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Roger Hughes proposed a macroscopic model for pedestrian dynamics, in which indivi-
duals seek to minimize their travel time but try to avoid regions of high density. One of
the basic assumptions is that the overall density of the crowd is known to every agent.
In this paper we present a modification of the Hughes model to include local effects,
namely limited vision, and a conviction towards decision making. The modified velocity
field enables smooth turning and temporary waiting behavior. We discuss the modeling in
the micro- and macroscopic setting as well as the efficient numerical simulation of either
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description. Finally we illustrate the model with various numerical experiments and
evaluate the behavior with respect to the evacuation time and the overall performance.

Keywords: Hughes model; crowd dynamics; local vision; eikonal equations; self-
organization.

AMS Subject Classification: 35Q91, 35Q70, 35F21, 91C99

1. Introduction

The mathematical modeling and simulation of pedestrian dynamics, such as large
human crowds in public space or buildings, has become a topic of high practical
relevance. The complex behavior of these large crowds poses significant challenges
on the modeling, analytic and simulation level. These aspects initiated a lot of
research in the mathematical community within the last years, which we briefly
outline below. Mathematical modeling approaches for pedestrian dynamics can be
roughly grouped into the following categories:

(1) Microscopic models such as the social force model25,24,38 or cellular automata
approaches.11

(2) Fluid dynamic approaches12,33,4 and related macroscopic models, see for exam-
ple the popular Hughes model.29,18,23,10,39

(3) Kinetic models6,17 which uses ideas from gas kinetics to models interactions
between individuals via so-called collisions.

(4) In optimal control27 and mean-field game approaches31,19 pedestrians act as
rational individuals, which adjust their velocity optimal to a specific cost.

(5) Multiscale models coupling between different scales to describe for example
crowd leader dynamics.15,8

A detailed survey on crowd modeling can e.g. be found in Ref. 7. Several aspects
are considered to be important in the mathematical modeling to capture the com-
plex behavior in a correct way. For example, repulsive forces when getting too close
to other individuals or obstacles play an important role in the dynamics. Another
popular assumption is the fact that individuals act rationally and try to make
the optimal decision based on their actual knowledge level. Partial knowledge of
the overall pedestrian density or the domain is another important factor which
should be taken into account in the modeling. While these nonlocal effects can be
implemented quite intuitively on the microscopic level, their translation for macro-
scopic models is not straightforward. Most macroscopic nonlocal models are based
on the continuity equation for the pedestrian density, where the nonlocal effects
correspond to the deviation of the crowd from its preferred direction.12–14 This
deviation is determined by the average density felt by the pedestrians and modeled
via a convolution operator acting on the velocity. The development of numerical
schemes for conservation laws with nonlocal effects gained substantial interest in
the last years. This was, among other factors, also initiated by the development of
nonlocal models in traffic flow.3,9
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The original model of Hughes29 describes fast exit and evacuation scenarios,
where a group of people wants to leave a domain Ω ⊂ R

2 with one or several
exits/doors and/or obstacles as fast as possible. The driving force towards the exit
is the gradient of a potential φ = φ(x, t), x ∈ Ω, t > 0. This potential corre-
sponds to the expected travel time to maneuver through the present pedestrian
density towards an exit. Hughes assumed that the global distribution of pedest-
rians is known to every individual, an assumption not generally satisfied in real
world applications.

In this paper we present a generalization of the classical Hughes model, which
includes local vision via partial knowledge of the pedestrian density. We discuss
the proper modeling setup, the implementation of suitable numerical schemes as
well as their computational complexity. Furthermore we compare how the reduced
perception of each pedestrian affects the overall “performance” of the crowd in
evacuation scenarios. Inevitably, one expects the crowd to behave less efficient as less
information is available. Quantifying how localized vision influences performance
and decision making is a very interesting question in terms of collective behavior.
Surprisingly, it will turn out that evacuation times can even improve. The question
we investigate is therefore complementary to mean-field game approaches, where
pedestrians anticipate future crowds states and hence are more capable than in the
original Hughes’ model.31,19,10

This paper is structured as follows. We start with a review on the modeling and
analytic results of the classical Hughes model for pedestrian flow and its microscopic
interpretation in Sec. 2. In Sec. 3 we present the local version of the Hughes model
on the micro- and macroscopic level. Section 4 presents the numerical strategies for
the microscopic and macroscopic model. We compare the behavior and performance
of the models in Sec. 5 and conclude with a discussion of the proposed model in
Sec. 6.

2. Hughes’ Model for Pedestrian Flow

2.1. Original formulation and analytic results

Let us start by presenting the original modeling assumptions and the corresponding
partial differential equation system of the Hughes model for pedestrian flow. Hughes
considered an exit scenario, in which a crowd modeled by a macroscopic density
ρ = ρ(x, t) wants to leave a domain as fast as possible. The nonlinear PDE system
for ρ and the potential φ = φ(x, t) on the domain Ω ⊂ R

2 read as:
∂ρ

∂t
− div(ρf(ρ)2∇φ) = 0, (2.1a)

‖∇φ‖ =
1

f(ρ)
. (2.1b)

The first equation describes the evolution of ρ in time, driven by the gradient of
φ and weighted by a nonlinear mobility f = f(ρ). This mobility includes satura-
tion effects, i.e. degenerate behavior when approaching a given maximum density
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ρmax ∈ R
+. Possible choices are f(ρ) = ρ − ρmax or f(ρ) = (ρ − ρmax)2 amongst

others. The former is inherited from the Lighthill–Whitham–Richards model for
one-dimensional traffic flow.32,35

The potential φ corresponds to the weighted shortest distance to an exit in
the following sense: Solving the eikonal equation (2.1b) determines the optimal
path ∇φ minimizing the expected travel time throughout the crowd towards an
exit. This cost is measured as the inverse of f(ρ), hence the cost of walking through
dense regions is high. Equation (2.1b) is also a stationary Hamilton–Jacobi–Bellman
equation, and the optimal path property of ∇φ can be rigorously derived.5,26 The
fact that the potential φ solely determines the direction of the flow can be easily
seen as f2(ρ)∇φ = f(ρ)∇φ/‖∇φ‖ using (2.1b).

Hughes model (2.1) is supplemented with different boundary conditions for the
walls and the exits. We assume that the boundary is divided into two parts: either
impenetrable walls ∂Ωwall ⊂ ∂Ω or exits/doors ∂Ωexit ⊂ ∂Ω, with ∂Ωwall∩∂Ωexit =
∅. Typical conditions for the density ρ in (2.1) are zero flux boundary conditions
at ∂Ωwall, which are either automatically satisfied as ∇φ · n = 0 or artificially
enforced. The flux at ∂Ωexit has to be defined according to the arriving density and
our choices are discussed in Sec. 3. The boundary conditions of (2.1b) are set as
φ(x, t) = 0 for all x ∈ ∂Ωexit.

