and duality. Varying n, we
obtain a simplicial pointed exact category with weak equivalences and duality R•E .
The simplicial category R•E is the edge-wise subdivision [Sch10b, §2.4], [Wal85,
§1.9] of Waldhausen’s S•-construction and was denoted Se

•E in [Sch10b].
The inclusion ι : [n] ⊂ n : i 7→ i induces a functor of simplicial exact categories

with weak equivalences R•E → S•E : A 7→ A◦ι and thus a map (wR•E )h → wS•E

as the composition

(4.1) (wR•E )h
(A,ϕ) 7→A
−→ wR•E

A 7→Aι
−→ wS•E .

where Ch is the category of symmetric forms in C; see Section 1.9.
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4.3. Homotopy pull-backs. Let f : X → Z and g : Y → Z be maps of topo-
logical spaces. Then the homotopy pull-back of the diagram X → Z ← Y is the
topological space

X
h
×
Z

Y = {(x, σ, y) ∈ X × ZI × Y | f(x) = σ(0), g(y) = σ(1) }

equipped with the topology making it a subspace of X × ZI × Y where ZI is the
space of paths I → Z in Z and I is the unit interval [0, 1] ⊂ R. It is equipped with

the two projections maps pX : X
h
×
Z

Y → X : (x, σ, y) 7→ x and pY : X
h
×
Z

Y →

Y : (x, σ, y) 7→ y making the square

X
h
×
Z

Y
pX //

pY

��

X

f

��
Y

g
// Y

commute up to (a preferred) homotopy.
The homotopy pull-back is associative in the sense that for a diagram X → Z ←

Y → U ← V , we have

(X
h
×
Z

Y )
h
×
U

V = X
h
×
Z

(Y
h
×
U

V ).

If g : Y = pt → Z is the inclusion of the base point of Z then X
h
×
Z

pt is the

homotopy fibre of f : X → Z. If f : X = pt→ Z and g : Y = pt→ Z are the base

point inclusions then pt
h
×
Z

pt is the loop space ΩZ of Z.

4.4. The Grothendieck-Witt space. The Grothendieck-Witt space of a pointed
exact category with weak equivalences and duality E was defined in [Sch10b, §2.7
Definition 3] as the homotopy fibre of the topological realization of the map (4.1),
that is, it is the homotopy fibre product

(4.2) |(wR•E )h|
h
×

|wS•E |
pt .

For i ≥ 0, we write GWi(E ) for the i-th homotopy group of the pointed topological
space (4.2).

Inclusion of degree zero simplices defines a map (wE )h = (wR0E )h → (wR•E )h
of simplicial categories such that the composition

(4.3) (wE )h → (wR•E )h → wS•E

is trivial (because wS0E = pt is the one-object one-morphism category). This
induces a canonical map from |(wE )h| to the Grothendieck-Witt space (4.2) of E

which should be thought of as some kind of a group completion map (it really is
a group completion if E is a split exact category over Z[ 12 ] with weak equivalences
the set of isomorphisms; see Appendix A).
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4.5. The multi-simplicial R•-construction. For a pointed exact category with

weak equivalences and duality E , we write R
(n)
•···•E for the n-th iterate of the R•-

construction. This is the n-simplicial pointed exact category with weak equivalences
and duality

R
(n)
k1,...,kn

E = Rk1Rk2 . . .RknE ,

which is the full pointed exact subcategory with weak equivalences and duality of

Fun(Ar(k1)×Ar(k2)× · · · ×Ar(kn), E )

consisting of those functors A : Ar(k1)×Ar(k2)× · · · ×Ar(kn) −→ E for which for
all r, s = 1, ..., n and all ir ≤ jr ∈ kr, r 6= s, the functor

A(i1,j1),...(is−1,js−1),•,(is+1,js+1),...(in,jn) : Ar(ks)→ E

is an object of RksE . Weak equivalences and admissible exact sequences are those
maps and sequences of diagrams which are weak equivalences and admissible exact
sequences when evaluated at every object of Ar(k1) × · · · × Ar(kn). We denote

by R
(n)
• E the diagonal of the multi-simplicial pointed exact category with weak

equivalences and duality R
(n)
•···•E .

If we replace E with R
(n)
• E in the sequence (4.3) we obtain the sequence of

pointed topological spaces

(4.4) |(wR
(n)
• E )h| −→ |(wR•R

(n)
• E )h| −→ |wS•R

(n)
• E |

with trivial composition.

Proposition 4.1. Let E be a pointed exact category with weak equivalences and
duality. Then for all n ≥ 1, the sequence (4.4) of pointed topological spaces is a
homotopy fibration.

Proof. We will use the fact that a sequence of pointed simplicial spaces which is
degree-wise a homotopy fibration with connected base induces a homotopy fibration
after topological realization [Wal78, Lemma 5.2]. By [Sch10b, §3 Remark 7], for
every integer q ≥ 0, the sequence

|(wR
(n)
• E )h| −→ |(wRqR

(n)
• E )h| −→ |wSqR

(n)
• E |

is a homotopy fibration when n = 1. In particular, for all integers p ≥ 0 and n ≥ 1,
the sequence

|(wR•R
(n−1)
p E )h| −→ |(wRqR•R

(n−1)
p E )h| −→ |wSqR•R

(n−1)
p E |

is a homotopy fibration. Since the base of that fibration is connected as it is

homotopy equivalent to the connected space |wSqS•R
(n−1)
p E | (cf. [Sch10b, §2.4

Lemma 1]), the realization of the sequence in the p-direction (which is the first
sequence above) is a homotopy fibration. By the same argument, realizing the first
sequence in the q-direction yields the homotopy fibration (4.4). �

Composing the second map in (4.4) with the homotopy equivalence

|wS•R
(n)
• E |

∼
→ |wS•S

(n)
• E | : A 7→ Aι

of [Sch10b, §2.4 Lemma 1], we obtain the following.
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Corollary 4.2. Let E be a pointed exact category with weak equivalences and du-
ality. Then for every integer n ≥ 1, the sequence

|(wR
(n)
• E )h| −→ |(wR

(1+n)
• E )h| −→ |wS

(1+n)
• E |

is a homotopy fibration of pointed topological spaces. �

4.6. The R
(n)
• -construction for dg categories. Let A = (A, w, ♯,̟) be a

pointed pretriangulated (or just exact) dg category with weak equivalences and
duality. Then the quadruple Z0A = (Z0A, w, ♯,̟) is a pointed exact category
with weak equivalences and duality, and therefore, the constructions and results
above apply to Z0A . But it will be useful to stay within the category of dg cat-

egories. So, we will make R
(n)
i A into a dg category with weak equivalences and

duality for A ∈ dgCatWD∗ even when A is not exact.
For a pointed dg category with duality A, the assignment

[n] 7→ Fun(Ar(n),A)

is a pointed simplicial dg-category with duality with base point the unique functor
Ar(n)→ 0. We write

RnA ⊂ Fun(Ar(n),A)

for the full dg subcategory of those objects A : Ar(n)→ A for which Ai,i = 0, and
for which for all i ≤ j ≤ k ∈ n the sequence 0→ Ai,j → Ai,k → Aj,k → 0 is exact.
Recall that exact sequences in a dg category are defined even if the dg category
itself is not exact. The duality on Fun(Ar(n),A) makes RnA into a dg-category
with duality. Varying n, we obtain a pointed simplicial dg category with duality
R•A. For a pointed dg category with weak equivalences and duality A = (A, w),
we obtain a pointed simplicial dg category with weak equivalences and duality

n 7→ RnA = (RnA, w).

corresponding the the (saturation of the) localization pair (RnA,RnAw).

To define the iterated R•-construction for dg categories, write R
(n)
•···•A for the

n-simplicial dg-category with duality which in degree (k1, ..., kn) is the full dg-
subcategory

R
(n)
k1,...,kn

A ⊂ Fun(Ar(k1)×Ar(k2)× · · · ×Ar(kn),A)

of those dg-functors A : Ar(k1) × Ar(k2) × · · · × Ar(kn) −→ A for which for all
r, s = 1, ..., n and all ir ≤ jr ∈ kr, r 6= s, the dg functor

A(i1,j1),...(is−1,js−1),•,(is+1,js+1),...(in,jn) : Ar(ks)→ A

is an object of RksA. We denote by R
(n)
• A the diagonal of the multi-simplicial

dg category with duality R
(n)
•···•A. If A = (A, w) is a dg category with weak

equivalences and duality then so is

R
(n)
• A = (R

(n)
• A, w)

given by the (saturation of the) localization pair (R
(n)
• A,R

(n)
• Aw).

Remark 4.3. For an exact dg category with weak equivalences and duality (A, w, ♯,̟),
we have equalities of categories with duality

(4.5) wR
(n)
• A = wZ0R

(n)
• A = wR

(n)
• Z0A.
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This lets us apply the results obtained for exact categories with weak equivalences
and duality to exact dg categories with weak equivalences and duality. Note, how-

ever, that in general, the exact category Z0R
(n)
k A has fewer exact sequences as the

exact category R
(n)
k Z0A, and so, RkRlA 6= R

(2)
k,lA even when A is exact, and thus,

for dg categories, R
(n)
• A is not the iterate of R•A.

Using equality (4.5), we obtain from Corollary 4.2 the following.

Proposition 4.4. Let A be a pointed exact dg category with weak equivalences
and duality. Then for every integer n ≥ 1, the sequence (4.3) induces a homotopy
fibration of pointed topological spaces

|(wR
(n)
• A )h| −→ |(wR

(1+n)
• A )h| −→ |wS

(1+n)
• A |.

�

Remark 4.5. Recall (Section 4.4) that the Grothendieck-Witt space of an exact
dg category with weak equivalences and duality is the homotopy fibre of the second
map in Proposition 4.4 when n = 0. Proposition 4.4 therefore lets us deduce results

for the functors (wR
(n)
• )h from the knowledge of similar results for the functors

wS
(n)
• , that is for K-theory, and for the Grothendieck-Witt space functor. For

example, an exact dg form functor A → B between pretriangulated dg categories
with weak equivalences and duality which induces isomorphisms of K-groups and

GWi-groups for i ≥ 0 induces homotopy equivalences |(wR
(n)
• A )h| → |(wR

(n)
• B)h|

for all n ≥ 0. In the sequel, we will frequently apply this argument.

Corollary 4.6. Let A be a pointed pretriangulated dg category with weak equiva-
lences and duality. Then for every integer n ≥ 1, the map

πi|(wR
(n)
• A )h| −→ πi|(wR

(n+1)
• A )h|

is an isomorphism for 0 ≤ i < n and a surjection for i = n > 0. In particular,

for every n ≥ 1, the (composite) map π0|(wA )h| −→ π0|(wR
(n)
• A )h| induces an

isomorphism

W0(A )
∼=
−→ π0|(wR

(n)
• A )h|.

Proof. The first statement follows from Proposition 4.4 together with the fact that

πi|wS
(n)
• A | = 0 for 0 ≤ i < n. For the second statement, recall that the dg functor

A → Aptr is an equivalence for A pretriangulated. Therefore,

W0(A ) =W0(Z
0
A

ptr, w)
∼=
← W0(Z

0
A , w)

∼=
→ π0|(wR•A )h|

where the last isomorphism is [Sch10b, §3 Proposition 3 and Remark 5]. �

Recall from Section 1.8 the categoryAw of w-acyclic objects in an exact category
with weak equivalences (A, w).

Proposition 4.7. Let (A, w,∨, can) be a pointed pretriangulated dg category with
weak equivalences and duality. Let v ⊂ A ≃ Aptr be a larger set of weak equivalences
such that (A, v,∨, can) is also a pretriangulated dg category with weak equivalences

and duality. Then for n ≥ 1 the functor |(wR
(n)
• )h| applied to the commutative
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square of pointed pretriangulated dg categories with weak equivalences and duality

(Av, w) //

��

(A, w)

��
(Av, v) // (A, v)

yields a homotopy cartesian square of pointed topological spaces with contractible
lower left corner.

Proof. Since A is pretriangulated, the map A → C
[0]
k A is an equivalence of dg

categories with duality. Therefore, the statement of the proposition holds for A if

and only if it holds for C
[0]
k A. We will prove the proposition for the latter category.

The pretriangulated dg category with duality C
[0]
k A has a symmetric cone in the

sense of [Sch10b, §4 Definition 4] given by the functors E 7→ PE = [C,1]E and
E 7→ CE, the natural admissible epimorphism [i, 1] : PE = [C,1]E → [1,1]E ∼= E,
the natural admissible monomorphism i : E → CE, and the natural map P (E∨)→
(CE)∨ which for E = AX with A ∈ C and X ∈ A is given by

can⊗1X∨ : [C,1][A,1]X∨ → [CA,1]X∨

where can : [C,1][A,1] → [CA,1] is the map (1.10). Therefore, the square in the
proposition induces homotopy cartesian squares of K-theory and Grothendieck-
Witt spaces with contractible lower left corner, by [Wal85, Theorem 1.6.4] and
[Sch10b, §4 Theorem 6]. By Proposition 4.4, we are done. �

In the proof of the space-level version (Proposition 4.9) of the algebraic Bott
sequence (Theorem 6.1), we will need the following lemma.

Lemma 4.8. Let (F, ϕ) : A → B be an exact dg form functor of pretriangulated
dg categories with weak equivalences and duality. Suppose that 1

2 ∈ A ,B and that
there are an exact pointed dg functor G : B → A (no compatibility with dualities
required) and zig-zags of natural weak equivalences of pointed exact dg functors
between FG and idB and between GF and idA . Then for n ≥ 1, the form functor
(F, ϕ) induces homotopy equivalences of pointed spaces

|(wR
(n)
• A )h|

∼
−→ |(wR

(n)
• B)h|.

Proof. Since the lemma also holds for K-theory (same proof as below), it suf-
fices to show that A → B induces a homotopy equivalence of Grothendieck-Witt
spaces, by Proposition 4.4. The hypothesis of the lemma imply that the dg-functor
F : dgFun(B,A )→ dgFun(B,B) : H 7→ F ◦H induces an equivalence of triangu-
lated categories w−1H0 dgFun(B,A )→ w−1H0 dgFun(B,B) with inverse G. By
Lemma 3.9, (F, ϕ) induces an isomorphism of abelian monoids

π0 (w dgFun(B,A ))h
∼=
→ π0 (w dgFun(B,B))h.

So, there is an object (H,ψ) ∈ (w dgFun(B,A ))h which under this isomorphism
goes to idB ∈ (w dgFun(B,B))h. This means that there is a zigzag of natural weak
equivalences between (F, ϕ)◦(H,ψ) and idB compatible with forms. By [Sch10b, §2
Lemma 2], the dg form functors (F, ϕ) ◦ (H,ψ) and idB induce homotopic maps on
Grothendieck-Witt spaces. In particular, (F, ϕ) is surjective, and (H,ψ) is injective
on higher Grothendieck-Witt groups GWi, i ≥ 0.
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By construction of H and the existence of G, there are zig-zags of weak equiv-
alences of dg form functors between HF and idA and between FH and idB. By
the argument above (with (H,ψ) in place of (F, ϕ)), we see that (H,ψ) is also
surjective and hence bijective on higher Grothendieck-Witt groups. From the pre-
vious paragraph it follows that (F, ϕ) induces isomorphisms GWi(A )→ GWi(B),
i ≥ 0. �

The following proposition is a space-level version of the homotopy fibration in
Theorem 6.1 below. Together with Corollary 4.11 it implies Karoubi’s Fundamental
Theorem [Kar80].

Let A be a pretriangulated dg category with weak equivalences and duality.
The unique map [1] → [0] induces a duality preserving exact dg functor I : A →
Fun([1],A ) : A 7→ 1A whose composition with the cone functor of Section 2 has
image in the full dg subcategory (A [1])w ⊂ A [1] of w-acyclic objects. In particular,
the square in the following proposition commutes.

Proposition 4.9. Let A be a pretriangulated dg category with weak equivalences

and duality. Assume that 1
2 ∈ A . Then for n ≥ 1 the functor |(wR

(n)
• )h| applied

to the commutative square of exact dg form functors

(�A ) A
�

� I //

Cone|A
��

Fun([1],A )

Cone
��

(A [1])w �

� // A [1]

yields a homotopy cartesian square of pointed topological spaces with contractible
lower left corner. In particular, for n ≥ 1 we obtain a homotopy fibration of pointed
spaces

|(wR
(n)
• A )h| → |(wR

(n)
• Fun([1],A ))h| → |(wR

(n)
• A

[1])h|.

Proof. Letw ⊂ Z0A be the set of weak equivalences in A , and let v ⊂ Z0 Fun([1],A)
be the set of morphisms f in Fun([1],A) for which Cone(f) is a weak equivalence
in A . By Proposition 4.7, the diagram

(Fun([1],A)v, w)

��

// (Fun([1],A), w)

��
(Fun([1],A)v, v) // (Fun([1],A), v)

induces a homotopy cartesian square of |(wR
(n)
• )h| spaces with contractible lower

left corner. The functor A → Fun([1],A) factors through the full subcategory
Fun([1],A)v ⊂ Fun([1],A) of v-acyclic objects. By [Sch10b, §2 Lemma 2], the
induced form functor (G, id) : (A, w) → (Fun([1],A)v, w) yields an equivalence of
Grothendieck-Witt spaces. More precisely, the form functor

(F, ϕ) : (Fun([1],A)v → A : (f : A0 → A1) 7→ A0

with duality compatibility map ϕf = f∗ defines an inverse up to homotopy of (G, id)
in view of the identity (F, ϕ) ◦ (G, id) = id and the natural weak equivalences
of form functors (G, id) ◦ (F, ϕ) → id given by (1A0 , f) for (f : A0 → A1) ∈
Fun([1],A). Similarly, (G, id) induces an equivalence of K-theory spaces, and hence

of |(wR
(n)
• )h| spaces in view of Proposition 4.4.
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Finally, the dg form functor (F, ϕ) = Cone : (Fun([1],A, v) → (A[1], w) in-

duces an equivalence of |(wR
(n)
• )h| spaces by Lemma 4.8 where G : (A, w) →

(Fun([1],A), v) sends X to the object 0 → X of Fun([1],A). We have FG = idA
and a zigzag of natural weak equivalences id → H ← GF where H sends an
object f : X → Y of Fun([1],A) to the object Cone(idX) → Cone(f), and the
natural weak equivalences are given by the natural maps from f : X → Y to
Cone(idX)→ Cone(f) and from 0→ Cone(f) to Cone(idX)→ Cone(f). �

4.7. Hyperbolic and forgetful functors. Next, we want to identify the Grothen-
dieck-Witt space of the upper right corner in the square of Proposition 4.9 with the
K-theory space of A .

For a dg category with weak equivalences A (no duality given), the hyperbolic
dg category with weak equivalences and duality is the dg category with weak equiv-
alences

HA = A ×A
op

equipped with the strict duality (A,B)∗ = (B,A). Even if A comes equipped with
a duality, the duality on HA does not dependent on it.

Let A = (A, w, ∗, can) be a dg-category with weak equivalences and duality.
The forgetful dg form functor F : A → HA sends an object A of A to the
object (A,A∗), a map f to (f, f∗). It is equipped with the duality compatibility
morphism (1, can) : (A∗, A∗∗) → (A∗, A). If A has direct sums, e.g., when A

is pretriangulated, then we have the hyperbolic dg form functor HA → A which
sends an object (A,B) to A⊕B∗ and a map (f, g) to the map f⊕g∗. It is equipped
with the duality compatibility morphism ( 0 1

can 0 ) : B ⊕A
∗ → A∗ ⊕B∗∗.

We also have an exact dg form functor

(4.6) (F, ϕ) : Fun([1],A )→ HA : (f : A0 → A1) 7→ (A0, A
∗
1)

with duality compatibility map (1, can) : F (f∗)→ F (f)∗.

Lemma 4.10. Let A be a pretriangulated dg category with weak equivalences and
duality. Then for any integer n ≥ 1, the functor (4.6) induces a homotopy equiva-
lence of pointed topological spaces

|(wR
(n)
• Fun([1],A ))h|

∼
−→ |(wR

(n)
• HA )h|.

Proof. Since the lemma holds for K-theory (same proof as below), we are reduced
to showing that (4.6) induces a homotopy equivalence on Grothendieck-Witt spaces,
in view of Proposition 4.4. It will be convenient to equip Z0 Fun([1],A ) with the
exact structure where a sequence of functors [1]→ A is exact if it is exact in Z0A

when evaluated at 0 ∈ [1] and 1 ∈ [1]. The identity functor on Z0 Fun([1],A ) from
the dg exact structure to this new exact structure induces a homotopy equivalence
on Grothendieck-Witt spaces, by [Sch10b, §5.1 Lemma 7].

The inverse of (4.6) on Grothendieck-Witt spaces is given by the form functor

(4.7) (G,ψ) : HA → Fun([1],A ) : (A0, A1) 7→ (0 : A0 → A∗
1)

with duality compatibility map (canA1 , 1A∗
0
) : G(A1, A0) → G(A0, A1)

∗. This is
because (1, can) : idHA → (F, ϕ) ◦ (G,ψ) is a natural weak equivalence of form
functors and thus induces a homotopy of associated maps on Grothendieck-Witt
spaces [Sch10b, §2.8 Lemma 2]. Moreover, (G,ψ)◦ (F, ϕ) is naturally weakly equiv-
alent to the duality preserving functor (f : A0 → A1) 7→ (0 : A0 → A1) which
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induces, up to homotopy, the same map on Grothendieck-Witt spaces as the iden-
tity functor, by Additivity [Sch10b, §3 Theorem 5], in view of the natural short
exact sequence in Fun([1],A )

(0→ A1)→ (f : A0 → A1)→ (A0 → 0).

�

Consider the sequence of functors

(4.8)
(wR

(n)
• Fun([1],A ))h

(A,ϕ) 7→A
−→ wR

(n)
• Fun([1],A )

−→ wR
(n)
• A

A 7→Aι
−→ wS

(n)
• A

in which the non-labelled map is the functor Fun([1],A ) → Fun([0],A ) = A

induced by the inclusion [0]→ [1] : 0 7→ 0.

Corollary 4.11. For every pretriangulated dg category with weak equivalences and
duality A and every integer n ≥ 1, the composition of the maps in (4.8) induces a
homotopy equivalence of pointed spaces

|(wR
(n)
• Fun([1],A ))h|

∼
−→ |wS

(n)
• A |.

Proof. The composition in (4.8) factors as

(wR
(n)
• Fun([1],A ))h

(F,ϕ)
−→ (wR

(n)
• HA )h = (HwR

(n)
• A )h −→ wR

(n)
• A −→ wS

(n)
• A

in which the first map induces a homotopy equivalence by Lemma 4.10, the second
map, by [Sch10b, §2 Lemma 3], and the third map, by [Sch10b, §2 Lemma 1]. �

5. Products and the Grothendieck-Witt spectrum

From now on, we will work over a commutative base ring k with 1
2 ∈ k. The

purpose of this section is to construct the Grothendieck-Witt spectrum functor.
This is a symmetric monoidal functor

GW : dgCatWD,⊗ −→ Sp,∧

from the category of small (pointed) dg categories with weak equivalences and dual-
ity to the category of symmetric spectra of topological spaces. For A ∈ dgCatWD,
the n-th space of the spectrum GW (A ) will be the pointed topological space

(5.1) GW (A )n =
∣∣∣i 7→

(
wR

(n)
i A

(n)
)
h

∣∣∣ .

Here, A (n) denotes the dg category with weak equivalences and duality

A
(n) = Zn((C [1])⊗n⊗A ),

where Zn = Z × ... × Z is the n-fold cartesian product of the poset Z equipped
with its usual ordering; see Section 1.15. When n ≥ 1, the category A (n) is
equivalent to the pretriangulated hull of A equipped with the n-th shifted duality;
cf. Remark 1.11 and Definitions 1.16 and 1.35. When n = 0, then it is simply A

itself. The bonding maps of the spectrum will be defined in (5.8) below. We will
show in Theorem 5.5 and Proposition 5.6 that the spectrum GW (A ) is a positive
Ω-spectrum with associated infinite loop space the Grothendieck-Witt space as
defined in [Sch10b] of the pretriangulated hull of A . Its negative homotopy groups
are Balmer’s Witt groups of the triangulated category of A , by Proposition 6.3
and Corollary 3.13.
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5.1. The Grothendieck-Witt functor as a symmetric sequence. Consider
the following symmetric monoidal functors.

(a) dgCatWD× dgCatWD→ dgCatWD : (B,A ) 7→ B ⊗A

with monoidal compatibility map the duality preserving exact dg functor

(B1⊗A1)⊗(B2⊗A2)
id⊗τ⊗id
−→ (B1⊗B2)⊗(A1⊗A2)

and unit map µ−1 : k → k⊗k where τ : A1⊗B2 → B2⊗A1 is the switch
isomorphism and µ : k⊗k → k is the multiplication isomorphism k⊗k → k.

(b) poSetDstr× dgCatD→ dgCatD

introduced in 1.15 (1.15).

(c) (CatDstr)
op × dgCatWD −→ dgCatWD : (D,A ) 7→ Fun(D,A )

with monoidal compatibility map the duality preserving exact dg functor

Φ : Fun(D1,A1)⊗Fun(D2,A2)→ Fun(D1 ×D2,A1⊗A2)

and unit map id : k → Fun(pt, k) = k where Φ(A,B)D1,D2 = (AD1 , BD2)
and Φ(f ⊗ g)D1,D2 = fD1 ⊗ gD2 .

Composition of symmetric monoidal functors thus yields the symmetric monoidal
functor

(5.2)

(CatDstr)
op × poSetDstr× dgCatWD× dgCatWD

1×1×(a)
−→ (CatDstr)

op × poSetDstr× dgCatWD
1×(b)
−→ (CatDstr)

op × dgCatWD
(c)
−→ dgCatWD .

Remark 5.1. Let U , V and W be symmetric monoidal categories, and assume
that W has finite coproducts commuting with the monoidal tensor product. The
categoryWΣ of symmetric sequences in W is endowed with a symmetric monoidal
product; see Appendix B.12. If F : U × V → W is a symmetric monoidal functor
with monoidal compatibility map Φ : F (U1, V1)⊗F (U2, V2)→ F (U1⊗U2, V1⊗V2)
and unit 1→ F (1,1), then any object U of U defines a symmetric monoidal functor

FU : V −→ WΣ : V 7→
{
n 7→ F (U⊗n, V )

}

where Σn acts on U⊗n by permuting the tensor factors. The monoidal compatibility
map is the map induced by the Σn × Σm-equivariant map

Φ : F (U⊗n, V1)⊗ F (U
⊗m, V2) −→ F (U⊗n ⊗ U⊗m, V1 ⊗ V2),

and the unit is the map Φ : 1→ F (1,1) = F (U⊗0,1).

We apply Remark 5.1 to the symmetric monoidal functor (5.2) and the object
U = (Ar(i),Z,C [1]) of (CatDstr)

op × poSetDstr× dgCatWD and obtain the sym-
metric monoidal functor

dgCatWD→ dgCatWDΣ : A 7→
{
n 7→ Fun

(
Ar(i)n,Zn((C [1])⊗n

A )
)}



HERMITIAN K-THEORY AND DERIVED EQUIVALENCES 51

varying simplicially with i ∈ ∆. If we restrict to the full dg subcategory R
(n)
i we

obtain the symmetric monoidal functor

dgCatWD→ dgCatWDΣ : A 7→
{
n 7→ R

(n)
i Zn((C [1])⊗n

A )
}

which varies simplicially with i ∈ ∆. Composing with the symmetric monoidal
functor

∆op dgCatWD→ Top∗ : A• 7→ |i 7→ (wAi)h|,

we obtain a symmetric monoidal functor

GW : dgCatWD→ TopΣ∗ : A 7→ {n 7→ GW (A )n}

with GW (A )n as in (5.1). Thus, we have defined Σm × Σn-equivariant maps

∪ : GW (A )m ∧GW (B)n −→ GW (A⊗B)m+n

functorial in A ,B ∈ dgCatWD and a unit map (S0, pt, pt, . . . )→ GW (k) making
the usual associativity and unit diagrams commute.

