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HIGHLIGHTS

e Experimental evaluation of SoH within parallel connected cells aged differently.
e Current, SoC and cell temperature drive SoH cell-to-cell convergence.

e An initial 45% difference in cell-to-cell SoH (resistance) converges to 30%.

e An initial 40% difference in cell-to-cell SoH (capacity) converges to 10%.

e A linear correlation between capacity fade and resistance increase is observed.
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ABSTRACT

Vehicle battery systems are usually designed with a high number of cells connected in parallel to meet
the stringent requirements of power and energy. The self-balancing characteristic of parallel cells allows
a battery management system (BMS) to approximate the cells as one equivalent cell with a single state of
health (SoH) value, estimated either as capacity fade (SoHg) or resistance increase (SoHp). A single SoH
value is however not applicable if the initial SoH of each cell is different, which can occur when cell
properties change due to inconsistent manufacturing processes or in-homogeneous operating environ-
ments. As such this work quantifies the convergence of SoHg and SoHp due to initial differences in cell
SoH and examines the convergence factors. Four 3 Ah 18650 cells connected in parallel at 25 °C are aged
by charging and discharging for 500 cycles. For an initial SoHg difference of 40% and SoHp difference of
45%, SoHg converge to 10% and SoHp to 30% by the end of the experiment. From this, a strong linear
correlation between ASoHg and ASoHp is also observed. The results therefore imply that a BMS should
consider a calibration strategy to accurately estimate the SoH of parallel cells until convergence is

reached.

© 2016 Published by Elsevier B.V.

1. Introduction

In recent years lithium-ion (Li-ion) cells in a battery pack have
become the favourable choice for electric power transportation
systems. In order to increase the pack capacity and meet re-
quirements for power and energy, cells in a battery module are
often electrically connected in parallel [ 1]. For instance, each unit of
the BMW E-Mini 35 kWh battery pack is composed of 53 cells
connected in parallel and 2 in series. Two units constitutes a
module and the whole battery is composed of 48 modules con-
nected in series [2]. Another example is the Tesla Model S 85 kWh
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battery pack. This battery pack includes 16 modules of 6S74P
configuration (6 cells connected in series and 74 cells connected in
parallel) summing to 7104 cells within the complete battery as-
sembly [3].

Battery health diagnosis is essential to develop a control strat-
egy in order to ensure safe and lifetime efficient operation of
electric and hybrid vehicles. State of Health (SoH) is the parameter
used by the Battery Management System (BMS) to monitor battery
ageing. SoH is often calculated based on two metrics: capacity fade
and power fade [4]. These metrics are directly related to vehicle
level attributes that limit driving range and vehicle power,
respectively. For the case where cells are connected in parallel, the
BMS typically does not monitor the SoH of each individual cell
because the BMS does not have access to individual cell currents
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and temperatures. Thus, the BMS cannot determine the capacity
fade and power fade at cell level. For this case the BMS approxi-
mates the SoH as that of an equivalent single value for the whole
battery stack. This approximation is based on the assumption that
the SoH of cells connected in parallel are the same since they have
identical terminal voltages. This assumption is however no longer
valid when cell properties change due to manufacturing tolerances
and usage conditions. For instance, the presence of temperature
gradients or the existence of different resistance paths that will
underpin an uneven current distribution within the system repre-
sent typical scenarios where cell-to-cell SoH may be different. Such
an imbalanced scenario has been previously examined in
Refs. [5—8]. Another potential application of this study is second life
grid storage modules connected in parallel as suggested in
Refs. [9,10].

In a recent study, Gogoana et al. [5] cycled two cylindrical
lithium-iron phosphate (LFP) cells connected in parallel to evaluate
the degradation of each cell over time. They identified that an initial
20% discrepancy in internal resistance between cells in a parallel
string results in a 40% reduction of the total cycle life. They
attributed this result to the uneven high currents experienced by
each cell.

Gong et al. [6] cycled four groups of Li-ion cells. Each group of
cells was composed of two cells with different degradation levels.
They showed that when two cells with a 20% impedance difference
were connected in parallel, the peak current experienced was 40%
higher than if the cells had the same impedance.

Zhang et al. [7] cycled two 26650 LFP cells connected in parallel,
with each cell at a different temperature (5 °C and 25 °C). Based on
a simplified thermal-electrochemical model, it was shown that
temperature differences between the cells makes self-balancing
difficult, which consequently accelerates battery degradation.

Shi et al. [8] cycled two groups of LFP batteries (each one
composed of two cells) for cycle life and basic performance anal-
ysis. The first group was tested at 25 °C, whereas the second group
was tested at 25 °C and 50 °C to evaluate the effect of high tem-
perature. They concluded that imbalanced currents can directly
affect the capacity fade rate of cells connected in parallel.

