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Smoothed Analysis of the 2-Opt Algorithm for the General TSP

MATTHIAS ENGLERT, University of Warwick
HEIKO RÖGLIN, University of Bonn
BERTHOLD VÖCKING, RWTH Aachen University

2-Opt is a simple local search heuristic for the traveling salesperson problem, which performs very well in
experiments both with respect to running time and solution quality. In contrast to this, there are instances
on which 2-Opt may need an exponential number of steps to reach a local optimum. To understand why
2-Opt usually finds local optima quickly in experiments, we study its expected running time in the model of
smoothed analysis, which can be considered as a less pessimistic variant of worst-case analysis in which the
adversarial input is subject to a small amount of random noise.

In our probabilistic input model an adversary chooses an arbitrary graphG and additionally a probability
density function for each edge according to which its length is chosen. We prove that in this model the
expected number of local improvements is O(mnφ · 16

√
lnm) = m1+o(1)nφ, where n and m denote the

number of vertices and edges of G, respectively, and φ denotes an upper bound on the density functions.

CCS Concepts: rTheory of computation → Design and analysis of algorithms; Graph algorithms
analysis;

Additional Key Words and Phrases: Traveling salesperson problem, local search, 2-Opt, probabilistic analy-
sis, smoothed analysis
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1. INTRODUCTION
An instance of the traveling salesperson problem (TSP) consists of a set of cities and
the pairwise distances between these cities. The goal is to find the shortest tour that
visits every city exactly once and returns to the starting city in the end. The TSP is one
of the most studied optimization problems and numerous theoretical and experimental
results have been obtained. In experiments the most successful heuristics for the TSP
are based on the principle of local search. These heuristics start with some solution
and improve it by local operations until a local optimum is reached. Even though the
TSP is NP-hard to approximate, in many cases these heuristics quickly compute very
good solutions.

The 2-Opt algorithm is a particularly simple local search heuristic for the TSP.
It starts with an arbitrary initial tour and incrementally improves this tour by ex-
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changing two edges from the current tour with two edges that are not in the current
tour (ensuring that after the exchange another tour is obtained and that this tour is
shorter than the current tour). We will call such a local improvement an improving 2-
change. 2-Opt terminates if the current tour admits no improving 2-change anymore.
Lueker [Lueker 1975] has constructed instances for the general TSP on which 2-Opt
can make an exponential number of local improvements. In contrast to this, in exper-
iments the 2-Opt heuristic needs only a subquadratic number of local improvements
until it reaches a local optimum [Johnson and McGeoch 1997].

The reason for the big discrepancy between Lueker’s result and the experimental
observations is that worst-case instances for 2-Opt have a very artificial structure and
do not occur naturally in applications. In order to provide a theoretical underpinning
of this statement, we study the running time of the 2-Opt algorithm in the framework
of smoothed analysis, which has originally been invented by Spielman and Teng [Spiel-
man and Teng 2004] to explain the practical success of the simplex method. This model
can be considered as a less pessimistic variant of worst-case analysis in which the
adversarial input is subject to a small amount of random noise and it is by now a
well-established alternative to worst-case analysis.

In the model we consider, an adversary specifies an arbitrary graph G = (V,E)
with n nodes and m edges. The nodes represent the cities and the edges represent
the roads between the cities along which the salesperson can travel. Every edge e ∈ E
has a certain length d(e) ≥ 0. Instead of fixing each edge length deterministically,
the adversary can only specify, for each edge e ∈ E, a probability density func-
tion fe : [0, 1] → [0, φ] according to which the length d(e) is chosen independently
of the other edge lengths. The parameter φ ≥ 1 determines how powerful the ad-
versary is. The adversary can, for example, choose for each edge length an interval
of length 1/φ from which it is chosen uniformly at random. This shows that in the
limit for φ → ∞ the adversary is as powerful as in a classical worst-case analysis,
whereas the case φ = 1 constitutes an average-case analysis with uniformly chosen
edge lengths. We call an instance of this form a φ-perturbed graph. Note that the re-
striction to the interval [0, 1] is merely a scaling issue and entails no loss of generality.
In particular, the restriction d(e) ≥ 0 is without loss of generality as well because neg-
ative distances can be avoided by adding the same sufficiently large number to each
distance. This does neither affect the behavior of 2-Opt nor does it change the relative
order of different tours because every tour contains exactly n edges.

The TSP is often defined only for complete graphs, in which the distance between ev-
ery pair of cities is finite. In contrast to this, we do not need to assume that the graphG
is complete. This model is slightly more general because by leaving out edges, one can
explicitly forbid the salesperson to travel directly between certain cities. However, it
makes only sense to apply the 2-Opt algorithm to graphs for which at least some tour
is known because for general graphs it is already NP-hard to find an initial tour.

When talking about the number of local improvements, it is convenient to consider
the state graph. For a given graph G, the nodes of this directed graph correspond to
the possible tours in G and an arc from a node v to a node u is contained if and only if u
can be obtained from v by performing one improving 2-change. Observe that the state
graph is acyclic because the tour length is strictly decreasing on any path. We study
the length of the longest path in the state graph because this is the maximal number
of local improvements the 2-Opt algorithm can make, regardless of the initial tour and
regardless of which local improvement is chosen if multiple are possible in the current
tour.
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THEOREM 1.1. For every φ-perturbed graph with n vertices and m edges the ex-
pected length of the longest path in the 2-Opt state graph is O(mnφ · 16

√
lnm) =

m1+o(1)nφ.

This theorem provides an explanation why worst-case examples do not occur in ex-
periments. It shows that already a small amount of randomness in the edge lengths
makes it very unlikely to obtain an instance on which 2-Opt can take more than a
polynomial number of steps. In practice, random noise can originate, for example, from
measurement errors. We can also use random noise to model influences that we can-
not quantify exactly but for which we do not have any reason to believe that they are
adversarial.