5.2. The bonding maps in the Grothendieck-Witt spectrum. Let A be a
dg category with weak equivalences and duality. Write A (0,n) for the dg category
with weak equivalences and duality

A
(0,n) = Z1+n(C [0]⊗(C [1])⊗n⊗A ).

The inclusions (C [1])⊗n ⊂ C [0]⊗(C [1])⊗n : E 7→ 1 ⊗ E and Zn ⊂ Z1+n : n 7→
(0, n) define duality preserving inclusions A (n) → A (0,n) which are equivalences of
pretriangulated dg categories with weak equivalences and duality for n ≥ 1, and
for n = 0 it is the inclusion of A into its pretriangulated hull.

For n ≥ 0, consider the composite functor

Fun
(
[1],A (0,n)

)
Cone
−→ C

[1]
A

(0,n) ∼
−→ A

(1+n)

where the second functor is the equivalence

C
[1]⊗Z1+n(C [0]⊗B)

(1.4)
−→ Z1+n(C [1]⊗C

[0]⊗B)
⊗
−→ Z1+n(C [1]⊗B)

with B = (C [1])⊗n⊗A . For n ≥ 0, consider the commutative diagram
(5.3)(

wR
(n)
• A (n)

)
h

//

��

pt

��(
wR

(1+n)
• A (0,n)

)
h

�

� I //

��

(
wR

(1+n)
• Fun([1],A (0,n))

)
h

Cone

��

∼

(4.8)
// wS(1+n)

• A (0,n)

(
wR

(1+n)
• (A (1+n))w

)
h

�

� //
(
wR

(1+n)
• A (1+n)

)
h
.

Proposition 5.2. Let A be a dg category with weak equivalences and duality such
that 1

2 ∈ A . Then, in diagram (5.3), the lower square is homotopy cartesian with
contractible lower left corner for n ≥ 0, and the upper square is homotopy cartesian
for n ≥ 1.
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Proof. For n ≥ 1, the upper square is homotopy cartesian, in view of Proposition
4.4 and the equivalence A (n) → A (0,n). The lower square is homotopy cartesian,
by Proposition 4.9. �

It follows that the sequence

|(wR
(n)
• A

(n))h|, n ∈ N,

defines a positive Ω-spectrum whenever 1
2 ∈ A . To give a functorial and explicit

definition of the bonding maps of that spectrum, we introduce the following notation
which will only be used in this section. For n ≥ 0, let

K(A )1+n = |wS
(1+n)
• A (0,n)|

K̃(A )1+n = |(wR
(1+n)
• Fun([1],A (0,n)))h|

GW (A )w1+n = |(wR
(1+n)
• (A (1+n))w)h|

In this notation, diagram (5.3) becomes the commutative diagram
(5.4)

GW (A )n

ss❣❣❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣❣

��
**❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

GW (A )w1+n
// GW (A )1+n K̃(A )1+n

oo ∼ // K(A )1+n pt .oo

Let G̃W (A )n be the homotopy limit of the lower row, that is,

G̃W (A )n = GW (A)w1+n

h
×

GW (A)1+n

K̃(A)1+n

h
×

K(A)1+n

pt .

For n ≥ 0, diagram (5.4) defines a map

(5.5) GW (A )n → G̃W (A )n.

Furthermore, base-point inclusions (which are homotopy equivalences)

pt→ GW (A )w1+n and pt→ K̃(A)1+n

h
×

K(A)1+n

pt

define a map

(5.6) ΩGW (A)1+n = pt
h
×

GW (A)1+n

pt −→ G̃W (A )n.

Proposition 5.3. Let A be a dg category with weak equivalences and duality such
that 1

2 ∈ A . Then the map (5.5) is an equivalence for all n ≥ 1, and the map (5.6)
is an equivalence for all n ≥ 0.

Proof. This is a restatement of Proposition 5.2. �

Recall that k denotes our base ring (assumed to satisfy 1
2 ∈ k) which the reader

may take to be Z[1/2]. The inner product space k ⊗ k → k : x ⊗ y → xy defines
an object 〈1〉 of the hermitian category (wk)h, and thus a pointed map 〈1〉 : S0 →
|(wk)h| = GW (k)0 sending the non-base point of S0 to that object. It follows
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from Proposition 5.3 that there is a pointed map ǫ : S1 → GW (k)1 whose adjoint
ad(ǫ) : S0 → ΩGW (k)1 makes the following diagram commutative up to homotopy

(5.7) S0

〈1〉

��

ad(ǫ) // ΩGW (k)1

≃ (5.6)
��

GW (k)0
(5.5)

// G̃W (k)0.

We fix once and for all such a map ǫ.

Definition 5.4. For a dg category with weak equivalences and duality A , we define
its Grothendieck-Witt spectrum GW (A ) as the symmetric sequence

GW (A ) = {GW (A )0, GW (A )1, GW (A )2, . . . },

where the space GW (A )n is the Σn space (5.1). The Σn×Σm-equivariant bonding
maps of the spectrum are the maps

(5.8) ǫn : (S1)∧n ∧GW (A )m
ǫ∧n∧1
−→ (GW (k)1)

∧n ∧GW (A )m
∪
−→ GW (A )n+m.

Cup product (Section 5.1) makes the spectrum GW (k) into a commutative sym-
metric ring spectrum, and GW (A ) into a module spectrum over GW (k).

Theorem 5.5. Let A be a dg category with weak equivalences and duality such
that 1

2 ∈ A . Then for all m ≥ 1, n ≥ 0, the adjoint of the map (5.8) is a homotopy
equivalence of pointed topological spaces

ad(ǫn) : GW (A )m
∼
−→ ΩnGW (A )n+m.

In other words, the spectrum GW (A ) is a positive Ω-spectrum.

Proof. For m ≥ 1, consider the diagram

S0 ∧GW (A )m //

=

��

ad(ǫ)∧1

**
G̃W (k)0 ∧GW (A )m

∪
��

ΩGW (k)1 ∧GW (A )moo

∪

��
GW (A )m

∼ // G̃W (A )m ΩGW (A )m+1
∼oo

in which the upper square (the one containing the bent arrow) is (5.7) smashed
with GW (A )n and thus commutes up to homotopy, the lower zigzag are the maps
(5.5) and (5.6), and the vertical arrows are cup-product maps. In particular, the
two lower squares commute. Since, by Proposition 5.3, the lower two maps labelled
“∼” are equivalences, the composition of upper horizontal (bent) arrow and right
vertical arrow is also an equivalence. But this composition is the map ad(ǫ1) in the
proposition. In particular, it is an equivalence. Iterating, we obtain equivalences
ad(ǫn). �

Proposition 5.6. Let A be a dg category with weak equivalences and duality such
that 1

2 ∈ A . Then the inclusion A → A ptr induces a stable equivalence

GW (A )
∼
−→ GW (A ptr),
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and the infinite loop space Ω∞GW (A ) of the spectrum GW (A ) is naturally equiv-
alent to the Grothendieck-Witt space as defined in [Sch10b] of the exact category
with weak equivalences and duality Z0(A ptr). In particular, the map (wA ptr)h =
GW (A ptr)0 → GW (A ptr) induces an isomorphism

GW0(A ) ∼= GW0(A
ptr)

∼=
−→ π0GW (A ptr) ∼= π0GW (A ).

Proof. For all n ≥ 1, the inclusion A → A ptr induces equivalences of dg categories
with weak equivalences and duality A (n) → (A ptr)(n). If follows that GW (A )n →
GW (A ptr)n is a homotopy equivalence for n ≥ 1. This implies that GW (A ) →
GW (A ptr) is a stable equivalence.

By Theorem 5.5, the spectrum GW (A ) is a positive Ω-spectrum. This implies
that

Ω∞GW (A ) ≃ ΩGW (A )1

which is equivalent to G̃W (A )0, by Proposition 5.3. The Grothendieck-Witt space
of A ptr was defined in [Sch10b] as

(wR•A
ptr)h

h
×

K(A ptr)1
pt,

that is, if we replace the upper left corner of diagram (5.3) with this Grothendieck-
Witt space when n = 0, then the upper square of that diagram becomes homotopy
cartesian. Since the lower square of that diagram is homotopy cartesian, by Propo-

sition 5.2, the natural map from the Grothendieck-Witt space to G̃W (A )0 is an
equivalence. The last statement follows from [Sch10b, §3 Proposition 3]. �

Example. Recall from Example 1.38 the dg category with weak equivalences and
duality (Chb

E , quis, ∗, η) associated with the k-linear exact category with duality
(E , ∗, η). It follows from Proposition 5.6 together with [Sch10b, Proposition 6 and

Remark 14] that the infinite loop space Ω∞GW (Chb E , quis, ∗, η) is naturally homo-
topy equivalent to the Grothendieck-Witt space of (E , ∗, η) as defined in [Sch10a,
Definition 4.4] provided 1

2 ∈ k. In particular, we have isomorphisms on homotopy
groups for all i ≥ 0

GWi(Ch
b
E , quis, ∗, η) ∼= GWi(E , ∗, η),

where the right hand side denotes the higher Grothendieck-Witt groups of E as in
[Sch10a, Definition 4.12]. It follows from Proposition 6.3 below that for i < 0 we
have

GWi(Ch
b
E , quis, ∗, η) ∼=W−i(E , ∗, η),

where the right hand side denotes Balmer’s triangular Witt groups of E as defined
in [Bal00].

5.3. Extended Functoriality. As a symmetric monoidal functor between closed
symmetric monoidal categories, the Grothendieck-Witt spectrum functor comes
equipped with a natural map of spectra

GW (dgFun(A ,B))→ Sp (GW (A ), GW (B))

compatible with the internal composition on both sides. The map above is the
adjoint of the map

GW (dgFun(A ,B)) ∧GW (A )
∪
−→ GW (dgFun(A ,B)⊗A )

e
−→ GW (B).
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It follows that two exact dg form functors (Fi, ϕi) : A → B, i = 1, 2, which give
rise to the same element in GW0 dgFun(A ,B) induce homotopic maps GW (A )→
GW (B) of Grothendieck-Witt spectra and the same map GWi(A ) → GWi(B)
on higher Grothendieck Witt groups. This happens, for instance, when there is a
natural isomorphism of dg form functors (F1, ϕ1) ∼= (F2, ϕ2).

Definition 5.7. Let A be a dg category with weak equivalences and duality such
that 1

2 ∈ A . Recall from Section 1.12 the dg categories with weak equivalences and

duality A [n] = C [n]A . For n ∈ Z, we define the n-th shifted Grothendieck-Witt
spectrum of A as

GW [n](A ) = GW (A [n]),

and we denote by

GW
[n]
i (A ) = πiGW

[n](A )

its i-th stable homotopy group. From Proposition 5.6 we infer that when i = 0 and

n ∈ Z, this group is the Grothendieck-Witt group GW
[n]
0 (A ) from Definition 1.39.

5.4. Products. We extend products to the shifted Grothendieck-Witt spectrum
functors GW [n]. For A ,B ∈ dgCatWDk the following exact dg form functor

C [n]A ⊗ C [m]B
1⊗τ⊗1// (C [n] ⊗ C [m])A B

µn,m⊗1// C [n+m]A B

induces upon application of the symmetric monoidal functor GW an associative
product map of spectra

∪ : GW [n](A ) ∧GW [m](B)→ GWn+m(A ⊗B)

where τ : A ⊗C [m] → C [m]A is the switch map and µn,m : C [n]⊗C [m] → C [n+m] is

the map C k[n]⊗C k[m] → C k[n]⊗k[m] from Section 1.9 with A = k[n] and B = k[m]
followed by the map C k[n]⊗k[m] → C k[n+m] induced by the multiplication map
k[n]⊗k[m] ∼= k[n+m]. For symmetric spectra X,Y , there is a natural pairing map

πiX ⊗ πjY → πi+j(X ∧ Y ) : a⊗ b 7→ a ∧ b.

The cup-product of spectra above thus yields the (associative) pairing

∪ : GW
[n]
i (A )⊗GW

[m]
j (B)→ GW

[n+m]
i+j (A ⊗B).

Proposition 5.8. Let A ∈ dgCatWDk. Given elements a ∈ GW
[n]
i (k) and b ∈

GW
[m]
j (A ), then in GW

[n+m]
i+j (A ) we have

a ∪ b = (−1)ij 〈−1〉mn ∪ b ∪ a

where 〈−1〉 ∈ GW0(k) is the inner product space x, y 7→ −xy over k.

Proof. For any symmetric spectra X , Y , the following diagram commutes up mul-
tiplication by (−1)ij

πiX ⊗ πjY //

τ

��

πi+j(X ∧ Y )

τ

��
πjY ⊗ πiX // πi+j(Y ∧X).
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We apply this withX = GW [n](k) and Y = GW [m](A ). By virtue of the symmetric
monoidal functor GW , the diagram of spectra

GW (C [n]) ∧GW (C [m]A )
∪ //

τ

��

GW (C [n] ⊗ C [m]A )

τ

��
GW (C [m]A ) ∧GW (C [n])

∪ // GW (C [m]A ⊗ C [n])

commutes. Finally, consider the following diagram in dgCatWDk

C [n] ⊗ C [m]A
= //

τ

��

(C [n] ⊗ C [m])A
µn,m⊗1//

τ⊗1

��

C [n+m]A

〈−1〉mn⊗1

��
C [m]A ⊗ C [n] 1⊗τ // (C [m] ⊗ C [n])A

µm,n⊗1// C [n+m]A

in which the left hand diagram commutes, by coherence in a symmetric monoidal
category, and the right hand diagram commutes up to natural isomorphism of dg
form functors, by Lemma 1.33. On application of the functor GWi, this diagram
becomes commutative, and the right vertical map is cup-product with the central
element 〈−1〉mn ∈ GW0(k). �

Remark 5.9. Let µ ∈ GW
[4]
0 (k) and µ′ ∈ GW

[−4]
0 (k) be the Grothendieck-Witt

classes represented by the symmetric spaces k[2] ⊗ k[2] → k[4] : x, y 7→ xy and

k[−2] ⊗ k[−2] → k[−4] : x, y 7→ xy. Then 〈1〉 = µ ∪ µ′ = µ′ ∪ µ ∈ GW
[0]
0 (k).

Therefore, cup-product with µ induces an isomorphism

GW
[n]
i (A ) ∼= GW

[n+4]
i (A ) : x 7→ µ ∪ x = x ∪ µ

with inverse the cup-product with µ′ for all A ∈ dgCatWDk.

Proposition 5.10. Let A be a dg category with weak equivalences and duality such
that 1

2 ∈ A . Then the square �A in Proposition 4.9 induces a homotopy cartesian
square of Grothendieck-Witt spectra with contractible lower left corner.

Proof. By Proposition 5.6, we can assume A to be pretriangulated. For such
categories, the square (�A )(n) is equivalent to the square �A [n] . Therefore, by
Proposition 4.9, the square GW (�A )n is homotopy cartesian for all n ≥ 1 with
contractible lower left corner. Since the square GW (�A ) is a square of positive
Ω-spectra, this implies the claim. �

6. Bott Sequence, Invariance and Localization

The homotopy cartesian square of Grothendieck-Witt spectra in Proposition 5.10
induces a functorial exact triangle in the homotopy category of spectra

GW (A )
I
−→ GW (Fun([1],A ))

Cone
−→ GW [1](A )

δ
−→ S1 ∧GW (A ).

For A = C
[−1]
k , we obtain the boundary map δ : GW [0](k)→ S1 ∧GW [−1](k). We

let η ∈ GW
[−1]
−1 (k) be the element

(6.1) η = −δ〈1〉 ∈ GW
[−1]
−1 (k)



HERMITIAN K-THEORY AND DERIVED EQUIVALENCES 57

where 〈1〉 ∈ GW
[0]
0 (k) is the Grothendieck-Witt class represented by the symmetric

space k⊗ k → k : x⊗ y 7→ xy. The element η is represented by the map of spectra

S0 〈1〉
−→ GW [0](k)

−δ
−→ S1 ∧GW [−1](k).

From Lemma 4.10 and Corollary 4.11, we have homotopy equivalences of pointed

spaces (wR
(n)
• HA )h ≃ wS

(n)
• A for all pretriangulated dg categories with duality

A and n ≥ 1. It follows that GW (HA ) is a connective delooping of the K-theory
space of A . Our model for the K-theory spectrum will therefore be

(6.2) K(A ) = GW (HA ).

Recall from Section 4.7 the forgetful and hyperbolic dg form functors F : A →
HA and H : HA → A ptr. They induce maps of spectra

F : GW [n](A )−→K(A ) and H : K(A )−→GW [n+1](Aptr)
∼
←− GW [n+1](A).

Theorem 6.1 (Algebraic Bott Sequence). Let A be a dg category with weak equiv-
alences and duality for which 1

2 ∈ A . Then the sequence of spectra

GW [n](A )
F
−→ K(A )

H
−→ GW [n+1](A )

η∪
−→ S1 ∧GW [n](A )

is an exact triangle in the homotopy category of spectra.

Proof. In view of Proposition 5.6, we can assume A pretriangulated. The square
in Proposition 4.9 is multiplicative in the sense that tensor product induces a map
of squares �B0 ⊗B1 → �B0⊗B1 in dgCatWDk. For B0 = C [−1] and B1 = C [1]A ,
this shows commutativity of the right square in the following diagram

S0 ∧GW [1](A )
〈1〉∧1 //

=
))❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

GW [0](k) ∧GW [1](A )
δ∧1 //

∪

��

S1 ∧GW [−1](k) ∧GW [1](A )

∪

��
GW [1](A )

δ // S1 ∧GW [0](A ).

Going first horizontally then vertically in the diagram yields cup product from the
left with −η. Going diagonally down then horizontally in the diagram yields the
boundary map δ : GW (A )→ S1 ∧ GW [−1](A ). Thus, we have a functorial exact
triangle of spectra

GW (A )
I
−→ GW (Fun([1],A ))

Cone
−→ GW [1](A )

−η∪
−→ S1 ∧GW (A ).

By Lemma 4.10, the exact dg form functor (4.6)

(F, ϕ) : Fun([1],A )→ HA : (f : A0 → A1) 7→ (A0, A
∗
1)

induces an equivalence of Grothendieck-Witt spectra with inverse the exact dg form
functor (4.7)

(G,ψ) : HA → Fun([1],A ) : (A0, A1) 7→ (0 : A0 → A∗
1).

The composition (F, ϕ) ◦ I is the forgetful map A → HA . The composition
Cone ◦(G,ψ) is the dg form functor H ◦ T where T : HA → HA : (A,B) 7→
(TA, TB) is the shift functor which induces multiplication by −1 on K-theory,
and H : HA → A [1] is the hyperbolic functor. With our model of the K-theory
spectrum (6.2), we therefore obtain an exact triangle in the homotopy category of
spectra

GW (A )
F
−→ K(A )

−H
−→ GW [1](A )

−η∪
−→ S1 ∧GW (A ).
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Replacing A with A [n], we are done. �

Let (A , w, ∗, can) be a dg category with weak equivalences and duality such that
1
2 ∈ A . For ε ∈ {±1}, write εGW

[n](A ) for GW [n](A , w, ∗, ε can), and εGW (A )

for εGW
[0](A ). Following Karoubi, one defines new theories εU(A ) and εV (A ) as

the homotopy fibres of hyperbolic and forgetful functors

K(A )
H
→ εGW (A ) and εGW (A )

F
→ K(A ).

The following theorem was proved by Karoubi in [Kar80] for rings with involution
using different methods. Note, however, that the negative homotopy groups in the
theorem differ from Karoubi’s negative homotopy groups, in general.

Theorem 6.2 (Karoubi’s Fundamental Theorem). Let (A , w, ∗, can) be a dg cat-
egory with weak equivalences and duality such that 1

2 ∈ A . Then there are natural
stable equivalences

−εV (A ) ≃ Ω εU(A ).

Proof. From the exact triangle in Theorem 6.1, we obtain equivalences of spectra

εU(A ) ≃ εGW
[−1](A ) and εV (A ) ≃ Ω εGW

[1](A ).

Cup product with the symmetric space k[1] ⊗ k[1] → k[2] : x ⊗ y 7→ xy in
(C [2],− can) induces an equivalence of dg categories with weak equivalences and
duality (A [−1], can) ≃ (A [1],− can), and therefore an equivalence of Grothendieck-

Witt spectra εGW
[−1](A ) ≃ −εGW

[1](A ). Hence, we obtain a homotopy equiva-
lence as claimed. �

Our next proposition shows that negative Grothendieck-Witt groups are Balmer’s
triangular Witt groups.

Proposition 6.3. Let A be a dg category with weak equivalences and duality such
that 1

2 ∈ A . Let n ∈ Z and i < 0 be integers. Then cup-product with η induces an
isomorphism

η∪ : GW
[n]
i (A )

∼=
−→ GW

[n−1]
i−1 (A )

and the surjective map η−i∪ : GWn−i
0 (A )→ GW

[n]
i (A ) induces an isomorphism

Wn−i(A ) ∼= GW
[n]
i (A ).

Proof. From the exact triangle in Theorem 6.1 and the fact that connective K-
theory K(A ) has trivial negative homotopy groups, we obtain an exact sequence

K0(A )
H
−→ GW

[n]
0 (A )

η∪
−→ GW

[n−1]
−1 (A ) −→ 0

and isomorphisms

GW
[n−1]
−1 (A )

η∪
−→
∼=

GW
[n−2]
−2 (A )

η∪
−→
∼=

GW
[n−3]
−3 (A )

η∪
−→
∼=
· · ·

Replacing n with n− i, the proposition follows. �

Lemma 6.4 (Karoubi induction). Let F : A → B be an exact dg form functor
between dg categories with weak equivalences and duality. Assume that 1

2 ∈ A ,B,
that F induces an equivalence in K-theory and isomorphisms on all shifted Witt
groups Wn(A ) ∼=Wn(B), n ∈ Z. Then F induces an equivalence of Grothendieck-
Witt spectra for all n ∈ Z

GW [n](A )
≃
−→ GW [n](B).
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Proof. By Theorem 6.1, the form functor F induces a map of exact sequences for
n, i ∈ Z

GW
[n]
i+1(A ) //

��

Ki+1(A ) //

∼=

��

GW
[n+1]
i+1 (A ) //

��

GW
[n]
i (A ) //

��

Ki(A )

∼=

��
GW

[n]
i+1(B) // Ki+1(B) // GW [n+1]

i+1 (B) // GW [n]
i (B) // Ki(A ).

By Proposition 6.3 and the hypothesis of the lemma, the functor F induces iso-

morphisms GW
[n]
i (F ) = Wn−i(F ) for all n, i ∈ Z with i < 0. By a version of the

5-lemma, if GW
[n]
i (F ) and K∗(F ) are isomorphisms then GW

[n+1]
i+1 (F ) is a surjec-

tion. If GW
[n]
i (F ) and K∗(F ) are isomorphisms and GW

[n]
i+1(F ) is a surjection then

GW
[n+1]
i+1 (F ) is an isomorphism. By induction, we are done. �

Theorem 6.5 (Invariance for GW ). Let G : A → B be an exact dg form
functor between dg categories with weak equivalences and duality such that 1

2 ∈
A ,B. Suppose that the functor G induces an equivalence T A → TB of associ-
ated triangulated categories, cf. Definition 1.26. Then G induces an equivalence of
Grothendieck-Witt spectra for all n ∈ Z

GW [n](A )
≃
−→ GW [n](B).

Proof. By a theorem of Thomason [TT90, 1.9.8], the functor G induces an equiv-
alence of K-theory spectra. By Proposition 6.3 and Corollary 3.13, the maps

GW
[n]
i (G) are isomorphisms for all n, i ∈ Z with i < 0. This finishes the proof

in view of Lemma 6.4. �

Call a sequence T0 → T1 → T2 of triangulated categories exact if the composition
is trivial, the functor T0 → T1 makes T0 into an epaisse subcategory of T1 (that is, a
full subcategory which is closed under direct factors) and the induced functor from
the Verdier quotient T1/T0 to T2 is an equivalence. Call a sequence A0 → A1 → A2

of dg categories with weak equivalences and duality quasi-exact if the associated
sequence T A0 → T A1 → T A2 of triangulated categories is exact. An exact dg
functor (A, w) → (B, v) of dg-categories with weak equivalences is called quasi-
equivalence if the induced triangle functor T (A, w)→ T (B, v) is an equivalence.

Theorem 6.6 (Localization for GW ). Let (A0, w) → (A1, w) → (A2, w) be a
quasi-exact sequence of dg categories with weak equivalences and duality. Assume
that 1

2 ∈ A0,A1,A2. Then the commutative square of Grothendieck-Witt spectra

GW [n](A0, w) //

��

GW [n](A1, w)

��
GW [n](A w

2 , w)
// GW [n](A2, w)

is homotopy cartesian, and the lower left corner is contractible. In particular, for
all n ∈ Z there is a homotopy fibration of Grothendieck-Witt spectra

GW [n](A0)→ GW [n](A1)→ GW [n](A2).
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Proof. Since the composition T A0 → T A1 → T A2 is trivial, the image of A0 in
A2 is in the dg subcategory A w

2 of w-acyclic objects. In particular, the square of

Grothendieck-Witt spectra in the theorem commutes. Replacing Ai with A
[n]
i if

necessary, we can assume n = 0. Furthermore, by Proposition 5.6, we can assume
all dg categories to be pretriangulated.

Let v be the set of morphisms in A1 which are weak equivalences in A2. Then
(A1, v) is a pretriangulated dg category with weak equivalences and duality. By
Proposition 4.7, the square of pretriangulated dg categories with weak equivalences
and duality

(A v
1 , w)

(n) //

��

(A1, w)
(n)

��
(A v

1 , v)
(n) // (A1, v)

(n)

induces a homotopy cartesian square of |(wR
(n)
• )h|-spaces with contractible lower

left corner. By Proposition 5.5, this square induces a homotopy cartesian square of
Grothendieck-Witt spectra. By assumption, the exact dg form functors (A0, w)→
(A v

1 , w) and (A1, v)→ (A2, w) induce equivalences on associated triangulated cat-
egories. By Theorem 6.5, they induce equivalences of Grothendieck-Witt spec-
tra. �

Remark 6.7. Let A be a pretriangulated dg category with weak equivalences and
duality. Then the sequence

A
I
−→ Fun([1],A )

Cone
−→ A

[1]

induces an exact sequence of associated triangulated categories and hence a ho-
motopy fibration of Grothendieck-Witt spectra, in view of Theorem 6.6. By Ad-
ditivity, the Grothendieck-Witt spectra of Fun([1],A ) and HA are equivalent to
the K-theory spectrum of A . Therefore, the Localization Theorem 6.6 implies
the homotopy fibration in the Bott Sequence 6.1 and thus Karoubi’s Fundamental
Theorem as explained in the proof of Theorem 6.2.

Proposition 6.8 (Additivity for GW ). Let (U ,∨) be a pretriangulated dg category
with weak equivalences and duality such that 1

2 ∈ U . Let A ⊂ U be a full pretri-
angulated dg subcategory containing the w-acyclic objects U w of U . Assume that
T U (A,B∨) = 0 for all A,B ∈ T A , and that T U is generated as a triangulated
category by T A and T A ∨. Then the exact dg form functor

HA → U : (A,B) 7→ A⊕B∨

induces a stable equivalence of Grothendieck-Witt spectra:

K(A ) = GW (HA )
∼
−→ GW (U ).