There has been a lot of recent mathematical research on the classical Hughes
model.18,23,1,21,2 Up to the authors knowledge all analytic results are restricted
to 1D only, which is caused by the low regularity of the potential φ. This low
regularity, i.e. φ ∈ C0,1, results in the formation of shocks and rarefaction waves
in the conservation law. It is caused particularly by the existence of sonic points,
which are hypersurfaces in space, where costs towards two or more exits coincide,
and therefore ∇φ does not exist and the orientational field is discontinuous. In
spatial dimension one the system can be reduced to the conservation law with a
discontinuous flux function. Global existence of entropy solutions in 1D has been
obtained in Ref. 2 under suitable assumptions which guarantee a good analytical
behavior of the sonic point. In this case it is possible to solve the corresponding
Riemann problem,18 which also serves as a basis for different numerical schemes.23,9

2.2. Microscopic interpretation

Hughes motivated system (2.1) on the macroscopic level only. Recently Burger
et al.10 were able to give a microscopic interpretation of (2.1), which will serve as a
basis for our local particle model. Microscopic models based on Hughes’ modeling
assumptions are also used in the field of computer vision.38

Let us consider N particles with position Xj = Xj(t) and velocity V j = V j(t),
j = 1, . . . , N . Then the empirical density ρN = ρN (t) is given by

ρN (t) =
1
N

N∑
j=1

δ(x − Xj(t)). (2.2)

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
16

.2
6:

67
1-

69
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
37

.2
05

.2
02

.7
2 

on
 0

9/
16

/1
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



January 25, 2016 14:55 WSPC/103-M3AS 1650014

An improved version of the Hughes model for pedestrian flow 675

Furthermore we introduce its smoothed approximation ρN
g = ρN

g (t), given by

ρN
g (x, t) = (ρN ∗ g)(x, t) =

1
N

N∑
j=1

g(x − Xj(t)),

where the function g = g(x) corresponds to a sufficiently smooth positive kernel.
The walking cost is given by the sum of a weighted kinetic energy and the exit
time, defined as Texit = sup{t > 0 | x ∈ Ω}. Then the problem reads as:

C(X ; ρ(t)) = min
(X,V )

1
2

∫ T+t

t

‖V (s)‖2

f2(ρN
g (ξ(s; t), t))

ds +
1
2
Texit(X, V ),

subject to
dξ

ds
= V (s) and ξ(0) = X(t).

(2.3)

Hence the optimal trajectory is determined by “freezing” the empirical density
ρN = ρN (t), in other words it corresponds to extrapolating the empirical density
ρN in time when looking for the optimal trajectory.

Burger et al.10 were able to show that Hughes’ model can be formally derived
from the optimality conditions of (2.3) and letting T → 0 (corresponding to the
long-time behavior of the corresponding adjoint Hamilton–Jacobi equation).

We will use this microscopic interpretation to propose a numerical approxima-
tion by a particle method in Sec. 4 of Hughes-type models. In fact, (2.1a) is seen as
a continuity equation with velocity field v(x, t) = −f(ρ)2∇φ driven by (2.1b), and
thus particles in (2.2) are advected by the velocity field v, e.g.

dXj

dt
= v(Xj(t), t), j = 1, . . . , N.

3. A Localized Smooth Hughes-Type Model for Pedestrian Flow

The Hughes model (2.1) assumes that at any time t > 0 the global distribution of
all other individuals ρ(x, t) is known to every pedestrian. Therefore she chooses her
optimal walking direction ∇φ in order to minimize its expected travel time/costs.
Here, all walking costs are based on the current density, which means that pedes-
trians do not anticipate future dynamics of the crowd. Instead they are capable to
react to changes in the global density ad hoc as the path optimization is repeated
continuously in time. In a mean-field game-type model, the capabilities of pedest-
rians would increase, as the planning decision of all agents can be correctly pre-
dicted into the future. We follow an opposite approach and reduce the capabilities
of pedestrians, to obtain a more realistic model.

The assumption of continuous and complete perception of global density infor-
mation at current time is highly questionable in practical situations. Limited
vision cones and restricted perception of global information comes through obsta-
cles (walls, buildings), physical distance, visual orientation or the inability to see
through a very dense crowd. Some effects of local vision on the behavior of crowds
are obvious: in an evacuation scenario with two exit corridors, which cannot be seen
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from each other, pedestrians caught in a jam in front of one exit will not be able
to see whether the other exit is free or also jammed.

These considerations motivated a new version of Hughes-type pedestrian dynam-
ics based on localized perception of information, which we introduce in this section.
The decision of each pedestrian is based on the perceived local density available
in a limited domain, which can be e.g. interpreted as a vision cone. Concepts of
limited cones have already been used in first-order models of collective behavior,
see e.g. Ref. 22. Furthermore a local interaction mechanism between individuals
as well as a smoothening kernel on the velocity field (to prevent unrealistic high
frequency oscillations in the direction of motion) are incorporated. We begin with
the detailed introduction of the macroscopic model and discuss the microscopic
analogue thereafter.

3.1. Macroscopic equations

The starting point of our model is the assumption that pedestrians still perform the
same path-optimization selection as in the Hughes’ model, while the crowd state
they act upon subjectively depends on their position and the amount of information
they are able to perceive. Let y ∈ R

2 be an auxiliary variable and φ(x, y) : R
4 → R

be a parametrized potential, such that y 	→ φ(x0, y) denotes the cost potential
calculated by pedestrians located at x0 ∈ Ω. To model space-dependent perception
of information, suppose that for every x the domain Ω decomposes into a visible
subdomain Vx 
 x and a hidden or invisible part Hx = Ω\Vx. We propose the
following mechanism of restricted vision: if an area is visible, its density is known
and priced accordingly in the path optimization. If however an area is not visible,
its density is thought to be a constant ρH ∈ R

+
0 , which we assume to be uniform

among all pedestrians. Exemplarily, setting ρH = 0 implies that pedestrians assume
that not visible areas to them are empty, hence they will have a strong incentive to
explore unseen parts of the domain. On the contrary, pedestrians will avoid invisible
areas when ρH ≈ ρmax, as they assume high costs. An eikonal equation in Ω is hence
solved in the auxiliary variable y for every point x as

‖∇yφ(x, y)‖ =




1
f(ρ(y, t))

, y ∈ Vx,

1
f(ρH)

, y ∈ Hx,

(3.1)

which gives the potential φ as function of two space variables. Note that this
notion of local perception differs from other recent work,9 where a local average
of the density is used. Each pedestrian uses the cost potential at her own posi-
tion for the decision process. Computing ∇yφ(x, x) hence would, after normaliza-
tion, give a new orientational vector field to be used in the unchanged transport
equation. We however argue that it makes sense to include a notion of conviction
to the model, which has previously not been considered. In order to do so, (3.1)
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is solved for every single exit. This results in the computation of M potentials
φk = φk(x, t), k = 1, . . . , M , which allows for cost comparison between exits, see
Remark 3.2.

