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Complex quantum transport in a modulation doped strained Ge quantum
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The complex quantum transport of a strained Ge quantum well (QW) modulation doped

heterostructure with two types of mobile carriers has been observed. The two dimensional hole gas

(2DHG) in the Ge QW exhibits an exceptionally high mobility of 780 000 cm2/Vs at temperatures

below 10 K. Through analysis of Shubnikov de-Haas oscillations in the magnetoresistance of this

2DHG below 2 K, the hole effective mass is found to be 0.065 m0. Anomalous conductance peaks

are observed at higher fields which deviate from standard Shubnikov de-Haas and quantum Hall

effect behaviour due to conduction via multiple carrier types. Despite this complex behaviour, anal-

ysis using a transport model with two conductive channels explains this behaviour and allows key

physical parameters such as the carrier effective mass, transport, and quantum lifetimes and con-

ductivity of the electrically active layers to be extracted. This finding is important for electronic

device applications, since inclusion of highly doped interlayers which are electrically active, for

enhancement of, for example, room temperature carrier mobility, does not prevent analysis of

quantum transport in a QW. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4962432]

Epitaxially grown Ge is of great interest for device appli-

cations, primarily due to its high hole mobility1,2 and compati-

bility with epitaxial Si technology. Recently, epitaxially

grown layers of Ge grown on SiGe on a standard Si(001) sub-

strate have been shown to have extremely high room tempera-

ture hole mobility of up to 4500 cm2/Vs due to formation of a

two dimensional hole gas (2DHG).2,3 Compressive strain of

the Ge epilayer induced by epitaxial growth results in 2DHG

formation and the holes have enhanced mobility due to their

lower effective mass and reduced scattering factors. Low tem-

perature 2DHG mobility in excess of 1.3� 106 cm2/Vs has

been achieved.1,4–6 The study of quantum transport behaviour

in these 2DHGs at low temperatures, in particular, the

Shubnikov de-Haas (SdH) oscillations that arise from Landau

levels created under an applied magnetic field, allows us to

determine the key parameters such as effective mass, as well

as the carrier densities and diffusive and quantum transport

scattering parameters.

Previously, low temperature magnetotransport has been

studied for Ge quantum wells (QWs) but primarily on struc-

tures with comparatively low 2DHG mobility and much higher

carrier densities.7–10 For example, Miura et al. studied quantum

transport in a compressively strained Ge QW with a 2DHG

mobility of 23 800 cm2/Vs and a carrier density of

2.4� 1012 cm�2.11 Prior to the recent report of hole mobility in

excess of 1� 106 cm2/Vs at a carrier density of 2.9� 1011 cm�2

in a Ge QW,1 the record value of mobility was 120 000 cm2/Vs

with a carrier density of 8.5� 1011 cm�2.12 The study of quan-

tum transport in high mobility Ge 2DHGs since this discovery

has primarily focussed on the spin-orbit interaction in hetero-

structures of this type13–15 and on the composite fermions and

the fractional quantum Hall effect in high magnetic fields.4–6

Here, we study low temperature quantum transport in a Ge QW

heterostructure, modulation doped with 2� 1018cm�3 of boron

(B) and a delta layer of B. This doped heterostructure has a low

temperature hole mobility of 780 000 cm2/Vs, approaching the

record value.

The heterostructure studied here was grown by reduced

pressure chemical vapor deposition onto a 100 mm n-type Si

(001) substrate. The structure is shown schematically in

Figure 1, and the corresponding band structure simulated

using a Poisson-Schr€odinger method may be found in the

study by Foronda et al., Figure 3.14 A reverse linearly graded

(RLG) buffer layer was first grown onto the substrate, fol-

lowed by the active region. A doping concentration of

2� 1018 cm�3 B was created in the supply layer and a delta

layer of B directly below this layer. The delta layer was

inserted to maximise the room temperature 2DHG mobility

to 4500 cm2 V�1 s�1 in this Ge QW.2 However, because the

FIG. 1. (a) Schematic of the Ge quantum well heterostructure studied here,

showing the Hall bar geometry used for the magnetotransport measurements.