1.1. Related Work
Lueker [Lueker 1975] has constructed TSP instances whose state graphs contain ex-
ponentially long paths. This result was generalized to k-Opt, for arbitrary k ≥ 2,
by Chandra, Karloff, and Tovey [Chandra et al. 1999]. These negative results, how-
ever, use arbitrary graphs that cannot be embedded into low-dimensional Euclidean
space. In [Englert et al. 2014] we have extended these results and constructed two-
dimensional Euclidean instances whose 2-Opt state graphs contain exponentially long
paths. Also for every other Lp metric, we have constructed two-dimensional instances
with exponentially long paths in the 2-Opt state graph.

For Euclidean instances in which n points are placed independently uniformly at
random in the unit square, Kern [Kern 1989] has shown that the length of the longest
path in the state graph is bounded by O(n16) with probability at least 1 − c/n for
some constant c. Chandra, Karloff, and Tovey [Chandra et al. 1999] have improved
this result by bounding the expected length of the longest path in the state graph
by O(n10 log n). For instances in which n points are placed uniformly at random in
the unit square and the distances are measured according to the Manhattan metric,
Chandra, Karloff, and Tovey have shown that the expected length of the longest path
in the state graph is O(n6 log n).

In [Englert et al. 2014] we have considered a more general probabilistic input
model and improved the previously known bounds. The probabilistic model underly-
ing our analysis allows different points to be placed independently according to dif-
ferent continuous probability distributions in the unit hypercube [0, 1]d, for some con-
stant dimension d ≥ 2. The distribution of a point p is determined by a density func-
tion fp : [0, 1]d → [0, φ] for some given φ ≥ 1. We have proved that in this model the
expected length of the longest path in the 2-Opt state graph is O(n4φ) for the Manhat-
tan metric and O(n4+1/3 log(nφ)φ8/3) for the Euclidean metric.

For the case that every point is perturbed by Gaussian noise with standard devia-
tion σ, the results in [Englert et al. 2014] give rise to a bound on the expected length of
the longest path in the 2-Opt state graph that is polynomial in n and 1/σd for the Eu-
clidean metric. This has been improved by Manthey and Veenstra [Manthey and Veen-
stra 2013] who proved for this case an upper bound that is polynomial in n and 1/σ.

2. OUTLINE OF THE ANALYSIS
Before we prove Theorem 1.1, we prove a weaker (yet polynomial) bound on the ex-
pected number of 2-changes. The proof of this weaker bound illustrates our proof tech-
nique and it sheds light on the problems one has to solve in order to derive a better
bound. We discuss these problems and outline our approach in Section 2.2.

In the following we use the notation [n] to denote the set {1, 2, . . . , n} for n ∈ N.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.
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2.1. A Simple Polynomial Bound
THEOREM 2.1. For every φ-perturbed graph with n vertices and m edges the ex-

pected length of the longest path in the 2-Opt state graph is at most m2n2 ln(n)φ.

PROOF. First we observe that every tour has length at most n because it contains n
edges and every edge has length at most 1 in our probabilistic input model. Let ∆ de-
note the smallest improvement made by any improving 2-change. Then every sequence
of ` consecutive improving 2-changes decreases the length of the tour by at least `∆.
Hence, regardless of the initial tour, after n/∆ + 1 improving 2-changes the length of
the tour must have decreased below zero, which is not possible. Thus a lower bound
for the smallest possible improvement ∆ immediately implies an upper bound of n/∆
on the length of the longest path in the 2-Opt state graph.

In the following we first prove that for any ε > 0,

Pr [∆ ≤ ε] ≤ m2εφ. (1)

We denote the improvement made by a 2-change in which the edges e1 and e2 are
exchanged with the edges e3 and e4 by

∆(e1, e2, e3, e4) = d(e1) + d(e2)− d(e3)− d(e4).

With this notation we can write the smallest possible improvement made by any im-
proving 2-change as

∆ = min
e1,e2,e3,e4

∆(e1,e2,e3,e4)>0

∆(e1, e2, e3, e4),

where the minimum is taken over all tuples (e1, e2, e3, e4) ∈ E4 for which e1, e3, e2, e4 is
a 4-cycle in G because only these tuples could possibly form a 2-change.

First we bound the probability that a fixed 2-change in which the edges e1 and e2

are exchanged with the edges e3 and e4 is improving but yields an improvement of
at most ε. This corresponds to the event ∆(e1, e2, e3, e4) ∈ (0, ε]. We use the principle
of deferred decisions and assume that the lengths d(e2), d(e3), and d(e4) have already
been fixed arbitrarily. Then the event ∆(e1, e2, e3, e4) ∈ (0, ε] is equivalent to the event
d(e1) ∈ (κ, κ+ε], where κ = d(e4)+d(e3)−d(e2) is some fixed value. As d(e1) is a random
variable whose density is bounded from above by φ, the probability that d(e1) assumes
a value in a fixed interval of length ε is at most εφ. Hence,

Pr [∆(e1, e2, e3, e4) ∈ (0, ε]] ≤ εφ.

We apply a union bound over all possible 2-changes. There are at most
(
m
2

)
< m2

2
choices for the set {e1, e2} and, once this set is fixed, there are two choices for the
set {e3, e4} because e1, e3, e2, e4 has to be a 4-cycle. Hence, the total number of different
2-changes is bounded from above by m2, which yields

Pr [∆ ∈ (0, ε]] ≤ Pr [∃e1, e2, e3, e4 : ∆(e1, e2, e3, e4) ∈ (0, ε]] ≤ m2εφ.

This concludes the proof of (1).
With the help of (1) we can prove the theorem. We have argued above that the num-

ber of steps that 2-Opt can make is bounded from above by n/∆. Let T denote the
length of the longest path in the state graph. This number can only be greater than or
equal to t ∈ N if n/∆ ≥ t, which is equivalent to ∆ ≤ n/t. Hence, due to (1),

Pr [T ≥ t] ≤ Pr
[
∆ ≤ n

t

]
≤ m2nφ

t
.