In regions of high density, decisions on the walking direction towards any of k =
1, . . . , M exits ∂ΩEk

cannot arbitrarily deviate between neighbors. If a pedestrian
prefers to walk against the direction of a predominant local flow, collision or friction
losses in the movement will occur. Especially on the macroscopic level, in which we
take an aggregate perspective, an incentive to change the flow cannot arise from one
point in space alone. As we do not model the granular level of individual collision
or friction, we propose the following mechanism:

(1) Each pedestrian carries an individual conviction strength u(x) measuring its
preference of its chosen exit over all others.

(2) There exists a local consensus process within the crowd, which results in the
adjustment of the individual walking direction according to the predominant
direction around them.

Hence, pedestrians adjust their own direction in order to prevail the flow rather
than obstructing it. This can be seen as either a cognitive decision rule or a forced
physical restriction. For a compactly supported interaction kernel K : R

2 → R, we
define the final walking direction ϕ(x) at any point x ∈ Ω as

ϕ =
ρu � K
ρ � K , (3.2)

where the conviction u(x) is given as

u =
∇yφkopt

‖∇yφkopt‖ (φkopt+1 − φkopt), (3.3)

obtained by comparing the cost potentials φk, k = 1, . . . , M , associated to each of
the exits:

kopt(x) = argmin
k

φk(x, x), (3.4)

kopt+1(x) = argmin
k �=kopt

φk(x, x). (3.5)

Discontinuities in the velocity field due to the heterogeneity of decision making
amongst pedestrians are hence partially compensated. To further smooth the model,
we relax the strict restriction of ‖∇ϕ‖ = 1 of Hughes’ model and replace the
normalization operator with a smooth approximation P : R

2 → R
2 defined as:

P [x] :=




x

‖x‖ , ‖x‖ > �,

sin
(

π

2 arctan(k�)
arctan(k‖x‖)

)
x

‖x‖ , 0 < ‖x‖ ≤ �,

0, x = 0,

(3.6)
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exit wallwall

ww

χw

T1

0 0

T2
00 11

00

Fig. 1. Illustration of layer profile χw: wall and obstacle repulsion are embedded to the model
with a fixed cost W defined in terms of the layer profile χw(x) ∈ [0, 1], see (3.7), which indicates
proximity to walls less than a width w, but vanishes away from obstacles and near exits to allow
a proper outflow of pedestrians. χw equals one at walls and is the linear function given by vertex
values within triangles T1, T2 near exits.

for some parameters k, � > 0. We stress that this is not a technicality, as we here
allow pedestrians to stop when being undecided. This is highly desirable from the
modeling point of view, though on the other hand the modulus of the flux now is
not a function of density alone, as one can see below.

Next we discuss the boundary conditions for the eikonal equations. Since we
treat each exit separately, we set φk|∂ΩEk

= 0 in the computation of φk. No bound-

ary conditions are imposed on the rest of the boundary ∂Ωwall.
Near-wall and near-obstacle effects have a strong influence on the dynamics on

constrained macroscopic evolutions. We propose that pedestrians take into account
walls and obstacles in their computation of optimal paths. Hence it is natural to
include these effects as an additional fixed cost W (x) on the right-hand side of the
eikonal equation (3.1). We introduce a smooth layer profile χw(x) ∈ [0, 1], which
identifies areas close to walls but smoothly vanishes elsewhere and around exits
to allow outflow. A typical choice of χw is illustrated in Fig. 1. For the sake of
simplicity, we set

W (x) =
χw(x)

f(ρmax − ε)
, (3.7)

hence areas close to walls are penalized similar to high density areas.
Finally all terms are coupled to the continuity equation with velocity field

v(x, t) = −f(ρ)P [∇ϕ] as in the original model. At exits, we prescribe a maximum
outflow, given by v(ξ, t) = −f(ρ)n for all ξ ∈ ∂Ωexit. Taking all these considerations
into account, the full macroscopic model reads as:

∂tρ(x, t) + ∇x · (−f(ρ(x, t))P [∇ϕ(x, t)]ρ(x, t)) = 0, (3.8a)

ϕ(x, t) =
(ρu � K)(x, t)
(ρ � K)(x, t)

, (3.8b)

u(x, t) =
∇yφkopt (x, x, t)
‖∇yφkopt (x, x, t)‖ (φkopt+1(x, x, t) − φkopt(x, x, t)), (3.8c)

kopt(x, t) = argmin
k

φk(x, x, t), (3.8d)
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kopt+1(x, t) = argmin
k �=kopt

φk(x, x, t), (3.8e)

‖∇yφk(x, y, t)‖ =




1
f(ρ(y, t))

+ W (y), y ∈ Vx,

1
f(ρH)

, y ∈ Hx,

(3.8f)

s.t. φk|∂ΩEk
= 0, k = 1, . . . , M,∀ t, (3.8g)

s.t. P [ϕ(ξ, t)] = n, ∀ ξ ∈ ∂Ωexit, s.t. ρ(x, 0) = ρ0(x). (3.8h)

We conclude the section with remarks on specific modeling assumptions.

Remark 3.1. (Vision cones) We have set aside formal statements regarding
assumptions on the visible set Vx, but clearly we think of at least regular, con-
nected and closed sets. A necessary condition is

x ∈ V ◦
x = intVx, (3.9)

which implies that every pedestrian perceives some information from all directions.
This restriction rules out e.g. angular vision cones (see Ref. 16) where pedestrians do
not see what is happening behind them. In our model, (3.9) is necessary to exclude
unrealistic situations where the chosen walking direction points outside the visible
area. The inclusion of angular-dependent vision cones is certainly possible, but
would imply a velocity-dependency and lead towards a second-order macroscopic
model.