Proof. The triangle functor T A ∨ → T U /T A is fully faithful because we have
T U (A,B∨) = 0 for all A,B ∈ T A . It is essentially surjective (hence an equiv-
alence) because T U is generated by T A and T A ∨. From the K-theory analog
of the Localization Theorem 6.6, the sequence (A , w)→ (U , w)→ (U , v) induces
a homotopy fibration of K-theory spectra where v is the set of morphisms which
are isomorphisms in T U /T A . In view of the Invariance Theorem for K-theory,
the fibration splits since the composition (A ∨, w) → (U , w) → (U , v) induces an
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equivalence of triangulated categories. It follows that the functor HA → U is a
K-theory equivalence.

The Witt groups of HA are trivial as is the case for any hyperbolic category.
The Witt groupsW ∗(U ) of U are also trivial. It suffices to prove this forW 0(U ) =
W 0(T U ), the arguments for Wn being similar (or just apply the W 0 case to the
n-th shifted triangulated category with duality T U [n]). The hypothesis imply that
for every U ∈ T U , there is an exact triangle A → U → B → TA in T U with
A ∈ T A , B ∈ T A ∨ such that for any map U → U ′ and any exact triangle
A′ → U ′ → B′ → TA′ in T U with A′ ∈ T A , B′ ∈ T A ∨ there is a unique
map of triangles from the first to the second extending the given map U → U ′.
In particular, any symmetric isomorphism ϕ : U → U∨ extends to a symmetric
isomorphism of exact triangles showing that [U,ϕ] = 0 ∈ W 0(T U ).

Since the functor HA → U is a K-theory equivalence and an isomorphism on
triangular Witt groups, the Karoubi-Induction Lemma 6.4 implies that it is also a
GW -equivalence. �

7. Relation with L-theory and Tate of K-theory

Recall from (6.1) the element η ∈ GW
[−1]
−1 (k) corresponding to 〈1〉 ∈ W 0(k)

under the isomorphism GW
[−1]
−1 (k) ∼=W 0(k) of Proposition 6.3.

Definition 7.1. For A ∈ dgCatWD, we define its L-theory spectrum L(A ) as

L(A ) = η−1GW (A ).

This is the homotopy colimit spectrum of the sequence

GW (A )
η∪
−→ S1 ∧GW [−1](A )

S1∧η2

−→ S2 ∧GW [−2](A ) −→ · · ·

Since cup-product with the element µ ∈ GW
[4]
0 (k) from Remark 5.9 induces an

equivalence GW [n](A ) ≃ GW [n+4](A ), the spectrum η−1GW (A ) is also the lo-
calization of the GW (k)-module spectrum GW (A ) at the element η4µ ∈ GW−4(k)
of the commutative ring spectrum GW (k). In particular, L(A ) = η−1GW (A ) is
a module spectrum over the commutative ring spectrum L(k) = (η4µ)−1GW (k)
[Sch]. As usual, L[n](A ) denotes L(A [n]), and the homotopy groups of L[n](A ) are

denoted by L
[n]
i (A ).

By definition, the ring spectrum L(k) is 4-periodic with periodicity isomorphism
given by cup-product with η4µ. As a module spectrum over L(k), the spectrum
L(A ) is also 4-periodic.

Proposition 7.2. Let A be a dg category with weak equivalences and duality such
that 1

2 ∈ A . Then there are natural isomorphisms for all i, n ∈ Z

L
[n]
i (A ) ∼=Wn−i(A ).

Proof. This is a consequence of Proposition 6.3. �

7.1. The Z/2-action on K-theory. Call a pretriangulated dg category with weak
equivalences and duality A = (A , w, ∗, can) strict if the duality is strict, that is,
the natural transformation can : 1→ ∗∗ is the identity (in particular, ∗∗ = id), and
if it is equipped with a choice of direct sum and zero object 0 satisfying 0∗ = 0,
(X ⊕ Y )∗ = Y ∗ ⊕ X∗ and 0 ⊕ X = X = X ⊕ 0 for all objects X,Y of A . We
denote by dgCatWDstr the category of small strict pretriangulated dg categories
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with weak equivalences and duality. The morphisms in dgCatWDstr are the exact
dg functors which commute with direct sum and duality, and which preserve the
chosen zero object.

Let A be a dg category with weak equivalences and duality. By Lemma 7.10
below, we can (functorially) associate with A a strict pretriangulated dg category
with weak equivalences and duality Astr that comes with an exact dg form func-
tor A → Astr which, by Theorem 6.5, induces an equivalence on K-theory and
Grothendieck-Witt spectra. So, in what follows, we may assume that A is strict.

Let A = (A , w, ∗) be a strict pretriangulated dg category with weak equivalences
and duality. The hyperbolic category HA = A ×A op is equipped with the duality
(X,Y ) 7→ (Y,X) (ignoring the duality ∗ on A ). The functor

σ : HA → HA : (X,Y ) 7→ (Y ∗, X∗)

is duality preserving (as the duality on A is strict) and induces a C2 = Z/2 action
on the dg category with weak equivalences and duality HA . By functoriality,
we obtain an induced C2-action on the Grothendieck-Witt spectrum GW (HA ),
hence on the K-theory spectrum K(A ) = GW (HA ). If A is not strict, we will
write K(A ) for the spectrum K(Astr) with its C2-action. Moreover, we will write
K [n](A ) for the K-theory spectrum K(A [n]) = GW (H(A [n])str) of A equipped
with the C2-action coming from the duality on A[n] as described above. Non-
equivariantly, this spectrum is (equivalent to) the K-theory spectrum of A , but
the C2-action depends on n.

Example 7.3. We give an interpretation of the C2-action on K(R) for symmet-
ric and alternating forms over a ring with involution R in terms of an action on
BGl(R)+. For that consider first an additive category with strict duality (A, ∗).
If we equip the category iA with the C2-action A 7→ A, f 7→ (f∗)−1, then the
equivalence of categories iA → (iHA)h : A 7→ [(A,A), (id, id)] f 7→ (f, f−1) is
C2-equivariant. This gives the C2-action on the group completion of the classifying
space of iA, that is, on the usual K-theory space of A.

For example, let R be a ring with involution a 7→ ā. Let A = F (R) be the
category of finitely generated free R-modules. More precisely, objects of F (R) are
the free modules Rn, n ∈ N. Maps and composition of maps are given by matrices
and their products. The dual of Rn is Rn and the dual of a map M ∈ Mn(R) is
the matrix M∗ = tM̄ . In positive degrees, the hermitian K-theory of symmetric
forms over R is the hermitian K-theory of the additive category with strict duality
(F (R), ∗, id). By the discussion above, the corresponding C2-action on BGl(R)+ is
induced by

BGl → BGl :M 7→ tM̄−1

and the functoriality of the plus construction.
In the literature one frequently finds a differently looking C2-action onK-theory;

see for instance [BK05]. The point is that the hermitian K-theory of symmetric
forms over R is also the hermitian K-theory of the ring M2(R) with involution

(
a b
c d

)
7→ ( 0 1

1 0 )
(
ā c̄
b̄ d̄

)
( 0 1
1 0 ) =

(
d̄ b̄
c̄ ā

)

since both rings have equivalent associated hermitian categories of projective mod-
ules. This yields the C2-action on BGl∞(R) = BGl2∞(R) given by

Gl2n(R)→ Gl2n(R) :M 7→
(

0 1n
1n 0

)
(tM)−1

(
0 1n
1n 0

)
.
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To compare these two actions, consider the C2-action on BGl∞(R) = BGl3∞(R)
given by

Gl3n(R)→ Gl3n(R) :M 7→
( 0 1n0

1n 0 0
0 0 1n

)
(tM)−1

( 0 1n0
1n 0 0
0 0 1n

)
.

The two maps

Gl2n(R) −→ Gl3n(R) ←− Gln(R)

M 7→
(
M 0
0 1n

)
,

(
12n 0
0 N

)
←[ N

are C2-equivariant and yield, after passage to the colimit for n→∞ and taking (a
functorial version of the) plus construction, C2-equivariant maps

K(R)→ K(R)← K(R)

which are homotopy equivalences (forgetting the C2-action). In particular, the re-
spective homotopy orbit (homotopy fixed point) spaces are all homotopy equivalent.

Finally, the hermitian K-theory of alternating forms over R in positive degrees
is the hermitian K-theory of the additive category with duality (F (R), ∗,−id). It is
also the hermitian K-theory of symmetric forms over the ring M2(R) with involu-

tion
(
a b
c d

)
7→
(

d̄ −b̄
−c̄ ā

)
since both have equivalent associated hermitian categories.

Thus, the involution on BGl(R)+ = BGl(M2(R))
+ corresponding to alternating

forms over R is the involution corresponding to symmetric forms over the ring with
involution M2(R).

7.2. The hypernorm in K-theory. Let G be a finite group. For any spectrum X

with G-action its Tate spectrum Ĥ(G,X) is the homotopy cofibre of the hypernorm

map Ñ : XhG → XhG from the homotopy orbit spectrum XhG to the homotopy
fix point spectrum XhG; see Appendix B when G = C2. In Lemma 7.4 we give
another description of this map for the C2-spectrumK(A ) associated with a (strict
pretriangulated) dg category with weak equivalences and duality A (where the
action was defined in Section 7.1).

Let A be a strict pretriangulated dg category with weak equivalences and dual-
ity. We consider A equipped with the trivial C2-action. Recall from §7.1 that the
hyperbolic category HA is equipped with a C2-action (in the category of strict pre-
triangulated dg categories with weak equivalences and duality). We will construct
a sequence

(7.1) HA
H // Ā A

≃oo F // HA

of C2 equivariant maps between strict pretriangulated dg categories with weak
equivalences and duality in which the backward arrow is an equivalence of categories
(forgetting the C2 action).

Let Ā be the dg category whose objects are isomorphisms a : A
∼=→ B in A and

whose maps are commutative squares in A . We define a strict duality on Ā on
objects by (a : A → B)∗ = ((a∗)−1 : A∗ → B∗) and on morphisms by (f, g)∗ =
(f∗, g∗). The equivalence of categories A → Ā : X 7→ (1 : X → X), f 7→ (f, f) is
duality preserving. The functor

Ā → Ā : (f : X → Y ) 7→ (f−1 : Y → X)
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is duality preserving and induces a C2-action on the strict exact category with weak
equivalences and duality Ā . Note that the duality preserving equivalence A → Ā

is C2-equivariant. The functors H and F in diagram (7.1) are defined as

H : HA → Ā : (X,Y ) 7→ (X ⊕ Y ∗ τ
→ Y ∗ ⊕X) and

F : A → HA : X 7→ (X,X∗)

where τ denotes the map switching the two factors. Both functors are duality
preserving, exact and C2-equivariant.

Applying Grothendieck-Witt spectra to diagram (7.1) yields a diagram

(7.2) K(A )
H // GW (Ā ) GW (A )

≃oo F // K(A )

of C2 -equivariant spectra where C2 acts trivially on GW (A ). Taking homotopy
(co-) limits, we obtain a sequence of spectra

(7.3) KhC2

H
−→ GWhC2

∼
←− GWhC2 −→ GW −→ GWhC2

F
−→ KhC2

where we have suppressed the entries A and where we wrote GW for GW (Ā ).
The non-labelled maps in the diagram are the natural maps GWhC2 → GWC2 =
GW = GWC2 → GWhC2 .

Lemma 7.4. The map K(A )hC2 → K(A )hC2 in (7.3) is naturally equivalent to
the hypernorm map B.8 (B.4) for the C2-spectrum K(A ) defined in Section 7.1.

Proof. Let G1 = G2 = Z/2 = C2 and consider the sequence (7.2) as a sequence
of G1 ×G2-spectra where G1 ×G2 acts on the left two spectra via the projection
G1 × G2 → G1 on the first factor. The action on GW (A ) is trivial and the
action on the last spectrum is via the projection G1 × G2 → G2 onto the second
factor. The map in (7.3) is the application of the functor X 7→ (XhG2)hG1 to the
G1 × G2-equivariant string (7.2) preceded by (XG

2 )hG → (XhG2)hG1 and followed
by (XhG2)hG1 → (XhG2)G1 . We have to show that the sequence (7.2) is G1 ×G2-
equivariantly weakly equivalent to the sequence B.8 (B.3) where X = GW (HA ).

By naturality of the G1-equivariant map A → Ā applied to the G2-equivariant
map F : A → HA , we have a G1 ×G2-equivariant commutative diagram of strict
pretriangulated dg categories with weak equivalences and duality

(7.4) A
∼ //

F

��

Ā

F̄
��

HA
∼ // HA .

Define a functor J : HA × HA → HA by sending the object ((X,Y ), (U, V )) to
the object (τ, τ) : (X ⊕U, Y ⊕ V ) −→ (U ⊕X,V ⊕ Y ) and on maps in the obvious
way. The functor is exact, duality preserving and G1 × G2-equivariant where G1

acts on HA × HA by interchanging the two factors (x, y) 7→ (y, x) and G2 acts
on HA × HA via (x, y) 7→ (σy, σx). We have the following G1 × G2-equivariant
commutative diagram of strict pretriangulated dg categories with weak equivalences
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and duality

HA
(1,σ) //

H
��

HA ×HA

J
��

HA ∨HA

1∨1

��

∼oo

Ā
F̄ // HA HA

∼oo

where, strictly speaking, the upper right corner only makes sense after application of
the functor GW using the convention GW (A∨B) = GW (A)∨GW (B). Going down
then right is the G1×G2-equivariant map (7.1) in view of the commutative square
(7.4). Going right then down is the map that defines the hypernorm map. �

Let B be a pretriangulated dg category with weak equivalences that is equipped
with a direct sum operation and a zero object 0 such that 0⊕B = B = B⊕0 for all
objects B of B. We make HB into a strict pretriangulated dg category with weak
equivalences and duality by defining the direct sum in HB by (A,B)⊕ (A′, B′) =
(A ⊕ A′, B′ ⊕ B). For A = HB, the sequence (7.2) yields the sequence of C2-
equivariant spectra

(7.5) K(HB)
H // GW (HB) GW (HB)

≃oo F // K(HB)

Lemma 7.5. The sequence (7.5) is C2-equivariantly equivalent to the sequence

K(B) ∧ (C2)+ → K(B)→ SpC2((C2)+,K(B))

where K(B) has trivial C2-action, and both maps are induced by the C2-equivariant
map C2 → pt.

Proof. We have a C2-equivariant isomorphism of strict pretriangulated dg cate-
gories with weak equivalences and duality

Φ : H(B ×B) = (B ×B)× (B ×B)op
∼=
−→ H(HB) = HB × (HB)op

(A0, A1), (B0, B1) 7→ (A0, B1), (B0, A1)

where C2 acts on the left hand side H(B ×B) via the switch B ×B → B ×B :
(A,B) 7→ (B,A). Then the following diagram of C2-equivariant dg form functors
commutes

H(B × 0) ∨H(0 ×B)

Φ

��

∇ // H(B)

=

��

∆ // H(B ×B)

Φ

��
H(HB)

H // HB HB
∼oo F // H(HB).

It follows that the sequence (7.5) is C2-equivariantly equivalent to the sequence

K(B) ∨K(B)
∇
−→ K(B)

∆
−→ K(B)×K(B)

where C2 acts on the left spectrum by switching the two summands, and on the
right spectrum by switching the two factors. �

Diagram (7.3) is a diagram of module spectra over the commutative ring spec-
trum GW (k). This is because the diagram is obtained by applying the functor GW
to the C2-equivariant diagram (7.1) and taking various homotopy limits or colimits.
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Thus, inverting η ∈ GW
[−1]
−1 (k) (or rather η4µ ∈ GW−4(k)) in diagram (7.3) yields

a commutative diagram of spectra

(7.6) K(A )hC2
//

��

GW (A ) //

��

K(A )hC2

��
η−1K(A )hC2

// η−1GW (A ) // η−1
(
K(A )hC2

)
.

For instance, η−1K(A )hC2 is the homotopy colimit of the sequence

K(A )hC2

η
→ (S1 ∧K [−1](A ))hC2

η
→ (S2 ∧K [−2](A ))hC2

η
→ · · ·

In particular, η−1K(A )hC2 = (η−1K(A ))hC2 = 0 as Ki(A ) = 0 for i < 0. We
have already seen that the spectrum L(A ) = η−1GW (A ) represents triangular
Witt groups. The following theorem identifies the lower right corner with the Tate

spectrum Ĥ(C2,K(A )) of K(A ).

Theorem 7.6. Let A be a dg category with weak equivalences and duality such
that 1

2 ∈ A . Then both squares of spectra in diagram (7.6) are homotopy cartesian,
the lower left corner is contractible, the lower middle term is L(A ) and the lower
right term is the Tate spectrum of the C2-spectrum K(A ). In particular, there is
a natural homotopy fibration

K(A )hC2 → GW (A )→ L(A )

and a homotopy cartesian square of spectra

GW (A ) //

��

K(A )hC2

��
L(A ) // Ĥ(C2,K(A )).

Proof. Consider the commutative diagram of spectra

Sn ∧K [−n](A )hC2
//

η

��

Sn ∧GW [−n](A ) //

η

��

Sn ∧K [−n](A )hC2

η

��
Sn+1 ∧K [−n−1](A )hC2

// Sn+1 ∧GW [−n−1](A ) // Sn+1 ∧K [−n−1](A )hC2 .

The maps on vertical homotopy fibres are equivalences by Theorem 6.1 and Lemma
7.5. In other words both squares are homotopy cartesian. Passing to the homotopy
colimit for n→∞ shows that the squares in diagram (7.6) are homotopy cartesian.
Since the lower left corner is contractible (see discussion preceding the theorem) and
the composition of the upper two horizontal maps is the hypernorm map (Lemma

7.4), the lower right corner of diagram (7.6) is the Tate spectrum Ĥ(C2,K(A )). �

Remark 7.7. The map L(A )→ Ĥ(C2,K(A )) is a module map over the 4-periodic
ring spectrum L(k). In particular, both spectra are 4-periodic and the map respects
the periodicity maps given by the cup product with the element of η4µ ∈ L−4(k);
compare [WW00].
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Remark 7.8. The proof of Theorem 7.6 is rather formal and uses only the natural
exact triangle of Theorem 6.1. In particular, we could replace the functor A 7→
GW (A ) with its localization A 7→ GW (A )[ 12 ] inverting 2. In this way, we obtain
for any pretriangulated dg category with weak equivalences and duality such that
1
2 ∈ A a homotopy cartesian square of spectra

GW (A )[ 12 ]
//

��

H•
(
C2,K(A )[ 12 ]

)

��
L(A )[ 12 ]

// Ĥ
(
C2,K(A )[ 12 ]

)
.

The lower right corner in this diagram is contractible; see for instance B.14. There-
fore, we have an equivalence of spectra

GW (A )[1/2]
∼
−→ L(A )[1/2]⊕H• (C2,K(A )[1/2])

and an isomorphism of homotopy groups (Lemma B.10)

GWi(A )⊗ Z[1/2] ∼=W−i(A )⊗ Z[1/2]⊕ (Ki(A )⊗ Z[1/2])C2 .

7.3. Cofinality revisited. Let A → B be a map of pretriangulated dg cate-
gories with weak equivalences such that the induced map on associated triangu-
lated categories T A → TB is cofinal, that is, it is fully faithful and every object
of TB is a direct factor of an object of T A . Let K0(B,A ) be the monoid of
isomorphism classes of objects in TB under direct sum operation, modulo the
submonoid of isomorphisms classes of objects in T A . There is a canonical map
K0(B) → K0(B,A ) : [B] 7→ [B] which induces an isomorphism between the cok-
ernel of K0(A ) → K0(B) and the group K0(B,A ). By a theorem of Thomason
[TT90, 1.10.1], there is a homotopy fibration of spectra

(7.7) K(A )→ K(B)→ K0(B,A )

where K0(B,A ) denotes the Eilenberg-MacLane spectrum whose only non-trivial
homotopy group is in degree 0 where it is K0(B,A ).

Recall that for an Eilenberg-MacLane spectrum of a C2-module A, we denote
by H•(C2, A) the homotopy fixed point spectrum AhC2 . This spectrum represents
cohomology of the group C2 with coefficients in the C2-module A.

Theorem 7.9 (Cofinality). Let A → B be a map of dg categories with weak
equivalences and duality such that 1

2 ∈ A ,B. If T A → TB is cofinal, then there
are homotopy fibrations of spectra

GW (A ) → GW (B) → H•(C2,K0)

L(A ) → L(B) → Ĥ(C2,K0)

where K0 denotes the C2-module K0(B,A ) with C2-action induced by the duality
functor on B.

Proof. By Proposition 5.6, we can assume A and B pretriangulated. Write GW ?

and L? for the homotopy cofibres of GW (A ) → GW (B) and L(A ) → L(B).
By cofinality in algebraic K-theory (7.7) and Theorem 7.6, we have a homotopy
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cartesian square of spectra

GW ? //

��

H•(C2,K0)

��
L? // Ĥ(C2,K0).

By Cofinality for higher Grothendieck-Witt groups [Sch10b, Theorem 7] and the
Invariance Theorem 6.5, the upper horizontal map is an isomorphism on homotopy
groups in positive degrees since in this range both have zero homotopy groups. It
follows that the lower horizontal map is an isomorphism on homotopy groups in
degrees ≥ 2. Since the lower horizontal map is periodic as a module map over
the periodic ring spectrum L(k), it induces an isomorphism in all degrees. It is
therefore a stable equivalence. It follows that the upper horizontal map is also a
stable equivalence. �

Denote by dgCatWDptr ⊂ dgCatWD the full subcategory of pretriangulated dg
categories with weak equivalences and duality.

Lemma 7.10. There is a functor

dgCatWDptr → dgCatWDstr : A 7→ Astr

and a natural map A → Astr in dgCatWDptr which induces an equivalence T A →
T Astr on associated triangulated categories.

Proof. The construction in [Sch10b, Lemma 4] gives a functor that produces strict
dualities without changing associated triangulated categories. Thus, we can assume
that A has a strict duality and that functors commute with dualities, and we need
to construct Astr satisfying (X ⊕ Y )∗ = Y ∗ ⊕X∗ and 0 ⊕X = X = X ⊕ 0 for all
objects X,Y of Astr. The category Astr has objects the sequences (A0, ..., An) of
objects of A . The mapping space from (A0, ..., An) to (B0, ..., Bm) is the mapping
space from A0⊕· · ·⊕An to B0⊕· · ·⊕Bm in A (which can be identified with the set
ofm×n matrices with (i, j) entry the maps from Aj to Bi, and thus is independent
of the choice of a sum). Composition is composition of maps in A (or of matrices
whichever is your point of view). The direct sum of two sequences (A0, ..., An)
and (B0, ..., Bm) is the sequence (A0, ..., An, B0, ..., Bm), the empty sequence is the
(base point) zero object, and the dual of a sequence is (A0, ..., An)

∗ = (A∗
n, ..., A

∗
0).

The category Astr is a strict exact category with weak equivalences and duality and
the functor A → Astr : A 7→ (A) is a duality preserving equivalence of categories
and thus induces an equivalence on associated triangulated categories. �

8. The Karoubi-Grothendieck-Witt spectrum

We saw in Theorem 6.6 that the Grothendieck-Witt functor GW sends exact
sequences of triangulated categories to long exact sequences of higher Grothendieck-
Witt groups. In applications, however, it is more useful to have a functor that sends
sequences of triangulated categories that are exact only up to factors to long exact
sequences of abelian groups. In this section, we will construct such a functor GW ,
the Karoubi-Grothendieck-Witt spectrum functor, together with a natural map of
spectra GW → GW which is an isomorphism in degrees i ≥ 1 and a monomorphism
in degree i = 0. In most cases of interest, this map is also an isomorphism in degree
i = 0.



HERMITIAN K-THEORY AND DERIVED EQUIVALENCES 69

The relation between the Grothendieck-Witt and Karoubi-Grothendieck-Witt
functors GW and GW is in some sense the same as the relation between connective
and non-connective (or Bass) K-theory functors K and K. To construct non-
connective K-theory from connective K-theory, there are essentially two ways. In
the geometric setting, one can use Bass’ fundamental theorem as done by Thomason
in [TT90]. In the abstract setting, one can use algebraic suspension functors as done
by Wagoner [Wag72], Gersten [Ger72] and Karoubi [Kar70], and first worked out
in the generality applicable to dg categories with weak equivalences in [Sch06]. In
this section, we follow the abstract approach. In the following section, we will see
in Theorem 9.13 and Remark 9.14 that the geometric opproach works as well.

8.1. Cone and suspension of dg categories. The cone ring is the ring C of
infinite matrices (ai,j)i,j∈N with coefficients ai,j in Z for which each row and each
column has only finitely many non-zero entries. Transposition of matrices t(ai,j) =
(aj,i) makes C into a ring with involution. As a Z-module C is torsion free, hence
flat.

The suspension ring S is the factor ring of C by the two sided ideal M∞ ⊂ C of
those matrices which have only finitely many non-zero entries. Transposition also
makes S into a ring with involution such that the quotient map C ։ S is a map of
rings with involution. For another description of the suspension ring S, consider the
matrices en ∈ C, n ∈ N, with entries (en)i,j = 1 for i = j ≥ n and zero otherwise.
They are symmetric idempotents, i.e.ten = en = e2n, and they form a multiplicative
subset of C which satisfies the Øre condition, that is, the multiplicative subset
satisfies the axioms for a calculus of fractions. One checks that the quotient map
C ։ S identifies the suspension ring S with the localization of the cone ring C
with respect to the elements en ∈ C, n ∈ N. In particular, the suspension ring S is
also a flat Z-module.

Let ε = 1−e1 ∈ C be the symmetric idempotent with entries 1 at (0, 0) and zero
otherwise. The image Cε of the right multiplication map ×ε : C → C is a finitely
generated projective left C-module. Denote by C̃ the full subcategory of left C-
modules consisting of C and Cε. Then C̃(C,C) = C, C̃(Cε,C) = {a ∈ C| aε = a},
C̃(C,Cε) = {a ∈ C| εa = a}, and C̃(Cε,Cε) = {a ∈ C| aε = εa = a} = Z. The

rule C̃op → C̃ : C 7→ C, Cε 7→ Cε, a 7→t a makes C̃ into an additive category
with strict duality. Note that Z → C̃ : Z 7→ Cε, n 7→ nε defines a fully faithful
duality preserving functor. Since ε = 0 ∈ S, we have a duality preserving functor
C̃ → S : C 7→ S, Cε 7→ 0 (recall that S is considered a pointed dg category) such
that the composition

(8.1) Z→ C̃ → S

is trivial.
For a dg category with weak equivalences and duality A , we denote by C̃A and

SA the dg categories with weak equivalences and duality C̃ ⊗Z A and S ⊗Z A .
Tensoring the sequence (8.1) with A ∈ dgCatWD, we obtain the the sequence

(8.2) A → C̃A → SA

Call a sequence T0 → T1 → T2 of triangulated categories exact up to factors if
the composition is trivial, the functor T0 → T1 is fully faithful and the induced
functor from the Verdier quotient T1/T0 to T2 cofinal.
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Definition 8.1. An exact dg functor A → B between dg categories with weak
equivalences is called Morita equivalence if the associated triangle functor T A →
TB is cofinal. A sequence A0 → A1 → A2 of dg categories with weak equivalences
is called Morita exact if the associated sequence of triangulated categories T A0 →
T A1 → T A2 is exact up to factors.

Lemma 8.2. The functors C, S : dgCatW → dgCatW preserve Morita equiva-
lences and Morita exact sequences. Moreover, for any dg category with weak equiv-
alences A , the sequence

A → C̃A → SA

of dg categories with weak equivalences is Morita exact.

Proof. Recall the following facts from the theory of dg categories [Dri04], especially
[Dri04, Proposition 1.6.3].