One important observation is that T is always bounded from above by n! because this
is an upper bound on the number of different tours, which equals the number of nodes
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in the state graph. Hence, we obtain the following bound for the expected value of T :

E [T ] =

n!∑
t=1

Pr [T ≥ t] ≤
n!∑
t=1

m2nφ

t
= m2nφ ·

n!∑
t=1

1

t
≤ m2n2 ln(n)φ.

Here we used the inequality
∑n!

t=1
1
t ≤ 1 + ln(n!) ≤ n ln(n), which holds for n > 3.

2.2. How to Improve the Simple Bound
The bound in Theorem 2.1 is only based on analyzing the smallest improvement ∆
made by any of the 2-changes. Intuitively this is too pessimistic because most of the 2-
changes might yield a much larger improvement than ∆. For example, two consecutive
2-changes yield an improvement of at least ∆ plus the improvement ∆′ of the second
smallest 2-change. This observation alone, however, does not suffice to improve the
bound substantially. In our analysis of the Manhattan and the Euclidean TSP [Englert
et al. 2014] we have shown that one can regroup the 2-changes in any sufficiently long
path in the state graph to pairs such that each pair of 2-changes is linked by an edge,
meaning that one edge added to the tour in the first 2-change of the pair is removed
from the tour in the second 2-change of the pair. Then we have analyzed the smallest
improvement made by any pair of linked 2-changes. This improvement is at least ∆+∆′

but one can hope that it is much larger because it is unlikely that the 2-change that
yields the smallest improvement and the 2-change that yields the second smallest
improvement form a pair of linked steps. We have shown that this is indeed the case
and use this result to prove stronger bounds on the expected length of the longest path
in the 2-Opt state graph.

The analysis of the Manhattan TSP in [Englert et al. 2014] can easily be adapted
to the model of φ-perturbed graphs studied in this article. This results in a bound
of O(m3/2nφ) for the expected length of the longest path in the state graph (observe
that for complete graphs this coincides with the bound of O(n4φ) for the Manhattan
TSP proved in [Englert et al. 2014]). In order to prove Theorem 1.1, we will not only
consider linked pairs of 2-changes but longer sequences of linked steps. We call a se-
quence S1, . . . , Sk of 2-changes linked if for each i ∈ [k − 1] the steps Si and Si+1 are
linked by an edge. For the Manhattan and the Euclidean TSP this is not easily possi-
ble due to dependencies between the steps in a linked sequence. In φ-perturbed graphs
these dependencies are less severe because the edge lengths are independent random
variables, which makes it possible to study also larger values of k.

In order to control the dependencies, we introduce the notion of witness sequences in
Section 3.1. These are linked sequences that satisfy some additional technical proper-
ties. In Section 3.2 we show that any witness sequence yields a significant improve-
ment with high probability and in Section 3.3 we prove that the steps in any path in
the state graph of length t > n4k+1 can be grouped into at least t/4k+1 disjoint wit-
ness sequences of length k. We will see in Section 3.4 that these results together yield
the desired bound on the expected length of the longest path in the state graph if one
sets k =

√
lnm.

3. PROOF OF THEOREM 1.1
3.1. Definition of Witness Sequences
In this section, we define three different types of witness sequences. As mentioned
above, a witness sequence S1, . . . , Sk has to be linked, i.e., for i ∈ [k − 1], there must
exist an edge that is added to the tour in step Si and removed from the tour in step Si+1.

LEMMA 3.1. There are at most 4k−1mk+1 different linked sequences of length k.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.
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ei+1Si Si+1
ei

fi

gi+1

. . .ei−1Si−1

gi−1 gi

fi−1fi−2

ei−2. . .

Fig. 1. Illustration of the notation used in Section 3.1. Every node in the shown graph corresponds to a
2-change. The arcs going into a node u represent the edges removed from the tour in step u and the arcs
going out of a node u represent the edges added to the tour in step u.

PROOF. There are at most m2 different choices for the first step S1 because there
are at most

(
m
2

)
≤ m2/2 choices for the two edges that are removed from the tour in

step S1 and, once these are fixed, at most two choices for the edges added to the tour
in step S1 (remember that the edges must form a 4-cycle alternating between edges
added and removed from the tour).

Once Si is fixed, there are at most 4m choices for Si+1 because there are two choices
for the edge that links Si and Si+1, at most m choices for the other edge removed from
the tour in step Si+1, and, once these are fixed, at most two choices for the edges added
to the tour in step Si+1.

We call a sequence of steps ε-bad if every step in the sequence is improving but yields
an improvement of at most ε. The probability that a fixed 2-change is an improvement
by at most ε is bounded from above by εφ. Ideally we would like to show an upper
bound of (εφ)k on the probability that each step in a given linked sequence S1, . . . , Sk

is an improvement by at most ε. However, for general linked sequences this is not true
because the steps can be dependent in various ways (some steps might even repeat).
We need to introduce further restrictions on linked sequences to obtain a good upper
bound on the probability that every step is a small improvement.

In the following definitions, we assume that a linked sequence S1, . . . , Sk of 2-changes
is given. For i ∈ [k], in step Si the edges ei−1 and fi−1 are removed from the tour and
the edges ei and gi are added to the tour, i.e., for i ∈ [k − 1], ei denotes an edge that
links the steps Si and Si+1. These definitions are illustrated in Figure 1.

Definition 3.2 (witness sequences of type 1). If for every i ∈ [k], the edge ei does not
occur in any step Sj with j < i, then S1, . . . , Sk is called a k-long witness sequence of
type 1.

A k-long witness sequence of type 1 possesses enough randomness to obtain an upper
bound of (εφ)k for the probability that it is ε-bad because every step introduces an edge
that has not occurred in the steps before (see Lemma 3.5).

