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Supporting Information Placeholder

ABSTRACT: Nanoparticle (NP) impacts on electrode surfaces 

has become an important method for analyzing the properties and 

activity of individual NPs, by either: (i) electrocatalytic reactions; 

or (ii) volumetric (dissolution) analyses. Using Au NPs as an ex-

emplar system, this contribution shows that it is possible to detect 

surface oxide formation at individual NPs, which can occur on a 

rapid timescale (few µs). The charge associated with this ‘surface 

oxidation method’ can be used for sizing (with results that are com-

parable to TEM) despite charges of only fC being measured. This 

platform further allows the role of surface oxides in electrocatalysis 

to be elucidated, with the timescale of oxide formation being con-

trollable (i.e., ‘tunable’) through the applied potential, as illustrated 

through studies of borohydride and hydrazine electro-oxidation. Fi-

nally, all of these studies are carried out on an oxide-covered gold 

substrate, which can be prepared and regenerated straightforwardly 

on a gold electrode, through the applied potential. 

Single nanoparticle (NP) measurements are a new frontier in 

electrochemistry.1 Although experimentally challenging, such 

measurements bring considerable advantages compared to those on 

ensembles of NPs on support electrodes, where the response is av-

eraged over many NPs and complicated by the effects of surface 

coverage, NP distribution and NP-support interactions.2 Among a 

limited range of methods, single nanoparticle electrochemical im-

pacts (SNEI) is becoming increasingly popular for detecting and 

analyzing individual NPs. This typically involves monitoring the 

current-time (I-t) transients associated with the stochastic collision 

of NPs from a (dilute) colloidal solution with a collector electrode, 

with the detected current arising from either: (i) a heterogeneous 

electron-transfer reaction taking place at the NP surface (e.g., elec-

trocatalytic amplification3-6); or (ii) the electro-dissolution of the 

NP itself.7,8 

In this contribution, we introduce a third approach to investigate 

the dynamic interaction between metal NPs and a collector elec-

trode, in which the detected current arises from NP surface oxida-

tion, as is shown schematically in Figure 1a for the case of an Au 

NP. This measurement is much more challenging than the (volu-

metric) anodic oxidation of metal NPs7,8, due to the smaller charges 

involved and much faster timescale of the process, but opens up 

new prospects for detecting noble metals and analyzing the for-

mation of surface oxides, which can greatly influence (retard or ac-

celerate) electrocatalysis.9 Figure 1a highlights a further innovation 

of our work, which is the use of the same material (Au) for the col-

lector electrode as the NPs, with the activity/passivity of the collec-

tor electrode controlled through the applied potential. Usually, the 

potential applied at the Au collector electrode will be sufficiently 

positive to form gold oxide (i.e., AuOx), and therefore when Au 

NPs freely diffusing in solution sporadically make contact with the 

collector electrode, a small oxidation current ‘blip’ is expected due 

to the formation of AuOx on the NP surface.10 A thin layer of AuOx 

on the Au collector electrode (see Figure 1b) makes it electrochem-

ically inert (i.e., “passivated”) towards certain reactions, such as the 

oxidation of borohydride and hydrazine, considered herein. By 

maintaining the electrode at a potential where the oxide is stable, 

individual collisions of Au NPs are detectable through electrocata-

lytic amplification (see Figure 1c) which competes with NP deac-

tivation through oxide formation. The resulting oxidation I-t 

(‘blip’) response thus informs on the electrocatalytic process at a 

NP surface while undergoing passivation. This will be larger in 

magnitude than that obtained in the absence of the electroactive 

species (e.g., see Figure 1d). 

 

Figure 1. Schematic of a single NP collision event at an Au collec-

tor electrode surface which is: (a) passive (i.e., w/ AuOx), with no 

redox species present in solution (i.e., w/o Red); (b) active (i.e., w/o 

AuOx), with redox species present in solution (i.e., w/ Red); and (c) 

passive, with redox species present in solution. The I-t response ex-

pected for the NP landing events shown in (a), (b) and (c) are shown 

in (d) as red, green and blue traces, respectively. 