These studies highlight that cells connected in parallel will age
differently when the SoH of each individual cell is not the same.
These results raise the question as to whether the BMS will esti-
mate the SoH correctly under this situation. The contribution of this
work is to find an answer for this question quantifying the cell-to-
cell SoH for a scenario when each initial cell SoH is different. To
understand the reasons behind the cell-to-cell SoH variation, SoC,
current and temperature distribution in the short-term, and
charge-throughput and thermal energy in the long-term are
examined. A simple SoH diagnosis and prognosis approach is also
presented, where capacity and resistance, and the change in SoHg
(based on a measure of the cell capacity) and the change in SoHp
(based on a measure of the cell resistance) are approximated by a
linear relationship. The overall output of this work is expected to
improve the accuracy of SoH diagnosis and prognosis functions
within the BMS when cells are connected in parallel.

The structure of this work is divided as follows: Section 2 ex-
plains the most common definitions used in the literature for SoH
capacity fade (SoHg) and power fade (SoHp). Section 3 summarises
the experiment where four commercially available 3 Ah 18650
lithium-ion cells connected in parallel were aged by 500 cycles. The
results are given in Section 4, where the factors which drive the SoH
convergence are evaluated. Based on the results for capacity and
resistance fade, Section 5 proposes a simple approach for SoH
diagnosis and prognosis based on a linear correlation between
capacity and resistance, and between the change in SoHg (ASoHg)
and the change in SoHp (ASoHp). Finally, the limitations of this

study and further work are stated in Section 6 and conclusions are
presented in Section 7.

2. SoH definition

SoH diagnosis and prognosis is essential to ensure effective
control and management of Li-ion Batteries (LIBs). The SoH will
evolve differently depending on the battery state: cycling or storage
[11]. The SoH depends also on different parameters which can be
controlled by the BMS. For automotive applications these param-
eters are typically battery temperature, Depth of Discharge (DoD),
discharging and charging current rates for cycling, and the SoC
employed for storage conditions [4]. Since the SoH depends on
different parameters it is difficult to estimate the contribution of
each parameter. The SoH has an upper and a lower limit: Begin of
Life (BoL) and End of Life (EoL). BoL (SoH = 100%) represents the
state when the battery is new, and EoL (SoH = 0%) is defined as the
condition when the battery cannot meet the performance specifi-
cation for the particular application for which it was designed [13].
In essence, EoL corresponds to the battery End of Warranty (EoW)
period, adopted in some automotive standards [14,15]. In relation to
capacity and resistance, the EoL values are commonly defined as
[4,11-13]:

Ceor = 0.8-CgoL (1)

ReoL = 2-RpoL (2)

According to [4] and [11—13], SoHg and SoHp are often calculated
as a percentage with respect to the difference between BoL and EoL
in either capacity (Equation (3)) or resistance (Equation (4)).

SoH = Crow — CEOL-]OO _ Crow — O~8'CBOL.]00

Cgor — CgoL ~ Cgor —0.8-Cpor

o Cnow - 0-8'CBOL

=T 02:Gy 100 (3)
Rnow - REOL Rnow -2 'RBoL

SoHp = ————-100 = —————-100
P Reor — ReoL RpoL — 2-RpoL
- (2 - R”"W) -100 (4)
Rpot

The decision as to which measure of battery health to use, SoHE,
SoHp or both, depends on the application. In the case of the auto-
motive industry SoHg is commonly employed in high-energy ap-
plications such as BEVs (specific energy >150 Wh/kg) [16], SoHp is
used for high-power applications such as Hybrid Electric Vehicles
(HEVs) (specific power > 1500 W/kg) [16] and both metrics can be
combined for Plug-in-HEV (PHEV) applications.

3. Experimental procedure

This study extends the experiment performed in [1], where four
3 Ah 18650 Li-ion cells were aged by 0, 50, 100 and 150 cycles
individually to ensure an initial SoHg difference of 40% and SoHp
difference of 45% between the least and the most aged cells. These
values correspond to a difference of capacity and impedance of
circa 8% and 30% respectively. Research published highlights that
differences in cell properties from initial manufacture and inte-
gration may be circa 25% for impedance [5] and 9% for capacity [17],
which is in agreement with the initial differences considered in this
study. The four cells are then connected in parallel and cycled for a
total of 500 cycles, where 500 cycles represents the EoL state ac-
cording to the manufacturer's specifications. Thus, all the cells were
loaded at least for 500 cycles. The experimental procedure is
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Fig. 1. (a) Charge-discharge cycling profile employed to age the cells, (b) Pseudo-OCV-SoC curve of cell 1 for 0 and 500 cycles for a discharge event, (c) EIS test with respect to the

frequency showing BMS operating area and Rgys.

divided into two phases: cycle ageing and cell characterisation.
Table 1 shows the test that was performed. The following sub-
sections summarise each of these tests. For a more detailed
explanation, refer to [1].