The primary active transport layer (location of the 2DHG) is indicated in red.
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boron doping level in the delta layer is above the metal-

insulator transition it will be conductive even at very low

temperatures and cause deviations from the norm in quantum

phenomena like Shubnikov de-Haas oscillations in the mag-

netoresistance and the quantum Hall resistance plateaus at

low temperatures. The density of Boron in the delta doped

region was determined to be 5� 1018 cm�3 using Secondary

Ion Mass Spectrometry (SIMS). The thicknesses of the

layers were confirmed by cross-sectional transmission elec-

tron microscopy. A detailed study of the material properties

of this heterostructure has been published elsewhere.3

Magnetotransport, Hall effect, and resistivity measure-

ments were performed using a Hall bar geometry produced

using photo-lithography. Thermally evaporated Al was used

as a contact material, post-annealed to form a contact with

the QW. The Ge QW mesa was defined by reactive ion etch-

ing in an SF6:O2 mixture down to the Si substrate. All con-

tacts were found to exhibit Ohmic behaviour at 20 K and

below, with typical contact resistances between 400 X and

1000 X at 20 K. All magnetotransport measurements were

performed using an ac current excitation of 100 nA at a fre-

quency of 19.77 Hz. The magnetic field was applied perpen-

dicular to the plane of the device. Sheet resistance and Hall

coefficient were measured from room temperature down to

0.3 K, from which the sheet carrier density and Hall mobility

were calculated. Carrier freeze-out does not occur at low

temperatures, and the Ge QW demonstrates good, metallic

transport behaviour indicative of the presence of 2D confine-

ment. Mobility at the lowest temperatures is very high

(780 000 cm2/Vs), approaching the record value in this class

of heterostructures.1 The carrier density is 2� 1011 cm�2 at

0.3 K, indicating a relatively high transferal of carriers from

the doping layer into the QW region.

Magnetotransport and Hall effect measurements were

made under an applied magnetic field B of up to 12 T perpen-

dicular to the Hall bar, for temperatures T from 300 mK up

to 10 K. The results at 338 mK are shown in Figure 2; the

data shown in the figure represent the average of the magne-

toresistance and Hall resistance magnitudes across both mag-

netic field polarities. Clear SdH oscillations are observed;

however, the oscillatory behavior is unusually complex due

to the presence of two parallel conducting layers: at the low-

est temperatures, there are SdH minima corresponding to the

even integer filling factor at low B; above 0.3 T, odd integer

SdH minima also appear due to Zeeman splitting; however,

above about 0.6 T, sharp peaks at all integer filling factors

start to dominate the resistivity. As the temperature is

increased, the transition from minima to maxima at the inte-

ger filling factor moves to higher B and the amplitude of the

peaks decreases. These peaks cannot be explained by con-

ventional Shubnikov de-Haas theory of a single carrier type.

The Hall resistance is also complex, with no observable

quantum Hall plateaus and instead sharp minima occurring

in the Hall resistance at the integer filling factor, with tem-

perature dependent amplitude. By plotting the magnetocon-

ductance of the structure instead it is possible to isolate the

conductance due to parallel conduction in the heterostruc-

ture. This quantity is plotted in Figure 3 for the lowest tem-

perature studied (338 mK), again averaged across both

polarities of magnetic field. The dashed orange line indicates

the base conductance (30 lS) of the layers conducting in par-

allel to the 2DHG, which may be compared to the much

larger conductance of 24 900 lS in the QW. This corre-

sponds to only 0.1% electrical conductance via the B delta

layer. Most of the layers in the heterostructure are intention-

ally undoped and therefore are unlikely to form a parallel

conduction channel at low temperatures due to carrier

freeze-out. We therefore suggest that the main source of con-

duction parallel to the 2DHG is in the B modulation doping

FIG. 3. Magnetoconductance at 338 mK, averaged across both magnetic

field polarities. The dashed blue line shows background conductance as a

result of parallel conduction in the region of the doping layer. The conduc-

tance of the parallel conduction layer is 30 lS and therefore the conductance

in the 2DHG only may be calculated as 24 900 lS. The parallel conductance

is only 0.1% of the total conductance of the heterostructure.