Remark 3.2. (Conviction term) The introduction of the conviction term u(x)
requires the computation of exit costs φk via the eikonal equation for individual
exits, which appears to be a significant complication of the model. However, it
is worth noting that the mechanism is almost identical to the original model. In
Eq. (2.1b) the costs of walking towards any of the K exits are compared, but only the
minimal costs are used. Here, we simply store more information. This connection is
also illustrated by looking at the numerical schemes for solving the eikonal equation:
if a Fast Sweeping Method is used in e.g. a corridor with two exists, this essentially
corresponds to solving for each exit separately if the minimization step is left out. If
a Fast Marching Method is used, the conviction is directly related to the sequence
in which vertices are promoted, with the least convinced vertex being assigned a
cost the latest.

Remark 3.3. (Waiting behavior) The relaxation ‖P [x]‖ ≤ 1 implies that the mod-
ulus of the flux can be less than f(ρ)ρ when pedestrians are undecided. This makes
a rigorous analysis of the model equations a difficult task, which is not tackled
in this work. The benefit of our formulation is that the problem of discontinuous
velocity fields at sonic points has disappeared. Pedestrians at those hypersurfaces
will not move unless the sonic points move.
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3.2. The one-dimensional case

Consider a one-dimensional corridor Ω = [0, 1] with two exits and the uniform radial
vision cone Vx = [x−L/2, x+ L/2]∩Ω of length L. Exit costs towards the left and
right exit are computed at y ∈ Vx as:

φL(x, y, t) =
∫

z<y,z∈Hx

1
f(ρH)

dz +
∫

z<y,z∈Vx

1
f(ρ(z, t))

dz,

φR(x, y, t) =
∫

z>y,z∈Hx

1
f(ρH)

dz +
∫

z>y,z∈Vx

1
f(ρ(z, t))

dz,

u(x, t) = φL(x, x, t) − φR(x, x, t),

as illustrated in Fig. 2. The cost potential φ is two-dimensional and ∂yφ(x, y) gives
the preferred walking direction that a pedestrian located at x seeing Vx assigns to
y ∈ [0, 1]. The walking directions chosen prior to the consensus process are hence
given as ∂yφ(x, x) along the diagonal of [0, 1]2. For every fixed x ∈ [0, 1], there is
a unique sonic point z(x), where φL(x, z(x)) = φR(x, z(x)) and ∂yφ(x, z(x)) does
not exist. As illustrated in Fig. 3, the individually preferred walking directions can
switch multiple times between both exits, depending on the current density and
the vision cones. At switching points, the preferred directions can point outwards
(separation) or inwards (collision) and only the weighted interaction process (3.8b)–
(3.8c) generates a smooth velocity profile. In the Hughes’ model, all vision cones
are identical and there is a single separation point.

0 x0 1

Vx0

φL

φR|u(x0)|

Fig. 2. Illustration of path optimization mechanism in 1D: a pedestrian located at x0 computes
and compares the cost potential φL, φR of left vs. right exit in a corridor [0, 1]. Next to its own
negligible density, the present crowd consists of three blocks. Outside the vision cone Vx, the
evacuation costs grow linearly at constant rate, as the local density is unknown. Within Vx, the
slope of the cost potential increases with the pedestrian density. Preference is then given towards

the exit with lower estimated cost. The conviction towards this decision is given as the cost benefit
|u(x0)| = |φL − φR|.
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0

1

0 1y

x

z(x)

0

1

0 1y

x

z(x)

(a) (b)

Fig. 3. Illustration of turning decisions of a 1D population for a given ρ(x, t): For every point x,
we show the individual sonic point z(x), where the costs φL(x, z(x)) = φR(x, z(x)) coincide. The
preferred walking direction for a pedestrian at x is found along the diagonal (x, x). If the sonic
point is to the left, the pedestrians aim to walk towards the right and vice versa. No direction is
preferred and the conviction is zero if the curve of sonic points intersects the diagonal. (a) Local
vision cones: the preferred direction alters and creates multiple points of separation and collision.
The resulting velocity field is obtained by the smoothening interaction process (3.8b)–(3.8c).

(b) Hughes’ model: all vision cones coincide, hence there is one identical sonic point common to
all pedestrians.

3.3. Microscopic interpretation

We conclude this section by briefly commenting on the modeling of local vision
at the microscopic level. The microscopic modification is straightforward and uses
the same ideas as at the macroscopic level. It corresponds to updating the position
X = X(t) according to a potential which depends on local information only. Its
calculation is based on the same equations as in the macroscopic model (3.8f) but
using the smoothed empirical density ρN

g instead of ρ. The position update is based
on Eqs. (3.8b)–(3.8e). Hence individuals choose the path towards the exit with the
lowest cost, but weigh their decision according to the predominant direction chosen
around them. For further details on the implementation we refer to Algorithm 2
presented in Sec. 4.

3.4. Analysis of the domains of dependence

In this subsection, we will discuss some mathematical properties of the solu-
tions of the eikonal equation (3.8f). From the construction of the model, the
potential φ(x, y, t) has to be computed for every x ∈ Ω on the entire domain
Ω, which counterbalances the idea of locality and increases the computational
cost considerably. We show here that the computation of the potential can actu-
ally be reduced to a subset of Ω, called the effective domain of dependence, for
every x. Only this subset, which contains Vx, is considered in the individual
local planning problem and corresponds to the reduction of the computational
cost.
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The following proofs rely crucially on the optimal path property of the charac-
teristics associated to the eikonal Eq. (3.8f). We recall26,5 that by Fermat’s principle
the characteristic paths associated to φ(x, y, t), given by the solution of:

γz
x,t(s) ⊂ Ω : γ(0) = z, γ̇(s) = −∇φ(x, γ(s), t) for all s ≥ 0 (3.10)

are the optimal paths for the cost defined as

c(y, t) =




1
f(ρ(y, t))

+ W (y), y ∈ Vx,

1
f(ρH)

, y ∈ Hx.

Moreover, the potential is the value function for that cost. Hence it is decreasing
along these paths and satisfies the optimality condition

φ(x, γz
x,t(a), t) − φ(x, γz

x,t(b), t) =
∫ b

a

c(γz
x,t(s), t)ds, for all 0 ≤ a < b, (3.11)

being zero at its corresponding exit ∂Ωexit. Furthermore, the curves γz
x,t are the

optimal paths to achieve the exit, i.e. they verify the following global optimality
condition

φ(x, z, t) =
∫ Tz

0

c(γz
x,t(s), t)ds ≤

∫ T̃z

0

c(γ̃(s), t) ds, (3.12)

for all γ̃ curves joining z to any point in the exit ∂Ωexit, where Tz is the optimal
time to achieve the exit for the point z ∈ Ω and T̃z is the time to achieve the exit
for the path γ̃.