(1) Let B be a homotopically flat dg category (that is, a dg category in which
every mapping complex is homotopy equivalent to a complex of flat k-
modules). Then the functor

dgCat→ dgCat : A 7→ B ⊗A

preserves Morita equivalences and Morita exact sequences.
(2) Let B0 → B1 → B2 be a Morita exact sequence of homotopically flat dg

categories, then the sequence B0 ⊗A → B1 ⊗A → B2 ⊗A is Morita exact.
(3) For a full inclusion of dg categories A0 ⊂ A1 there is a dg category A1 �A0

together with a dg functor A1 → A1 �A0 such that the sequence

A0 → A1 → A1 �A0

is Morita exact. Moreover, this sequence is functorial in the pair A0 ⊂ A1.

Since the dg categories C̃ and S are flat dg categories, the lemma holds for dg
categories. Let B be a homotopically flat dg category, and A = (A, w) a dg
category with weak equivalences. By (3) and the definition of T (B ⊗ A ), the
canonical triangle functor T (BA ) → T (BA � BAw) is cofinal (in fact, this is an
equivalence, but we won’t need that). Therefore, the lemma reduces to the dg
category case. �

Remark 8.3. Lemma 8.2 shows that the functors C̃ and S satisfy the requirements
of the “set-up” of [Sch06, Section 2.2] on the category of dg categories with weak
equivalences. They can therefore be used to define the non-connective K-theory
spectrum K(A ) of a dg category with weak equivalences A .

Lemma 8.4. For any dg category with weak equivalences and duality A such that
1
2 ∈ A , the Grothendieck-Witt spectrum GW (C̃A ) is contractible.

Proof. The proof is the same is the proof of [Sch10b, Lemma 19], and we omit the
details. �

In the following we will use terminology and results from Sections B.9 – B.11.
Let S̃0 → S0 be a cofibrant replacement of the monoidal unit S0 ∈ Sp in the
positive projective stable model structure on the category Sp of spectra, and factor
the composition S̃0 → S0 → I into a cofibration (for the positive model structure)

and a stable equivalence S̃0
 Ĩ

∼
→ I in Sp. Write S̃1 for the quotient Ĩ/S̃0. The

induced map on quotients S̃1 → S1 is a stable equivalence, and S̃1 is cofibrant in
the positive stable model structure on Sp.
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The inner product space 〈1〉 of k defines a map 〈1〉 : S0 → GW (k) of spectra.

Since in the positive stable model structure on Sp, we have a cofibration S̃0 → Ĩ
and a trivial fibration GW (C̃k) → pt, the map S̃0 → S0 → GW (k) extends to a

map ρ : Ĩ → GW (C̃k) such that the diagram

S̃0 //

��

S0
〈1〉 // GW (k)

��
Ĩ

ρ // GW (C̃k)

commutes. Moreover, the composition GW (k) → GW (C̃k) → GW (Sk) is trivial,

and we obtain the induced map of spectra σ : S̃1 → GW (Sk).

Lemma 8.5. Let A be a dg category with weak equivalences and duality such that
1
2 ∈ A . Assume that the triangulated category T A of A is idempotent complete.
Then the composition

ρ : S̃1 ∧S GW (A )
σ∧1
−→ GW (Sk) ∧S GW (A )

∪
−→ GW (SA )

is a stable equivalence.

Proof. Since T A is idempotent complete, and C̃ → S surjective on objects, the
Morita exact sequence

T A → T C̃A → T SA

of Lemma 8.2 is in fact quasi-exact. Therefore, in the commutative diagram of
spectra

S̃0 ∧S GW (A ) //

〈1〉∧1

��

Ĩ ∧S GW (A )

ρ∧1

��

// S̃1 ∧S GW (A )

σ∧1

��
GW (k) ∧S GW (A ) //

∪

��

GW (k) ∧S GW (A )

∪
��

// GW (k) ∧S GW (A )

∪

��
GW (A ) // GW (C̃A ) // GW (SA ),

the last row is a homotopy fibration, by Theorem 6.6. As a cofibre sequence, the first
row is also a homotopy fibration. Since the composition of the left two and middle
two vertical maps are stable equivalences (the latter composition by contractibility

of Ĩ and GW (C̃A )), the map in the lemma is also a stable equivalence. �

8.2. The Karoubi-Grothendieck-Witt spectrum. In order to define a sym-
metric monoidal functor GW from dg categories to a category of spectra that sends
Morita exact sequences to homotopy fibrations, we will work in the symmetric
monoidal category of bispectra BiSp. The category of bispectra is yet another
model for the stable homotopy category of spectra. This category contains the cat-
egory of spectra Sp as a symmetric monoidal subcategory. The inclusion Sp ⊂ BiSp
preserves stable equivalences and induces an equivalence of associated homotopy
categories; see Appendix B.11. The Karoubi-Grothendieck-Witt spectrum functor
most naturally has values in this category of bispectra. If we are not interested in
multiplicative properties of the Karoubi-Grothendieck-Witt spectrum, we can stay
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within the category Sp of spectra and equivalently work with a certain mapping
telescope of spectra as in Remark 8.8 below.

Recall that the category of S̃1-S1-bispectra is the category of S̃1-spectra in Sp,
that is, the category of left modules over the free commutative monoid S̃ generated
by (0, S̃1, 0, 0, ...) in SpΣ. Thus, to specify a symmetric monoidal functor GW :

dgCatWD → BiSp into S̃1-S1-bispectra is the same as to specify a symmetric
monoidal functor GW : dgCatWD → SpΣ into symmetric sequences of spectra
together with a map of spectra σ : S̃1 → GW (k)1.

Application of Remark 5.1 with F the symmetric monoidal functor

dgCatWD× dgCatWD→ Sp : (B,A ) 7→ GW (BA)

and U = S ∈ dgCatWD yields the symmetric monoidal functor

dgCatWD −→ SpΣ : A 7→ {n 7→ GW (A )n}

with values in SpΣ where GW (A )n is the spectrum GW ((S)⊗nA ) with left Σn-

action permuting the tensor factors (S)⊗n. The map of spectra σ : S̃1 → GW (k)1 =
GW (Sk) extends uniquely to a map of commutative monoids

S̃ → GW (k)

in SpΣ making every GW (k)-module GW (A ) into a module over S̃. Thus, we have
defined a symmetric monoidal functor

GW : dgCatWD→ BiSp .

Definition 8.6. Let A be a dg category with weak equivalences and duality such
that 1

2 ∈ A . The bispectrum GW (A ) constructed in Section 8.2 is called the
Karoubi-Grothendieck-Witt spectrum of A . It is equipped with a natural map of
bispectra

(8.3) GW (A ) = GW (A )0 → GW (A )

Its homotopy groups are the Karoubi-Grothendieck-Witt groups of A :

GWi(A ) = πiGW (A ) = [S̃n,GW (A )]BiSp.

As usual, we write GW [n](A ) and GW [n]
i (A ) for GW (A [n]) and GWi(A

[n]).

Let T be a triangulated category. Recall from [BS01] that its idempotent com-

pletion T̃ is canonically a triangulated category. If T is a triangulated category
with duality, then the duality on T canonically extends to a duality on T̃ such that
the inclusion T ⊂ T̃ is duality preserving.

Proposition 8.7. Let A be a dg category with weak equivalences and duality
such that 1

2 ∈ A . Then the bispectrum GW (A ) is semistable. The Karoubi-
Grothendieck-Witt groups are given by

GW [n]
i (A ) =





GW
[n]
i (A ) i > 0

GW
[n]
0 (T̃ A ) i = 0

GW
[n]
0 ( ˜T S−iA ) i < 0.
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In particular, the map (8.3)

GW
[n]
i (A )→ GW [n]

i (A )

is an isomorphism for i ≥ 1 and a monomorphism for i = 0. If T A is idempotent
complete, then this map is also an isomorphism for i = 0.

Proof. The triangulated category T CA is idempotent complete. This is because
there is a triangle functor F : T CA → T CA and a natural isomorphism F⊕id ∼= F
(compare [Sch10b, Lemma 19]). The triangle functor and the natural isomorphism
extend to a triangle functor and a natural isomorphism on the idempotent comple-
tion of T CA . This forces the K0 groups of T CA and its idempotent completion
to be trivial. In particular, the cofinal inclusion of T CA into its idempotent com-
pletion induces an isomorphism on K0. By Thomason’s classification theorem of
dense subcategories [Tho97], this inclusion is an equivalence, that is, T CA is al-
ready idempotent complete.

For a dg category with weak equivalences and duality A , let A c be the full
dg subcategory of (CA )ptr of those objects which are direct factors in T (CA ) of
objects of T (A ). A map in A c is a weak equivalence if it is an isomorphism in
T (CA ). Then A c is pretriangulated, contains A , and has associated triangulated
category T (A c) the idempotent completion of T (A ). Moreover, the Morita equiv-
alence SA → S(A c) is in fact a quasi-equivalence because both have trivial K0 as
a quotient of K0(CA ) = K0(C(A

c)) = 0. In the diagram

S̃1 ∧S GW (A ) //

σ∪

��

S̃1 ∧S GW (A c)

σ∪

��
GW (SA ) // GW (S(A c)) ,

the right vertical map is a stable equivalence, by Lemma 8.5. By Cofinality (Theo-
rem 7.9) the top horizontal map is an isomorphism on πi for i ≥ 0, and the bottom
one is an isomorphism in all degrees, by the Invariance Theorem 6.5. Therefore,
the left vertical map is an isomorphism in degrees i ≥ 0. By Lemma B.16, the
bispectrum GW is semi-stable, and GWi(A ) it the colimit of the sequence

GWi(A )
σ∪
−→ GW1+i(SA )

σ∪
−→ · · ·GWk+i(S

k
A )

σ∪
−→ GW1+k+i(S

1+k
A ) · · ·

which consists of isomorphisms after k + i ≥ 1. This proves the claim in the
proposition for i > 0. If i ≤ 0, then

GWi(A ) = GW1(S
1−i

A ) = GW0((S
−i

A )c) = GW0( ˜T S−iA ).

�

Remark 8.8. Recall that the inclusion Sp ⊂ BiSp of spectra into bispectra pre-
serves stable equivalences and induces an equivalence of homotopy categories. By
Remark B.17 and Proposition 8.7, the spectrum corresponding to the bispectrum
GW (A ) under this equivalence is the mapping telescope of the sequence of spectra

GW (A )
σ∪
−→ ΩGW (SA )

σ∪
−→ Ω2GW (S2

A )
σ∪
−→ · · ·

This telescope therefore has the correct homotopy type. But it does not retain
good point-set multiplicative properties. In particular, it does not define a sym-
metric monoidal functor dgCatWD→ Sp. This is the reason we consider GW as a
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symmetric monoidal functor into bispectra rather than as a functor with values in
spectra defined by the mapping telescope above.

Theorem 8.9 (Invariance for GW ). Let A → B be an exact dg form functor
between dg categories with weak equivalences and duality such that 1

2 ∈ A , B. If
T A → TB is cofinal, then the map of Karoubi-Grothendieck-Witt spectra is a
stable equivalence

GW (A )
∼
−→ GW (B).

Proof. The maps of abelian groups GWi(A )→ GWi(B) are isomorphisms in view
of Proposition 8.7 and Lemma 8.2. �

Theorem 8.10 (Localization for GW ). Let A0 → A1 → A2 be a Morita exact
sequence of dg categories with weak equivalences and duality. Assume that 1

2 ∈
A0,A1,A2. Then the commutative square of Karoubi-Grothendieck-Witt spectra

GW [n](A0) //

��

GW [n](A1)

��
GW [n](A w

2 ) // GW [n](A2)

is homotopy cartesian, and the lower left corner is contractible. In particular, for
all n ∈ Z there is a homotopy fibration of Karoubi-Grothendieck-Witt spectra

GW [n](A0)→ GW [n](A1)→ GW [n](A2).

Proof. To ease notation, we will prove the theorem for n = 0. The general case is

then obtained from the case n = 0 by replacing Ai with A
[n]
i . By Remark 8.8, it

suffices to check that the mapping telescope of the squares of spectra

(8.4) ΩnGW (SnA0) //

��

ΩnGW (SnA1)

��
ΩnGW (SnA w

2 ) // ΩnGW (SnA2).

is homotopy cartesian with contractible lower left corner. Here, we have written
Ωn for MapSp(S̃

n, ). One square maps into the next via the cup-product with

σ : S̃1 → GW (Sk).
As in the proof of Proposition 8.7, let A c be the full dg subcategory of (CA )ptr

of those objects which are direct factors in T (CA ) of objects of T (A ). So,
T A → T A c is an idempotent completion. Let (SnA2)

e ⊂ (SnA2)
c be the full

dg subcategory of those objects which are in the essential image of the functor
T (SnA1)

c → T (SnA2)
c. The dg category (SnA2)

e inherits the structure of a dg
category with weak equivalences and duality from (SnA2)

c. By Lemma 8.5 and the
Cofinality theorem for GW (or from the Invariance theorem 8.9), the telescope of
the diagrams (8.4) is stably equivalent to the mapping telescope over the diagrams
of spectra

(8.5) ΩnGW (SnA0)
c //

��

ΩnGW (SnA1)
c

��
ΩnGW (SnA e

2 )
w // ΩnGW (SnA2)

e.
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By Lemma 8.2, the sequence

(Sn
A0)

c → (Sn
A1)

c → (Sn
A2)

e

is Morita exact. In fact, this sequence is quasi-exact, since the first two dg cat-
egories with weak equivalences have idempotent complete associated triangulated
categories, and the last functor is essentially surjective on associated triangulated
categories. By the Localization Theorem 6.6 for GW , the squares 8.5 are homotopy
(co-) cartesian with contractible lower left corner. Therefore, the same is true for
the mapping telescope over the diagrams (8.5) and (8.4). �

As in Section 6, set
K(A ) = GW (HA ).

By Remark 8.3, this bispectrum represents non-connective algebraic K-theory of
A as defined in [Sch06].

Theorem 8.11 (Algebraic Bott Sequence for GW ). Let A be a dg category with
weak equivalences and duality for which 1

2 ∈ A . Then the sequence of Karoubi-
Grothendieck-Witt spectra

GW [n](A )
F
−→ K(A )

H
−→ GW [n+1](A )

η∪
−→ S1 ∧GW [n](A )

is an exact triangle in the homotopy category of (bi-)spectra.

Proof. This follows from Theorem 6.1 in view of Remark 8.8. Alternatively, it also
follows from the Localization Theorem 8.10 in view of Remark 6.7. �

As in Section 7.1, we consider the bispectrum K(A ) = GW (HA ) equipped with
the C2-action coming from the action on HA and the functoriality of GW , and we
obtain a commutative diagram of bispectra

(8.6) K(A )hC2
//

��

GW (A ) //

��

K(A )hC2

��
η−1K(A )hC2

// η−1GW (A ) // η−1
(
K(A )hC2

)
.

as in (7.6).

Definition 8.12 (Compare Definition 7.1). For A ∈ dgCatWD, we define its
stabilized L-theory spectrum L(A ) as

L(A ) = η−1GW (A ) = η−1σ−1GW (A ).

This a module spectrum over the commutative ring spectrum L(k) = (η4µ)−1GW (k).
In particular, it is 4-periodic with periodicity isomorphism induced by the cup-
product with η4µ. As usual, L[n](A ) denotes L(A [n]), and the homotopy groups

of L[n](A ) are denoted by L[n]
i (A ). As in Remark 8.8, the spectrum L(A ) is the

mapping telescope of the sequence of spectra

(8.7) L(A )
σ∪
−→ ΩL(SA )

σ∪
−→ Ω2L(S2

A )
σ∪
−→ · · ·

In particular, its homotopy groups Li(A ) are given by the colimit

(8.8) Li(A )
σ∪
−→ Li+1(SA )

σ∪
−→ Li+2(S

2
A )

σ∪
−→ · · ·

These groups are isomorphic to Karoubi’s stabilized Witt groups [Kar06], but we
won’t need that fact here.
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With this definition we have the GW -variant of Theorem 7.6 which is proved in
the same way as Theorem 7.6.

Theorem 8.13. Let A be a dg category with weak equivalences and duality such
that 1

2 ∈ A . Then the squares of (bi-) spectra (8.6) are homotopy cartesian, the
lower left corner is contractible, and the lower right term is the Tate spectrum of
the C2-spectrum K(A ). In particular, there is a natural homotopy fibration

K(A )hC2 → GW (A )→ L(A )

and a homotopy cartesian square of spectra

GW (A ) //

��

H•(C2,K(A ))

��
L(A ) // Ĥ(C2,K(A )).

�

Recall (8.3) that there is a natural map of (bi-) spectra GW (A ) → GW (A )
since the 0-th spectrum of the bispectrum GW (A ) is the spectrum GW (A).

Theorem 8.14. Let A be a dg category with weak equivalences and duality such
that 1

2 ∈ A . Then the following square of (bi-) spectra is homotopy cartesian

GW (A ) //

��

GW (A )

��
K(A )hC2 // K(A )hC2

Proof. By Theorems 7.6 and 8.13 the map on vertical homotopy fibres is a map
of L(k)-modules. In particular, this map is 4-periodic. By Proposition 8.7 and
its K-theory analog, the maps GW (A ) → GW (A ) and K(A ) → K(A ) are iso-
morphisms in positive degrees (and monomorphisms in degree 0). It follows that
the horizontal homotopy fibres are trivial in high degrees. In particular, the map
between horizontal homotopy fibres is an isomorphism in high degrees. Therefore,
the map on vertical homotopy fibres is an isomorphism in sufficiently high degrees.
Since this map is periodic, it is an isomorphism in all degrees. �

Proposition 8.15 (Additivity for GW ). Let (U ,∨) be a pretriangulated dg cat-
egory with weak equivalences and duality such that 1

2 ∈ U . Let A ⊂ U be a
full pretriangulated dg subcategory containing the w-acyclic objects U w of U . As-
sume that T U (A,B∨) = 0 for all A,B ∈ T A , and that T U is generated as a
triangulated category by T A and T A ∨. Then the exact dg form functor

HA → U : (A,B) 7→ A⊕B∨

induces a stable equivalence of Karoubi-Grothendieck-Witt spectra:

K(A ) = GW (HA )
∼
−→ GW (U ).

Proof. From the proof of Proposition 6.8, the functorHA → U induces aK-theory
equivalence. The same argument applies to show that it induces an equivalence
of non-connective K-theory spectra K. Since it is a GW -theory equivalence, by
Proposition 6.8, Theorem 8.14 implies that it is also a an equivalence of Karoubi-
Grothendieck-Witt spectra GW . �
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We end this section with a lemma which we need in the proof of Brumfiel’s
theorem in [KSW].

Lemma 8.16. Let A be a dg category with weak equivalences and duality such that
1
2 ∈ A . Then the natural map L(A )→ L(A ) induces a weak equivalence of spectra
after inverting 2:

L(A )[1/2]
≃
−→ L(A )[1/2].

Proof. Recall from the proof of Proposition 8.7 the dg categories with weak equiva-
lences and duality A c, SA and S(A c). The map A → A c is a Morita equivalence,
T (A c) is idempotent complete, and S(A )→ S(A c) is a quasi-equivalence. Lemma
8.5 holds with L in place of GW . In particular, in the commutative diagram

L(A )
σ∪ //

��

ΩL(SA )

��
L(A c)

σ∪ // ΩL((SA )c)

the lower horizontal and the right vertical maps are equivalences. The left vertical
map is an equivalence after inverting 2, by Cofinality (Theorem 7.9), hence, so is the
top horizontal map. It follows that all maps in the sequence (8.7) are equivalences
after inverting 2. Since L(A )[1/2] is the homotopy colimit of that sequence, we are
done. �

9. Higher Grothendieck-Witt groups of schemes

9.1. Vector bundle Grothendieck-Witt groups. Let X be a scheme. Write
Vect(X) for the category of finite rank locally free sheaves on X . Denote by

sPerf(X) = Chb Vect(X) the dg category of strictly perfect complexes on X , that
is, the dg category of bounded complexes in Vect(X); see Example 1.30. The un-
derlying category Z0 sPerf(X) is a closed symmetric monoidal category with tensor
product ⊗OX and internal homomorphism complex Hom•

OX
(E,F ) given by formu-

las as in Subsection 1.1. The mapping complex of two objects in sPerf(X) is the
complex of global sections of their internal homomorphism object. As in any closed
symmetric monoidal category, an object A of sPerf(X) defines a duality

♯A : sPerf(X)op → sPerf(X) : E 7→ Hom•
OX

(E,A)

with double dual identification canA : E → E♯A♯A given by the formula

canAE(x)(f) = (−1)|x||f |f(x).

If A is an invertible strictly perfect complex on X , that is, a shift of a line bundle
on X , then the double dual identification is a natural isomorphism.

Let A be an invertible strictly perfect complex on X . Together with the set quis
of quasi-isomorphisms, we obtain a dg category with weak equivalences and duality

(9.1) sPerfA(X) = (sPerf(X), quis, ♯A, can
A).

We say that 1
2 ∈ X if 1

2 ∈ Γ(X,OX).

Definition 9.1. Let X be a scheme with an ample family of line bundles [TT90,
Definition 2.1] such that 1

2 ∈ X , and let L a line bundle on X . The n-th shifted
Grothendieck-Witt and Karoubi-Grothendieck-Witt spectra of X with coefficients in
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L are the n-th shifted Grothendieck-Witt and Karoubi-Grothendieck-Witt spectra
of (9.1) for A = L, that is,

GW [n](X,L) = GW [n](sPerfL(X)), and

GW [n](X,L) = GW [n](sPerfL(X)).

Their homotopy groups are denoted by

GW
[n]
i (X,L) = πiGW

[n](X,L), and

GW [n]
i (X,L) = πiGW [n](X,L).

When n = 0, or L = OX , we may omit the decoration corresponding to it. For
instance, GW (X) denotes GW [0](X,OX).

Remark. In [TT90], the K-theory of a quasi-compact and quasi-separated scheme
X is defined as the K-theory of the category of perfect complexes on X. If X has
an ample family of line bundles, this is also the K-theory of the category of strictly
perfect complexes. If one wishes, one can develop the theory of higher Grothendieck-
Witt groups for perfect complexes in the generality of Thomason; the technical
foundations have been laid in the previous sections. But at the moment I don’t see
the need to deal with the extra technicalities that come with this generality, and
have decided to stick with schemes that have an ample family of line bundles. This
is sufficient for most applications.

Remark 9.2. Let X be a k-scheme with structure map p : X → Spec(k). The
tensor product

C
[n]
k ⊗k sPerf

L(X)→ sPerfL[n](X) : A⊗k E 7→ p∗A⊗OX E

with duality compatibility as in (1.10) is an equivalence of dg categories with
weak equivalences and duality. Therefore, the Grothendieck-Witt and Karoubi-
Grothendieck-Witt spectraGW [n](X,L) andGW [n](X,L) are really the Grothendieck-

Witt and Karoubi-Grothendieck-Witt spectra of sPerfL[n](X) (without shift).

Proposition 9.3. Let X be a scheme with an ample family of line bundles such
that 1

2 ∈ X. Then the following hold.

(1) For all n, i ∈ Z with i ≥ 0 and all line bundles L on X, the map (8.3) is
an isomorphism

GW
[n]
i (X,L)

∼=
−→ GW [n]

i (X,L).

(2) If Ki(X) = 0 for i < 0 (e.g., X is a regular noetherian separated scheme)
then the map (8.3) is a stable equivalence for all line bundles L on X and
all n ∈ Z:

GW [n](X,L)
∼
−→ GW [n](X,L).

Proof. The first part follows from Proposition 8.7 since T (sPerf(X)) = Db Vect(X)
is idempotent complete; see for instance [BS01].

For the second part, the map K(X)→ K(X) is a stable equivalence, by assump-
tion. Therefore, the lower horizontal map in the square of Theorem 8.14 is a stable
equivalence. Since this square is homotopy cartesian, the upper horizontal map of
that square is also an equivalence. �
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9.2. Products. Let L1, L2 be two line bundles on X and denote by L1L2 their
tensor product L1 ⊗OX L2. Tensor product of complexes defines an exact dg form
functor

(⊗OX , can) : sPerf
L1(X)⊗k sPerf

L2(X) −→ sPerfL1L2(X)

with duality compatibility map can as defined in (1.10). The tensor product is
associative and unital up to natural isomorphism of dg form functors with unit
the duality preserving functor k → sPerf(X) : k 7→ OX . Recall that the functors
GW : dgCatWD → Sp and GW : dgCatWD → BiSp are symmetric monoidal,
and that the natural transformation GW → GW commutes with the monoidal
compatibility maps. Therefore, the tensor product of strictly perfect complexes
induces maps of (bi-) spectra

GW [n](X,L1) ∧S GW
[m](X,L2)

∪
−→ GW [n+m](X,L1L2)

GW [n](X,L1) ∧S̃ GW [m](X,L2)
∪
−→ GW [n+m](X,L1L2)

which are associative and unital up to homotopy. Taking homotopy groups, we
obtain associative and unital cup products

GW
[n]
i (X,L1)⊗GW

[m]
j (X,L2)

∪
−→ GW

[n+m]
i+j (X,L1L2)

GW [n]
i (X,L1)⊗GW [m]

j (X,L2)
∪
−→ GW [n+m]

i+j (X,L1L2)

which are commutative in the sense that

τ(a ∪ b) = (−1)ij 〈−1〉mn ∪ b ∪ a

for all a ∈ GW
[n]
i (X,L1) (or a ∈ GW [n]

i (X,L1)), and b ∈ GW
[m]
j (X,L2) (or b ∈

GW
[m]
j (X,L2)) where τ : L1L2

∼= L2L1 is the switch isomorphism and 〈−1〉 =
[OX ,−1] ∈ GW0(X). The proof is the same as the proof of Proposition 5.8, and
we omit the details.

9.3. Functoriality. Let Sch be a small category of schemes, e.g., schemes of finite

type over some fixed base. Let S̃ch denote the category whose objects are the pairs
(X,L) where X is a scheme in Sch and L is a line bundle on X . A morphism
(X,L) → (Y,M) in this category is a pair (f, α) where f : X → Y is a map
of schemes and α : f∗M ∼= L is an isomorphism. Composition of the two maps
(f, α) : (X,L)→ (Y,M) and (g, β) : (Y,M)→ (Z,N) is the pair

(g, β) ◦ (f, α) = (g ◦ f, α ◦ f∗(β) ◦ λf,g)

where λf,g : (gf)∗ ∼= f∗g∗ is the usual natural isomorphism of functors. The

higher Grothendieck-Witt groups GW
[n]
i and GW [n]

i are functorial for maps in this
category.

More precisely, for a map f : X → Y of schemes, the functor f∗ : sPerf(Y ) →
sPerf(X) is a symmetric monoidal functor between closed symmetric monoidal cat-
egories. As such it is equipped with natural maps

φf : f∗[E,F ]→ [f∗E, f∗F ]
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such that, given g : Y → Z and E,F ∈ sPerf(Z), the following diagram commutes

f∗g∗[E,F ]
f∗φg // f∗[g∗E, g∗F ]

φf // [f∗g∗E, f∗g∗F ]

[λf,g ,1]

��
(gf)∗[E,F ]

λf,g

OO

φgf

// [(gf)∗E, (gf)∗F ]
[1,λf,g ]

// [(gf)∗E, f∗g∗F ].

Now, a map (f, α) : (X,L)→ (Y,M) in S̃ch defines an exact dg form functor

(f, α)∗ : sPerfM (Y )→ sPerfL(X) : E 7→ f∗E

with duality compatibility map f∗[E,M ]
φf
−→ [f∗E, f∗M ]

[1,α]
−→ [f∗E,L]. Given com-

posable maps (f, α) and (g, β) as above, then λf,g defines a natural isomorphism
of dg form functors

λf,g : (f, α)∗(g, β)∗ ∼= ((g, β) ◦ (f, α))∗.