The experimental setup employed in this study is shown sche-

matically in the supporting information (SI), Figure S1a and is 

based on  scanning electrochemical cell microscopy (SECCM)11, 

which has previously been shown to be advantageous in many ap-

plications, notably SNEI12-14, due to flexibility of electrode size 
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(determined by the area of meniscus contact) and material, as well 

as greatly enhanced signal/noise compared to alternative configu-

rations.2 In this approach, a microdroplet electrochemical cell is 

formed through contact of the meniscus that protrudes from the end 

of a tapered micropipet (see SI, Figures S1b and c) with a polycrys-

talline Au surface. The diameter of the cell (‘droplet’) is compara-

ble to the diameter of the probe (i.e., 7 ± 1 µm, see SI, Figure S1d). 

Note that in this work, we used a single-channel pipet, rather than 

a dual channel (theta) pipet used previously.13,14 The citrate capped 

Au NPs for the landing experiments were synthesized using a liter-

ature procedure15 (representative TEM image shown in SI, Figure 

S2a) and had an average diameter of 39 ± 6 nm (histogram of size 

distribution shown in SI, Figure S2b). 

 

Figure 2. (a) A CV (ν = 100 mV s‒1) obtained in a solution con-

taining 20 mM NaOH and 44 pM Au NPs at an Au collector elec-

trode formed by meniscus contact with a 7 ± 1 µm diameter mi-

cropipet. The arrows indicate the direction of the voltammetric 

sweep. (b) I-t trace at 1.6 V (vs. Pd-H2 QRCE) in a solution con-

taining 20 mM NaOH and 44 pM Au NPs. Inset is a zoomed in 

view of a ‘typical’ landing event, taking place at 21.046 seconds. 

(c) Normalized NP diameter distributions from TEM (red bars, N = 

479) and analysis of the charge passed (green bars, N = 202) during 

landing events under the conditions outlined in (b). 

We first consider the detection of Au NPs through the current 

arising from NP surface oxidation, as shown schematically in Fig-

ure 1a. A cyclic voltammogram (CV) at an Au collector electrode 

in a solution containing 20 mM NaOH and 44 pM Au NPs is shown 

in Figure 2a. The CV starts a potential of 0.6 V (all potentials are 

against a Pd-H2 quasi-reference counter electrode, QRCE), and 

AuOx formation and corresponding stripping (reduction) peaks at 

the collector electrode can be seen at potentials of 1.1 V and 0.7 V 

on the forward and reverse sweeps, respectively. Moreover, at po-

tentials beyond the AuOx formation peak on the outgoing scan, but 

prior to the stripping peak on the reverse sweep, a series of transient 

current spikes (or ‘blips’) ranging in size from 10 to 80 pA are ev-

ident. These are attributable to the (surface) oxidation of Au NPs in 

solution, which sporadically make contact with the collector elec-

trode in the potential region where it is passivated. 

In order to investigate the dynamic interaction between Au NPs 

and the Au collector electrode in further detail, an I-t trace was rec-

orded at an applied potential of 1.6 V, with typical results shown in 

Figure 2b. Evidently, a series of short I-t transients (‘blips’) similar 

to those seen in the Figure 2a are detected. The experimental land-

ing frequency (ca. 1 Hz) is comparable to that predicted3,14 for the 

diffusion-limited flux of NPs to the collector electrode surface (ca. 

0.8 Hz). The inset in Figure 2b is a zoomed in view of a ‘typical’ 

NP landing event; AuOx formation occurs on a very rapid timescale 

at this potential, with a typical ‘event’ lasting ca. 500 µs. Evidently, 

the detection of the rapid I-t transients associated with AuOx for-

mation requires high time resolution (data acquisition rate = 165 

µs/point, with each point being the average of 33 readings of 5 µs 

intervals), as well as an excellent signal-to-noise (S/N) ratio (<20 

pA peak-to-peak background current). Note that this timescale is 

convoluted to some extent by the electrometer response and data 

acquisition rate. We show below that when the AuOx formation 

process is set in competition with electrocatalysis, one can obtain 

an even better estimate of the AuOx formation timescale.  

It is reasonable to consider that the charge (Q) passed during 

each landing event (i.e., from integrating the I-t transients) is pro-

portional to the surface area of the reacting NP (surface oxidation). 