FIG. 2. (a) Magnetoresistance and (b) Hall effect measurement at 338 mK

for the B modulation doped 2DHG for an applied magnetic field up to 12 T,

showing the magnitude of the magnetoresistance and Hall resistance aver-

aged across both magnetic field polarities. Insets: resistance data at low

fields. Red arrows indicate the position of anomalous resistance peaks. Red

dashed lines indicate the expected position of integer quantum Hall plateaus.
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delta layer. Due to the high carrier occupation remaining in

this region, we may conclude that we have achieved the limit

of 2DHG carrier density in the QW achievable by modula-

tion doping for a given amount of biaxial compressive strain

and consequently the valence band offset of the Ge QW.

Increasing the strain present in the QW region by, for exam-

ple, reducing the percentage of Ge in the buffer layer is

expected to increase the carrier density limit in the 2DHG.

This has the additional advantage of increasing the energy

gap between the heavy and light hole bands and conse-

quently reducing interband scattering, which would result in

a further increase of hole mobility in the 2DHG.

By plotting the inverse field position of the minima/

maxima in the magnetoresistance as a function of quantum

Hall filling factor, it is possible to extract the sheet carrier

density of the 2DHG producing the oscillations. This plot is

shown in Figure 4 for the lowest temperature (338 mK). The

gradient of this curve is equal to hp
e , where p is the sheet hole

density of the 2DHG. Performing a linear fit to the data in

Figure 4 gives a sheet hole density of 2.0� 1011 cm�2. This

value agrees with the sheet carrier density calculated using

the low field Hall resistance as previously shown. This analy-

sis shows that, despite the apparently complex oscillatory

behaviour observed, all the oscillations arise due to the exis-

tence of Landau levels created from a single, fundamental

energy level in the QW.

The peaks in magnetoresistance as a function of mag-

netic field in the low field regime may be used to calculate

the effective mass of carriers in the conduction region(s) by

an iterative process. The analytical equation that describes

Shubnikov-de Haas oscillations is as follows:16,17

Dqxx Bð Þ
qxx 0ð Þ

¼ 4 cos
2pEFm�

�heB

� �
exp � pm�a

eBst

� �
w

sinh wð Þ ; (1)

where EF is the Fermi energy, a is the Dingle ratio (st

sq
, where

st is the transport scattering time and sq is the quantum scat-

tering time), and w ¼ 2p2kBTm�

�heB .

Plots of two simultaneous equations derived from this

equation that may be used to iteratively solve for the effec-

tive mass and Dingle ratio are shown in Figure 5.18 These

plots represent the final iteration of the solution using an

iterative step of 0.005 m0. Two clear strata of points are

observed, corresponding to carriers with differing quantum

lifetimes. We find that a solution is obtained, for both strata

analysed individually, for an effective mass m*¼ 0.065 m0.

However, the Dingle ratio varies considerably. For the main

stratum, illustrated by a black dashed line, the Dingle ratio is

found to be 18, increasing to 33 for the second stratum (red

dashed line).

The transport scattering time for holes in the 2DHG may

be calculated using the expression st ¼ m�lH

e , where lH is the

Hall mobility. Inserting the Hall mobility at 338 mK

(780 000 cm2/Vs) and the effective mass yields a value of

st¼ 29 ps, corresponding to a transport scattering length of

5.7 lm. Using this value for st and the calculated Dingle

ratios gives quantum scattering times sq¼ 1.6 ps, and 0.87 ps

for the two carrier lifetimes revealed through the effective

mass analysis.