Therefore, the diagrams of Grothendieck-Witt and Karoubi-Grothendieck-Witt spec-
tra

GW [n](Z,N)
(g,β) //

(g,β)◦(f,α) ''PP
PP

PP
PP

PP
PP

GW [n](Y,M)

(f,α)

��

GW [n](Z,N)
(g,β) //

(g,β)◦(f,α) ''PP
PP

PP
PP

PP
PP

GW [n](Y,M)

(f,α)

��
GW [n](X,L) GW [n](X,L)

commute up to homotopy. In particular, the higher Grothendieck-Witt groups

GW
[n]
i and GW [n]

i are functors from S̃ch to abelian groups.
Since tensor products of complexes commute with f∗ up to natural isomorphism

of dg functors, we have

f∗(a ∪ b) = f∗(a) ∪ f∗(b) ∈ GW
[n+m]
i+j (X)

for a ∈ GW
[n]
i (Y ) and b ∈ GW

[m]
j (Y ), and similarly for GW in place of GW .

Remark 9.4 (Strict Functoriality). Sometimes it is convenient to have functors

GW [n] : S̃ch→ Sp and GW [n] : S̃ch→ BiSp

with values in (bi-) spectra before taking homotopy groups. The trouble with the
functoriality as noted in Remark 9.3 is that the natural isomorphism of functors
λf,g : (gf)∗ ∼= f∗g∗ is not the identity. As explained in [FS02, Appendix C.4],
if we replace the (somewhat unspecified) category of vector bundles on X with
the equivalent small category of big vector bundles on X , then we have equality
λf,g = id : (gf)∗ = f∗g∗. In particular, the resulting assignment X 7→ sPerfL(X)

is functorial for maps in S̃ch and we obtain indeed a functor GW [n] : S̃ch→ Sp and

GW [n] : S̃ch→ BiSp.

Let Z ⊂ X be a closed subset with open complement X − Z. A complex
E ∈ sPerf(X) has support in Z if it is acyclic outside Z, that is if for all x ∈
X − Z the complex Ex ∈ sPerf(OX,x) is an acyclic complex of OX,x-modules.

We denote by sPerfLZ(X) the full dg subcategory with weak equivalences and

duality of sPerfL(X) of those complexes which have support in Z. The n-th
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shifted Karoubi-Grothendieck-Witt spectrum of X with coefficients in L and sup-
port in Z is the Karoubi-Grothendieck Witt spectrum of sPerfLZ(X), denoted by
GW [n](X on Z, L).

The following theorem was proved in [Sch10b] without the assumption 1
2 ∈ X .

Theorem 9.5 (Localization for vector bundle Grothendieck-Witt groups). Let X
be a scheme with an ample family of line-bundles and 1

2 ∈ X. Let Z ⊂ X be a closed
subset with quasi-compact open complement U = X − Z. Then for all line-bundles
L on X and n ∈ Z, the following is a homotopy fibration

GW [n](X on Z, L) −→ GW [n](X, L) −→ GW [n](U, L).

Proof. By a result of Thomason [TT90], the sequence of dg categories weak equiv-
alences and duality

sPerfLZ(X)→ sPerfL(X)→ sPerfL(U)

is Morita exact. The result follows from the Localization Theorem 8.10. �

Theorem 9.6 (Nisnevich Mayer-Vietoris). Consider a pull-back diagram of quasi-
compact schemes

V //

��

Y

p

��
U

j // X

in which the map p is étale and the map j is an open immersion. Assume that
X has an ample family of line bundles, and 1

2 ∈ X (the same is then true for Y ,
U and V ). If the map p : (Y − V )red → (X − U)red is an isomorphism, then for
all line bundles L on X and all n ∈ Z the square of schemes induces a homotopy
cartesian diagram of Karoubi-Grothendieck-Witt spectra

GW [n](X,L) //

��

GW [n](U,L)

��
GW [n](Y, L) // GW [n](V, L).

Proof. Let Z denote the common closed subset (Y − V )red ∼= (X − U)red of X
and Y . By a result of Thomason [TT90, Theorem 2.6.3], the map p induces a
quasi-equivalence of dg categories

p∗ : sPerfZ(X)→ sPerfZ(Y ).

The result now follows from Theorems 8.9 and 9.5. �

Theorem 9.7 (Nisnevich descent). Let X be a noetherian scheme of finite Krull
dimension with an ample family of line bundles and 1

2 ∈ X. Then for all line
bundles L on X and all n ∈ Z, the map on global sections of a globally fibrant
replacement for the Nisnevich topology of GW [n]( , L) on the small Nisnevich site
on X is a stable equivalence:

GW [n](X,L)
∼
−→ HNis

(
X,GW [n]( , L)

)
.

Proof. This follows from the Nisnevich Mayer-Vietoris Theorem 9.6 using for in-
stance a spectrum version of [MV99, Lemma 1.18]. Alternatively, the same argu-
ments as in [TT90, Theorem 10.8] using Theorem 9.6 yield the result. �



82 MARCO SCHLICHTING

Theorem 9.8 (Homotopy Invariance). Let X be a noetherian regular separated
scheme with 1

2 ∈ X. Then for all line bundles L on X and all n ∈ Z, the projection

p : X × A1 → X induces a stable equivalence of Grothendieck-Witt spectra

GW [n](X,L)
∼
−→ GW [n](X × A1, p∗L).

Proof. The analogous statement for K-theory and triangular Witt groups hold, by
[Qui73] and [Bal01b, Theorem 3.4]. The theorem follows from Theorem 7.6 or from
Lemma 6.4. �

Theorem 9.9 (Mayer-Vietoris for regular blow-ups). Consider a pull-back diagram
of schemes

Y ′ j //

q

��

X ′

p

��
Y

i // X

in which the map i is a closed immersion and the map p is the blow-up of X along
i. Assume that X has an ample family of line bundles, and 1

2 ∈ X (the same is
then true for Y , X ′ and Y ′). If the map i is a regular embedding of codimension
d, then for all line bundles L on X and all n ∈ Z the square of schemes induces a
homotopy cartesian diagram of Karoubi-Grothendieck-Witt spectra

GW [n](X,L) //

��

GW [n](Y, L)

��
GW [n](X ′, L) // GW [n](Y ′, L).

Proof. The claim is local in X , by Theorem 9.6. Therefore, we may assume
X and Y affine and L = OX . To ease notation, write DX for the triangu-
lated category T sPerf(X), and similarly for Y , X ′, Y ′. So, DX and DY are
generated as idempotent complete triangulated categories by OX and OY , re-
spectively. Recall (e.g., from [CHSW08, Lemma 1.4]) that the triangle functors
Lp∗ : DX → DX′ , Lq∗ : DY → DY ′ and Rj∗Lq

∗ : DY → DX′ are fully faithful.

Write Lp∗D
(k)
X and Rj∗Lq

∗D
(k)
Y for the triangulated categories OX′(k) ⊗ Lp∗DX

and OX′(k)⊗Rj∗Lq∗DY .
For triangulated subcategories A1, ...,An of an idempotent complete triangu-

lated category A, we denote by 〈A1, ...,An〉 the idempotent complete triangulated
subcategory of A generated by A1, ...,An. From the exact triangle in DX′

OX′(1)→ OX′ → Rj∗OY ′ → OX′(1)[1],

we obtain the equality of triangulated subcategories of D(X ′)

(9.2) 〈OX′(1)⊗ Lp∗DX , Rj∗Lq
∗DY 〉 = 〈OX′(1)⊗ Lp∗DX , Lp

∗DX〉

since the generators OX′(1) and Rj∗OY ′ of the left hand side are in the right hand
category, and the generators OX′(1) and OX′ of the right hand side are in the left
category. If we denote by ∨ the duality functor E 7→ E∨ = Hom(E,OX′) in DX′ ,
then applying ∨ to the equality of triangulated subcategories yields the equality

(9.3) 〈OX′(−1)⊗ Lp∗DX , (Rj∗Lq
∗DY )

∨〉 = 〈OX′(−1)⊗ Lp∗DX , Lp
∗DX〉.
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For c = ⌊d−1
2 ⌋ the largest integer ≤ d−1

2 , let A be the triangulated subcategory

A =
〈
Rj∗Lq

∗D
(−1)
Y , ..., Rj∗Lq

∗D
(−c)
Y

〉

of DX′ . From the equalities of triangulated categories above, we obtain the equal-
ities of triangulated categories

〈
Lp∗D

(c)
X , Rj∗Lq

∗D
(c−1)
Y , Rj∗Lq

∗D
(c−2)
Y , ..., Rj∗Lq

∗DY

〉

(9.2)
=

〈
Lp∗D

(c)
X , Lp∗D

(c−1)
X , ..., Lp∗DX

〉

(9.3)
=

〈(
Rj∗Lq

∗D
(−c)
Y

)∨
, ...,

(
Rj∗Lq

∗D
(−1)
Y

)∨
, Lp∗DX

〉

= 〈A∨, Lp∗DX〉

From [CHSW08, Lemma 1.2 (1)], this implies

DX′ = OX′(c)⊗DX′

= OX′(c)⊗
〈
Lp∗DX , Rj∗Lq

∗D
(−1)
Y , Rj∗Lq

∗D
(−2)
Y , ..., Rj∗Lq

∗D
(−d+1)
Y

〉

=
〈
A∨, Lp∗DX , A,

[
Rj∗Lq

∗D
(−c−1)
Y

]〉

where the last term [Rj∗Lq
∗D

(−c−1)
Y ] denotes Rj∗Lq

∗D
(−c−1)
Y if d − 1 is odd and

0 if d− 1 is even. As noted in the proof of [CHSW08, Proposition 1.5], every map
from objects of

〈A∨, Lp∗DX〉 =
〈
Lp∗D

(c)
X , Rj∗Lq

∗D
(c−1)
Y , ..., Rj∗Lq

∗DY

〉

to objects of
〈
Rj∗Lq

∗D
(−1)
Y , ..., Rj∗Lq

∗D
(c−d+1)
Y

〉
=
〈
A,
[
Rj∗Lq

∗D
(−c−1)
Y

]〉

is zero.
Similarly, let B be the triangulated subcategory

B =
〈
Lq∗D

(−1)
Y , ..., Lq∗D

(−c)
Y

〉

of DY ′ . From [CHSW08, Lemma 1.2 (2)], we have

DY ′ =
〈
B∨, Lq∗DY , B,

[
Lq∗D

(−c−1)
Y

]〉

and every map from objects of 〈B∨, Lq∗DY 〉 to objects of 〈B, [Lq∗D
(−c−1)
Y ]〉 are

zero. From [CHSW08, Proposition 1.5] and the fact that Lj∗ commutes with du-
alities (up to natural isomorphism), we see that Lj∗ sends 〈Lp∗DX ,A〉, Lp∗DX

and 〈A∨, Lp∗DX〉 to 〈Lq∗DY B〉, Lq∗DY and 〈B∨, Lq∗DY 〉. So, we have a map of
filtrations of triangulated categories and dualities

(9.4) DX

Li∗

��

Lp∗

∼
// Lp∗DX

�

� //

Lj∗

��

〈A∨, Lp∗DX ,A〉

Lj∗

��

�

� // DX′

Lj∗

��
DY

Lq∗

∼
// Lq∗DY

�

� // 〈B∨, Lq∗DX ,B〉
�

� // DY ′ .
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To this diagram corresponds a diagram of dg categories with weak equivalences and
duality

(9.5) sPerf(X)

i∗

��

p∗

// sPerf0(X ′)
�

� //

j∗

��

sPerf1(X ′)

j∗

��

�

� // sPerf(X ′)

j∗

��
sPerf(Y )

q∗ // sPerf0(Y ′) �

� // sPerf1(Y ′) �

� // sPerf(Y ′)

where sPerfi(X ′) ⊂ sPerf(X ′) and sPerfi(Y ′) ⊂ sPerf(Y ′) are the full dg sub-
categories whose objects are in the triangulated subcategories of DX′ and DY ′ as
indicated in diagram (9.4), so that the triangulated category diagram obtained from
(9.5) is precisely the diagram (9.4).

I claim that all squares in (9.5) induce homotopy cartesian squares of GW -
spectra. As a composition of homotopy cartesian squares, the outer diagram will
then induce a homotopy cartesian of GW -spectra as claimed in the theorem. The
left square of (9.5) induces a homotopy cartesian square of GW -spectra, by the
Invariance Theorem 8.9 applied to the two horizontal arrows.

For the middle square of (9.5), the Localization Theorem 8.10 identifies the
horizontal homotopy cofibres as the GW -spectra of the dg categories with weak
equivalences and duality (sPerf1(X ′), v) and (sPerf1(Y ′), v) where the weak equiv-

alences are the maps whose cones are in Lp∗DX and Lq∗DY . Let (sPerf
1
0(X

′), v) ⊂
(sPerf1(X ′), v) and (sPerf10(Y

′), v) ⊂ (sPerf10(Y
′), v) be the full dg subcategories

with weak equivalences and duality corresponding to the triangulated categories
〈Lp∗DX ,A〉/Lp∗DX and 〈Lq∗DY ,B〉/Lq∗DY . By the Additivity Theorem 8.15,
we have

GW (sPerf1(X ′), v) ≃ K(sPerf10(X
′), v), GW (sPerf1(Y ′), v) ≃ K(sPerf10(Y

′), v).

By [CHSW08, Proposition 1.5], the following induced map is a stable equivalence

j∗ : K(sPerf10(X
′), v) → K(sPerf10(Y

′), v). Therefore, the middle square in (9.5)
induces a homotopy cartesian square of GW -spectra.

The last square in (9.5) induces a homotopy cartesian square of GW -spectra,
by the Localization and Invariance Theorems 8.10 and 8.9, since Lj∗ induces an
equivalence after taking horizontal triangulated quotient categories, by [CHSW08,
Proposition 1.5]. �

9.4. Projective line-bundle formula. Write P1 = Proj(k[S, T ]) for the projec-
tive line P1

k over k where k is our base ring, e.g., k = Z[1/2]. Consider the category
Vect(P1) of vector bundles on P1 equipped with the usual duality Hom( , OP1).
Recall (Section 1.9) that this makes the category Fun([1],Vect(P1)) of morphisms
in Vect(P1) into a category with duality. In that category, we have an object
S : OP1(−1) → OP1 (multiplication by S ∈ k[S, T ]) equipped with the symmetric

form β̃

β̃:

OP1(−1)
S //

T

��

OP1

T

��
OP1

S
// OP1(1)
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(multiplication by T ). We consider β̃ as a symmetric form in the dg category

Fun([1],Chb Vect(P1)) of morphisms of complexes via the embedding Vect(P1) →
Chb Vect(P1) as complexes concentrated in degree 0. Its image under the cone dg
form functor

Cone : Fun([1],Chb Vect(P1))[0] −→
(
Chb Vect(P1)

)[1]

is denoted by β. In view of the exact sequence

OP1(−1)
( ST )
−→ OP1 ⊕OP1

(T,−S)
−→ OP1(1),

the form on β is a quasi-isomorphism of complexes of sheaves on P1. Therefore, β
is non-degenerate and defines an element

β = Cone(β̃) ∈ GW
[1]
0 (P1).

Theorem 9.10. Let X be a scheme with an ample family of line bundles and
1
2 ∈ X, and denote by p : P1

X → X the structure map of the projective line over X.
Then for all line bundles L on X and all n ∈ Z, the following are natural stable
equivalences of (bi-) spectra

GW [n](X,L)⊕GW [n−1](X,L)
∼
−→ GW [n](P1

X , p
∗L)

GW [n](X,L)⊕GW [n−1](X,L)
∼
−→ GW [n](P1

X , p
∗L)

(x, y) 7→ p∗(x) + β ∪ p∗(y).

Proof. The triangle functor p∗ : T sPerf(X) → T sPerf(P1
X) is fully faithful, and

β induces an equivalence β⊗ : T sPerf(X) → T sPerf(P1
X)/p∗T sPerf(X) of trian-

gulated categories. This is classical; see for instance [Tho93a], [Sch11, Theorem
3.5.1]. Denote by w the set of morphisms in sPerf(P1

X) which are isomorphisms in
T sPerf(P1

X)/p∗T sPerf(X). By Theorems 6.6 and 8.10, the sequence

(sPerf(X), quis)
p∗

−→ (sPerf(P1
X), quis) −→ (sPerf(P1

X), w)

induces homotopy fibrations of GW [n] and GW [n]-spectra. By Theorems 6.5 and
8.9, these sequences split via the exact dg form functors

(sPerf(X), quis)
β⊗
−→ (sPerf(P1

X), quis) −→ (sPerf(P1
X), w)

whose composition induces an equivalence of associated triangulated categories,
and hence GW and GW -equivalences. �

Remark 9.11. Walter proved in [Wal03a] projective bundle formulas for the zero-

th Grothendieck Witt groups GW
[n]
0 (PX(E )) for arbitrary vector bundles E over

X . His results immediately generalize to the higher Grothendieck-Witt groups

GW
[n]
i (PX(E )) and GW [n]

i (PX(E )).

Lemma 9.12. Let k be a commutative ring with 1
2 ∈ k. Then the element β ∈

GW
[1]
0 (P1

k) is zero when restricted to the principal open subsetsD+(S) = Spec(k[T/S])
and D+(T ) = Spec(k[S/T ]) of P1

k = Proj(k[S, T ]).

Proof. It suffices to prove the claim for k = Z[1/2] as β over k is obtained from
β over Z[1/2] via base change along Z[1/2] → k. In any case, it is clear that
β|D+(S) = 0 as it is a form on a contractible complex. For the other restriction,
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write U = S/T , so D+(T ) = Spec k[U ]. Note that β|D+(T ) is supported on the
closed subset U = 0 of Spec k[U ], that is, it is in the image of the left horizontal
map in the following diagram

GW
[1]
0 (k[U ] on U = 0) // GW [1]

0 (k[U ])

∼=U=1
��

// GW [1]
0 (k[U,U−1])

U=1vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠

GW
[1]
0 (k).

The top row of the diagram is exact, by the Localization Theorem 9.5, and the
middle vertical map is an isomorphism, by Homotopy Invariance (recall that k =
Z[1/2] is regular). Therefore, the right horizontal map is injective, and the left
horizontal map is the 0 map. In particular, β|D+(T ) = 0 �

In the following theorem, denote by X [T+] = D+(S) ∼= A1
X and X [T−] =

D+(T ) ∼= A1
X the two principal open subschemes of the standard covering of

P1
X = X ×k Proj(k[S, T ]) given by S 6= 0 and T 6= 0, and let X [T±] be their

intersection. For a line bundle L on X we also denote by L the line bundle on
X [T+], X [T−] and X [T±] induced from L via the pull back along the projections
p : X [T+], X [T−], X [T±]→ X .

Theorem 9.13 (Bass’ Fundamental Theorem). Let X be a scheme with an ample
family of line bundles and 1

2 ∈ X. Then for all line bundles L on X and all integers
n, i ∈ Z, there are natural exact sequences

0 −→ GW [n]
i (X,L)

(p∗,p∗)
−→ GW [n]

i (X [T+], L)⊕GW [n]
i (X [T−], L)

−→ GW [n]
i (X [T±], L)

δ
−→ GW [n−1]

i−1 (X,L) −→ 0.

Proof. To ease notation we will omit the line bundle in our notation. From the Nis-
nevich Mayer-Vietoris Theorem 9.6 applied to the open covering X [T+]∪X [T−] =
P1
X and the Projective Line Bundle Theorem 9.10 we obtain a homotopy cartesian

square

GW [n](X)⊕GW [n−1](X)
(p∗,β∪p∗) //

(p∗,β∪p∗)

��

GW [n](X [T+])

��
GW [n](X [T−]) // GW [n](X [T±]).

By Lemma 9.12, the element β ∈ GW
[1]
0 (PZ[1/2]) is zero in GW

[1]
0 (Z[1/2][T+]) and

GW
[1]
0 (Z[1/2][T−]). Therefore, the two maps β∪p∗ : GW [n−1](X)→ GW [n](X [T+])

and β∪p∗ : GW [n−1](X)→ GW [n](X [T−]) are null-homotopic. Since the two maps
p∗ : GW [n](X) → GW [n](X [T+]) and p∗ : GW [n](X)→ GW [n](X [T−]) are (split)
injective, the long exact sequence of homotopy groups associated with the homotopy
cartesian square decomposes into the exact sequences as in the theorem. �

Remark 9.14. The exact sequences in Theorem 9.13 are split. Splitting of the
first non-trivial map in the sequence is clear, and the last non-trivial map is split

via the cup-product with [T ] ∈ GW
[1]
1 (Z[1/2][T±]).
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As in Bass’ formalism of contracted functors, it follows from Theorem 9.13 that

one can define the functors GW [n]
i on schemes for i < 0 and all n ∈ Z inductively

by starting with the functors GW [n]
0 , n ∈ Z.

9.5. Coherent Grothendieck-Witt groups. There are many results about the
triangular Witt groups of coherent sheaves, notably due to Stefan Gille. With our
results in Sections 6 and 7, they immediately generalize to higher Grothendieck-
Witt groups. In what follows, we will state and prove a few of them.

LetX be a noetherian scheme, and denote by Qcohb(X) and Cohb(X) the dg cat-
egories of bounded complexes of quasi-coherent and coherent OX -modules. These
are closed symmetric monoidal categories under tensor product and internal ho-
momorphism objects of quasi-coherent sheaves. In particular, any object A of
Qcohb(X) defines a duality functor

♯A : Qcohb(X)op → Qcohb(X) : E 7→ Hom•
OX

(E,A)

with double dual identification canA : E → E♯A♯A given by the formula

canAE(x)(f) = (−1)|x||f |f(x).

Denote by Qcohbc(X) ⊂ Qcohb(X) the full dg subcategory of those bounded com-
plexes of quasi-coherent OX -modules which have coherent cohomology. Recall that
a dualizing complex on X is a bounded complex I• of injective quasi-coherent
OX -modules such that for every E ∈ Qcohbc(X), the double dual identification

canI
•

E : E → E♯I• ♯I• is a quasi-isomorphism. By [Har66, p. 258], this only needs to
be checked for E = OX .

If X is a noetherian scheme with a dualizing complex I•, we have a dg category
with weak equivalences and duality

(9.6) (Qcohbc(X), quis, ♯I• , canI
•

).

Definition 9.15. LetX be a noetherian scheme over Z[1/2] with dualizing complex
I•. The n-th shifted coherent Grothendieck-Witt spectrum of X with coefficients in
I• is the n-th shifted Grothendieck-Witt spectrum

GW [n](X, I•)

of the dg category with weak equivalences and duality (9.6). The n-th shifted
coherent Grothendieck-Witt groups of X with coefficients in I• are the homotopy
groups of GW [n](X, I•):

GW
[n]
i (X, I•) = πiGW

[n](X, I•).

As usual, if n = 0, we omit the label corresponding to n.

Remark 9.16. Strictly speaking, the category Qcohbc(X) is not small (not even
essentially small), in general. To obtain an honest spectrum, one would have to

replace the category Qcohbc(X) by a small full dg subcategory closed under the

duality such that the inclusion into Qcohbc(X) induces an equivalence of associated
triangulated categories. It is easy to see that one can always do that, one only
needs to bound the size of the quasi-coherent sheaves involved by a sufficiently
large cardinal. By Theorem 6.5, the choice of such a subcategory does not matter.
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Remark 9.17. As in Definition 9.15, one can define a coherent Karoubi-Grothen-
dieck-Witt spectrum GW [n](X, I•) as the GW [n]-spectrum associated with (9.6).
Then the comparison map

GW [n](X, I•)→ GW [n](X, I•)

is a stable equivalence, by Theorem 8.14, because the negativeK-groups of Qcohbc(X)

vanish. This is because the inclusion Cohb(X) ⊂ Qcohbc(X) induces an equivalence

of associated triangulated categories, and Cohb(X) has trivial negative K-groups,
by [Sch06, Theorem 7]. So, there is no need to develop a GW -theory for coherent
sheaves.

Let X be a regular noetherian separated scheme. Then any coherent OX -module
has a finite injective resolution. Any finite injective resolution ρ : OX → I• of the
structure sheaf OX defines a dualizing complex I• on X . Moreover, the inclusion

(9.7)
(
sPerf(X), quis, ♯OX , can

OX
)
−→

(
Qcohbc(X), quis, ♯I• , canI

•
)

defines an exact dg form functor with duality compatibility map

Hom•
OX

(E,OX)→ Hom•
OX

(E, I•) : f 7→ ρ ◦ f.

Theorem 9.18 (Poincaré duality). Let X be a regular noetherian separated scheme
with 1

2 ∈ X, and let ρ : OX → I• be a finite injective resolution of the structure
sheaf OX . Then the exact dg form functor (9.7) induces a stable equivalence of
Grothendieck-Witt spectra

GW [n](X)
∼
−→ GW [n](X, I•).

Proof. Recall that for a regular noetherian separated scheme X , the inclusion
sPerf(X) ⊂ Cohb(X) induces an equivalence of associated triangulated categories.
This is classical. For a proof, see for instance [Sch11, Theorem 3.3.5]. Since for any

noetherian scheme, the inclusion Cohb(X) ⊂ Qcohbc(X) induces an equivalence of
associated triangulated categories, the result follows from the Invariance Theorem
6.5. �

Let X be a noetherian scheme with dualizing complex I•. Let i : Z →֒ X be
a closed immersion with open complement j : U = X − Z →֒ X . Then j∗I• is a
dualizing complex on U , and we obtain an exact dg form functor

(9.8) j∗ : (Qcohbc(X), quis, ♯I• , can) −→ (Qcohbc(Y ), quis, ♯j∗I• , can)

with duality compatibility map the usual isomorphism

j∗Hom•
OX

(E,OX)
∼=
−→ Hom•

OU
(j∗E, j∗I•).

Similarly, the complex of quasi-coherent OZ -modules

i♭I• = Hom•
OX

(i∗OZ , I
•)

is a dualizing complex for Z [Har66, p. 260], and we obtain an exact dg form
functor

(9.9) i∗ : (Qcohbc(Z), quis, ♯i♭I• , can) −→ (Qcohbc(X), quis, ♯I• , can)

with duality compatibility map the isomorphism

i∗Hom
•
OZ

(E, i♭I•) = Hom•
OX

(i∗E,Hom
•
OX

(i∗OZ , I
•))

∼=
−→ Hom•

OX
(i∗E, I

•)

induced by the map OX → i∗OZ .
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Theorem 9.19 (Localization for coherent Grothendieck-Witt groups). Let X be
a noetherian scheme with dualizing complex I•, and let i : Z →֒ X be a closed
immersion with open complement j : U = X − Z →֒ X. If 1

2 ∈ X, then for all
n ∈ Z, the exact dg form functors (9.8) and (9.9) induce a homotopy fibration of
coherent Grothendieck-Witt spectra

GW [n](Z, i♭I•)
i∗−→ GW [n](X, I•)

j∗

−→ GW [n](U, j∗I•).

Proof. Denote by Qcohbc(X on Z) the full dg subcategory of Qcohbc(X) consisting
of those complexes which are acyclic when restricted to U . It inherits the structure
of a dg category with weak equivalences and duality from (9.6). The sequence

(Qcohbc(X on Z), quis) −→ (Qcohbc(X), quis) −→ (Qcohbc(U), quis)

is Morita exact. See for instance [Sch11, Theorem 3.3.2]. By the Localization
Theorem 6.6, the sequence induces a homotopy fibration of GW [n]-spectra.

The exact dg form functor (9.9) factors through Qcohbc(X on Z), and we obtain
the exact dg form functor

i∗ : (Qcohbc(Z), quis, ♯i♭I• , can) −→ (Qcohbc(X on Z), quis, ♯I• , can).