Definition 3.3 (witness sequences of type 2). If for every i ∈ [k], the edge ei does not
occur in any step Sj with j < i and if each endpoint of fk−1 occurs in some step Sj with
j < k (not necessarily the same for both endpoints), then S1, . . . , Sk is called a k-long
witness sequence of type 2.

Observe that every k-long witness sequence of type 2 is also a k-long witness se-
quences of type 1. Hence, also for every witness sequences of type 2, we obtain the
desired bound of (εφ)k for the probability that it is ε-bad. Due to the additional restric-
tion on fk−1, the number of k-long witness sequences of type 2 is at most k24kmk (see
Lemma 3.5). Even though it seems like a minor detail, it is very important that the
exponent of m in this bound is only k and not k + 1 as for k-long witness sequences of
type 1. The reason why this is important is that, as we will see later, the quotient of
the exponents of m and ε in the upper bound for the probability that there exists an
ε-bad witness sequence determines the exponent of m in the bound for the expected
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length of the longest path in the state graph. For witness sequences of type 1 this quo-
tient is (k + 1)/k = 1 + 1/k while it is only k/k = 1 for witness sequences of type 2.
Since we aim for the exponent 1 + o(1), witness sequences of type 1 are only helpful in
our analysis for k = ω(1) while witness sequences of type 2 of any length yield a good
enough bound on the expected length of the longest path in the state graph.

Definition 3.4 (witness sequences of type 3). If for every i ∈ [k − 1], the edge ei does
not occur in any step Sj with j < i, if ek and gk both occur in steps Sj with j <
k (not necessarily the same), and if fk−1 does not occur in any step Sj with j < k
then S1, . . . , Sk is called a k-long witness sequence of type 3.

Also every witness sequences of type 3 possesses enough randomness to bound the
probability that it is ε-bad by (εφ)k because every step introduces a new edge. The num-
ber of witness sequences of type 3 is bounded from above by k24k+1mk (see Lemma 3.5).
Hence, the same reasoning as for witness sequences of type 2 applies and witness se-
quences of type 3 of any length yield a good enough bound on the expected length of
the longest path in the state graph.

3.2. Probability of the Existence of a Bad Witness Sequence
In this section, we analyze the probability that there exists an ε-bad k-long witness
sequence.

LEMMA 3.5. The probability that there exists

a) an ε-bad k-long witness sequence of type 1 is bounded from above by 4k−1mk+1(εφ)k,
b) an ε-bad k-long witness sequence of type 2 is bounded from above by k24kmk(εφ)k,
c) an ε-bad k-long witness sequence of type 3 is bounded from above by k24k+1mk(εφ)k.

PROOF. a) We consider k-long witness sequences of type 1 first. In accordance with
Lemma 3.1 the number of such sequences is at most 4k−1mk+1. Now fix an arbitrary
k-long witness sequence S1, . . . , Sk of type 1. We use the same notation as in Figure 1
to denote the edges involved in this sequence. In the first step, the edges e0 and f0 are
replaced by the edges e1 and g1. As in the proof of Theorem 2.1, we use the principle
of deferred decisions and assume that the lengths of the edges e0, f0, and g1 are de-
termined by an adversary. The improvement of step S1 can be expressed as a simple
linear combination of the lengths of the involved edges. Hence, for fixed lengths of e0,
f0, and g1, the event that S1 is an improvement by at most ε corresponds to the event
that the length d(e1) of e1 lies in some fixed interval of length ε. Since the density
of d(e1) is bounded by φ, the probability that d(e1) takes a value in this interval is
bounded by εφ.

Now we consider a step Si with i ≥ 2 and apply again the principle of deferred
decisions. We assume that arbitrary lengths for the edges ej and fj with j < i and for
gj with j ≤ i are chosen. Since the edge ei is not involved in any step Sj with j < i, its
length is not determined. Hence, analogously to the first step, the probability that step
Si is an improvement by at most ε is bounded from above by εφ for every realization
of the steps Sj with j < i. Applying this argument to every step Si yields the desired
bound of (εφ)k. A union bound over all witness sequences of type 1 concludes the proof
of a).

b) Since S1, . . . , Sk−1 is a (k − 1)-long witness sequence, there are at most 4k−2mk

choices for these steps. The number of different vertices involved in steps Si with i < k
is at most 4 + 2(k − 2) = 2k because the first step introduces four new vertices and
every other step at most two. Since the endpoints of the edge fk−1 must be chosen
among those vertices that have been involved in the steps Si with i < k, there are at
most

(
2k
2

)
< 2k2 choices for fk−1. Furthermore, for fixed Sk−1 there are two choices for
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the edge ek−1 that links Sk−1 and Sk. If the edges ek−1 and fk−1 are determined, there
are two choices for ek and gk. Hence, in total there are at most 8k2 possible choices for
step Sk. This implies that the number of different k-long witness sequences of type 2
is bounded by 8k24k−2mk < k24kmk.

Applying the same arguments as for witness sequences of type 1, yields for every
witness sequence of type 2 that it is ε-bad only with a probability of at most (εφ)k. A
union bound over all witness sequences of type 2 concludes the proof of b).

c) Since S1, . . . , Sk−1 is a (k − 1)-long witness sequence, there are at most 4k−2mk

choices for these steps. The number of different edges involved in steps Si with i < k
is at most 4 + 3(k − 2) < 3k because the first step introduces four new edges and
every other step at most three. Hence, when the steps S1, . . . , Sk−1 are fixed, there
are at most two choices for the edge ek−1 that links Sk−1 and Sk and there are at
most

(
3k
2

)
≤ 9k2/2 choices for the set {ek, gk}. Once ek−1 and {ek, gk} are fixed, there

are two choices for fk−1. The total number of k-long witness sequences of type 3 can
thus be bounded from above by 18k24k−2mk < k24k+1mk.