The carrier density of the occupied energy levels in the

QW may be calculated from the Shubnikov-de Haas oscilla-

tions, by a fast Fourier transform method. First, the oscillatory

magnetoresistance behaviour is isolated by subtraction of a

quadratic resistance background due to ordinary (geometric)

magnetoresistance. These data are then plotted as a function

of inverse magnetic field and a fast Fourier transform is per-

formed. The resulting spectrum exhibits peaks at given fre-

quencies (units of T) which correspond to carrier densities in

the QW via the relation p ¼ f e
p�h, where f is the frequency of

FIG. 4. Plot of inverse field positions of minima/maxima in the magnetoresis-

tance against filling factor, at a temperature of 338 mK. The carrier density

extracted from a linear fit to the data is 2.0� 1011 cm�2. The inset resolves

the separation of maxima and minima in inverse magnetic field space.

FIG. 5. (a) and (b) Plots of transformed data using Equation (1) for effective

mass analysis. Two clear strata are observed on the curve, corresponding to

two different Dingle ratios and consequently two different quantum lifetimes;

however, both strata correspond to the same effective mass (0.065 m0).
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oscillation. The spectrum resulting from transformation of the

338 mK magnetoresistance data, below the first anomalous

conductance peak, is shown in Figure 6. Clear peaks are

observed at the Hall carrier density (2� 1011 cm�2) and at

twice the Hall carrier density (4� 1011 cm�2). The second

peak may either be a harmonic or be indicative of quantum

transport in another layer, for example, the highly B doped

SiGe region. However, as shown in Figure 4, all Shubnikov

de-Haas maxima/minima can be attributed to Landau levels

generated from the Fermi energy for carriers at the Hall carrier

density (2� 1011 cm�2). We can therefore attribute the second

peak to harmonic generation due to the onset of Zeeman split

peaks. The two additional, lower amplitude peaks at higher

carrier densities are further harmonics corresponding to three

and four times the first sub-band density, respectively.

Assuming a carrier density of 1� 1012 cm�2 for the

delta doped B layer, based on the SIMS-determined dopant

density and a typical activation approximately 50%, the

background conductivity extracted from Figure 3 gives an

approximate value for the mobility of 200 cm2/Vs at 338

mK. The mobility in this region is primarily limited by the

high degree of ionised impurity scattering from acceptor

ions, and this value agrees well with the expected value for

mobility for Ge at this doping level. For most applications,

one does not wish to have a parallel layer as this will compli-

cate device designs and hinder performance. For applica-

tions, it is desirable to instead achieve higher carrier density

(and mobility) through the use of an electrostatic gate, avoid-

ing the use of dopant layers altogether. In such a structure, a

doping layer would in fact hinder gate performance due to

screening of the gate potential and is so further undesirable.

The findings in this study help in the design of device param-

eters without requiring a complex gate optimisation process.

In summary, a high mobility (780 000 cm2/Vs) 2DHG

has been created in a strained Ge QW structure, through B

modulation doping. The mobility and carrier density were

measured through Hall effect measurements at temperatures

between 0.3 K and 300 K, revealing a low temperature car-

rier density of 2� 1011 cm�2. Low temperature magnetore-

sistance measurements show a complex Shubnikov de-Haas

oscillatory behavior. Analysis of the oscillation amplitudes

yields an effective mass m*¼ 0.065 m0. Fast Fourier trans-

form analysis shows peaks at two frequencies, corresponding

to carriers at carrier densities of 2� 1011 cm�2 and

4� 1011 cm�2, respectively. The first peak agrees with the

carrier density extracted via Hall effect analysis, and the sec-

ond peak is a harmonic of the fundamental peak due to

Zeeman splitting. The lack of quantum transport in the paral-

lel conduction layer is consistent with the B doping region

being too narrow for 2D confinement to occur. A two chan-

nel model allows us to extract key electrical parameters

including the conductivity of the channels and their respec-

tive mobilities. The Hall mobility of the heterostructure cor-

responds closely to that of the QW alone, due to the large

difference in mobilities and conduction being primarily

through the QW region. The parallel, low mobility transport

channel is consistent with electronic transport by carriers in

the highly B doped region of the heterostructure.
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