This functor induces isomorphisms on K-groups and triangular Witt groups, by
the results of [Qui73] and [Gil07, Theorem 3.2]. By the Karoubi Induction Lemma
6.4 or by Theorem 7.6, it induces an equivalence of GW [n]-spectra. �

We finish the section with an application to L-theory of schemes in characteristic
zero. In the following theorem we write L(X) for the stabilized L-theory spectrum
(Definition 8.12) of the dg category with weak equivalences and duality (9.1) where
A = OX .

Theorem 9.20 (Cdh-descent for L-theory). Let k be a field of characteristic zero.
Then the stabilized L-theory functor X 7→ L(X) satisfies cdh-descent on the category
of finite type separable k-schemes that have an ample family of line bundles.

Proof. We use the criterion given in [CHSW08, Theorem 3.12]. The functor L
satisfies Nisnevich descent and has the Mayer-Vietoris property for blow-ups along
regularly embedded centers since it is a filtered homotopy colimit of functors GW [n]

which have these properties (Theorems 9.6 and 9.9). The functor L satisfies excision
and is invariant under infinitesimal extension, by [Kar06]. �

10. Bott-periodicity

Let A be a topological ring (with involution) such that

(*) the group of units A∗ ⊂ A is open in A and the map A∗ → A∗ : a 7→ a−1

is continuous.

For instance A could be a Banach algebra with involution. For a topological space
X , the space of continuous maps A(X) = Map(X,A) in Top is a topological ring
(with involution) with point-wise addition and multiplication (and involution). If
X is compact and A satisfies (*), then A(X) trivially satisfies (*). Moreover, if
A satisfies (*), then so does Mn(A) for all n ≥ 1 [Swa77, Corollary 1.2]. Denote
by Topcpt the category of compact topological spaces, and by Ab the category of
abelian groups.

The following lemma is well-known (at least in the K0-case). We give a proof at
the end of this section.
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Lemma 10.1. Let A be a topological ring (with involution if appropriate) satisfying
(*). Then the following functors are homotopy invariant,

Topcpt → Ab : X 7→ K0(A(X)), GW
[n]
0 (A(X)),

that is, they send homotopic maps to the same map. In particular, if X is a
contractible compact topological space, then the map of algebras A→ A(X) induced
by X → pt yields isomorphisms

K0(A) ∼= K0(A(X)),

GW
[n]
0 (A) ∼= GW

[n]
0 (A(X)).

Let A be a Banach algebra (with involution). Let ∆n
top be the standard topo-

logical n simplex. This is a contractible compact topological space. Varying n we
have a cosimplicial space n 7→ ∆n

top, hence a simplicial Banach algebra A∆∗
top. We

set

Ktop(A) = |K(A∆∗
top)|

GW
[n]
top(A) = |GW

[n](A∆∗
top)|.

These are symmetric spectra, and module spectra over GW (R). Recall that for
ε = ±1, we may write εGW (A) instead of GW ε−1+4k(A).

For a spectrum Z, write Ω∞Z ∈ Top for the infinite loop space associated with
Z, that is, the zero space Z̃0 of a functorial stable equivalence Z → Z̃ into an
Ω-spectrum Z̃. In particular, πiZ = πiΩ

∞Z for i ≥ 0.

Proposition 10.2. There are canonical homotopy fibrations of spaces

BGltopA→ Ω∞Ktop(A)→ K0(A)

BεO
top
∞,∞(A)→ Ω∞

εGW top(A)→ εGW0(A),

where Gtop denotes the group G with its usual Euclidean topology. In particular,
Ω∞Ktop(A) and Ω∞

εGWtop(A) are the usual topological K-theory and ε-hermitian
K-theory spaces of A.

Proof. We only explain the hermitian K-theory case, the K-theory case being sim-
ilar. By Lemma 10.1 and 4.6, the simplicial groups

i 7→ π0GW
[n](A∆i)

are constant. Therefore, the Bousfield-Friedlander Theorem [BF78] implies that
the following canonical map is an equivalence

|Ω∞GW [n](A∆∗
top)|

∼
−→ Ω∞|GW [n](A∆∗

top)| = Ω∞GW
[n]
top(A).

By Corollary A.2, Lemma 10.1 and the Bousfield-Friedlander Theorem [BF78],
the homotopy fibre of Ω∞

εGWtop(A) → εGW0(A) is therefore |BεO∞,∞(A∆∗)+|.
Consider the zigzag of maps

BεO
top
∞,∞(A)←−

B| Sing∗ εO
top
∞,∞(A)| = |B Sing∗ εO

top
∞,∞(A)| = |BεO∞,∞(A∆∗

top)|

−→ |BεO∞,∞(A∆∗
top)

+|.
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For a topological group G, the simplicial space BG is good in the sense of [Seg74]
if G is well-pointed (at 1 ∈ G). Thus, both maps in the diagram are maps of good
simplicial spaces which are degree-wise homology isomorphisms. Hence, both maps
are homology isomorphisms (after realization). Since all spaces in the diagram are
nilpotent spaces (in fact H-spaces), the homology isomorphisms are in fact weak
equivalences. �

Theorem 10.3. Let A be a Banach algebra with involution. Then the sequence

GW
[n]
top(A)

F
−→ Ktop(A)

H
−→ GW

[n+1]
top (A)

η∪
−→ S1 ∧GW

[n]
top(A)

is an exact triangle in the homotopy category of spectra.

Proof. This follows from Theorem 6.1. �

Remark 10.4. From our definitions, Lemma 10.1, and Theorem 10.3, we have for

i < 0 the following: π0GW
[n]
top(A) = GW

[n]
0 (A), πiKtop(A) = 0, and πiGW

[n]
top(A) =

GW
[n]
i (A) =Wn−i(A).

10.1. Classical Bott periodicity. As in the proof of Theorem 6.2, Theorem 10.3
implies the topological version of Karoubi’s fundamental theorem

(10.1) −εVtop(A) ≃ ΩεU top(A)

where Vtop and Utop are the homotopy fibres of the topological forgetful and hy-
perbolic functors F : Ω∞

εGW top(A) → Ω∞Ktop(A) and H : Ω∞Ktop(A) →
Ω∞

εGW top(A).
Consider R and C as Banach algebras with trivial involution, and consider

the quaternions H as Banach algebra with its usual involution sending i, j, k to
−i,−j,−k, respectively. Then we obtain

V (R) ∼ Z×BO V (C) ∼ U/O V (H) ∼ Z×BSp

U(R) ∼ O U(C) ∼ O/U U(H) ∼ Sp

−V (R) ∼ O/U −V (C) ∼ U/Sp −V (H) ∼ Z× Sp/U

−U(R) ∼ U/O −U(C) ∼ Sp/U −U(H) ∼ U/Sp

in view of the classical homotopy equivalences

On
∼
→֒ Gln(R) Un

∼
→֒ Gln(C) Spn

∼
→֒ Gln(H)

Om ×On
∼
→֒ Om,n(R) Om+n

∼
→֒ Om,n(C) Spm × Spn

∼
→֒ Om,n(H)

Un
∼
→֒ Spn(R) Spn

∼
→֒ Spn(C) Un

∼
→֒ Spn(H)
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induced by the polar decompositions of Gln(R), Gln(C) and Gln(H). Using the
topological version of Karoubi’s Fundamental Theorem (10.1), we obtain the fol-
lowing table of homotopy equivalences

O ∼ Ω(Z×BO)

−V (R) ∼ Ω+U(R) O/U ∼ ΩO

−V (C) ∼ Ω+U(C) U/Sp ∼ ΩO/U

+V (H) ∼ Ω−U(H) Z×BSp ∼ ΩU/Sp

Sp ∼ Ω(Z×BSp)

−V (H) ∼ Ω+U(H) Sp/U ∼ ΩSp

+V (C) ∼ Ω−U(C) U/O ∼ ΩSp/U

+V (R) ∼ Ω−U(R) Z×BO ∼ ΩU/O

which yields the homotopy equivalence

Z×BO ∼ Ω8(Z×BO).

Using the complex numbers C with its usual involution i 7→ −i, the topological
version of Karoubi periodicity yields

Z×BU ∼ Ω2(Z×BU).

Proof of Lemma 10.1. To simplify, write GW generically for one of the functors

GW
[n]
0 or K0. We need to show that the projection X × I → X induces an

isomorphism GW (A(X))→ GW (A(X×I)). Since A(X×I) = A(X)(I), and A(X)
satisfies (*) when ever A does andX is compact, it suffices to prove the case whenX
is a point. Any point x : pt→ I of I induces a map x∗ : GW (A(I))→ GW (A) such
that the composition GW (A) → GW (A(I)) → GW (A) is the identity. Therefore,
what we really have to show is the surjectivity of the map GW (A) → GW (A(I)).
For a ring A (with involution), denote by P(A) the category of finitely generated
projective A-modules, and denote byM(A) the category

M(A) =
(
wChb P(A)

)
h

of symmetric spaces in the dg category Chb P(A) with weak equivalences the ho-
motopy equivalences of complexes and duality Hom( , A[n]). We will show that
the functors P(A)→ P(A(I)) andM(A)→M(A(I)) are essentially surjective on
objects. Clearly, this implies the surjectivity of the map GW (A) → GW (A(I))
as both groups are generated by the isomorphism classes of objects in M(A) and
M(A(I)), respectively (or in P(A) and P(A(I)) in the K0-case).

By a version of the Serre-Swan theorem, the category P(A(I)) of finitely gen-
erated projective A(I)-modules is equivalent to the category VectA(I) of locally
trivial A-module bundles with fibres in P(A). This is similar to [Swa62] and fol-
lows for instance from [Swa77, §1]. Therefore, the set of A(I)-module isomorphisms

F → E ∈ P(A(I)) is the set of sections of the locally trivial bundle Iso(Ẽ, F̃ )→ I

of isomorphisms between the associated A-module bundles Ẽ, F̃ ∈ VectA(I). Any
locally trivial map into a paracompact space is a fibration. Thus, by contractibility
of I, if Iso(Ẽ, F̃ ) → I has a section over one point, it has a global section, that
is, if E and F are isomorphic over one point in I, then they are isomorphic A(I)-
modules. In particular, any E ∈ P(A(I)) is isomorphic to E0 ⊗A A(I), and the
functor P(A)→ P(A(I)) is essentially surjective.
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The same argument applies to show thatM(A) → M(A(I)) is essentially sur-
jective using the equivalence

M(A(I)) =
(
wChb P(A(I))

)
h

∼=
(
wChb VectA(I)

)
h

and the fact that a bundle of complexes is the same as a complex of bundles. Given
two objects E,F ofM(A(I)). These are bounded complexes in P(A(I)) equipped
with symmetric homotopy equivalences. Assume that the components Ei, Fi of E,
F are zero outside [a, b], for some a < b ∈ Z. Then the set of isomorphisms E → F

inM(A(I)) is the set of sections of a locally trivial continuous map Iso(Ẽ, F̃ )→ I

which is the subbundle of
∏

a≤i≤b Iso(Ẽi, Fi) of those isomorphisms which commute

with differentials and forms. Again, Iso(Ẽ, F̃ )→ I is a fibration with contractible
target and thus has a global section whenever it has a section at a point. As above,
this implies that the functorM(A)→M(A(I)) is essentially surjective. �

Appendix A. Homology of the infinite orthogonal group

A.1. Group completions. Let X be a homotopy commutative H-space. A group
completion of X is an H-space map f : X → Y into a homotopy commutative
H-spaces Y such that π0Y is a group and such that the map

(π0X)−1H∗(X,Z)→ H∗(Y,Z)

induced by f is an isomorphism. If (S ,⊕, 0) is a symmetric monoidal category such
that all translations ⊕B : S → S : A 7→ A ⊕ B are faithful, Quillen constructs
a symmetric monoidal category S −1S and a monoidal map S → S −1S which
induces a group completion of associated classifying spaces [Gra76, Theorem, p.
221]. If (S ,⊕, 0) is a symmetric strict monoidal category (up to equivalence of
categories, this can always be achieved [May74]), a group completion is also the
map BS → ΩB̄S where B̄S is the Bar construction (classifying space) of the
topological monoid BS [May75]. The two group completions are equivalent via

the zigzag ΩB̄S
∼
−→ ΩB̄S −1S

∼
←− BS −1S of homotopy equivalences.

Let (A, ∗, η) be an additive category with duality. Inclusion of degree zero sim-
plices yields a map (iA)h → (iR•A)h such that its composition with (iR•A)h →
iS•A as in (4.1) is the zero map. Therefore, we obtain an induced map into the
homotopy fibre of the last map

(A.1) (iA)h −→ |iR•A|
h
×

|iS•A|
pt

∼
−→ Ω∞GW (A).

where the second map is a weak equivalence, by [Sch10b, §6 Proposition 6] and
Proposition 5.6. In [Sch04], we have shown that this map is a group completion
if 2 is invertible in A. Our proof in [Sch04] uses Karoubi’s Fundamental Theorem
[Kar80]. The purpose of this section is to give a direct proof of that fact avoiding the
Fundamental Theorem, so that our proof of Theorem 6.2 gives not only a general-
ization but also a new proof of Karoubi’s theorem and its topological counter-part,
classical Bott periodicity; see Section 10.

Theorem A.1. Let (A, ∗, η) be a split exact category with duality such that 1
2 ∈ A.

Then the natural map (A.1) is a group completion. In particular, there is a natural
homotopy equivalence

(iAh)
−1(iAh) ≃ Ω∞GW (A).
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The proof of theorem A.1 occupies most of this section. Before going into the
details we derive the statement that makes the link between the homology of the
infinite orthogonal group and higher Grothendieck-Witt groups. For that, let R be
a ring with involution r 7→ r̄ and ε = ±1. We denote by

εP(R) = (P(R), ∗, ε can).

the additive category with duality, where P(R) is the category of finitely generated
projective right R-modules, the dual P ∗ of a right R-module P is the left R-module
P ∗ = HomR(P,R) considered as a right module via the involution, and canP :

P → P ∗∗ is the double dual identification with canP (x)(f) = f(x). The associated
category (iεP(R))h is the usual category of non-degenerated ε-symmetric bilinear
forms on finitely generated projective R-modules with isometries as morphisms.
We denote by εGW (R), the Grothendieck-Witt spectrum

εGW (R) = GW (P(R), ∗, ε can).

By Theorem A.1, its Ω∞-space is a group completion of (iεP(R))h. Let

εO(R) = colimnAut(εH(Rn))

denote the infinite ε-orthogonal group of R, where Aut(εH(P )) denotes the group
of isometries of the ε-hyperbolic space εH(P ) = (P⊕P ∗, ( 0 1

ε can 0 )) and the inclusion
Aut(εH(Rn))→ Aut(εH(Rn+1)) is induced by the functor ⊥ εH(R).

Corollary A.2. For any ring with involution R such that 1
2 ∈ R, there is a natural

homotopy equivalence

BεO(R)+
∼
−→ Ω∞

0 εGW (R)

where Ω∞
0 εGW (R) denotes the connected component of 0 of the space Ω∞

εGW (R)
and BεO(R)

+ is Quillen’s plus construction applied to BεO(R).

Proof. By TheoremA.1, the space Ω∞
0 εGW (R) is a group completion of (iεP(R))h.

The proof now is the same as in [Gra76, Theorem, p.224]. The main point is that
if 1

2 ∈ R then every non-degenerated ε-symmetric bilinear form is a direct factor of
the hyperbolic form εH(Rn) for some n; see also [Wei81, Proposition 3]. �

The proof of theorem A.1 is based on the following proposition. We introduce
some notation. For an exact category with duality (E , ∗, η), the category E(E ) of
exact sequences in E is an exact category with duality where the dual (E•)

∗ of an
exact sequence E• = (E−1  E0 ։ E1) in E is the exact sequence E∗

1  E∗
0 ։

E∗
−1 and the double dual identification ηE• is (ηE−1 , ηE0 , ηE1).

Proposition A.3. Let A be a split exact category with duality such that 1
2 ∈ A.

Then the map F : (iEA)h → iA : (E•, ϕ) 7→ E−1 of symmetric monoidal categories
induces a homotopy equivalence after group completion.

Proof. The functor F has a section, the hyperbolic functor

H : iA → (iEA)h : A 7→ H(A) =

(
A

( 10 )
 A⊕A∗

( 0 1 )
։ A,

(
η,
(
0 1
η 0

)
, 1
)
)

g 7→ H(g) =
(
g,
(

g 0

0 (g∗)−1

)
, (g∗)−1

)
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which is symmetric monoidal and thus induces an action of iA on (iEA)h in the
sense of [Gra76]. In view of the Lemma A.5 (3) below, the hyperbolic functor
induces on π0 an isomorphism of abelian monoids

π0(H) : S = π0iA
∼=
−→ π0(iEA)h.

To abbreviate, we write S for this monoid. The actions of the symmetric monoidal
category iA on (iEA)h and on iA induce actions of the abelian monoid S on the
homology groups of (iEA)h and of iA compatible with F . We will show that the
localized map

(A.2) F : S−1H∗((iEA)h, k)→ S−1H∗(iA, k)

is an isomorphism when the coefficient group is k = Fp,Q. This implies that (A.2)
is an isomorphism for k = Z, that is, the functor F : (iEA)h → iA induces a
homology (hence homotopy) equivalence after group completion.

In order to prove that (A.2) is an isomorphism, we will analyze the spectral
sequence associated with the functor F : (iEA)h → iA. We first review some
elementary properties of that spectral sequence in the more general context of an
arbitrary functor F : B → C of small categories. For that, we fix an abelian group
k (which we will suppress in most formulas), and write Hp(C) = Hp(C, k) for the
homology of the category C with coefficients in k. More generally, we write Hp(C, A)
for the homology of C with coefficients in a functor A : C → 〈ab gps〉 from C to
abelian groups. This is the homology of the chain complex associated with the
simplicial abelian group

p 7→
⊕

C0→...→Cp

A(C0)

of chains on NC with coefficients in A.

Lemma A.4. (1) Let F : B → C be a functor between small categories. There
is a strongly convergent first quadrant spectral sequence

E2
p,q(F ) = Hp(C, Hq(F ↓ ))⇒ Hp+q(B)

with differentials dnp,q : En
p,q → En

p−n,q+n−1 and edge morphism

Hp(B) ։ E∞
p,0 ⊂ E

2
p,0 = Hp(C, H0(F ↓ ))→ Hp(C)

the map Hp(F ) induced by F on homology. Here, the last map is the
change-of-coefficient map sending (F ↓ ) to the constant one-object-one-
morphism category.

(2) If F ′ : B′ → C′ is another functor, and b : B → B′ and c : C → C′ are
functors such that F ′b = cF , then there is a map of spectral sequences
E(b, c) : E(F )→ E(F ′) compatible with edge-maps and which, on E2-term
and abutment, is the usual maps on homology induced by b and c.

(3) Given two pairs of functors bi : B → B′, ci : C → C′ such that F ′bi = ciF ,
i = 0, 1. If there are natural transformations β : b0 ⇒ b1 and γ : c0 ⇒ c1
such that F ′βB = γFB for all objects B of B, then the two induced maps of
spectral sequences agree from the E2-page on:

En
p,q(b0, c0) = En

p,q(b1, c1) : E
n
p,q(F )→ En

p,q(F
′), n ≥ 2.
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Proof (Sketch). The spectral sequence is obtained by filtering the bicomplexKp,q =⊕
Xp,q

k associated with the bisimplicial set X•,• whose p, q simplices is the set

Xp,q = {B0 → ...→ Bq, FBq → C0 → ...→ Cp | Bi ∈ B, Ci ∈ C}.

The filtration is by subcomplexes K≤n,• ⊂ K≤n+1,• ⊂ K with (K≤n,•)p,q = Kp,q

if p ≤ n and (K≤n,•)p,q = 0 if p > n. As in the proof of Quillen’s theorem A
[Qui73, §1], the bisimplicial set X•,• is homotopy equivalent to the bisimplicial set
which is constant in the p-direction and is the nerve N•B of B in the q-direction.
In particular, the abutment of the spectral sequence computes the homology of B.
It is straight forward to identify the E2-term as in (1). Functoriality as in (2) is
clear since the pair (b, c) induces a map of the corresponding bicomplexes. The
edge map for the spectral sequence of the identity functor idC of C is the identity
map, so that the functoriality in (2), applied to the map (F, idC) : F → idC of
functors, yields the description of the edge map in (1). For the somewhat extended
functoriality in (3), one constructs an explicit homotopy between the two maps

(bi, ci) :
⊕

C0→...→Cp

Hj(F ↓ C0 ) −→
⊕

C′
0→...→C′

p

Hj(F
′ ↓ C′

0 ), i = 0, 1,

of simplicial abelian groups which compute the E2-terms of the spectral sequences.
Again this is straight forward, and we omit the details. �

We apply the lemma to the functor F : (iEA)h → iA and obtain the spectral
sequence

(A.3) E2
p,q = Hp(iA, Hq(F ↓ ))⇒ Hp+q((iEA)h).

Every object A of iA induces functors ⊕H(A) : (iEA)h → (iEA)h and ⊕A :
iA → iA compatible with F . By Lemma A.4 (2), these functors induce a map
of spectral sequences. Every map A → A′ in iA induces natural transformations
⊕H(A) ⇒ ⊕H(A′) and ⊕A ⇒ ⊕A′ compatible with F . By Lemma A.4 (3), the
objects A and A′ induce the same map of spectral sequences from E2 on. In other
words, we obtain an induced action of the monoid S on the spectral sequence (A.3)
from E2 on. Since localization with respect to a commutative monoid is exact, we
obtain a strongly convergent first quadrant spectral sequence

(A.4) S−1E2
p,q = S−1Hp(iA, Hq(F ↓ ))⇒ S−1Hp+q((iEA)h).

In order to analyze this spectral sequence, we will employ the symmetric monoidal
automorphism

Σ : (iEA)h → (iEA)h : (M,ϕ) 7→ (M,
1

2
ϕ), g 7→ g.

Note that F ◦ Σ = F , so that Σ induces an action of the spectral sequence (A.3).
For every object A in iA, there is a natural transformation of functors

Σ ◦ (⊕H(A))⇒ (⊕H(A)) ◦ Σ

compatible with F . It is induced by the isometry ΣH(A) ∼= H(A) given by the map
(
1/2 0
0 1

)
: A⊕A∗ → A⊕A∗.

Therefore, the action of S on the spectral sequence (A.3) commutes with the action
of Σ on it from the E2-page on. In particular, Σ induces an action on the spectral
sequence (A.4).
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Lemma A.5. (1) For every object A of iA, there is an equivalence of cate-
gories between the comma category (F ↓ A) and the one-object category
whose endomorphism set is the set

{a : A∗ → A| η a+ a∗ = 0} ⊂ Hom(A∗, A)

with addition as composition. This is a uniquely 2-divisible abelian group.
(2) Under the equivalence in (1), the automorphism Σ : (F ↓ A) → (F ↓ A)

corresponds to a 7→ 2a.
(3) The functor F induces an isomorphism of abelian monoids

π0(iEA)h
∼=
−→ π0iA.

Proof. Choose for every inflation M−1
i
 M0 in A a retraction r : M0 ։ M−1, so

that we have ri = 1. For the inflation ( 1
0 ) : A A⊕A∗ we choose r = ( 1 0 ). The

choice of these retractions defines for every object

(A.5) M−1
i
M0

p
։M1, (ϕ−1, ϕ0, ϕ1), M−1

g
→ A

of the comma category (F ↓ A) an isomorphism to the object

(A.6) A
( 10 )
 A⊕A∗

( 0 1 )
։ A∗,

(
η,
(
0 1
η 0

)
, 1
)
, A

1
→ A

of that category given by the maps

(A.7) g :M−1 → A,
(

gr+gδp

(g∗)−1ϕ1p

)
:M0 → A⊕A∗, (g∗)−1ϕ1 : M1 → A∗,

where the map r : M0 ։ M−1 is the chosen retraction of i : M−1  M0, the map
δ : M1 → M−1 is defined as δ = 1

2 (ϕ
∗
1η)

−1β, and β : M1 → M∗
1 is the unique map

satisfying p∗βp = ψ for the symmetric map ψ = ϕ0 − p∗ϕ∗
1ηr − r

∗ϕ1p :M0 →M∗
0 ,

the existence of β being assured since ψi = 0. Note that the map just defined is an
isomorphism in EA since it is an isomorphism on subobject and quotient object. All
these isomorphisms together define an equivalence of categories between (F ↓ A)
and the full subcategory of (F ↓ A) consisting of the single object (A.6). The
endomorphism set of (A.6) is the set consisting of the maps

(A.8) 1 : A→ A, ( 1 a
0 1 ) : A⊕A

∗ → A⊕A∗, 1 : A∗ → A∗,

where η a + a∗ = 0. Composition corresponds to matrix multiplication, hence to
addition of the a’s. By our assumption 1

2 ∈ A, the group Hom(A∗, A) is uniquely
2-divisible, so is the kernel of the map a 7→ η a + a∗. This proves part (1) of the
lemma.

The existence of the isomorphism from (A.5) to (A.6) above (with g = 1) shows
that every object of (iEA)h is (up to isomorphism) in the image of the hyperbolic
functor H : iA → (iEA)h. Since F ◦ H = id, this proves (3).

For part (2), we note that Σ sends the object (A.6) to the object

(A.9) A
( 10 )
 A⊕A∗

( 0 1 )
։ A∗,

1

2

(
η,
(
0 1
η 0

)
, 1
)
, A

1
→ A

for which, according to our choice of r = ( 1 0 ) (implying ψ = 0 and δ = 0), the
isomorphism (A.7) is given by the maps

1 : A→ A,
(
1 0
0 1/2

)
: A⊕A∗ → A⊕A∗, 1/2 : A∗ → A∗.
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The functor Σ sends the endomorphism (A.8) of (A.6) to the endomorphism of
(A.9) given by the same maps as in (A.8). Under the equivalence of categories, this
corresponds to the endomorphism of (A.6) given by the maps

1 : A→ A, ( 1 2a
0 1 ) =

(
1 0
0 1/2

)
( 1 a
0 1 )

(
1 0
0 1/2

)−1
: A⊕A∗ → A⊕A∗, 1 : A∗ → A∗.

This proves the lemma. �

Let k = Z/2. Then Lemma A.5 (1) implies that the spectral sequences (A.3)
and (A.4) degenerate at the E2-page to yield the isomorphism (A.2) since for a
uniquely 2-divisible abelian group G, we have Hq(G,Z/2) = 0, q > 0.

From now on we will assume k = Fp, p prime 6= 2, or k = Q.

Lemma A.6. Let k be one of the fields Fp, p 6= 2, or Q. Let G be an abelian
group and t : G→ G : a 7→ 2a. Then for all q ≥ 0,

Hq(G, k) =
⊕

q/2≤i≤q, i∈N

Vi

where Hq(t) acts on the k-vector space Vi as multiplication by 2i.

Proof. This follows from the explicit description of H∗(G) given, for instance, in
[Bro94, Theorem 6.4 (ii), Theorem 6.6]. Alternatively, it can be proved as follows.
The statement is clearly true for q = 0 and q = 1 (for the latter use the natural
isomorphism G ∼= πiBG ∼= H1(BG,Z)), hence it is true for G = Z (as BZ = S1).
Using the Serre spectral sequence associated with the fibrationBZ→ BZ→ B(Z/l)
we see that the statement is true for G = Z/l. Using the Künneth formula, if the
statement is true for G1 and G2 then it is true for G1 ×G2. Therefore, the lemma
holds for finitely generated abelian groups. Passing to limits, we conclude that it
is true for all abelian groups. �

Lemma A.6 applies to the endomorphism Σ of the k-module Hq(F ↓ A), in view
of Lemma A.5 (2). We obtain a direct sum decomposition of the spectral sequences
(A.3) and (A.4) into the eigen-space spectral sequences of Σ. Note that the eigen-
space spectral sequence of (A.4) corresponding to the eigen-value 1 has E2

p,q-term

S−1Hp(iA, H0(F ↓ )) = Hp(iA, k) if q = 0 and E2
p,q = 0 for q 6= 0. In particular,

it degenerates completely at the E2-page.
The next lemma shows that Σ acts as the identity on the abutment of (A.4), so

that the eigen-space spectral sequence of (A.4) corresponding to the eigen-value 1
has abutment the abutment of (A.4). Degeneration of this spectral sequence at the
E2-page shows that its edge map (A.4 1) is an isomorphism, that is, (A.2) is also
an isomorphism for k = Fp, p prime 6= 2 and Q.