Lemma 3.1. Consider any fixed Vx ⊂ Ω and that f(ρ)> 0, 0≤ ρ < ρmax. Let φH be
the global solution of the eikonal equation ‖∇φH‖ = 1/f(ρH), φH(x) = 0 on ∂Ωexit.
Define the minimum of φH in Vx as

mH := min
z∈Vx

φH(z)

and the corresponding superlevel set of φH as

MH := {x ∈ Ω : φH(x) ≥ mH}.

Then the problem of computing the local potential φ(x, y, t) =: φ̃(y) out of (3.8f) on
Ω reduces to the following problem on MH :



‖∇yφ̃(y)‖ =
1

f(ρ(y, t))
+ W (y), in Vx,

‖∇yφ̃(y)‖ =
1

f(ρH)
, in MH\Vx,

φ̃(y) = mH , on ∂MH\∂Ωwall(B.C.).
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Proof. If an exit is visible then mH = 0, MH = Ω and the assertion is trivial. If
no exit is visible then by construction Vx ⊂ MH and φH = mH > 0 on ∂MH . As
the walking costs are always positive, c(y, t) > 0, we get φ(x, y, t) > mH for all
y ∈ intMH . On the other hand, any point z ∈ Ω\MH satisfies φ(x, z, t) < mH and
hence γz

x,t(s) does not intersect Vx, otherwise the cost should be larger at a middle
point than initially, which would contradict the optimality of the path γz

x,t(s) in
(3.11). Hence ∂MH is the maximal level set consisting of points whose optimal
paths do not cross Vx, and therefore, φ(x, z, t) can be computed from (3.8f) with
constant right-hand side outside MH .

Definition 3.1. Consider a fixed visibility area Vx. For a z ∈ Ω, denote the default
optimal path γz

H as the parametrized curve associated to a gradient walk along φH

starting in z, that is

γz
H(s) ⊂ Ω : γ(0) = z, γ̇(s) = −∇φH(γ(s)) ∀ s ≥ 0.

Next, define the characteristics ’ shadow V # as the set of all points, whose default
optimal path crosses the visibility area, hence

V # := {z ∈ Ω : γz
H ∩ intVx �= ∅}.

Note that V # ⊂ MH since any default optimal path outside of MH cannot
intersect with Vx as proven in the previous lemma.

Lemma 3.2. Consider any fixed Vx ⊂ Ω and assume that f(ρ) > 0 is increasing
in 0 ≤ ρ < ρmax, with ρH = 0, then the problem of computing the local potential
φ̃(y) out of (3.1) further reduces to the following problem on V #:



‖∇yφ̃(y)‖ =
1

f(ρ(y, t))
+ W (y), in Vx,

‖∇yφ̃(y)‖ =
1

f(0)
, in V #\Vx,

φ̃ ≡ φH , on ∂V #.

Proof. For any point z whose default optimal path γz
H that does not inter-

sect with V , the claim is that φ̃(z) = φH(z) due the monotonicity of the cost
function, i.e.

1
f(ρ(y, t))

+ W (y) ≥ 1
f(0)

.

To prove this, let us denote by T H
z the optimal time to get to the exit for the

default optimal path γz
H .

We first take γz
x,t(s) as a candidate path in the global optimality condition (3.12)

for the eikonal equation with right-hand side cH = 1
f(0) . Being γz

x,t(s) a path joining
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V
V #

MH

Fig. 4. Illustration of the domains V, MH and V # for computation of the visibility area potential
φ̃ for the case of a corridor with two opposing exits: the problem on Ω generally reduces to a HJ-
equation on MH , as by construction φ̃ coincides with φH outside of MH (Lemma (3.1), −∇φH

solid arrows). If ρH = 0, any default optimal path of φH that does not intersect V remains
optimal, as indicated by dotted arrows, and the problem reduces to V # (Lemma 3.2).

z to a point in the exit and γz
H(s) the optimal one, we conclude

φH(z) = T H
z cH ≤ TzcH

≤
∫ Tz

0

c(γz
x,t(s), t)ds = φ̃(z).

Now, we take γH(z) as a candidate path in the global optimality condition (3.12)
for the eikonal equation with right-hand side c(y, t). It is an admissible path as
it connects z to a point at the exit and the cost along its path coincides with
cH = c(γz

H(s), t) for all s ∈ [0, T H
Z ] since the path does not cross V . Then,

we get

φ̃(z) ≤
∫ T H

z

0

c(γz
H(s), t)ds = T H

z cH = φH(z),

leading to the stated result.

We illustrate Lemmas 3.1 and 3.2 in Fig. 4. It can be seen that the reduction
of the computational domain from MH to V # can be significant, as the size of
MH depends on the closeness of V to the nearest exit, not on the size of V . For
the exemplary geometry of Fig. 4, the boundary of V # coincides with the sonic
points of φH , but this is not true in general. Furthermore, it is easy to see why the
computational domain cannot be reduced further. Suppose that ρ(·, t) is spatially
homogeneous, then −∇φ in V #\V points to the left exit as in the eikonal case. On
the other side, one can choose a situation with a large density at the left boundary
of V that leads to right-pointing −∇φ in V #\V .

4. Computational Methods

In this section we present a microscopic and a macroscopic numerical solver to sim-
ulate the classic and the local version of the Hughes model. The proposed methods
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have been implemented on regular and triangular meshes in 2D to allow for flexible
discretizations of polygonal domains with one or several obstacles.

For the macroscopic system (3.8) we use the following explicit iterative algo-
rithm:

Algorithm 1 Macroscopic version of the localized model
Initialization:

• A discretization Ω̂ = (V , E , T ) of Ω consisting of vertices, edges and cells.
• An initial density ρ̂0 given on T , such that

∫
T

ρ(x, 0)dx = ρ̂0(T ) ∀T ∈ T .
• A list of exits, a list of boundary edges per exit and |V| subsets of V containing

the vision cones defined in terms of vertices.

(1) Compute the cost potential φ̂k for all exits out of the current density ρ̂ by
solving (3.8f) along the vertices for every v ∈ V .

(2) Determine the cell values of φ̂k and ∇φ̂k by an averaging/finite differ-
ence approximation of the values at neighboring vertices, e.g. φ̂k(T ) =

1
|{v∈∂T}|

∑
v∈∂T φ̂k(u), and obtain û(T ) from here.