Similar to witness sequences of type 1, we can bound the probability that a fixed
k-long witness sequence of type 3 is ε-bad from above by (εφ)k because also the last
step introduces an edge that does not occur in the steps before, namely fk−1.

Definition 3.6. In the following, we use the term k-witness sequence to denote a k-
long witness sequence of type 1 or an i-long witness sequence of type 2 or 3 with i ≤ k.

Observe that in general a k-witness sequence can contain non-improving 2-changes,
which increase the length of the tour. As 2-Opt does not make such 2-changes, we are
only interested in k-witness sequences in which every 2-change is improving.

Definition 3.7. We call a k-witness sequence improving if every 2-change in the se-
quence is an improvement. Moreover, by ∆

(k)
ws we denote the smallest total improve-

ment made by any improving k-witness sequence.

The reason why the previous definition treats witness sequences of type 1 differently
than those of type 2 or 3 is that, as discussed above, witness sequences of type 1 are
only helpful in our analysis if they are long enough while witness sequences of type 2
or 3 of any length are helpful. Lemma 3.5 shows that it is unlikely that there exists an
improving k-witness sequence whose total improvement is small.

COROLLARY 3.8. For any natural number k ≥ 3 and 0 < ε ≤
(

64m(k−1)/(k−2)φ
)−1

,

Pr
[
∆(k)

ws ≤ ε
]
≤ 800 · (mεφ)2.
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PROOF. Due to Lemma 3.5 and the fact that witness sequences of type 2 or 3 must
consist of at least two steps, a union bound over all k-witness sequences yields

Pr
[
∆(k)

ws ≤ ε
]
≤ 4k−1mk+1(εφ)k +

k∑
i=2

i24imi(εφ)i +

k∑
i=2

i24i+1mi(εφ)i

≤ 4k−1mk+1(εφ)k + 5

∞∑
i=2

i2(4mεφ)i

= 4k−1mk+1(εφ)k + 5 · (4mεφ)2(4− 12mεφ+ (4mεφ)2)

(1− 4mεφ)3

≤ 4k−1mk+1(εφ)k + 5 ·
(16

15

)3

· (4mεφ)2 ·
(

4 +
1

162

)
≤ 4k−1mk+1(εφ)k + 25 · (4mεφ)2.

Here we used, in the third step, that
∑∞

i=1 i
2ai = a(a+1)

(1−a)3 for any a ∈ [0, 1). In the fourth
and fifth step, we used that the upper bound on ε in the corollary implies 4mεφ ≤ 1/16.

The above inequality implies the corollary because for ε ≤
(
64m(k−1)/(k−2)φ

)−1, the
second term in the sum is at least as large as the first one.

3.3. Finding Witness Sequences
In the previous section, we have shown an upper bound on the probability that there
exists an ε-bad k-witness sequence. In this section, we show that in every long enough
sequence of consecutive 2-changes, one can identify a certain number of disjoint k-
witness sequences. In this way, we obtain a lower bound on the improvement made by
any long enough sequence of consecutive 2-changes in terms of ∆

(k)
ws .

LEMMA 3.9. Let n ≥ 8, k ∈ N, and let S1, . . . , St denote a sequence of consecutive
2-changes performed by the 2-Opt heuristic with t ≥ n4k−1. The sequence S1, . . . , St

shortens the tour by at least t/4k+1 ·∆(k)
ws .

Basically, we have to show that one can find t/4k+1 disjoint k-witness sequences in
the given sequence S1, . . . , St of consecutive 2-changes. To do this, we first introduce a
so-called witness DAG (directed acyclic graph) which represents the sequence S1, . . . , St

of 2-changes. In order to not confuse the constructed witness DAG W with the input
graph G, we use the terms nodes and arcs when referring to the DAG W and the
terms vertices and edges when referring to G. For every step Si in the given sequence
there is one node in W . Every node has at most two incoming and either zero or two
outgoing arcs and every arc is labeled with an edge of the graph G. Consider a node
that corresponds to a step Si in which the edges e and e′ are exchanged with the edges
f and f ′. If there exists a step Sj with j > i in which the edge f is removed from the
tour then let j1 > i denote the smallest such index, i.e., the edge f is removed from the
tour in step Sj1 and does not occur in the steps Si+1, . . . , Sj1−1. Similarly if there exists
a step Sj with j > i in which the edge f ′ is removed from tour then let j2 > i denote
the smallest such index. Only if both j1 and j2 are defined, the node that corresponds
to Si has outgoing arcs. It has one outgoing arc to the node that corresponds to Sj1 and
that is labeled with f and it has a second outgoing arc to the node that corresponds
to Sj2 and that is labeled with f ′.

We call nodes of W without outgoing arcs leaves. By the height of a node u, we denote
the length of a shortest path from u to a leaf of W . We associate with each node u of
height at least k − 1 a sub-DAG Wu of W . The sub-DAG Wu associated with such a
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node u is the induced sub-DAG of those nodes of W that can be reached from u by
traversing at most k − 1 arcs. The following two lemmas directly imply Lemma 3.9.

LEMMA 3.10. Let u be a node of height at least k−1 inW . The 2-changes represented
by the nodes in the sub-DAG Wu yield a total improvement of at least ∆

(k)
ws .

LEMMA 3.11. Let n ≥ 8. Every witness DAG that represents a sequence of t ≥ n4k−1

2-changes contains at least t/4k+1 nodes of height at least k − 1 whose corresponding
sub-DAGs are pairwise disjoint.

PROOF PROOF OF LEMMA 3.10. Assume that a sub-DAG Wu with root u of height
at least k − 1 in W is given. Any path from u to some other node in Wu corresponds
to a sequence of 2-changes. Let P be such a path. From the definition of W it follows
that every node on P corresponds to a step Si where the indices are strictly increasing
along P (in particular, every node on P corresponds to a step with a different index). In
the following, we show that at least one path inWu corresponds to a k-witness sequence
or a sequence whose total improvement is at least as large as the total improvement
of one of the k-witness sequences.