3.1. Cycle ageing

Asillustrated in Fig. 1(a) cycle ageing involved repeated cycles at
constant ambient temperature of 25 °C + 1 °C of the following: a1 C
discharge until the lower voltage limit was reached followed by
Constant Current-Constant Voltage (CC-CV) charging protocol. The
CC phase involved charging the cell at C/2 until the end of charge
voltage (4.2 V) was reached. The CV phase then consisted of
charging the cell until the current fell to C/20 (150 mA). This profile
was selected to significantly age the cells whilst not exceeding the

manufacturer's operating cell specification. This was achieved by
cycling the cells with a full DoD (e.g. 0—100%) without using large
currents [1]. A large DoD is deemed to emulate the operation of a
typical BEV in which, as discussed within [ 1], the BMS will control a
large variation in SoC to further maximise the range of the vehicle.

During cycle ageing, each cell was connected in series with a
10 mQ shunt resistor over which the voltage was measured. The
current was then calculated based on a current-voltage relationship
obtained through a least-squares solution in Ref. [1]. In addition,
the temperature was also measured midway along its length of
each cell using type T thermocouples.

3.2. Cell characterisation

Cell characterisation includes three tests: capacity test, pseudo-

Table 1
Experimental test matrix.
Cell Test Test start® Test finish Testing procedure T ADoD tsamp
[#cycles] [#cycles] [°C] [%] [s]
1 Cycling 0 500 CC-CV chg and 1C dchg 25 100 1
Charact Every 50 cycles 1C dchg, EIS test and pseudo-OCV 25 100 1
2 Cycling 50 500 CC-CV chg and 1C dchg 25 100 1
Charact Every 50 cycles 1C dchg, EIS test and pseudo-OCV 25 100 1
3 Cycling 100 500 CC-CV chg and 1C dchg 25 100 1
Charact Every 50 cycles 1C dchg, EIS test and pseudo-OCV 25 100 1
4 Cycling 150 500 CC-CV chg and 1C dchg 25 100 1
Charact Every 50 cycles 1C dchg, EIS test and pseudo-OCV 25 100 1

¢ Initial testing was performed in Ref. [1].
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OCV test and EIS test. In order to track the aged state of each cell
over time, each of these tests was performed every 50 cycles. In
total, each cell was characterised 11 times.

e The capacity test determines the quantity of electric charge that
a battery can deliver under specified discharge conditions.
Firstly each cell was charged to 100% SoC according to CC-CV
protocol. Then, the cell was discharged at 1 C to the lower
voltage limit. The cell's capacity is defined as the charge dissi-
pated over this discharge event.

The pseudo-OCV test is performed by discharging from the

upper cell voltage threshold (4.2 V) to the lower cell voltage

threshold (2.5 V) at C/10. The corresponding pseudo-OCV curve
is related to the SoC and is shown for cell 1 for 0 and 500 cycles

in Fig. 1(b).

o The EIS test was performed in galvanostatic mode with a peak
current amplitude of 150 mA (C/20) using a Solartron modulab
system (model 2100A). The tests were performed between
2 mHz and 100 kHz at SoC = 20%, SoC = 50% and SoC = 90%. SoC
was adjusted based on the pseudo-OCV curve (refer to Fig. 1(b)).
According to [18], a period of 4 h was allowed prior to per-
forming each EIS test. This measure avoids changes in the in-
ternal impedance when the cells are halted after being excited.
Operation at high frequencies (>2.5 kHz) would increase sub-
stantially the cost of the BMS hardware because the required
sampling rate will be higher. This explains why a BMS will
typically only operates at mid and low frequencies (<100 Hz). As
such, the resistance considered for this work is the one that the
BMS is capable of measuring. This resistance is here named as a

BMS resistance (Rgys) and, it is represented by the mid-
frequency turning point of the EIS plot as illustrated in
Fig. 1(c). This approach is consistent with other studies reported
within the literature [1], [19].

4. Results and discussions
4.1. Capacity — SoHg and resistance — SoHp

Fig. 2(a) and (b) illustrate the degradation of each cell over time
based on the measurement of the capacity at 1 C and the Rpys at an
SoC of 50%.