(3) Compute a numerical convolution of û with K, which gives ϕ̂ on the cells.
(4) Update the density with a cell-based Finite Volume Method using the velocity

field −f(ρ̂)P [ϕ̂] and a suitably chosen time step.

The discretization is either a regular grid or an unstructured regular triangular
mesh to allow more complex geometries. For solving the eikonal equations, one can
choose between Fast Sweeping Methods40,34 and Fast Marching Methods.30,36 The
former is based on a Gauss–Seidel iteration, which updates the solution by passing
through the computational domain in alternate pre-defined sweeping directions. A
rectangular grid provides a natural ordering of all grid points. This ordering does
not exist on an unstructured grid and is replaced by a general ordering strategy by
introducing reference points, which is done once. Then the solution at each node
is consecutively updated by running through the ordered lists. Marching methods
update vertices in a monotone increasing order, where in every iteration a list
of candidate values is available by finite difference approximation from previously
approved values. The smallest value of all of candidate values is then promoted and
assigned to its vertex.

As a Finite Volume Method we use the first-order monotone FORCE
scheme.37,20 Some post-processing between the steps of Algorithm 1 is required:
outward-pointing components of ∇φ̂k are removed along the boundary, suitable
values of ∇φ̂k are ensured at corners of Ω, and the max outflow condition (3.8h) is
enforced at cells neighboring exit edges.
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The analogous algorithm used for the numerical simulation of the microscopic
model is as follows:

Algorithm 2 Microscopic version of the localized model
Let us consider a system of N particles, which are initially located at positions
Xj(0) = Xj

0 . In every time step ti = i∆t we update the particle position as follows:

(1) Determine the empirical density at time ti:

ρN
g (x, ti) =

1
N

N∑
j=1

g(x − Xj(ti)),

where g denotes a Gaussian.
(2) Solve the eikonal equation to determine the weighted distance to each exit

φk = φk(x, ti), k = 1, . . . , M :

‖∇φk(x, y, ti)‖ =




1
f(ρN

g (y, ti))
+ W (y), if y ∈ Vx,

1
f(ρH)

, otherwise.
(4.1a)

φk(x, ti) = 0. (4.1b)

(3) Update the position of each particle Xj via:

Ẋj(ti) = −f2(ρN
g (x, ti) · ∇ϕ(x, ti))), (4.2)

where ϕ(x, ti) is determined by (3.8b).

5. Results

In this section we illustrate the dynamics of the localized model for crowd dynamics
with examples in one and two dimensions. In all simulations we consider an evac-
uation scenario of a corridor, where a given initial distribution of people tries to
leave the rectangular domain through either one of the two exits as fast as possible.
We compare the evacuation time, i.e. the time at which all individuals have left
the domain, with respect to different parameters, e.g. vision cones. In the case of
a global vision cone we obtain Hughes’-type dynamics. As a flux law, we choose to
the LWR function

f(ρ) = ρ(1 − ρ), (5.1)

setting ρmax = 1 throughout this section.

5.1. 1D corridor — Macroscopic model

In our first example the domain Ω corresponds to the unit interval Ω = [0, 1] with
two exits located at either end, i.e. at x = 0 and x = 1. We consider an evacuation
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scenario in which two groups, one of them being densely packed, want to leave
through either one of the exits:

ρ0(x) =




0.85 0 ≥ x ≥ 0.3,

0 0.3 < x < 0.6,

0.25 0.6 ≥ x ≥ 1,

(5.2)

and we set the width of the vision cone to L = 0.75. The resulting dynamics are
illustrated at four time steps in Fig. 5. Within the left block, some pedestrians
decide to walk towards the right exit, as they are aware of the high density on
their left and account for a higher walking cost compared to the relatively empty
right-hand side. After the separation the right-moving part evolves as a rarefaction
wave, as known from the LWR model. As the distance between the wave and the

−1.0

−0.5

0

0.5

1.0

0 0.25 0.50 0.75 1.00
−1.0

−0.5

0

0.5

1.0

0 0.25 0.50 0.75 1.00

(a) t0 = 0 (b) t1 = 0.31

−1.0

−0.5

0

0.5

1.0

0 0.25 0.50 0.75 1.00
−1.0

−0.5

0

0.5

1.0

0 0.25 0.50 0.75 1.00

(c) t2 = 0.71 (d) t3 = 1.29

Fig. 5. Exemplary evolution of the 1D model showcasing a turnaround behavior due to localized
perception of information [density ρ solid (−), speed v = −f(ρ)P[∇ϕ] dashed (−−) and directional
conviction φR−φL dotted (··)]. (a) Piecewise constant initial density. Part of the left crowd initially
decides to move right in order to avoid the high density jam. (b) The separated block moves to
the right in a rarefaction-wave manner. (c) The wave is again separated as the high density jam
gets out of sight for centrally located pedestrians, who hence prefer the left exit and turn. (d) The
turnaround is complete and remaining pedestrians will exit on the left.
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left-moving shock grows, the effects of the local vision cone become apparent. At
some point pedestrians moving to the right do not see the high density at the
left exit anymore and start to turn around. Therefore the rarefaction wave splits
again — one part continues while the other one turns around and moves back to
the left exit. The turnaround occurs in several stages:

(1) A new sonic point arises, where pedestrians are undecided between both exits.
The walking direction is unchanged as the local consensus process (3.8b) pre-
vents an immediate switching.

(2) When a critical mass of density and conviction opting for walking to the left,
the velocity after consensus switches continuously and passing through zero.
This creates a temporary collision point, as there are still pedestrians to the
left of the sonic point which walk towards the right.

(3) The density at the collision point increases, which causes pedestrians to the left
of the collision point to turn around too, as a higher density is in their way, as
it can be seen in Fig. 5(c).

(4) Finally, all pedestrians to the left of the initial sonic point have turned and
walk towards the left (Fig. 5(d)).