In order to identify such a path, we unroll the sub-DAG Wu to a complete binary
tree T of height k − 1. The root of T is the node u and every node in T whose distance
to the root is smaller than k − 1 has two children, namely (copies of) its two direct
successors in Wu. In general, the binary tree T contains multiple nodes that represent
the same step Si. However, if P is a downward path in T from the root u to some other
node, then it is still the case that each node on P corresponds to a step Si where the
indices are strictly increasing along P .

Let v be an inner node of T , let a be one of its outgoing arcs, let e be the label of a, and
let P be the downward path from the root u to the node v in T , not including v itself.
We say that the arc a is non-continuable if the edge e occurs in one of the steps that are
represented by the nodes of P and continuable otherwise. (Observe that this does not
necessarily mean that one of the arcs on the path from u to v has label e.) The intuition
underlying this definition is as follows: We would like to find a downward path in Wu

starting at the root u whose nodes correspond to a witness sequence. Only paths in
which all arcs are continuable can correspond to witness sequences of type 1 or 2. For
witness sequences of type 3 all arcs except for the last one must be continuable.

Now let v be a leaf of T . Then v does not have any outgoing arcs. Nevertheless, as
every node of T , it corresponds to a step in which two edges are added to the tour. We
call the leaf v non-continuable if both these edges occur in steps that are represented
by the nodes of the downward path from the root u to the node v in T , not including v
itself, and continuable otherwise. The intuition underlying this definition is as follows:
Any downward path in Wu starting at the root u to a leaf v can only correspond to
a witness sequence of type 1 if all its arcs are continuable and if the leaf v is also
continuable.

If T contains a downward path that corresponds to a k-witness sequence of type 1
then we are done. Assume that T does not contain such a path. Then the following
property must be true for any path P from the root u to a leaf v of T : at least one of
the arcs of P is non-continuable or v is non-continuable. This is the case because any
path from u to a continuable leaf v that contains only continuable arcs corresponds to a
k-witness sequence of type 1 (the continuable arcs correspond to the edges e1, e2, . . . , ek
in Definition 3.2). Now we remove all nodes from T below non-continuable arcs to get
a subtree T ′ of T . To be more precise, a node v of T is contained in T ′ if and only if the
downward path from u to v in T does not contain a non-continuable arc. We will show
that we can find a witness sequence of type 2 or 3 in T ′.
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ei+1

Si

Si+1ei

fi gi+1

ei−1Si−1

gi−1
e′i

fi−1fi−2

ei−2. . .
e′i+1S′i+1

f ′i g′i+1

Fig. 2. Summary of our notation. We assume that the nodes corresponding to Si+1 and S′
i+1 are leaf nodes

of T ′ and non-continuable.

Let vi+1 be one node with maximum distance from the root in T ′ and let vi be its
parent. Let the 2-changes represented by the nodes on the downward path P from
the root u to vi+1 be S1, . . . , Si+1. If vi has two children in T ′ then let v′i+1 denote the
child different from vi+1 and let S′i+1 denote the step that is represented by v′i+1. In
Figure 2, we summarize the notation that we use in the following. In step Sj for j ≤ i−1
and j = i+1, the edges ej−1 and fj−1 are exchanged with the edges ej and gj . In step Si,
the edges ei−1 and fi−1 are exchanged with the edges ei and e′i, and in step S′i+1, the
edges e′i and f ′i are exchanged with the edges e′i+1 and g′i+1. We denote by Ei all edges
that are involved in steps Sj with j ≤ i. Similarly, by Ei−1 we denote all edges that are
involved in steps Sj with j ≤ i− 1.

Observe that all leaves in T ′ must be non-continuable. For leaves of height smaller
than k − 1 this follows from the definition of T ′. If any such leaf v had a continuable
arc in T then this arc and the corresponding child of v would also be contained in T ′.
Leaves of height k−1 in T ′ cannot be continuable because otherwise the path to such a
leaf would represent a k-witness sequence of type 1, as discussed above. Our construc-
tion ensures that S1, . . . , Si is an i-witness sequence of type 1 because the path from the
root u to the leaf vi+1 consists of continuable arcs only. The sequence S1, . . . , Si+1, how-
ever, is not a witness sequence of type 1 because all leaves of T ′ are non-continuable,
which implies ei+1, gi+1 ∈ Ei.

In the following we will shrink the tree T ′ until a witness sequence of type 2 or 3 is
found. For this, we define the operation contract(Si, Si+1). This operation will only be
applied if the node that corresponds to Si has only a single child in T ′ (namely the one
that corresponds to Si+1) and if the net effect of Si and Si+1 together corresponds to a
single 2-change S. In this case the operation contract(Si, Si+1) replaces the nodes vi
and vi+1 that represent the steps Si and Si+1 by a node the represents the 2-change S.
We call the tree that results from this operation again T ′. The following invariant
will remain true throughout the construction: The only nodes that were produced by
a contract operation are leaves in the current tree T ′. Furthermore each leaf that was
created by a contract operation has the same net effect as the contracted steps and it
is non-continuable. For every leaf that was produced by contract operations, the steps
contracted form a descending path in the original tree T ′ in which every node has at
most one child.

The following case analysis shows that it is always possible to either identify a wit-
ness sequence of type 2 or 3 or to apply the operation contract(Si, Si+1). We use the
notation returnj(R1, . . . , R`) to denote that R1, . . . , R` is an `-long witness sequence of
type j.

Since vi+1 is non-continuable, we can assume ei+1, gi+1 ∈ Ei.
If e′i /∈ Ei−1, then v′i+1 exists in T ′. Since vi+1 is a node of maximum distance to the
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root, v′i+1 must also be a leaf in T ′ and hence it is also non-continuable due to the
invariant. This is equivalent to e′i+1, g

′
i+1 ∈ Ei.