Fig. 2(a) and (b) indicate that capacity and Rpys tends to
converge for cells 2, 3 and 4 over cycle number. Since cell 1 rep-
resents the least aged cell, it requires more time to converge at the
same level than the rest of the cells. Fig. 2(c) and (d) show that the
resulting SoHg and SoHp trend is similar to the capacity and Rpys
trend. It can be seen that the SoHp decreases faster than SoHg
reaching the EoL value earlier (between 200 and 350 cycles) than
the value specified by the manufacturer (500 cycles). This result
indicates the lifetime power capability of the cells is shorter than
the energy capability. SoHp decreases faster than SoHg because the
conditions at which the cells were cycled (1C-rate discharge and
ADoD = 100%) leads to significant power losses. Such a cell would
not meet a commercial viable battery specification where both
metrics, SoHg and SoHp, need to be positive until the EoW period is
reached.

Fig. 2(c) and (d) also illustrate the mean value of the SoH. This
value represents the equivalent SoH that the BMS would track. A
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Fig. 2. (a) Cell capacity over cycle number, (b) Cell Rgys (SoC 50%) over cycle number, (c) Cell SoHg and SoHg over cycle number, and (d) Cell SoHp and SoHp over cycle number.
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Fig. 3. (a) Solg and Solp over cycle number, (b) Cell Contg over cycle number and (c) Cell Contp over cycle number.

new metric called State of Imbalance (Sol) is defined to quantify the
maximum cell-to-cell SoH difference at each characterisation test k.
The Sol is calculated for the case of SoHg and SoHp as shown
Equation (5) and Equation (6).

Solk = max(SoH’E) — min (SOHIE) (5)
Solk = max(SoH,’ﬁ) — min (SOH,’§) (6)
k=1.11

Fig. 3(a) illustrates that Solp decreases less than the Solg. For an
initial Solr of 40% and Solp of 45%, Solg decreases to 10% and Solp to
30% by the end of the test. In order to study which cell contributes
more to the SoH convergence Fig. 3(b) and (c) show the difference
of each cell SoHg and SoHp with respect to the mean value illus-
trated in Fig. 2(c) and (d), respectively. Contg and Contp of each cell i
at each characterisation test k is computed using Equation (7) and
Equation (8).

Contf ; = SoHY ; — SoH¥ , (7)
Contf ; = SoH ; — SoHK . (8)
k=1.11, i=1.4

Fig. 3(b) and (c) show cell 1, the least aged cell, contributes more

to the convergence whilst cell 4, the most aged cell, contributes the
least. The Contg and Contp decreases with cycle number, outlining
the SoH of each cell tends to converge.

4.2. Driving factors for SoH convergence

4.2.1. Current and charge-throughput distribution

Previous work [ 1] showed that cells connected in parallel under
imbalanced scenarios can undergo significantly different currents,
contributing to the cells degrading differently. To understand the
variation of the individual cell currents when the cells are con-
nected in parallel a simplified cell model was here considered. This
model comprises an OCV voltage source V,. connected in series
with an internal cell resistance Rjn. Previous literature [1,12,18,19]
use this model with an added RC parallel branch to capture diffu-
sion effects. The RC parallel combination is herein neglected to help
explain the cell-to-cell SoH variation more easily.

Based on this model, the individual cell current is derived as in
Equation (9).

Vi = Voc + Vr = Voc + Rint leen = Icet = VtR.it/oc (9)

m

The wide SoC range and difference in cell SoH give a scenario
with significant differences in Vo and Rj;; which, according to
Equation (9), will cause differences in cell currents.

Fig. 4(a) and (b), and Fig. 5(a) and (b) relate the individual SoC
and the individual cell currents of each cell I, Iy, I3 and 14 for the
35% and the 435™ discharge-charge cycle, respectively. These cy-
cles were arbitrarily selected near to the beginning and the end of
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Fig. 4. (a) Individual SoC of each cell for the 35 cycle, (b) current distribution of each cell for the 35" cycle, (c) detailed view of this current distribution for the discharge event for

the 35" cycle, (d) temperature distribution of each cell for the 35™ cycle.

the test.

The individual current of each cell diverges more for the dis-
charging event than for the charging event because the magnitude
of the C-rate is larger for discharging (-1 C) than for charging
(+0.5 C). The SoC of the less aged cells (cells 1 and 2) decreases
during discharging or increases during charging faster than for the
more aged cells because the current flow in the less aged cells is
higher in magnitude than in the more aged cells (cells 3 and 4).
Thus, when the less aged cell has completely discharged (or
charged), the more aged cells have not discharged (or charged)
completely yet, which consequently may drive higher currents in
these cells.