This new behavioral pattern is entirely consistent with the idea of constant
re-evaluation of the optimal path based on restricted information and cannot be
observed in the original Hughes’ model. We note that without the smoothening
properties of the model around points of equal costs one obtains strong oscilla-
tions in the turning behavior, which causes severe numerical problems. The exact
parameters of the simulation can be found in Appendix A.1

5.2. 2D corridor — Microscopic model

We illustrate the dynamics of the microscopic model in a two-dimensional symmet-
ric corridor Ω = [0, 1]×[0, 1

2 ] with exits at the left and right side, i.e. x = 0 and x = 1.
The 1D case of Sec. 5.1 can be interpreted as a projection of this two-dimensional
geometry. We consider the same initial distribution of individuals, i.e. the posi-
tions of all 500 particles are distributed according to the initial pedestrian density
(5.2). For L = 0.25, Figs. 6(a)–6(f) nicely illustrates a similar turnaround behav-
ior as in the 1D macroscopic simulations. At the beginning the group close to
the left exit splits, one part exits through the left exit and the other one moves
towards the more distant right exit. As the density close to the left exit decreases
in time, the group moving towards the more distant exit splits again, i.e. parts
of the group turn around and move back again. We marked all individuals, which
initially moved towards the right but then turn around, with red triangles. Further-
more, Fig. 6(g) shows the change of the evacuation performance for different sizes
of the local vision cones L. Here we plot the percentage of the total initial mass
outside the domain versus time. Decreasing L and hence the perceived information,
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Exit 1 Exit 2 Exit 1 Exit 2

(a) Time t = 0 (b) Time t = 0.2

Exit 1 Exit 2 Exit 1 Exit 2

(c) Time t = 0.4 (d) Time t = 0.6

Exit 1 Exit 2 Exit 1 Exit 2

(e) Time t = 0.8 (f) Time t = 1

Fig. 6. (Color online) Dynamics of the microscopic model in a two-dimensional corridor with two
exits at the right and left. We observe a similar behavior as in the 1D simulation in Sec. 5.1 —
individuals (visualized by red triangles) initially decide to move to the more distant exit, but
after the congestion at the resolves in time, they turn around and take the closer exit. (a)–(f):
particle solution for different times and L = 0.25, (g): exit percentage over time for different
values of L.
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Fig. 6. (Continued)

we observe that the overall evacuation performance first is merely diminished, and
only begins to drop significantly after a certain threshold. The evacuation time will
approach the uninformed eikonal case L = 0, which is not shown. All parameters
can be found in Appendix A.2.

5.3. 2D nonsymmetric corridor — Macroscopic model

Now we turn to the macroscopic model in two dimensions. Again we consider the
corridor Ω = [0, 1] × [0, 1

2 ], the exits however form only a part of the left and
right edges, hence we obtain a fully two-dimensional dynamics where boundary
conditions matter. The left exit is located between (0, 0) and (0, 0.1) and the right
exit is the segment connecting (1, 1

2 ) and (1, 0.4). The initial density Fig. 7(a) is
given as a low density group of pedestrians on the left and a high density group on
the right:

ρ0(x, y) =




0.1 0.05 ≤ x ≤ 0.3, 0 ≤ y ≤ 0.25,

0.95 0.6 ≤ x ≤ 0.95,

0 otherwise.

(5.3)

We first study the case of global vision L = ∞ ⇔ Vx = Ω in Fig. 7. In (b), the
low density group turns towards left and is quickly vacated. The high density group
on the other side splits along a curve of sonic points. Pedestrians turning to the
right cause a jam in front of the right exit, whereas left-turning pedestrians occupy
the corridor in a rarefaction-type manner inherited by the physical flux law (5.1).
Upon arrival at the left exit, pedestrians pile up and form a new jam (c). Hence, a
fraction of the density turns around again and heads for the right exit ((d), around
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(c) Time t = 1.07 (d) Time t = 1.4
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(e) Time t = 2.1 (f) Time t = 2.75

Fig. 7. Two-dimensional macroscopic dynamics: we simulate model (3.8) with global visual per-
ception Vx = Ω. Two groups of pedestrians are initially placed in a corridor with a lower left
and an upper right exit. The high density group separates according to the path optimization
mechanism, as illustrated in several time snapshots of the density in (a)–(f). The right exit is
vacated before the left exit and the final evacuation time (not shown here) is ≈3.4.

(0.5, 0.25)), having to cross most of the corridor again (e). However, most of the
pedestrians are committed to the left exit and do not turn, because the severeness
of the left jam does not compensate their expected travel time, and the left exit is
vacated later than the right exit (f).

Compared to the classical Hughes model, the relaxation term (3.6) and the
conviction-based interaction (3.8b)–(3.8c) allow for a smooth turning behavior. The
wall-repulsion (3.7) causes a density gap, which is different to zero-flux conditions
as in Ref. 28, but prevents any spurious effects of the boundary flux.

It is clear that even the planning algorithm incorporated into the classic Hughes’
model does not lead to an optimal evacuation. One reason for suboptimality in
Fig. 7 is that pedestrians have to keep in motion constantly but cannot predict the

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
16

.2
6:

67
1-

69
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
37

.2
05

.2
02

.7
2 

on
 0

9/
16

/1
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



January 25, 2016 14:55 WSPC/103-M3AS 1650014

692 J. A. Carrillo, S. Martin & M.-T. Wolfram

0 0.25 0.5 0.75 1
0

0.25

0.5

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0

0.25

0.5

0.75

1

(a) Time t = 0.25 (b) Time t = 0.8

0 0.25 0.5 0.75 1
0

0.25

0.5

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0

0.25

0.5

0.75

1

(c) Time t = 1.07 (d) Time t = 1.4
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Fig. 8. Two-dimensional macroscopic dynamics: we simulate model (3.8) with local visual per-
ception L = 0.75 and the same initial configuration as in Fig. 7. In the time snapshots of the
density, we observe again an initial separation of the high density group (a). A waiting phenom-
ena of up to two local groups is clearly observed (b)–(d). Crucially, waiting pedestrians are able
to choose their exit later (d)–(e), which leads to a rather simultaneously clearing of both jams (f),
as opposed to Fig. 7. The final evacuation time (not shown here) is ≈3.025.

occurrence of future jams. Hence, pedestrians are likely to walk towards an exit
that will be blocked in the future, as seen in the example.

In Fig. 8 we study the same initial configurations with localized perception and
a radial vision cone of diameter L = 0.75. The initial separation phase (a) is similar
to Fig. 7. As pedestrians move from the right to the left, the right jam gets out
of sight and its influence diminishes. At the same time, the density on the left
becomes visible. At a certain point a balance is achieved and pedestrians locally
accumulate around an area of equal walking costs, where in this case they are able
to stop (b)–(c). Hence, we observe a waiting behavior which cannot be observed in
classical Hughes’ type models. Looking from (c) to (d), a high density jam forms
at the left exit, which causes part of the left-walking pedestrians to turn right
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Fig. 9. Evacuation time of the macroscopic model for varying vision cone diameters L: the
performance can improve with limited vision. L = 0 corresponds to the eikonal case whereas
L > 2.5 implies unlimited vision in the given corridor.

after enough conviction is gathered. Together with some outflow of the first waiting
group, a second waiting group is formed (d). Pedestrians in a waiting group choose
to move if one direction becomes favorable. As both jams at the exits reduce at the
same rate, the left waiting group walks to the left and vice versa (e). Finally, the
waiting groups dissolve and the exits get vacated at a rather similar time (f), and
the evacuation time improves compared to Fig. 7.