Lemma A.7. Let k be one of the fields Fp, p prime 6= 2, or Q.

(1) Let (C,⊕, 0) be a unital symmetric monoidal category with π0C = 0. Then
the map id⊕ id : C → C : A 7→ A⊕A induces an isomorphism on homology

H∗(C, k)
∼
−→ H∗(C, k).

(2) The functor Σ : (iEA)h → (iEA)h induces the identity map on the abut-
ment S−1H∗(iEA)h of the spectral sequence (A.4).

Proof. For part (1), consider X = Y = BC as pointed spaces with base-point
0 ∈ C, and write f : X → Y for the map on classifying spaces induced by id⊕ id :
C → C. Note that f preserves base points and that π∗(f) is multiplication by
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2, so that π∗(f) ⊗ Z[ 12 ] is an isomorphism. Let G be the cokernel of the map

π1(f) : π1X → π1Y and write Ỹ → Y for the covering of Y corresponding to the

quotient map π1Y → G, that is, Ỹ is the pullback of EG along Y → Bπ1Y → BG.
By construction, the map f : X → Y factors through Ỹ → Y , and the induced
map X → Ỹ is surjective on π1. Let F be the homotopy fibre of X → Ỹ . By
construction, F is a connected nilpotent space (in fact an infinite loop space as all

maps X → Ỹ → Y → BG are infinite loop space maps) with π∗F ⊗ Z[ 12 ] = 0. It

follows that Hq(F,Z[ 12 ]) = 0, hence Hq(F, k) = 0, q > 0. By the Serre spectral

sequence, X → Ỹ induces an isomorphism in homology with coefficients in k.
Finally, the principal G-fibration Ỹ → Y induces an isomorphism in homology
with coefficients in k, since every element in G has order invertible in k.

For part (2), write S = (iEA)h. The abutment of (A.4) is the homology of
the symmetric monoidal category C = S −1S , in view of Lemma A.5 (3) and
[Gra76], see also Section A.1. Note that π0Σ : π0S → π0S is the identity because
F ◦Σ = F and π0F is an isomorphism, by Lemma A.5 (3). In particular, Σ induces
the identity on π0C. Let C0 ⊂ C be the connected component of 0. In view of the
natural isomorphism H∗(C0)⊗k kπ0C ∼= H∗C, it suffices to show that the restriction
Σ0 of Σ : C → C to C0 induces the identity on homology with coefficients in k.
To that end, we consider the functor T = id ⊕ id : S → S and the natural
transformation ΣT ∼= T given by

1

2

(
1 1
−1 1

)
: (M,ϕ/2) ⊥ (M,ϕ/2)

∼=
−→ (M,ϕ) ⊥ (M,ϕ).

The functors T and Σ and the natural transformation induce functors T and Σ on
C = S −1S and a natural transformation ΣT ∼= T of endofunctors of C. Restricted
to the connected component C0 of C, we obtain functors T0,S0 : C0 → C0 and a
natural transformation Σ0T0 ∼= T0. By part (1), T0 induces an isomorphism on
homology with coefficients in k. Since H∗(Σ0, k) ◦ H∗(T0, k) = H∗(T0, k), by the
existence of the natural transformation Σ0T0 ∼= T0, we have H∗(Σ0, k) = id. �

This finishes the proof of Proposition A.3. �

For the statement of the next proposition, recall that for an exact category with
duality (A, ∗, η), the category SnA is an exact category with duality, where the dual
A∗ of an object A of SnA is (A∗)i,j = (An−j,n−i)

∗ and the double dual identification
ηA satisfies (ηA)i,j = ηAi,j .

Proposition A.8. Let A be an additive category with duality. Assume 1
2 ∈ A.

Then the symmetric monoidal functors

(iS2nA)h → (iA)n : (A•, ϕ•) 7→ (A0,1, A1,2, ..., An−1,n)

(iS2n+1A)h → (iA)n × (iA)h : (A•, ϕ•) 7→ (A0,1, A1,2, ..., An−1,n), (An,n+1, ϕn,n+1)

are homotopy equivalences after group completion.

Before we give the proof, we note the following corollary of Proposition A.3.

Corollary A.9. Let (A, ∗, η), (B, ∗, η) be additive categories with duality such that
1
2 ∈ A,B.
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(1) Given a non-singular exact form functor (F•, ϕ•) : A → EB, that is, a com-
mutative diagram of additive functors Fi : (A, w)→ (B, w), i = −1, 0, 1,

F• :

ϕ•∼=
��

F1
// d1 //

ϕ1∼=
��

F0
d0 // //

ϕ0∼=
��

F−1

ϕ−1∼=
��

F ♯
• : F ♯

−1
//
d♯
0

// F ♯
0

d♯
1

// // F ♯
1

with exact rows and (ϕ1, ϕ0, ϕ−1) = (ϕ♯
−1η, ϕ

♯
0η, ϕ

♯
1η) an isomorphism.

Then the two non-singular exact form functors

(F0, ϕ0) and H ◦ F1

induce homotopic maps (iA)h → (iB)h after group completions.
(2) Given a non-singular exact form functor (F•, ϕ•) : A → S3B, then the two

non-singular exact form functors

(F03, ϕ03) and (F12, ϕ12) ⊥ H ◦ F01

induce homotopic maps (iA)h → (iB)h after group completions.

Proof. Part (1) is a formal consequence of Proposition A.3. In a more general con-
text, the implication is explained, for instance, in [Sch10b, 3.10. Proof of theorem
3.3].

For (2), write ∼ for “homotopic after group completion”. For any additive form
functor (F, ϕ) : A → B, we have a form functor A → EB given by

F
( 11 )
 F ⊕ F

( 1 −1 )
։ F, (ϕ,

( ϕ 0
0 −ϕ

)
, ϕ),

so that H(F ) ∼ (F, ϕ) ⊥ (F,−ϕ), by (1).
Now consider the given non-singular exact form functor (F•, ϕ•) : A → S3B. It

induces the non-singular exact form functor A → EB given by

F02
//

(

F02≤12

F02≤03

)

// F12 ⊕ F03

(−F12≤23 F03≤23 )// // F23 , (ϕ02,
(−ϕ12 0

0 ϕ03

)
, ϕ23),

so that H(F02) ∼ (F12,−ϕ12) ⊥ (F03, ϕ03), by (1). By Additivity in K-theory and
the remark above, we have H(F02) ∼ H(F01) ⊥ H(F12) ∼ H(F01) ⊥ (F12, ϕ12) ⊥
(F12,−ϕ12). Cancelling (F12,−ϕ12), the claim follows. �

Proof of Proposition A.8. The cases S0 and S1 are trivial, and the case S2 is propo-
sition A.3 since EA = S2A. Recall that the assignment [n] 7→ SnA is a simplicial
category, where a monotonic map ϑ : [n] → [p] induces the functor ϑ! : SpA →
SnA : A 7→ ϑ!A with (ϑ!A)i,j = Aϑ(i),ϑ(j). If ϑ(n− i) = p− ϑ(i), then ϑ! preserves
dualities.
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We consider the following monotonic maps:

θ : [n− 2]→ [n] : i 7→ i+ 1, ρ : [n]→ [n− 2] : i 7→





0 i = 0

i− 1 1 ≤ i ≤ n− 1

n− 2 i = n,

ι : [1]→ [n] : i 7→ i, π : [n]→ [1] : i 7→

{
0 i = 0

1 1 ≤ i ≤ n.

Note that θ! and ρ! preserve dualities whereas, ι! and π! don’t. We will show that
the functor

F = (ι!, θ!) : (iSnA)h → iA× (iSn−2A)h : (A,ϕ) 7→ ι!A, θ!(A,ϕ)

is a homotopy equivalence after group completion with inverse the functor

G = ρ! ⊥ Hπ! : iA× (iSn−2A)h → (iSnA)h : A, (B,ϕ) 7→ ρ!(B,ϕ) ⊥ H(π!A),

where H : iSnA → (iSnA)h denotes the hyperbolic functor A 7→ A ⊕ A∗,
(
0 1
η 0

)
.

One readily verifies F ◦G = id. For the other composition, consider the following
monotonic maps

σ01 = ιπ : [n]→ [n], σ02 : [n]→ [n] : i 7→

{
i 0 ≤ i ≤ n− 1

n− 1 i = n,

σ03 = id : [n]→ [n] : i 7→ i, σ13 : [n]→ [n] : i 7→

{
1 i = 0

i 1 ≤ i ≤ n,

σ12 = θρ : [n]→ [n], σ23 : [n]→ [n] : i 7→

{
n− 1 0 ≤ i ≤ n− 1

n i = n,

and note that (i, j) 7→ σ!
i,j defines a duality preserving functor σ! : SnA → S3SnA.

By Corollary A.9 2, the functorsG◦F = σ!
12 ⊥ Hσ

!
01 and σ

!
03 = id induce homotopic

maps after taking group completions. �

Proof of Theorem A.1. This is the same as the proof of [Sch04, Theorem 4.2], or
its version [Sch04, Corollary 4.6]. The only place where Karoubi’s Fundamental
Theorem was used in [Sch04] was in [Sch04, Lemma 4.4] which asserts that a certain
monoidal functor βn : (iA)n × (iA)h → (iS2n+1A)h is a homotopy equivalence
after group completion. But this functor has a retraction which is a homotopy
equivalence after group completion, by Proposition A.8. Thus βn is a homotopy
equivalence after group completion. �

Appendix B. Spectra, Tate spectra, and Bispectra

In this article we shall work with symmetric spectra of topological spaces where
topological space means compactly generated topological space (that is, weak Haus-
dorff k-space) [McC69], [Hov99, Definition 2.4.21 and Proposition 2.4.22]. Sym-
metric spectra were first introduced in [HSS00] in order to construct a symmetric
monoidal product on the level of spectra. Our main reference for symmetric spectra
of topological spaces is [MMSS01], [Sch]. For the convenience of the reader and in
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order to fix notation we will review definitions and results needed in this article. In
Sections B.9 – B.11, we consider bispectra used in the construction of the functor
GW .

B.1. Spectra. We start with fixing notation. Let I = [0, 1] ⊂ R be the unit
interval, S0 = {0, 1} ⊂ I the zero-sphere (both pointed at 1), and let S1 = I/S0

be the unit circle. Inclusion and quotient map define the pointed maps i : S0 → I
and p : I → S1. Let Σn be the symmetric group of bijections of the set {1, ..., n} of
n-elements. We consider the n-sphere Sn = S1∧ ...∧S1 (smash product n-times) as
a pointed space with left Σn-action given by σ(x1∧· · ·∧xn) = xσ−1(1)∧ ...∧xσ−1(n)

for σ ∈ Σ, and we denote by

en,m : Sn ∧ Sm → Sn+m : (x1 ∧ . . . xn) ∧ (y1 ∧ . . . ym) 7→ x1 ∧ . . . xn ∧ y1 ∧ . . . ym

the canonical identification.

A symmetric sequence (in the category of pointed topological spaces) is a se-
quence Xn, n ∈ N, of pointed topological spaces with a continuous base-point
preserving left action by the symmetric group Σn. A map of symmetric sequences
X → Y is a sequence of pointed Σn-equivariant maps Xn → Yn.

Definition B.1. A symmetric spectrum is a symmetric sequence Xn, n ∈ N, in the
category of pointed topological spaces together with pointed continuous Σn ×Σm-
equivariant maps

en,m : Sn ∧Xm → Xn+m

called bonding maps (or structure maps) where Σn × Σm acts on the space Xn+m

via the inclusion Σn × Σm ⊂ Σn+m : (σ, τ) 7→ σ ⊔ aτa−1 with a{1, ...,m} →
{n+ 1, ..., n+m} : i 7→ n+ i. The bonding maps have to satisfy the following.

(1) The map e0,n : S0 ∧Xn → Xn is the usual identification S0 ∧Xn
∼= Xn.

(2) The following diagram commutes for all k, n,m ∈ N

Sk ∧ Sn ∧Xm

1∧en,m //

ek,n∧1

��

Sk ∧Xn+m

ek,n+m

��
Sk+n ∧Xm ek+n,m

// Xk+n+m.

A map of symmetric spectra X → Y is a map of symmetric sequences commuting
with the bonding maps. All spectra in this article will be symmetric. For this
reason, we will drop the adjective and call them simply spectra. The category of
spectra is denoted by Sp.

The prime example of a spectrum is the sphere spectrum S = {S0, S1, S2, . . . }
with bonding maps en,m. More generally, if K is a pointed topological space, we
denote by ΣK, or simply by K, the suspension spectrum of K which has n-th space
the pointed space Sn∧K where Σn acts on Sn as above, and it acts trivially on K.
The bonding maps are the maps en,m ∧ 1 : Sn ∧Sm ∧K → Sn+m ∧K. A spectrum
X is called Ω-spectrum if the adjoints Xn → ΩXn+1 of the bonding maps e1,n are
weak equivalences for all n ≥ 0. It is called positive Ω-spectrum if the adjoints
Xn → ΩXn+1 are weak equivalences for all n ≥ 1. The spectrum is called a level
CW-complex if every space Xn is a CW -complex.
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The category of spectra is tensored and cotensored over the category of pointed
spaces. Let K be a pointed space and X a spectrum. Their smash-product is the
spectrumX∧K with n-th spaceXn∧K and bonding maps en,m∧1 : Sn∧Xm∧K →
Xn+m ∧ K. The mapping (or power) spectrum from K to X is the spectrum
Sp(K,X) with n-th space the mapping space in the category of pointed topological
spaces Map(K,Xn) and bonding maps

Sn ∧ Map(K,Xm)

t ∧ f

−→

7→

Map(K,Sn ∧Xm)

(x 7→ t ∧ f(x))

en,m
−→ Map(K,Xn+m)

Via the topological realization functor K 7→ |K| from simplicial sets to topological
spaces, the category of spectra is also tensored and cotensored over the category of
pointed simplicial sets. We may write X ∧K and Sp(K,X) instead of X ∧ |K| and
Sp(|K|, X) when K is a simplicial set and X a spectrum.

B.2. Model structures on the category of spectra. Recall [Hov99, §2.4] that
the category of pointed topological spaces is a proper model category with weak
equivalences the maps that induce isomorphisms on all homotopy groups (with
respect to all choices of base points). The fibrations are the Serre fibrations, and
the cofibrations are the maps that have the left lifting property with respect to
Serre fibrations which are weak equivalences. Every topological space is fibrant,
relative CW-complexes are cofibrations, and CW-complexes are cofibrant in this
model structure.

The category of spectra supports various model structures [MMSS01], [Sch]. Call
a map of spectra X → Y level equivalence (level fibration) if the maps Xn → Yn are
weak equivalences (fibrations) of topological spaces for all n ≥ 0. In the projective
level model structure on Sp, the weak equivalences and fibrations are the level
equivalences and the level fibrations, and the cofibrations are the maps that have
the left lifting property with respect to fibrations which are level weak equivalences.
The suspension spectrum functor Σ : Top∗ → Sp : K 7→ ΣK preserves cofibrations.
In particular, the suspension spectrum ΣK of a pointed CW complexK is cofibrant.
The level model structure is not particularly interesting in itself, but it is used to
define the stable equivalences of spectra.

Denote by [X,Y ]′ the set of maps from X to Y in the homotopy category of
the projective level model structure on Sp. A map of spectra X → Y is a stable
equivalence if for all Ω-spectra Z, the map [Y, Z]′ → [X,Z]′ is a bijection.

In the projective stable model structure on the category of spectra, the weak
equivalences are the stable equivalences of spectra, the cofibrations are the cofi-
brations of the projective level model structure, and the fibrations are the maps
that have the right lifting property with respect to the cofibrations that are stable
equivalences. In this stable model structure, a map X → Y of spectra is a fibration
if the maps Xn → Yn are Serre fibrations for all n ≥ 0, and the squares

Xn

em,n //

��

Ωn+mXn+m

��
Yn

em,n // Ωn+mYn+m
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are homotopy cartesian for all n ≥ 0. In particular, the fibrant objects in the
projective model structure are precisely the Ω-spectra, and suspension spectra of
pointed CW complexes are cofibrant.

There is a useful variant of the projective model structures, namely, the positive
projective model structures. Call a map of spectra X → Y positive level equivalence
(positive level fibration) if the maps Xn → Yn are weak equivalences (fibrations) of
topological spaces for all n ≥ 1. In the positive projective level model structure
on Sp, the weak equivalences and fibrations are the positive level equivalences and
the positive level fibrations, and the cofibrations are the maps that have the left
lifting property with respect to fibrations which are positive level weak equivalences.
In the positive projective stable model structure on the category of spectra, the
weak equivalences are the stable equivalences of spectra, the cofibrations are the
cofibrations of the positive projective level model structure, and the fibrations are
the maps that have the right lifting property with respect to the cofibrations that
are stable equivalences. The fibrant objects in the positive projective stable model
structure are precisely the positive Ω-spectra. Note that the stable model structure
and the positive stable model structure on Sp both have the same weak equivalences
and therefore the same homotopy categories.

A map of (positive) Ω spectra X → Y is a stable equivalence if and only if for
all n ≥ 0 (n ≥ 1), the maps Xn → Yn are weak equivalences of topological spaces.
A square of (positive) Ω-spectra

X //

��

Y

��
Z // U

is homotopy cartesian if and only if the square

Xn
//

��

Yn

��
Zn

// Un

is a homotopy cartesian square of spaces for all n ≥ 0 (n ≥ 1). We denote by [X,Y ]
the set of maps from X to Y in the stable homotopy category of spectra. This set
is canonically an abelian group.

B.3. True and naive homotopy groups. The true homotopy groups, or simply
homotopy groups πnX , n ∈ Z, of a spectrum X are the groups

πnX = [Sn, X ].

The naive homotopy groups of a spectrum X are the groups

π̂nX = colimk πn+k(Xk)

where the colimit is taken over the system

πm(Xk)→ πm+1(Xk+1) : f 7→ e1,k ◦ (S
1 ∧ f).

If this colimit stabilizes, that is, if the maps πn+k(Xk) → πn+k+1(Xk+1) are iso-
morphisms for large k then the naive homotopy groups are canonically isomorphic
to the homotopy groups. This happens, for instance, if the spectrum is a (positive)
Ω-spectrum, or if it is a suspension spectrum.
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B.4. Products. The symmetric monoidal product ∧ on pointed topological spaces
defines a symmetric monoidal product ∧ on the category of symmetric sequences
of pointed topological spaces; see B.12. The maps em,n : Sn ∧ Sm → Sn+m define
a map of symmetric sequences e : S ∧ S → S. Together with the map u : 1 → S
of symmetric sequences given by 1 : S0 → S0 and pt → Sn, n ≥ 1, this makes the
sphere spectrum S into a commutative monoid.

Now, a symmetric spectrum is the same as a left module over the commutative
monoid S for the symmetric product ∧ in the category of symmetric sequences. It
is a map of symmetric sequences e : S ∧X → X such that the diagrams

S ∧ S ∧X
e∧1 //

1∧e

��

S ∧X

e

��

1 ∧X
u∧1 //

∼=
%%❏

❏❏
❏❏

❏❏
❏❏

❏ S ∧X

e

��
S ∧X

e // X X

commute.
The category of spectra Sp is symmetric monoidal under the smash product

X∧S Y of spectra defined as the coequalizer in the category of symmetric sequences

X ∧ S ∧ Y
1∧e //

e◦τ∧1
// X ∧ Y // X ∧S Y

where τ : X ∧ S → S ∧ X is the switch isomorphism in the symmetric monoidal
category of symmetric sequences. If X is a cofibrant spectrum for the projective
stable model structure then the functors Y 7→ X ∧S Y and Y 7→ Y ∧S X preserve
stable equivalences. Thus, for any two spectraX and Y , the derived smash-product

X
L
∧S Y can be computed as either cX ∧ Y , cX ∧S cY , or X ∧S cY where cX → X

and cY → Y are cofibrant approximations of X and Y in the projective stable
model structure.

B.5. The triangulated stable homotopy category. The stable homotopy cat-
egory SH is obtained from the category Sp of spectra by formally inverting the
stable equivalences. Recall that we denote by [X,Y ] the set of maps in SH. If X
is cofibrant, and Y is fibrant then this is the set of homotopy classes of maps of
spectra X → Y , where two maps f, g : X → Y of spectra are homotopic if there
is a map h : X ∧ I+ → Y such that f = h0 and g = h1. The stable homotopy
category SH is a triangulated category with shift functor

X 7→ S1 ∧S X.

A triangle in SH is exact if it is isomorphic in SH to a standard exact triangle

X
f
−→ Y

g
−→ C(f)

h
−→ S1 ∧X

associated with a map f : X → Y of spectra. The maps in the standard exact
triangle are defined by the commutative diagram

X
i∧1 //

f

��

I ∧X
p∧1 //

��

S1 ∧X

=

��
Y

g // C(f)
h // S1 ∧X

in which the left square is cocartesian.
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B.6. Homotopy Orbit spectra. Let G be a group and let EG be the usual
contractible simplicial set on which G acts freely on the left. If Ob[n] denotes the
set of objects of the category [n] = {0 < 1 < ... < n} then

(B.1) EnG = Gn+1 = MapSets(Ob[n], G)

with simplicial structure induced by the cosimplicial set n 7→ Ob[n]. The left action
is given by gf(x) = g(f(x)) for g ∈ G, f : Ob[n]→ G and x ∈ Ob[n].

Fix a functorial cofibrant approximation cX
∼
−→ X on the category of spectra

(in the projective stable model structure). If X is a spectrum with right G-action
then so is cX , and the stable equivalence cX → X is G-equivariant, by functoriality
of the cofibrant approximation. The homotopy orbit spectrum XhG of a spectrum
X with right G-action, also denoted H•(G,X), is the spectrum

XhG = H•(G,X) = cX ∧G EG+

where for a pointed topological space K with left G-action the spectrum X ∧G K
is defined by the coequalizer diagram

∨

g∈G

X ∧K
1∧g //

g∧1
// X ∧K // X ∧G K

The non-equivariant map pt→ G = E0G→ EG : pt 7→ 1 and the G-equivariant
EG→ pt induce a string of spectra

cX = cX ∧ S0 ∼
−→ cX ∧ EG+ −→ cX ∧G EG+ −→ cX ∧G S0 = cX/G→ X/G

such that the diagram

cX
∼ //

��

X

��
XhG

// XG

commutes. By the coequalizer definition of homotopy orbits, the two compositions

cX ∧ S0
1∧g //

g∧1
// cX ∧ EG+

// cX ∧G EG+

are equal for all g ∈ G. The two maps 1 ∧ g, 1 ∧ 1 : cX = cX ∧ S0 → cX ∧ EG+

are homotopic, by contractibility of EG. It follows that the diagram

cX //

g

��

XhG

cX

<<②②②②②②②②

is homotopy commutative for all g ∈ G. In particular, for all n ∈ Z the map
πn(X) = πn(cX) → πn(XhG) factors through πn(X)/G → πn(XhG). In general,
this map is not an isomorphism.

Proposition B.2. (1) If X → Y is a G-equivariant map of spectra which,
forgetting the G-action, is a stable equivalence, then XhG → YhG is also a
stable equivalence.

(2) If X is a non-equivariant spectrum then X ∧ G+ is a spectrum with right
G-action and the natural map (X ∧G+)hG → (X ∧G+)/G = X is a stable
equivalence.
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(3) If X has a right G-action, then there is a homological spectral sequence

E2
p,q = Hp(G, πqX)⇒ πp+q(XhG)

with differentials dr : Er
p,q → Er

p−r,q+r−1. The spectral sequence converges
strongly if πiX = 0 for i << 0.

Proof. In any simplicial model category, the functor ?∧EG+ preserves weak equiva-
lences between point-wise cofibrant objects [Hir03, Theorem 18.5.3.(1)]. This proves
part (1).

For (2), the map

(X ∧G+) ∧G EG+ = X ∧ EG+ → X ∧ S0 = X

is a level equivalence since |EG|+ → S0 is a homotopy equivalence. It follows that
this map is a stable equivalence.

For part (3), the spectral sequence is the spectral sequence of a filtered spectrum
obtained by applying the functor cX ∧G ( )+ to the skeletal filtration of EG. �

Remark B.3. If X is a spectrum which is a level CW complex, then the following
map is a stable equivalence

XhG = cX ∧G EG+
∼
−→ X ∧G EG+.

This is because there is a functor Sing∗ from symmetric spectra of topological
spaces to symmetric spectra of simplicial sets which is right-adjoint to a functor
| | from symmetric spectra of simplicial sets to symmetric spectra of topological
spaces for which the unit of adjunction X → | Sing∗X | is a level equivalence. Both
functors Sing∗ and | | preserve stable equivalences. Therefore, in the commutative
diagram

cX ∧G EG+
//

��

| Sing∗ cX | ∧G EG+ = | Sing∗ cX ∧G EG+|

��
X ∧G EG+

// | Sing∗X | ∧G EG+ = | Sing∗X ∧G EG+|

the horizontal maps are level weak equivalences because both sides are level cofi-
brant. The right vertical map is a stable equivalence because in the injective stable
model structure on the category of symmetric spectra of simplicial sets every spec-
trum is cofibrant. Therefore, the left vertical map is a stable equivalence.

Example B.4. If X is a spectrum with πiX = 0 for i < 0, then the spectral
sequence B.2 (3) shows that the natural map π0(X)/G→ π0(XhG) = H0(G, π0X)
is an isomorphism. If X is an Eilenberg-MacLane spectrum (that is, πiX = 0 for
i 6= 0), then the spectral sequence collapses and yields an isomorphism for all i ∈ Z

πi(XhG) = Hi(G, π0X).

Example B.5. If X is a spectrum with right G-action, then the canonical map
X → XhG is G-equivariant where G acts trivially on XhG. More precisely, let
cX ∧ EG+ be the right G-spectrum where g ∈ G acts as g ∧ g−1 on cX ∧ EG+.

Then we have a G-equivariant string of maps X
∼
← cX ← cX∧EG+ → cX∧GEG+

induced by the equivariant map S0 ← EG+ and the equivariant quotient map

X ∧EG+ → X ∧G EG+. The maps X
∼
← cX ← cX ∧EG+ is a stable equivalence

(forgetting the G-action).
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We restrict now to the case G = C2 = Z/2 the 2-element group with σ ∈ C2 the
unique element of order 2. Let X be a spectrum with C2 = Z/2 action from the
right. We have a second Z/2-action on X , denoted by C−

2 , where the non-trivial
element acts as −σ on X . From the discussion above, the map X → XhC−

2
is C−

2 -

equivariant where XhC−
2

carries the trivial action. Therefore, the map X → XhC−
2

is C2-equivariant whereX carries the original C2-action, and the non-trivial element
σ ∈ C2 acts on XhC−

2
as −1. In summary, we have a C2-equivariant map of spectra

(B.2) X → X+ ×X− = XhC2 ×XhC−
2

where X+ = XhC2 has the trivial action, and σ acts on X− = XhC−
2

by −1.