According to [1], this uneven current distribution during
charging and discharging causes peaks in the current which could
lead to premature ageing of the cells. Fig. 4(c) and Fig. 5(c) illustrate
the current distribution of each cell during discharge for the 35th
and the 435th discharge-charge cycle, respectively. The peaks in the
current are reached at low and high SoC, as a result of the deepest
discharge effects of the pseudo-OCV curve (refer to Fig. 1(b)). The
less aged cells take more current at high SoC as their impedance is
lower than the impedance of the more aged cells. However, the
more aged cells take more current at low SoC as they have been
discharged slower than the less aged cells and thus their imped-
ance is lower than the impedance of the less aged cells. According
to Fig. 1(b), the V¢ also decreases more at low SoC that additionally
limits the current that is able to flow (refer to Equation (9)). This
trade-off between SoC, impedance and V. explain the cell-to-cell
current cross-over depicted in Fig. 4(c) and Fig. 5(c). This result

has been previously reported in Refs. [1], [5].

Another observation from Fig. 4(c) and Fig. 5(c) is the peak-to-
peak current difference between the 35" and the 435™ cycle. The
peak-to-peak current difference between the least and the most
aged cell is larger at high SoC or low SoC for the 357 cycle (0.75 A)
than for the 435t cycle (0.5 A). This convergence in the peak-to-
peak current is explained by the convergence of the individual
cell capacity and resistance as illustrated in Fig. 2(a) and (b).

The charge-throughput is evaluated to analyse the effect of the
current distribution in the long-term. The charge-throughput is the
amount of accumulated current (absolute value) that is stored
(charging) and released (discharging) in the battery over time.
Using Equation (10) the charge-throughput is computed as the
integral of the current over the difference between the final t¢ and
the initial t’(j time. In this case, as the cycling test is “paused” to
characterise the cells, the charge-throughput (AhT) over the total
cycling tests is derived as the monotonic accumulation of the
charge-throughput of each individual cycling test k, one after
another.

tk
kL
ARTE =3 / o)k e (10)
=,
tO
k=1.11, i—1.4

Fig. 6(a) illustrates the charge-throughput of each cell i over
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cycle number and show that the charge-throughput of the less aged
cells is larger than for the more aged cells over time, outlining the
current in the less aged cells is in overall larger than in the more
aged cells.

To see clearly that the charge-throughput also converges the
individual charge-throughput after each cycling test is computed
using Equation (11). Equation (11) is the same than Equation (10)
without accumulating the charge-throughput over cycle number.

dt (11)

;
AT = [ |10
&

k=1.11, i=1.4

Fig. 6(b) illustrates that the individual charge-throughput after
each cycling test converges. This result together with the conver-
gence of the current (short-term) support the convergence of the
SoH.

4.2.2. Temperature and thermal-energy distribution

Since cell temperature primarily depends on cell impedance and
current, a number of studies correlate these parameters with SoH
[1,7,8]. Fig. 4(d) and Fig. 5(d) show the temperature distribution in
each cell for the 35™ and the 435" charge-discharge cycle,
respectively.

Fig. 4(d) and Fig. 5(d) illustrate that the cell temperature is larger
for all the cells at the 435™ (43 °C) than the 35 cycle (38 °C). The
increase in temperature over cycle number is due to the increase of
Rpys as depicted in Fig. 2. This increase of temperature is more
significant for low and high SoC with respect to mid SoC due to the
divergence of the individual cell currents (refer to Section 4.2.1) and
larger magnitude of Rgys [19].

In comparison with the current depicted in Fig. 4(d) and
Fig. 5(d), the variation of the temperature does not follow the initial
order of ageing of each cell. Fig. 4(d) depicts that the temperature of
cell 1, cell 3 and cell 4 is larger than the temperature of cell 2. This
result is explained based on the relative values of the impedance of
each cell with respect to the current. The difference in current of
cell 1, cell 3 and cell 4 vary significantly (Al;=0.9 A, Al3 = 0.42 Aand
Al = 0.65 A) from the beginning to the end of the discharge,
whereas the difference in current of cell 2 changes less (Al,=0.2 A).
In addition, the change of the impedance with respect to the SoC
influences also in the variation of cell temperature. For instance,
since cell 1 is the least aged cell it has the lowest resistance value
(refer to Fig. 2(b)). However, the impedance of cell 1 will rise at low
SoCs due to the significant drop of V, (refer to Fig. 1(b)) causing an
increase in temperature. The temperature of cell 2 is consistently
the lowest temperature because it has a relatively low impedance
without undergoing large current differences. This result is sup-
ported in Ref. [1] where cell temperature did not vary with respect
to the order of ageing.

For the case of the 435 cycle, the temperature is approximately
the same for all the cells since the current from the beginning to the
end of the discharge change very little (Al1=0.4 A, Al, = 0.04 A,
Alz = 0.15 A and Al4 = 0.3 A) and the resistance of each cell tend to
converge (refer to cell resistance values in Fig. 2(b)). Comparing
both Fig. 4(d) and Fig. 5(d) it is possible to conclude that temper-
ature tend to converge over time.