Calculating the diameter of a NP from Q requires knowledge of: (i) 

the oxidation state of the gold in AuOx; (ii) surface atom density, 

which is lattice plane dependent; and (iii) the shape of the NPs. In 

aqueous alkaline media and at the potential investigated (i.e., 1.6 V 

vs. Pd-H2 QRCE), bulk Au is expected to undergo a 2e‒ oxidation 

to form a monolayer of Au(OH)2 and/or AuO.10 By assuming that 

the Au NPs are spherical and the same oxidation mechanism also 

applies to the NP surface (i.e., n = 2 and monolayer AuOx cover-

age), and taking the surface atom density of Au in the NPs to be 

1015 atoms cm‒2 [calculated for the (100) plane of a fcc crystal with 

a lattice constant of 4.07 Å], a NP size distribution was constructed 

from Q, as shown in Figure 2c. The shape of the distribution is in 

good agreement with the one constructed by TEM image analysis 

(also shown in Figure 2c), with the main difference being that the 

histogram constructed by Q is broader (mean diameter = 39 ± 10 

nm) than from TEM (mean diameter = 39 ± 6 nm). The smallest 

NP diameter measureable under the conditions shown in Figure 2 

(limited by the S/N) would ca. 17 nm. There may be scope for im-

proving this in the future. Overall, the concurrence between the two 

histograms shown in Figure 2c highlights the capability of this new 

‘surface oxidation method’ (see Figure 1a) for NP sizing analysis. 

This is particularly important because, as mentioned above, a num-

ber of noble metals are not easily oxidized but do form oxides and, 

further, this is a non-destructive analysis method (the surface oxi-

dation could be reversed if needed). In addition, using this method, 

there may be scope for extracting information on the kinetics of 

oxide formation at the single NP level in future studies. 

The next experimental setup investigated is shown schematically 

in Figures 1b and c, using borohydride oxidation as the ‘model’ 

electrocatalytic process (e.g., Red = [BH4]‒). A CV obtained on an 

Au collector electrode in a 20 mM NaOH solution containing 2.0 

mM NaBH4 is shown in Figure 3a. On gold electrodes, borohydride 

undergoes the following complicated, 8e‒ oxidation to produce bo-

rate (BO2
‒) and H2O in alkaline media16,17: 

BH4
‒ + 8OH‒ → BO2

‒ + 6H2O + 8e‒   (1) 

In Figure 3a, on the forward sweep, starting from a potential of 0.13 

V, the current rapidly rises to a ‘plateau’ (ca. 4 nA), which spans 

the potential region 0.5 to 1.1 V, before rapidly decreasing to ap-

proximately zero, due to surface deactivation (‘passivation’). On 

the reverse sweep, the Au surface remains inactive until a potential 

of ca. 0.8 V, where the current rapidly rises and peaks at ca. 8 nA, 

before dropping back down to the ‘plateau’ value of 4 nA, and then 

retracing the voltammetric behavior from the forward sweep. The 

abrupt deactivation (ca. 1.1 V) and activation (ca. 0.8 V) of the Au 

electrode coincide with the formation and stripping of AuOx, re-

spectively (see Figure 2a), demonstrating the strong electrode-sur-

face dependence of the [BH4]‒ oxidation process. Taking into ac-

count that the diffusional flux in SECCM and related droplet-based 

techniques (e.g., see SI, Figure S1a) is ca. 13% of that for the same 

sized disc electrode11, and assuming that the number of electrons 

transferred is 8 (see Eq. 1) and the diffusion coefficient of [BH4]‒ 
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in alkaline media is 1.6 × 10‒5 cm2 s‒1,16 a steady-state limiting cur-

rent of 3.5 ± 0.5 nA is expected from a droplet diameter of 7 ± 1 

µm, which is in excellent agreement with that observed experimen-

tally in Figure 3a, suggesting that the [BH4]‒ oxidation process can 

attain mass-transport control. It should be noted that the CV ob-

tained at an Au substrate with the microdroplet cell setup qualita-

tively resembles that obtained at a similarly sized Au ultramicroe-

lectrode (UME, shown in SI, Figure S3), except that the measured 

current (and hence diffusional flux) at the UME is approximately 

ten times larger, as expected.11,14 

 

Figure 3. CVs (ν = 100 mV s‒1) obtained from the oxidation of 2.0 

mM [BH4]‒ (from NaBH4) in a solution containing 20 mM NaOH 

and (a) 0 pM or (b) 44 pM Au NPs at an Au collector electrode 

formed by meniscus contact with a 7 ± 1 µm diameter micropipet. 