(1) If fi−1 ∈ Ei−1, then return2(S1, . . . , Si).
From now on we assume fi−1 /∈ Ei−1.

(2) If e′i ∈ Ei−1, then consider the following cases.
(a) If fi /∈ Ei, then return3(S1, . . . , Si+1).
(b) If ei+1, gi+1 ∈ Ei−1, then return2(S1, . . . , Si).

S1, . . . , Si is a witness sequence of type 2 because one endpoint of fi−1 equals one
endpoint of e′i and the other one equals one endpoint of either ei+1 or gi+1.

(c) If fi ∈ Ei and (ei+1 ∈ Ei \ Ei−1 or gi+1 ∈ Ei \ Ei−1), then contract(Si, Si+1).
In this case one can assume w.l.o.g. that gi+1 = fi−1 and ei+1 ∈ Ei−1 since Ei \
Ei−1 = {ei, fi−1} and the edges ei, ei+1, and gi+1 are pairwise distinct be-
cause they occur in the same 2-change Si+1. The contract-operation replaces vi
and vi+1 by a node that represents the 2-change S := (ei−1, fi)→ (e′i, ei+1).

(3) If e′i /∈ Ei−1, then ei+1, gi+1, e
′
i+1, g

′
i+1 ∈ Ei. Consider the following cases.

(a) If fi /∈ Ei or f ′i /∈ Ei, then return3(S1, . . . , Si+1) or return3(S1, . . . , Si, S
′
i+1),

respectively.
From now on we assume fi, f ′i ∈ Ei.

(b) If ei+1, gi+1, e
′
i+1, g

′
i+1 ∈ Ei−1, then return2(S1, . . . , Si).

S1, . . . , Si is a witness sequence of type 2 due to the invariant and the fact that
the endpoints of fi−1 coincide with some endpoints of ei+1, gi+1, e

′
i+1, g

′
i+1.

(c) If |{ei+1, e
′
i+1, gi+1, g

′
i+1} ∩ (Ei \Ei−1)| ≥ 1, then assume w.l.o.g. gi+1 ∈ Ei \Ei−1

and return2(S1, . . . , Si−1, S) for the 2-change S defined below.
In this case Ei \ Ei−1 = {ei, e′i, fi−1}. Furthermore, ei+1 6= e′i and gi+1 6= e′i
because ei+1 and gi+1 both share one endpoint with ei whereas e′i and ei do
not share any endpoints. Furthermore, the edges ei, ei+1, and gi+1 are pairwise
distinct because they occur in the same 2-change Si+1. As in case 2 (c), we assume
w.l.o.g. that gi+1 = fi−1 and ei+1 ∈ Ei−1.
It must be fi 6= e′i as otherwise step Si would be reversed in step Si+1. Further-
more, the edges fi, ei, and, fi−1 = gi+1 are pairwise distinct because they occur in
the same 2-change Si+1. Hence, fi ∈ Ei−1. For the step S := (ei−1, fi)→ (e′i, ei+1),
the sequence S1, . . . , Si−1, S is a witness sequence of type 2 because fi ∈ Ei−1

and e′i /∈ Ei−1. Observe that the original sequence S1, . . . , Si+1 yields the same
net effect and hence the same improvement as the sequence S1, . . . , Si−1, S.

If the operation contract(Si, Si+1) is performed in Case 2 (c) then the invariant
stays true. If the node vi+1 was not created by a previous contraction this follows eas-
ily because Case 2 is only reached if vi has only one child and contract(Si, Si+1) re-
places vi and vi+1 by a node that represents the 2-change (ei−1, fi) → (ei+1, e

′
i), which

is the net effect of Si and Si+1 together. Furthermore ei+1, e
′
i ∈ Ei−1 and hence the new

node is non-continuable. With the same arguments it also follows that the invariant
stays true if the node vi+1 was created by previous contractions.

We repeatedly apply the case analysis above to a node in T ′ with maximum
distance to the root until a witness sequence is found. Observe that the opera-
tion contract(Si, Si+1) is only performed in Case 2 (c) and that each time it is per-
formed the number of nodes in T ′ decreases by one. Furthermore it is not possible
that T ′ shrinks to a single node because this node would be a leaf that must be non-
continuable due to the invariant. However, the root of T ′ is always continuable because
there are no previous steps in which the edges added to the tour can occur. Hence after
finitely many occurrences of the operation contract(Si, Si+1) one of the other cases
must be reached. In all other cases, immediately a witness sequence of type 2 or 3 is
returned.
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The witness sequence returned is in general not a sequence of steps that are con-
tained in the DAG Wu because the last step S (and only the last step) in the returned
sequence is potentially the result of some contract operations. This is, in particular,
true for Case 3 (c) in which the steps Si and Si+1 are contracted without explicitly
calling the operation contract. Due to the invariant, we know that the steps that
are contracted into the last step S have the same net effect as S. Furthermore these
steps have pairwise distinct indices because they lie on a downward path in T . So the
improvement of every step is counted at most once. Hence, the improvement of the
witness sequence returned always equals the total improvement of some steps that
are contained in Wu. This concludes the proof.

PROOF PROOF OF LEMMA 3.11. Let W be a witness DAG that consists of t nodes
that represent the steps S1, . . . , St. By definition a node in W has either two direct
successors or none at all. The case that a node has no successors can only occur if
at least one of the edges that is added to the tour in the corresponding step is not
removed anymore in later steps. Since the final tour that is obtained after performing
the steps S1, . . . , St contains exactly n edges, at most n of the nodes of W can be leaves.
Hence W contains at least t− n nodes with two outgoing arcs.