It can also be seen that the average peak temperature at 43
cycle (41.5 °C) is larger than the average peak temperature at 351
cycle (36 °C) due to the increase of Rgys with cycle number (refer to
Fig. 2(b)). To evaluate the temperature convergence in the long-
term Equation (12) approximates the total thermal energy

Sth

released in each cell i along the total number of cycling tests.

k4 2
B i =Y [ (I0F) Ryt (12)
k=1 .tk
0
k=1.11, i=1.4

Where I(t)ﬁ‘ denotes the current flow, and t§ and tf" the initial and
the final time. Equation (13) gives REMS as the mean value of the
instantaneous Rpys for each characterisation test k and cell i
considering each measured SoC.

k k k
Rk _ Rws i 20% + Reus i 50% + Rewms i 90% (13)
BMSi — 3

k=1.11, i=1..4

The RMS value of the current is employed to simplify Equation
(12) and it was calculated using Equation (14) over the charge-
discharge cycle period T.

k
&

1 02

Tovs i = Tk / <1(f)i> dt (14)
tf-Tk

k=1.11, i=1..4

The thermal energy based on the RMS value of the current is
computed using Equation (15).

k 2

Efyi = kZ <III§MS i) 'REMSi'(tf*%) (15)
=

k=1.11, i=1.4

Similarly as with the charge-throughput, the thermal energy
was computed as the monotonic accumulation of the thermal en-
ergy of each individual cycling test k, one after another. Fig. 7(a)
demonstrates the thermal energy released by the more aged cells is
larger than the thermal energy released by the less aged cells. The
least aged cell (cell 1) typically undergoes the highest current,
having the lowest impedance. Likewise, the most aged cell (cell 4)
typically undergoes the lowest current, having the highest
impedance. Thus, this result indicates the Rpys contributes more to
the thermal energy than the [3,,.. To compare the contribution
between Rgys and I,%Ms the ratio between the Rgys for cell 4 and cell
1 for each characterisation test k, and the ratio between the I3, for
cell 1 and cell 4 for each characterisation test k are derived using
Equation (16) and Equation (17).

) Rbvs i—a
Ry pus = Rk = (16)
BMS i=1
2
Ik .
RMS i=1
I¥ Ruis = u (17)
(Thus i-2)
RMS i—4
k=1..11

Fig. 7(b) illustrates R’; sus 1S for the major part of the test larger
than If rus Suggesting that thermal energy is more sensitivity to
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Table 2
Test results for the cells before and after being connected in parallel.
Cell Test start Test finish
cb Rems™ AhT! Ea’ SoHg' SoH,® P Rpis™ ART! Ea® SoHgf SoH,®
[Ah] [mQ] [kAh] (k] [%] [%] [Ah] [mQ] [kAh] [k]] (%] [%]
1 2.88 50.72 0.00 0.00 73.68 96.54 2.54 120.00 2.55 2357.80 7.89 -50.87
2 2.79 59.04 0.00 0.00 58.88 86.58 2.50 132.04 2.50 2454.30 2.96 -76.13
3 271 66.66 0.00 0.00 42.81 79.30 247 131.37 2.45 2443.30 -1.30 —68.44
4 2.66 72.15 0.00 0.00 34.64 70.94 248 134.85 240 2493.00 -1.30 -81.94

2 Not exactly the same values as in Ref. [1] because the cells were aged due to calendar ageing between the two different tests.

b Based on 1 C capacity test.
¢ Rpums measured at 50% SoC.
d Refer to Equation (10).

€ Refer to Equation (12).
f Refer to Equation (3).
& Refer to Equation (4).

Rews than to I3

To see clearly that the thermal energy also converges over time,
the individual thermal energy released after each cycling test is
computed using Equation (18). Equation (18) is the same than
Equation (15) without accumulating the thermal energy over cycle
number.

Efhina i = (11'51\/15 i)z'%' (t}( - f’é) (18)

k=1.11, i=1.4

Fig. 7(c) depicts the thermal energy released by each cell over
each cycling test converges. Hence, the convergence of temperature
(short-term) together with the convergence of the thermal energy
(long-term) support the convergence of the SoH.

As an overview, Table 2 gives a summary of the results evaluated
in this section, highlighting the values at the beginning and at the

end of the experiment. Observed that the capacity and Rgys of the
cells before being connected in parallel differ with respect to the
values reported in Ref. [1]. Since the cells were stored over half a
year between the previous and this study, this difference is
attributed to calendar ageing effects.