(c) I-t curves obtained at a applied potential of 1.6 V (vs. Pd-H2 

QRCE) in solutions containing 20 mM NaOH together with: 2.0 

mM [BH4]‒ (blue trace); 44 pM Au NPs (red trace); 2.0 mM [BH4]‒ 

+ 44 pM NPs (black trace). Inset is a zoomed in view of ‘typical’ 

landing events obtained in the presence and absence of [BH4]‒, tak-

ing place at 47.318 and 21.046 seconds, respectively. 

Shown in Figure 3b is a CV obtained under the conditions out-

lined above, but with the addition of Au NPs (44 pM). The shape 

of the CV is very similar to Figure 3a, except for a series of current 

transients (‘blips’) that are present in the region where the Au col-

lector electrode is passive on both the anodic and cathodic scans 

(see schematic shown in Figure 1c). The increased size of the cur-

rent spikes (50 to 600 pA) relative to when no [BH4]‒ is present (10 

to 80 pA, see Figure 2) indicates that they must arise from both 

borohydride oxidation and oxide formation, as discussed below.  

Shown in Figure 3c are I-t traces obtained at a collector electrode 

potential of 1.6 V in the presence or absence of [BH4]‒ and Au NPs. 

In the presence of [BH4]‒ and absence of Au NPs (blue trace), a 

miniscule, constant current of ca. 10 pA is observed, indicating that 

the oxide-covered Au substrate is not particularly active towards 

borohydride oxidation, consistent with Figure 3a. As discussed 

above (Figure 2c), in the absence of [BH4]‒, but in the presence of 

Au NPs (red trace), current ‘blips’ ranging in size from 10 to 80 pA 

(superimposed on a background current of ca. 30 pA) are observed, 

which arise from the surface oxidation of impacting NPs. In the 

presence of both [BH4]‒ and Au NPs (black trace), much larger cur-

rent ‘blips’ ranging in size from 25 to 600 pA (superimposed on a 

background current of ca. 300 pA) are observed. Inset is a zoomed 

in view of a ‘typical’ landing event in the presence or absence of 

borohydride: the current transient is of a similar duration (ca. 500 

µs), because the reaction in both cases is shut off when the NP is 

surface-oxidized. The charge passed in the presence of [BH4]‒ (93 

fC) is about 5 times higher than in its absence (18 fC), again, due 

to both borohydride oxidation and oxide formation. Subtracting the 

average charge from oxide formation (16 fC) from the total charge 

passed in this feature gives an estimate of the charge passed due to 

borohydride oxidation (77 fC), and assuming the full 8e‒ process 

takes place at the NP surface, this corresponds to the oxidation of 

just ca. 100 zmol of [BH4]‒ during the event shown in the inset of 

Figure 3c.   

In a number of previous studies3,17,18, it has been highlighted that 

it is often impossible to distinguish whether a current ‘blip’ re-

sponse arises due to a non-sticking interaction between the NP and 

collector electrode (e.g., Kang et al.14) or due to deactivation of the 

NP after it ‘sticks’ on the collector electrode surface (e.g., Robinson 

et al.19). In the present study, at the applied potential (1.6 V) it has 

been confirmed that the NPs deactivate rapidly upon landing (see 

Figure 2), and given that the NPs and the collector electrode are 

made from the same material (Au), there is a very high probability 

that the current ‘blip’ response is due to a ‘sticking interaction’ fol-

lowed by rapid deactivation. This is consistent with the experimen-

tally measured landing frequency (vide supra) and is further con-

firmed by changing the applied potential. As shown in the SI, Fig-

ure S4, at an applied potential of 1.2 V, the current transients decay 

on a much slower timescale (ms to s) because of the slower rate of 

surface oxidation of the Au NP. But the longer duration indicates 

that the NPs must remain in contact with the collector electrode 

surface.  As a consequence, the charge passed during each landing 

event in the presence of [BH4]‒ is much larger at this collector elec-

trode potential (e.g., ca. 8 pC in the inset of Figure S4). In effect, 

the shape and characteristics of the current-time transients (i.e., the 

timescale of NP deactivation) can be ‘tuned’ by controlling the po-

tential applied at the collector electrode. 