We defined the height of a node v in W to be the minimum distance from v to one of
the leaves of W . Since every node in W has an indegree of at most two, there are at
most n2k−1 nodes in W whose height is smaller than k − 1. Hence, there are at least
t − n2k−1 nodes in W with an associated sub-DAG of depth k − 1. We construct a set
of disjoint sub-DAGs in a greedy fashion: We take an arbitrary sub-DAG Wu and add
it to the set of disjoint sub-DAGs that we construct. After that, we remove all nodes
of Wu from the DAG W . We repeat these steps until no complete sub-DAG Wu is left
in W .

In order to see that the constructed set consists of at least t/4k+2 disjoint sub-DAGs,
observe that each sub-DAG of depth k − 1 contains at most 2k − 1 nodes because the
outdegree of every node is at most two. Each node can be contained in at most 2k − 1
sub-DAGs of depth k − 1 because the indegree of every node is at most two. Hence,
every sub-DAG Wu can only intersect with at most (2k − 1)2 ≤ 4k other sub-DAGs.
Thus, the number of pairwise disjoint sub-DAGs must be at least⌊

t− n2k−1

4k

⌋
≥
⌊
t/2

4k

⌋
≥ t

4k+1
,

where both inequalities follow from the assumption t ≥ n4k−1. For the second inequal-
ity we additionally used the assumption n ≥ 8.

3.4. The Expected Number of 2-Changes
Now we can prove Theorem 1.1.

PROOF PROOF OF THEOREM 1.1. We combine Corollary 3.8 and Lemma 3.9 to ob-
tain an upper bound on the probability that the length T of the longest path in the
state graph exceeds t. Let n ≥ 8. For t ≥ n4k−1, the tour is shortened by the sequence
of 2-changes by at least t/4k+1 ·∆(k)

ws . Hence, for t ≥ n4k−1,

Pr [T ≥ t] ≤ Pr
[

t

4k+1
·∆(k)

ws ≤ n
]

= Pr
[
∆(k)

ws ≤
n4k+1

t

]
.

Combining this inequality with Corollary 3.8 yields for t ≥ t′ := d4k+4nm(k−1)/(k−2)φe,

Pr [T ≥ t] ≤ 800

(
4k+1nmφ

t

)2

.
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Note that the restriction t ≥ t′ is necessary to apply Corollary 3.8. We can bound the
expected number of 2-changes as follows:

E [T ] =

∞∑
t=1

Pr [T ≥ t] ≤ t′ +
∞∑

t=t′+1

800

(
4k+1nmφ

t

)2

≤ t′ +
∫ ∞
t′

800

(
4k+1nmφ

t

)2

dt

≤ t′ + 800(4k+1nmφ)2

t′

= O
(

4knm(k−1)/(k−2)φ
)
.

Setting k =
√

lnm yields

E [T ] = O
(

4
√

lnmm
1√

lnm−2nmφ
)

= O
(

42
√

lnmnmφ
)
,

where the last equation holds for sufficiently large m.

4. UPPER BOUND FOR THE SECOND MOMENT
Our method does not yield strong concentration bounds for the expected length of the
longest path in the state graph. The reason is that the exponent of ε in Corollary 3.8 is
only 2. It is, however, possible to bound the second moment of T .

THEOREM 4.1. For every φ-perturbed graph with n vertices and m edges

E
[
T 2
]

= O

((
16
√

lnmmφ
)2

· n3

)
.

PROOF. The proof follows along the same lines as the proof of Theorem 1.1. Let n ≥
8. For t ≥ n4k−1, the tour is shortened by the sequence of 2-changes by at least t/4k+1 ·
∆

(k)
ws . Hence, for t ≥ n4k−1,

Pr
[
T 2 ≥ t

]
= Pr

[
T ≥

√
t
]
≤ Pr

[ √
t

4k+1
·∆(k)

ws ≤ n
]

= Pr
[
∆(k)

ws ≤
n4k+1

√
t

]
.

Combining this inequality with Corollary 3.8 yields for t ≥ t′ :=
(d4k+4nm(k−1)/(k−2)φe)2,

Pr
[
T ≥

√
t
]
≤ 800

(
4k+1nmφ√

t

)2

.
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Note that the restriction t ≥ t′ is necessary to apply Corollary 3.8. Using that T 2 cannot
be larger than (n!)2, we can bound the expected value of T 2 as follows:

E
[
T 2
]

=

(n!)2∑
t=1

Pr
[
T 2 ≥ t

]
≤ t′ +

(n!)2∑
t=t′+1

800

(
4k+1nmφ√

t

)2

≤ t′ +
∫ (n!)2

t′
800

(
4k+1nmφ√

t

)2

dt

≤ t′ + 800(4k+1nmφ)2

∫ (n!)2

1

1

t
dt

≤ t′ + 800(4k+1nmφ)2 · ln((n!)2)

= O

((
4knm(k−1)/(k−2)φ

)2

n ln(n)

)
.

Setting k =
√

lnm yields

E
[
T 2
]

= O

((
4
√

lnmm
1√

lnm−2nmφ
)2

n ln(n)

)
= O

((
16
√

lnmnmφ
)2

n

)
,

where the last equation holds for sufficiently large m.

Let B = c · 16
√

lnmnmφ, where c is the constant from the Big O notation in Theo-
rem 1.1. Then Markov’s inequality implies for every a ≥ 1 that Pr [T ≥ aB] ≤ 1/a.
Theorem 4.1 implies the following concentration bound, which is stronger for large a.

COROLLARY 4.2. If m is sufficiently large, there exists a constant κ such
that Pr [T ≥ aB] ≤ nκ/a2 for any a ≥ 1.

PROOF. Let κ be chosen such that E
[
T 2
]
≤ κB2n. Such a constant κ must exist due

to Theorem 4.1. Then

Pr [T ≥ aB] = Pr
[
T 2 ≥ a2B2

]
= Pr

[
T 2 ≥ a2

nκ
κB2n

]
≤ nκ

a2
,

which proves the corollary.
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