5. Simplified approach to SoH diagnosis and prognosis for
cells connected in parallel

Previous studies [20,21], found that knowing the capacity allows
the resistance to be approximated, and vice versa. In support of
those studies Fig. 8(a), (b), (¢) and (d) show a correlation between
capacity and Rpys for each cell. This correlation follows a linear
trend since it can be approximated by a first-order polynomial fit.
To measure the goodness of fit of this linear relationship the R-
square value is used. The R-square can vary between 0 and 1, where
0 indicates that the model describes none of the variability of the
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Fig. 8. Linear correlation between capacity and Rgys at 50% SoC for (a) cell 1, (b) cell 2, (c) cell 3 and (d) cell 4. Linear correlation between increase in ASoHg and ASoHp at 50% SoC for

(e) cell 1, (f) cell 2, (g) cell 3 and (h) cell 4.

response data with respect to its mean, and 1 indicates that the
model relates all the variability of the response data with respect to
its mean [21]. The minimum adjusted R-square value for all the
cases analysed is 0.8831 for cell 4. This result implies the linear fits
relate a significant variability of the response data with respect to
their mean.

To estimate the change of SoH based on the capacity fade or the
increase of resistance, ASoH’gi and ASoH’Igi are calculated using
Equation (19) and Equation (20). ASoH’gi represents the difference
between the SoHg of each characterisation test k and each cell i
(SOHE ;) with respect to the SoHE of the first characterisation test
k=1 and each cell i (SOH’} ;). Similarly, ASoH]’§,. represents the dif-
ference between the SoHp of each characterisation test k and each
cell i (SoH,’§ ;) with respect to the SoHp of the first characterisation
test k=1 and each cell i (SoH} ;).

ASoHE ; = SoHY ; — SoH} ; (19)

ASoHK ; = SoHK ; — SoH} ; (20)

k=1.11, i=1.4

Fig. 8(e), (f), () and (h) show the results for ASoH¥ ; and ASoH ;
for each cell. The relationship between ASoH’E< ;and ASOH{§ ; is linear
for each cell and thus it is also approximated by a first-order
polynomial fit. Similarly as the previous case, the minimum
adjusted R-square value for all the cases analysed is 0.8831 for cell
4.1t can also be seen that ASoHp goes outside of the EoL threshold as
it was illustrated in Fig. 2(b). Despite this, the linear relationship
between ASoHg and ASoHp will be still valid. The only difference
with respect to the result presented will be the gradient of the
approximated line.

The Pearson product-moment correlation coefficient (PPMCC) is
employed to quantify the grade of correlation between C and Rpys,

and ASoHp and ASoHE [21]. Equation (21) and Equation (22) defines
the PPMCC coefficients are computed as the covariance divided by
the standard deviations of each parameter using Equation (21) and
Equation (22).

cov,
R € = 5202 (21)
ORgus "0 C
COVASoH,, ASoH,
TASoHp ASoHy = "t (22)

O ASoHp " 0 ASoHg

The PPMCC varies between —1 and +1, depending if the corre-
lation is weak or strong. The absolute value of PPMCC is considered
in order to interpret the strength of the correlation as follows.
Employing the command corrcoef in MATLAB [22], the minimum
TRows,C AN Tasop, asop, 1S for both cases 0.9459 for cell 4. This result
highlights that C and Rgys, and ASoHp and ASoHg are strongly
correlated.

The linear correlation provides sufficient justification to calcu-
late capacity or resistance based on the knowledge of the other.
Secondly, this linear correlation allows the BMS to estimate in the
short-term (diagnosis) and in the long-term (prognosis) the change
of SoH in a simple way, which may be further investigated in the
future for real-time battery applications.

6. Limitations of this study and further work

In order to reduce the duration of the experiment, only one
capacity and resistance measurement of each cell at each ageing
state was considered. According to the theory of Design of Exper-
iments (DoE) [23], more than one sample is recommended to
ensure the measurements are representative. Thus, a greater
sample size is necessary to increase confidence in the findings of
this study.

The results of this study are only valid for the described
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experimental conditions. In cases where the testing conditions
change (e.g. ambient temperature or C-rate); or, the number of
cells connected in parallel is different than four; or, the condi-
tions at which the cells were initially aged are different; then, the
convergence may not be reached or may be reached earlier or
later. For instance, if the C-rate is high (> 1.5 C), then the least
aged cell could undergo more current than the maximum
current specified by the cell's manufacturer. This could ultimately
result in a cell failure. Another example is that the number of
cells connected in parallel may be related to the time required for
the cells to converge. Therefore, the same study at different
experimental conditions would need to be investigated in the
future.