A histogram showing the distribution of the peak currents ob-

tained at 1.6 V in the presence of both [BH4]‒ and Au NPs is shown 

in SI, Figure S5. Although a few ‘large’ current transients (i.e., 

>400 pA) were observed, the majority are smaller than 100 pA 

(mean peak current is 81 pA). This is much smaller than the diffu-

sion-controlled steady-state current (iss ≈ 400 pA) predicted for a 

39 nm diameter NP on a surface, calculable from2: 

iss = 4π(ln2)nFDCrNP    (2) 

where n is the number of electrons transferred, F is Faraday’s 

constant, D and C are the diffusion coefficient and bulk 

concentration of [BH4]‒ and rNP is the radius of the NP. A steady-

state electrocatalytic current would expected to be established rap-

idly (governed by the characteristic steady-state diffusion time, ≈ 

r
2
NP/D ≈ 0.3 µs). The fact that a peak current is observed that is 

greatly attenuated (about 20% of that expected) means that deacti-

vation (AuOx formation) occurs on a comparable timescale (few 

µs), a small fraction of the electrometer time constant13, at 1.6 V. 

 The few landing events that produced peak currents which are 

larger than predicted by Eq. 2 are thought to arise from NP 

aggregates, which form as a result of the addition of NaBH4/NaOH. 

NP aggregation is increasingly recognized as important in NP 

impact studies.8,19,20 This was confirmed by performing dynamic 

light scattering (DLS, see the inset of SI, Figure S6), where the 

average size of the NPs (aggregates) increased continuously with 

time, after mixing. Furthermore, the influence of aggregation on the 

SNEI experiments was investigated by performing a measurement 

1 hour after solution preparation; as shown in SI, Figure S6, the 

observed current spikes are, on average, much larger than those 

seen in Figure 3c, which was recorded in a ‘fresh’ solution.  

In a final set of experiments, the setup outlined in Figures 1b and 

c was used with Red = hydrazine. A CV obtained on an Au sub-

strate in a 20 mM NaOH solution containing 2.0 mM 
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[N2H5][HSO4] is shown in SI, Figure S7a. Hydrazine undergoes the 

following 4e‒ oxidation to produce N2 and H2O in alkaline media21: 

N2H4 + 4OH‒ → N2 + 4H2O + 4e‒   (3) 

The shape and characteristics of the CV are discussed in detail in 

the Supporting Information. Shown in SI, Figure S7b is a CV ob-

tained under the same conditions outlined above, except in the pres-

ence of 44 pM of Au NPs. Again, the shape of the CV is very sim-

ilar to that obtained in the absence of Au NPs (see SI, Figure S7a), 

except a series of current transients (‘blips’) are observed in the 

region where the Au collector electrode is not active (i.e., 1.7 to 

0.65 V on the reverse sweep only). The inset of SI, Figure S7b is 

an I-t trace obtained at a hold potential of 1.1 V after taking the 

potential to 1.75 V; I-t transients ranging in size from 50 to 300 pA 

(200 pA expected from Eq. 2), which typically decay on a 10 to 100 

ms timescale are observed under these conditions. Again, the ob-

served ‘blip’ response is attributable to the deactivation of the Au 

NP by surface oxidation (forming AuOx), as discussed above. 

In conclusion, the landing of Au NPs on an (oxidized) Au surface 

have been detected electrochemically with high time resolution, ei-

ther through the direct oxidation of the NP surface or electrocata-

lytic amplification, using the oxidation of borohydride and hydra-

zine as illustrative examples. Au NP surface oxidation goes to com-

pletion on a rapid timescale (ca. 500 µs), but can be detected with 

high precision, and the charge associated with this process can be 

used to estimate the NP surface area, demonstrating the possibility 

of the ‘surface oxidation method’ for NP size analysis. With elec-

trocatalytic amplification in this setup, it is possible to assess the 

impact of surface oxide formation on electrocatalysis, with the 

timescale of deactivation being controllable through the collector 

electrode potential. Finally, NP impact studies have tended to use a 

dissimilar (more inert) collector electrode material compared to the 

NP, but this study has shown that Au NPs can be detected on an Au 

electrode, with the surface oxidation state (passivity) carefully 

tuned via the applied potential. 
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