The fact that evacuation performance can improve under limited perception of
information is surprising at first glance. Our simulations give a good explanation
for the phenomena: as pedestrians show a waiting behavior, they are less likely
to be trapped in the jam arising at the left exit. In fact, the waiting is made
possible by the combined effect of multiple sonic points due to local vision and the
smoothed turning mechanism. Naturally, this is not generally the case and cannot
be a priori answered. For small vision lengths L, the dynamics will converge to the
velocity field given by the eikonal equation, which is our initial configuration will
exit almost all pedestrians using the right exit and perform poorly. In Fig. 9, we
study the evacuation time of 99% of the initial mass as a function of the diameter L.
We unexpectedly find in this case two optimal values of L for which the evacuation
time is minimal. The classical Hughes’ evacuation time (L large) is always less or
equal than the eikonal case (L = 0), however there is no way to generally argue
that there will always be a minimum in-between.

6. Conclusion

In this work we introduced a localized smooth variant of Hughes’s model for pedes-
trian crowd dynamics. We regularized the original model, composed by an eikonal
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equation and a continuity equation. First by a local interaction term, which interme-
diates individual pointwise path optimization towards conviction-weighted walking
directions. Secondly, we allowed pedestrians to stop, if they are undecided, using a
smooth approximation of the normalization condition. Most importantly, we restrict
the information on the global density each pedestrian can use for her planning
algorithm to a local surrounding area. This is a very realistic assumption for large
crowds that has not been considered in the literature so far. We presented both a
microscopic and a macroscopic version, and illustrated the model components in
the one-dimensional case. In terms of analytical results, a rigorous theory for these
kind of equations in multiple dimensions is currently out of reach to the best of
our knowledge. However, we were able to identify some qualitative properties of
the dependence of the optimal path on the vision cone that allow for a reduction
of complexity.

The numerical approximation of the model on both levels has been discussed
and utilizes several techniques including sweeping and marching methods, particle
approximations and finite volume schemes. Though the numerical costs of comput-
ing a solution have increased due to the inhomogeneity of vision cones, we observe
new effects and phenomena in the model based on our simulations. First, local
groups of pedestrians are able to change repeatedly their walking direction towards
an exit. This “multiple turnaround behavior” can be explained by the multiple sonic
points of the estimated walking costs, which by construction cannot occur in the
classical case. We stress that the smoothening and conviction terms are crucial to
allow a swift turning behavior, which is not trivial to model in first-order equations.
Second, the model replicates a waiting behavior in case of undecided pedestrians,
i.e. in areas where locally estimated walking costs towards different exits are equal.
Surprisingly, we found that this waiting phenomena induced by localized informa-
tion can improve the overall evacuation performance of the crowd. In our numerical
example we observed two local minima when varying the vision cone diameter.

To conclude, we have demonstrated that local vision effects can be implemented
into first-order models for crowd dynamics. This leads to new unforeseen phenom-
ena and complex behavior, whose partial understanding via qualitative properties
is important for the applicability of such equations to social-economic problems.
On the other hand, this work illustrates the limitations to first-order models such
as Hughes’, where planning decisions are instantaneously updated and no social
or cognitive memory is taken into account. From our point of view Hughes’-type
equations constitute an important building block for crowd models and a mathe-
matically important object of study, but it cannot be expected to be fully realistic.

Appendix A. Simulation Parameters

A.1. 1D macro parameters in Sec. 5.1

The macroscopic simulation in 1D was implemented in MATLAB. The domain [0, 1]
was uniformly discretized with ∆x = 10−4. The time step was set to ∆t = 5 · 10−5.
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The vision cone was defined as Vx = [x − L/2, x + L/2] ∩ [0, 1] with L = 0.75.
The radial interaction kernel K was chosen as the indicator function on the interval
[0, 0.05]. The smoothed projection operator was chosen as in (3.6) with � = 0.05
and k = 25. The wall repulsion W (x) was neglected in 1D. Absorbing boundary
conditions were applied at both exits. The cost function was numerically bounded
at c(ρ) ≤ 104.

A.2. 2D micro parameters in Sec. 5.2

The microscopic simulations are implemented using the software package Net-
gen/NgSolve. The domain was discretized in 1438 triangles, the time steps were
set to ∆t = 10−2, the final time to T = 1.5. At time t = 0 we distributed the 500
particles according to the initial datum ρ0 used in Sec. 5.1. The empirical density
ρN

g was calculated using Gaussians with variance σ = 0.05 for the smooth approxi-
mation g. The width of the local vision cone was set to L = 0.25 in Figs. 6(a)–6(e)
and to L = 0.75, 0.5 and L = 0.25 in Fig. 6(f).

A.3. 2D macro parameters in Sec. 5.3

The macroscopic simulation in 2D was implemented in MATLAB. The domain Ω =
[0, 1]×[0, 1

2 ] was uniformly discretized with ∆x = ∆y = 10−3. The time step was set
to ∆t = 5 · 10−3. A Fast Sweeping Method was used to solve the eikonal equations.
The vision cone was defined as Vx = {y : ‖y − x‖2 ≤ L

2 } ∩Ω with varying diameter
L. The radial interaction kernel K was chosen as

K(x) =




exp
(
− b2

b2 − ‖x‖2

)
, ‖x‖ ≤ b,

0, else,

with b = 0.05. The smoothed projection operator was chosen as in (3.6) with
� = 0.05 and k = 25. The wall repulsion W (x) was defined with the width of the
boundary layer function χw set to w = 0.025. The wall costs W (x) were numerically
bounded at W (x) ≤ c(0.975). The cost function was numerically bounded at c(ρ) ≤
103. The numerical accuracy for vanishing density was set to 10−7.
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38. A. Treuille, S. Cooper and Z. Popović, Continuum crowds, ACM Trans. Graph. 25

(2006) 1160–1168.
39. F. Venuti and L. Bruno, Crowd-structure interaction in lively footbridges under syn-

chronous lateral excitation: A literature review, Phys. Life Rev. 6 (2009) 176–206.
40. H. Zhao, A fast sweeping method for eikonal equations, Math. Comput. 74 (2005)

603–627.

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
16

.2
6:

67
1-

69
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
37

.2
05

.2
02

.7
2 

on
 0

9/
16

/1
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.