Similarly, the correlation between the capacity and Rgys, and the
change in SoHg (ASoHE) and SoHp (ASoHp) could also be non-linear
for other test conditions, for instance, when cycling and storage
conditions are combined. Hence, the applicability of this should
also be tested against other testing conditions (cycling and storage)
and other cell chemistries.

7. Conclusions

This work analysed the cell-to-cell SoH variation of four 3 Ah
18650 Li-ion cells connected in parallel. The SoH is defined by the
capacity fade SoHg, and the power fade SoHp. For an initial SoHg
difference of 40% at the beginning of the test, the cells SoHg
converge to 10% at the end of the test (500 cycles). For the case of
the SoHp, for an initial difference of 45% the cells converge to within
30% at the end of the test. The initial SoHp and SoH[ corresponds to a
difference of circa 30% in impedance and 8% in capacity, values
which are in agreement with potential differences in cell properties
from initial manufacture and integration [5,17]. This study high-
lights that the BMS would track an incorrect value of the SoH until
the convergence is reached. To understand the reasons behind the
SoH convergence, the distribution of the SoC, current, temperature,
charge-throughput and thermal energy were studied. The distri-
bution of the cell currents does not entirely depend on the initial
ageing state of each cell as it is commonly assumed. The variation
depends on the OCV-SoC relationship and the change of cell
impedance with respect to SoC. This non-linearity in the variation
of the current may cause uneven heat generation within a pack,
which may require a higher specification thermal management
system [1]. In comparison with the current distribution, the vari-
ation of the SoC and the temperature is less dynamic. Although
these parameters change differently, all of them tend to converge
over time, driving the convergence of SoH. The charge-throughput
and the thermal energy of each cell over 500 cycles was also
studied to analyse variation of the current and the temperature in
the long-term. Similarly as for the current and the temperature, the
charge-throughput and the thermal energy tend to converge over
time.

This work also shows that the magnitude of the SoH decreases
much faster for the case of the SoHp with respect to the SoHg
because the testing conditions employed to cycle the cells (1 C
discharge and ADoD = 100%) leads to significant power fade.

In addition, this work suggested a simple approach for SoH
diagnosis and prognosis within the BMS. This approach was based
on two linear correlations: one between the capacity and Rgys, and
the other between the change in SoHg (ASoHg) and SoHp (ASoHp)
with a minimum adjusted R-square value of 0.8831 for both cases.
This result is relevant for two main reasons. Firstly, it is only
necessary to measure one parameter to estimate the other. Sec-
ondly, it could be further used to estimate the EoL of the battery.
This would also require the analysis of the correlation under other
conditions (e.g. temperature, C-rate, SoC and ADoD) in order to

cover the whole cycling spectra that a commercial battery pack may
be subject to.
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Nomenclature

Abbreviation

BEV Battery Electric Vehicle

BMS Battery Management System
BoL Begin of Life

CC-CV  Constant Current Constant Voltage

chg Charge

Charac Characterisation

dchg Discharge

DoD Depth of Discharge

DoE Design of Experiment

EIS Electrochemical Impedance Spectroscopy

EoL End of Life

EoW End of Warranty

HEV Hybrid Electric Vehicle

LIB Lithium-ion Battery

LFP Lithium-iron Phosphate

Min Minimum

Max Maximum

PPMCC Pearson product-moment correlation coefficient

NCA-C  Lithium-nickel-Cobalt-Aluminium-Carbon
P Parallel configuration

PHEV  Plug-in-Hybrid Electric Vehicle

RC Resistance-Capacitor

RMS Root Mean Square value

S Series configuration

ocv Open Circuit Voltage

Symbols and units

AhT Charge-throughput, [Ah]
cov Covariance, [—]

C Capacity, [Ah]
(Number)C C-rate, [A]

Cont Contribution to ageing, [%]

f frequency, [Hz]

I Current, [A]

Al Difference in current between beginning and end of
discharge, [A]

R Resistance, [Q]

T Period, [s]

T Temperature, [°C]

t Time, [s]

r Pearson product-moment correlation coefficient, [—]

SoC State of charge, [%]
Sol State of Imbalance, [%]
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SoH State of health, [%]

SoHg State of Health based on capacity, [%]

SoHp State of Health based on resistance, [%]

ASoHg  Change of State of Health based on capacity, [%]
ASoHp  Change of State of Health based on resistance, [%]
74 Voltage, [V]

Voc Open circuit voltage, [V]
Vi Terminal voltage, [V]

# Number of [—]

o Standard deviation [—]
Indices

0 Initial (i.e. time = 0)

eq Equivalent

f End

i Cell number

init Initial

ind Individual

int Internal

k Cycling test

M Total number of cells connected in parallel, M = 4
now Present value

r Ratio

samp Sampling

th Thermal
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