Lemma B.6. Let X be a spectrum with C2-action. Assume that the homotopy
groups π∗X of X are all uniquely 2-divisible. Then the C2-equivariant map (B.2) is
a stable equivalence. In particular, as an object of the triangulated stable homotopy
category SH, the object X+ is the image of the projector (1 + σ)/2 of X, and the
homotopy groups of X+ are given by the image of the map (1+σ)/2 : π∗X → π∗X,
that is, the following natural map is an isomorphism

π∗(X)/C2

∼=
−→ π∗(XhC2).

Proof. If πkX = 0 for k << 0, the claim follows from the spectral sequence of
Proposition B.2 (3) which collapses at the E2-page. Since any spectrum can be
written as a sequential (homotopy) colimit of spectra X for which πkX = 0 for
k << 0, we are done. �

B.7. Homotopy fixed point spectra. Consider the simplicial set EG from (B.1)
equipped with the free right G-action defined by fg(x) = f(x)g for g ∈ G, f :

Ob[n]→ G and x ∈ Ob[n]. Fix a fibrant approximation X
∼
→ Xf in the category of

spectra (for the projective stable model structure). If X is a spectrum with right
G-action then so is Xf , and the map X → Xf is G-equivariant. The homotopy fixed
point spectrum XhG, also denoted H•(G,X), of a spectrum X with right G-action
is the spectrum

XhG = H•(G,X) = SpG(EG+, Xf )

where for a pointed space K and a spectrum Y both with right G-actions, the
spectrum SpG(K,Y ) is defined by the equalizer diagram

SpG(K,Y ) // Sp(K,Y )
(g,1) //

(1,g)
//
∏

g∈G

Sp(K,Y ).

The G-equivariant map EG→ pt and the non-equivariant map pt→ EG : pt 7→
1 induce a string of maps

XG → (Xf )
G = SpG(S0, Xf )→ SpG(EG+, Xf )→ Sp(EG+, Xf )→ Sp(S0, Xf ) = Xf

such that the diagram

XG //

��

XhG

��
X // Xf

commutes.
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According to the equalizer definition of the homotopy fixed point spectrum, the
two compositions

XhG = SpG(EG+, Xf ) // Sp(EG+, Xf )
(g,1) //

(1,g)
// Sp(S0, Xf ) = Xf

are equal. By contractibility of EG, the map (g, 1) in the diagram is homotopic to
(1, 1). Therefore, for all g ∈ G the diagram

XhG //

!!❈
❈❈

❈❈
❈❈

❈❈
Xf

g

��
Xf

homotopy commutes. In particular, the map πn(X
hG)→ πn(Xf ) = πn(X) factors

through the fixed points πn(X)G and we obtain a natural map πn(X
hG)→ πn(X)G

for all n ∈ Z. This map is not an isomorphism, in general.

Proposition B.7. (1) If X → Y is a G-equivariant map of spectra which,
forgetting the G-action, is a stable equivalence, then XhG → Y hG is a
stable equivalence.

(2) If X is a non-equivariant spectrum then the spectrum Sp(G+, X) has a
right G-action and the map X = Sp(G+, X)G → Sp(G,X)hG is a stable
equivalence.

(3) For a spectrum X with right G-action there is a spectral sequence

Ep,q
2 = Hp(G, π−qX)⇒ π−p−q(X

hG)

which converges strongly if πiX = 0 for i >> 0.

Proof. The proof is dual to the proof of Proposition B.2. We omit the details. �

Remark B.8. If X is a positive Ω-spectrum, then the map

SpG(EG+, X)→ SpG(EG+, Xf ) = XhG

is a stable equivalence. This is because the positive Ω-spectra are the fibrant objects
of the positive projective stable model structure on Sp, and in any simplicial model
category, the functor MapG(EG+, ?) preserves weak equivalences between point-
wise fibrant objects [Hir03, Theorem 18.5.3.(2)].

Example B.9. If X is a spectrum with πiX = 0 for i > 0 then the spectral
sequence B.7 (3) shows that H0(G, π0X) = π0(X

hG), and the map π0(X
hG) →

(π0X)G is an isomorphism.
Let X be an Eilenberg-MacLane spectrum (πiX = 0, i 6= 0) with right G-action.

Then the spectral sequence collapses and yields an isomorphism for all i ∈ Z

π−i(X
hG) = Hi(G, π0X).

Lemma B.10. Let X be a spectrum with right C2-action. Assume that the homo-
topy groups π∗X of X are all uniquely 2-divisible. Then the C2-equivariant stable
equivalence (B.2) induces stable equivalences

XhC2 ∼
−→ (X+)hC2 ∼

−→ X+
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In particular, the following natural map is an isomorphism

π∗(X
hC2)

∼=
−→ π∗(X)C2 .

Proof. From the decomposition (B.2) of Lemma B.6, it suffices to prove the claim
in case X has trivial action and in case the non-trivial element of C2 acts as −1.
In the first case, the map XhC2 = Sp(BG+, Xf )→ Xf is a weak equivalence. This
follows from the spectral sequence B.7 (3) provided πkX = 0 for k >> 0. Since
every spectrum is a sequential homotopy limit of spectra X with πkX = 0 for
k >> 0 (given by the Postnikov tower), the first case follows. In the second case,
the map XhC2 → pt is a weak equivalence. Again, this follows from the spectral
sequence B.7 (3) provided πkX = 0 for k >> 0, and in general by passing to
homotopy limits. �

B.8. Tate spectra. Let G be a finite group acting from the right on a spectrum
X . The Tate spectrum Ĥ(G,X) is the homotopy cofibre of the hyper norm map Ñ :
XhG → XhG; see [ACD89], [WW89], [Gre01], [Jar97]. In case of a right G-module

A, the Tate spectrum Ĥ(G,A) of the Eilenberg-MacLane spectrum associated with
A has n-th homotopy group naturally isomorphic to ordinary Tate cohomology
Ĥ−n(G,A) of G with coefficients in A. We review the relevant definitions and facts
in case G = Z/2.

Let G = Z/2 = {1, σ} where σ ∈ G is the unique element of order 2, and
let X be a spectrum with G-action. We consider X × X as a spectrum with
G1 ×G2-action where G1 = G2 = G and (σ, 1) ∈ G1 ×G2 acts as the switch map
(x, y) 7→ (y, x) and (1, σ) acts as (x, y) 7→ (σy, σx). This also induces a G1 × G2-
action on X ∨X ⊂ X ×X . There is a string of G1 ×G2-equivariant spectra

(B.3) X
(1,σ) // X ×X X ∨X

∼oo 1∨1 // X

where G1 × G2 acts on the source X via the projection G1 × G2 → G1 onto the
first factor and G1×G2 acts on the target X of the map via the second projection
G1×G2 → G2. The arrow in the wrong direction is a stable equivalence. We write
N : X → X for this string of maps and call it norm map. The norm map is an
honest map in the homotopy category of spectra and induces 1 + σ : πnX → πnX
on homotopy groups.

For a spectrum Y with G1 × G2-action, we can consider Y as a Gi-spectrum
via the group homomorphisms G1 → G1 × G2 : x 7→ (x, 1) and G2 → G1 ×
G2 : x 7→ (1, x), and the two actions commute. In particular, the homotopy fixed
point spectrum Y hG2 is a G1-spectrum and thus has a homotopy orbit spectrum
(Y hG2)hG1 . To abbreviate we write FY = (Y hG2)hG1 for this spectrum. Note that
the functor F preserves stable equivalences, and comes equipped with natural maps
(Y G2)hG1 → FY → (Y hG2)G1 . Since G2 acts trivially on the source of (B.3) and
G1 acts trivially on the target of (B.3), we obtain the hypernorm map

(B.4) Ñ : XhG = (XG2)hG → FX
FN
−→ FX → (XhG)G1 = XhG.

More precisely, the hypernorm map is the string of maps Ñ :

XhG = (XG2)hG1 → FX → F (X ×X)
∼
← F (X ∨X)→ FX → (XhG2)G1 = XhG

where the arrow in the wrong direction is a stable equivalence.
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Lemma B.11. The two maps cX → XhG
Ñ
→ XhG → Xf and cX → X

N
→ X → Xf

are equal in the homotopy category of spectra.

Proof. For clarity of exposition, write X and Y for source and target of (B.3) with
their respective G1×G2 actions. So, the norm map is a G1×G2-equivariant string
of mapsX → Y with the arrow pointing in the wrong direction a stable equivalence.
By functoriality, we have a commutative diagram

X //

N

��

Xf

N

��

XhG2oo //

N

��

FX

N

��
Y // Yf Y hG2oo // FY

where the vertical maps are actually strings of maps with the vertical arrows in
the wrong direction being stable equivalences. Every spectrum in the top row
receives a natural map from (cX)G2 such that all triangles commute. Similarly,
every spectrum in the bottom row naturally maps to (Yf )G1 such that all triangles
commute. The resulting composition (cX)G2 → FX → FY → (Yf )G1 is the first
map in the lemma, and the map (cX)G2 → X → Y → (Yf )G1 is the second map in
the lemma. By the commutativity of the diagram, these two maps are equal. �

Definition B.12. The Tate spectrum

Ĥ(Z/2, X)

of a spectrum X with G = Z/2 action is the homotopy cofibre of the hypernorm

map Ñ : XhG → XhG. Since Ñ involves a stable weak equivalence in the wrong
direction, we give the following more precise and functorial version on the level of
spectra. The Tate spectrum is defined to be the lower right corner in the diagram

XhG

p

//
��

��

F (X ×X)
��

��

F (X ∨X)

p

∼oo

f

xxqqq
qq
qq
qq
qq
qq ��

��

// XhG

��

��
XhG ∧ I // P Z(f)∼

oo // Ĥ(Z/2, X)

where left and right squares are push-outs, all vertical arrows are cofibrations, the
left vertical map is the inclusion X → X ∧ I : x 7→ x ∧ 0 of X into its cone (1
being the base-point of I = [0, 1]), and where the diagram X → Z(f) → Y is a
factorial factorization of a map f : X → Y into a cofibration followed by a stable
equivalence.

The functor Ĥ(Z/2, ) preserves stable equivalences and it sends sequences of
Z/2-spectra which (forgetting the action) are homotopy fibre sequences to homo-
topy fibre sequences.

Example B.13. If X is an Eilenberg-MacLane spectrum (πiX = 0 for i 6= 0)
equipped with a Z/2-action, then the long exact sequence associated with the ho-

motopy fibration XhG → XhG → Ĥ(G,X) together with the calculations of the
homotopy groups of XhG and XhG in Examples B.4 and B.9 yield isomorphisms

πiĤ(Z/2, X) ∼=





Hi(Z/2, π0X) i ≥ 2

H−i(Z/2, π0X) i ≤ −1
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and an exact sequence

0→ π1Ĥ(G,X)→ π0(XhG)
Ñ
→ π0(X

hG)→ π0Ĥ(G,X)→ 0.

By Examples B.4, B.9 and Lemma B.11 the middle map π0Ñ is the usual norm
map 1 + σ : (π0X)/G → (π0X)G. These properties characterize Tate cohomology
of G = Z/2 with coefficients in the G-module π0X . Therefore, we have natural
isomorphisms for i ∈ Z

πiĤ(Z/2, X) ∼= Ĥ−i(Z/2, π0X).

Lemma B.14. If X is a spectrum with C2-action such that all its homotopy groups
π∗X are uniquely 2-divisible, then its Tate spectrum is contractible

Ĥ(C2, X) ≃ pt .

Proof. For the C2-equivariant stable equivalence X ≃ X+ ×X− from Lemma B.6,
we have (X−)hC2 ≃ (X−)hC2 ≃ pt; see Lemmas B.6 and B.10. This reduces the
proof of the lemma to the case when X = X+ has trivial C2-action. In this case,
the maps X → XhC2 and XhC2 → X are weak equivalences; see Lemmas B.6 and

B.10. The composition cX → X
N
→ X → Xf is multiplication by 2 which is an

equivalence since 2 is invertible in the homotopy groups of X . From Lemma B.11,
it follows that the hypernorm map Ñ : XhC2 → XhC2 is a stable equivalence. In
particular, its homotopy cofibre, the Tate spectrum, is contractible. �

B.9. Spectra in monoidal model categories. Let (C,⊗,1) be a cofibrantly
generated closed symmetric monoidal model category for which the domains of
the generating cofibrations are cofibrant, and let K ∈ C be a cofibrant object.
Recall that the category CΣ of symmetric sequences in C is symmetric monoidal
under the monoidal product of Section B.12 which we will denote by ∧. We have
evaluation functors Evn : CΣ → C : X 7→ Xn and their left adjoints Gn : C →
CΣ :M 7→ (0, ..., 0, (Σn)+⊗M, 0, 0, ...). The category Sp(C,K) of K-spectra in C is
the category of left modules over the free commutative monoid S := Sym(G1K) =
(1,K,K⊗2,K⊗3, ...) in CΣ on the symmetric sequence G1K = (0,K, 0, 0, ...). The
evaluation functors Evn : Sp(C,K) → C : X 7→ Xn have left adjoints Fn : C →
Sp(C,K) : M 7→ Sym(G1K) ∧ GnK. By abuse of notation, we will write M for
F0M . As modules over the commutative monoid S = Sym(G1K), the category
Sp(C,K) is symmetric monoidal with unit S and monoidal product X ∧S Y defined
as the coequalizer of the two multiplication maps X ∧S ∧Y → X ∧Y coming from
X ∧ S ∼= S ∧X → X and S ∧ Y → Y .

In [Hov01, Theorem 8.11], Hovey constructs a (projective) stable symmetric
monoidal model structure on Sp(C,K) for which K is cofibrant and the functor
Sp(C,K) → Sp(C,K) : X 7→ K ∧S X is a left Quillen equivalence. The weak
equivalences for this model category are the stable equivalences which are the
maps X → Y of K-spectra which induce bijections [Y,E]′ → [X,E]′ on mor-
phism sets in the homotopy category of the level model structure on Sp(C,K) for
every Ω-spectrum E. Here, a K-spectrum X is an Ω-spectrum if Xn is fibrant
in C for all n ∈ N and the adjoint Xn → MapC(K,Xn+1) of the structure map
K ⊗ Xn → Xn+1 is a weak equivalence in C. The functors Fl : C → Sp(C,K)
preserve weak equivalences and cofibrant objects. For M and N ∈ C, there are
natural isomorphisms Fm+n(M ⊗N)→ FmM ∧S FnN (adjoint to the identity map
M ⊗N = Evm+n(FmM ∧S FnN)) which are associative and unital. In particular,
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the functor F0 : C → Sp(C,K) is strong symmetric monoidal. If C → C : X → K⊗X
is a left Quillen equivalence, then F0 : C → Sp(C,K) is a left Quillen equivalence
[Hov01, Theorem 9.1].

Example B.15. An example to keep in mind is (Top∗,∧, S
0) with the usual model

structure and K = S1. In this case, the model structure in Section B.9 is the
projective stable model structure on the category of spectra of topological spaces.
But the example we are really interested in is (Sp,∧S , S0) equipped with the positive

projective stable model structure and K = S̃1 a cofibrant replacement of S1 ∈ Sp
in that model structure; see below.

B.10. True and naive homotopy sets. For two objects X,Y of a model category
M, denote by [X,Y ]M the set of maps from X to Y in the homotopy category of
M. Let n ∈ Z be an integer. For aK-spectrumX define its n-th naive K-homotopy
set as

π̂n(X) = colimk[K
⊗kK⊗n, Xk]C

where the maps in the colimit are given by tensoring withK and composing with the
structure map K ⊗Xk → X1+k of the K-spectrum X . The n-th true K-homotopy
set of a K-spectrum X is the set

πn(X) = [K⊗n, X ]Sp(C,K).

Of course, in case C = Top∗ and K = S1, these are precisely the definitions given
in Section B.3. There is a natural map

(B.5) π̂n(X)→ πn(X)

defined as follows:

[K⊗kK⊗n, Xk]C
Fk−→ [Fk(K

⊗kK⊗n), Fk(Xk)]Sp(C,K)

= [(F1K)∧kK⊗n, Fk Evk(X)]Sp(C,K)

sk−→ [(F1K)∧kK⊗n, X)]Sp(C,K)

λ∧k

←−
∼=

[K⊗n, X)]Sp(C,K)

where sk : Fk Evk → 1 is the counit of adjunction, and λ : F1K → S is the adjoint of
the identity map K = Ev1(S). Note that λ, and hence λ∧n, is a stable equivalence
[Hov01, Theorem 8.8].

B.11. Bispectra. Now, we specialize to the case (C,⊗,1) the category (Sp,∧S , S)
of spectra equipped with the positive stable model structure and K = S̃1 a cofibrant
replacement of S1 ∈ Sp in that model structure. The resulting category Sp(Sp, S̃1)

of symmetric spectra in Sp will be called the category of S̃1-S1-bispectra, or simply
the category of bispectra denoted by BiSp:

BiSp = Sp(Sp, S̃1).

It is equipped with the projective stable model structure of Hovey [Hov01, Theorem
8.11] induced by the positive stable model structure on the category Sp of spectra.

So, a bispectrum in our sense is a left module over the commutative monoid S̃ =
(S0, S̃1, S̃2, S̃3, ...) = Sym(G1S̃) in the category of symmetric sequences SpΣ in Sp

where S̃n denotes S̃1∧S S̃1∧S ...∧S S̃1 (n factors). The symmetric monoidal product
in BiSp is denoted by ∧S̃ .
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Since in Sp smash product with S̃1 is a Quillen equivalence, the symmetric
monoidal inclusion F0 : Sp → BiSp is a Quillen equivalence, too. In other words
the category of bispectra is yet another symmetric monoidal model for the stable
homotopy category.

Recall the map λ : F1(S̃
1)→ S̃ which is adjoint to the identity map S̃1 = Ev1(S̃).

For a bispectrum X , write λ∗ : X → RX = MapBiSp(F1(S̃
1), X) for the adjoint of

the map λ ∧S̃ 1X : F1(S̃
1) ∧S̃ X → S̃ ∧S̃ X = X . A level fibrant bispectrum X

(i.e., a bispectrum X = (X0, X1, ...) such that Xn is a positive Ω-spectrum in Sp)
is called semistable if the map λ∗ : X → RX is a π̂∗-isomorphism.

Lemma B.16. Let X be a level fibrant semistable S̃1-S1 bispectrum. Then the
natural map (B.5) is an isomorphism for all n ∈ Z:

π̂n(X)
∼=
−→ πn(X).

Proof. As in [HSS00], denote by Rn the n-fold iterate of the functor R, by R∞X
the mapping telescope of

X
λ∗

−→ RX
Rλ∗

−→ R2X
R2λ∗

−→ R3X−→· · · ,

and by iX : X → R∞X the map from the initial term into the mapping telescope.
For a level fibrant semistable S̃1-S1 bispectrum, the map iX : X → R∞X is
a π̂∗-isomorphism, and R∞X is an Ω-spectrum. For every Ω-spectrum X , the
map π̂∗(X) → π∗(X) is an isomorphism. Moreover, for any π̂∗-isomorphism is
a stable equivalence. These claims are proved precisely as in [HSS00] or [Sch]
with the exception of the last claim which we will prove below. Therefore, in the
commutative diagram

π̂∗(X) //

��

π∗(X)

��
π̂∗(R

∞X) // π∗(R∞X)

the two vertical maps and the lower horizontal map are isomorphisms. It follows
that the top horizontal map is an isomorphism too.

The proofs that a π̂∗-isomorphism is a stable equivalence in [HSS00, Theorem
3.1.11] and [Sch, Theorem 4.23] both rely on the injective level model structure
on the category of symmetric spectra of simplicial sets in which every object is
cofibrant. A corresponding model structure in the case of bispectra presumably
exists but we don’t really need it. A minor modification of their argument will do.
For an Ω-spectrum E, the map iE : E → R∞E is a level equivalence. In particular,
it is an isomorphism in the homotopy category of the level model structure on
bispectra. Denote by [X,Y ]′ the set of maps from X to Y in that homotopy
category. For a map f : X → Y of bispectra and E an Ω-bispectrum, we have a
commutative diagram

[Y,E]′
R∞

//

[f,1]′

��

[R∞Y,R∞E]′

[R∞f,1]′

��

[1,i−1
E ]′

// [R∞Y,E]′

[R∞f,1]′

��

[iY ,1]′ // [Y,E]′

[f,1]′

��
[X,E]′

R∞
// [R∞X,R∞E]′

[1,i−1
E ]′

// [R∞X,E]′
[iX ,1]′

// [Y,E]′
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in which the two horizontal compositions are the identity maps. This shows that
the map of sets [f, 1]′ : [Y,E]′ → [X,E]′ is a retract of the map of sets [R∞f, 1]′ :
[R∞Y,E]′ → [R∞X,E]′. If f is a π̂∗-isomorphism of level fibrant bispectra then
R∞f is a level equivalence. Hence, the map of sets [R∞f, 1]′ is a bijection. As a
retract of a bijection, the map of sets [f, 1]′ is also a bijection. By definition, this
means that f is a stable equivalence. �

Remark B.17. Recall that the inclusion Sp ⊂ BiSp of spectra into bispectra
preserves stable equivalences and induces an equivalence of homotopy categories.
In fact, it is a left Quillen equivalence. In particular, the quasi-inverse BiSp sends
an X ∈ BiSp to the zero spectrum Z0 of a fibrant replacement Z of X ∈ BiSp.
On the subcategory of level fibrant semistable bispectra, this quasi-inverse can be
chosen to be (R∞X)0. That is, it is the mapping telescope of the diagram of spectra

X0
λ∗

−→ ΩX1
Rλ∗

−→ Ω2X2
R2λ∗

−→ Ω3X3−→· · ·

Example B.18. Let X = (X0, X1, ...) be a level fibrant bispectrum. Recall that
this means that each Xn is a positive Ω-spectrum in Sp. Assume that the map
of spectra Xn → ΩX1+n adjoint to the structure maps induces an isomorphism
πi(Xn) → πi(ΩX1+n) whenever i > 0. Then X is semistable. This is because
the map X → RX in degree n is precisely the map Xn → ΩX1+n, and π̂n(X) →
π̂n(RX) is the map on colimits over i of the horizontal sequences

πi+n(Xi) //

��

π1+i+n(X1+i) //

��

· · ·

πi+n(ΩX1+i) // π1+i+n(ΩX2+i) // · · ·

By assumption, all the maps in the diagram are isomorphisms when i + n > 0.
Hence, π̂n(X)→ π̂n(RX) is an isomorphism for all n ∈ Z.

B.12. Symmetric sequences [HSS00]. Recall [HSS00, 2.1.1] that a symmetric
sequence in a category C is a functor Σ→ C from the category Σ to C where Σ has
objects the finite sets n = {1, 2, ..., n}, 0 = ∅, for n ∈ N, and the automorphisms of
the sets n as its maps. A morphism of symmetric sequences is a natural transfor-
mation of functors Σ→ C. This defines the category CΣ of symmetric sequences in
C.

If the category C has finite coproducts
⊔

then so does the category CΣ of sym-
metric sequences in C. Coproducts in CΣ are computed object-wise. Let (C,⊗,1)
be a symmetric monoidal category which has finite coproducts. In particular, it
has an initial object ∅ =

⊔
∅. Assume that the monoidal product commutes with

finite coproducts, that is, the natural maps (A ⊗ E) ⊔ (B ⊗ E) → (A ⊔ B) ⊗ E
and ∅ → ∅⊗E are isomorphisms. Then the category of symmetric sequences CΣ is
equipped with a symmetric monoidal product which is best described by replacing
Σ by a slightly larger but equivalent category [HSS00, Remark 2.1.5].

Let P be the category whose objects are the finite subsets of N and whose mor-
phisms are the isomorphisms of sets. The natural inclusion Σ ⊂ P is an equivalence
of categories with inverse P → Σ given by identifying a finite subset P of N with
the set |P | ∈ Σ via the unique order-preserving bijection P ∼= |P | where |P | denotes
the cardinality of P . The categories of functors Σ → C and P → C are equivalent
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(via the functor Σ ⊂ P and its inverse P → Σ). The tensor product of two functors
X,Y : P → C is the functor X ⊗ Y which for a finite subset P of N is

(X ⊗ Y )(P ) =
⊔

A∪B=P,
A∩B=∅

X(A)⊗ Y (B).

An isomorphism f : P → Q of sets defines the map (X ⊗ Y )(f) which is the
coproduct of the isomorphisms X(A) ⊗ Y (B) → X(fA) ⊗ Y (fB) induced by the
isomorphisms f : A → f(A) and f : B → f(B). The tensor product is equipped
with maps

mA,B : X(A)⊗ Y (B)→ (X ⊗ Y )(A ⊔B)

functorial in A,B ∈ P . As in [HSS00, Lemma 2.1.6], tensor product of symmetric
sequences makes the category CΣ into a symmetric monoidal category with unit the
symmetric sequence (1, ∅, ∅, . . . ).

The tensor product of symmetric sequences has the following universal property.
Let Z be a symmetric sequence in C, and let

fA,B : X(A)⊗ Y (B)→ Z(A ⊔B)

be a family of morphisms in C functorial in A,B ∈ P . Then there is a unique
morphism f : X⊗Y → Z of symmetric sequences in C such that fA,B = fA⊔B◦mA,B

for all A,B ∈ P .
If C and D are symmetric monoidal categories with finite coproducts that com-

mute with the monoidal products, and if F : C → D is a symmetric monoidal functor
commuting with finite coproducts then the induced functor F : CΣ → DΣ : X 7→
F ◦X on symmetric sequences has the same property that is, it is also symmetric
monoidal and commutes with finite coproducts.
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[Kar73] Max Karoubi. Périodicité de la K-théorie hermitienne. In Algebraic K-theory, III:
Hermitian K-theory and geometric applications (Proc. Conf., Battelle Memorial Inst.,
Seattle, Wash., 1972), pages 301–411. Lecture Notes in Math., Vol. 343. Springer,
Berlin, 1973.
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[KML71] G. M. Kelly and S. Mac Lane. Coherence in closed categories. J. Pure Appl. Algebra,
1(1):97–140, 1971.

[Kne77] Manfred Knebusch. Symmetric bilinear forms over algebraic varieties. In Conference
on Quadratic Forms—1976 (Proc. Conf., Queen’s Univ., Kingston, Ont., 1976),
pages 103–283. Queen’s Papers in Pure and Appl. Math., No. 46. Queen’s Univ.,
Kingston, Ont., 1977.

[Kob99] Damjan Kobal. K-theory, Hermitian K-theory and the Karoubi tower. K-Theory,
17(2):113–140, 1999.

[KSW] Max Karoubi, Marco Schlichting, and Charles Weibel. The Witt group of real algbraic
varieties. To appear in J. Topol.

[May74] J. P. May. E∞ spaces, group completions, and permutative categories. In New devel-

opments in topology (Proc. Sympos. Algebraic Topology, Oxford, 1972), pages 61–93.
London Math. Soc. Lecture Note Ser., No. 11. Cambridge Univ. Press, London, 1974.

[May75] J. Peter May. Classifying spaces and fibrations. Mem. Amer. Math. Soc., 1(1,
155):xiii+98, 1975.

[McC69] M. C. McCord. Classifying spaces and infinite symmetric products. Trans. Amer.
Math. Soc., 146:273–298, 1969.

[MH73] John Milnor and Dale Husemoller. Symmetric bilinear forms. Springer-Verlag, New
York, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73.

[MMSS01] M. A. Mandell, J. P. May, S. Schwede, and B. Shipley. Model categories of diagram
spectra. Proc. London Math. Soc. (3), 82(2):441–512, 2001.

[Mor12] Fabian Morel. A1-Algebraeic Topology over a Field, volume 2052 of Lecture Notes in
Mathematics. Springer-Verlag, Berlin, 2012.

[MV99] Fabien Morel and Vladimir Voevodsky. A1-homotopy theory of schemes. Inst. Hautes
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