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Abstract:  

A comparison between the geometry of the helical milling specialized tool and conventional 

end mill was firstly introduced. Furthermore, a mathematical model, in which the cutting area was 

divided into different cutting zones, was established to simulate the cutting depths and volume of 

the different cutting edges (three kinds) on specialized tool. Accordingly, a specific ratio between 

the volume removed by different edges and the total hole volume was derived mathematically and 

modeled using 3D modeling software SolidWorks. Based on the established models, the cutting 

depths and cutting volume ratio variation trends under different cutting parameters were analyzed. 

The results showed that the change rules of cutting depths were different in every cutting zone and 

influenced greatly by the cutting parameters. In addition, the cutting volume ratio changes with 

different cutting parameters, but it can only vary in certain range due to the structure of the helical 

milling specialized tool. The cutting volume ratio obtained from the established model shows a 

good agreement with the data modeled using SolidWorks, proving that the established model is 

appropriate. Moreover, the undeformed chip geometry was modeled and observed using 

SolidWorks. The undeformed chip showed a varying geometry with different cutting parameters 

and it can be optimized to obtain a good cutting condition during helical milling process. 
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1 Introduction  

In modern aircraft manufacturing process, thousands of holes need to be made to meet the 

complex assembly requirements. As an alternative to conventional drilling, helical milling 

technique offers many advantages. It possesses a better heat dissipation condition, which can reduce 



the thermal damage on both the machined surface and the milling tool, and thus improve hole 

quality and increase the working life of milling tool [1-4]. An improvement in geometrical accuracy, 

a reduction in burr formation, and a smaller cutting force are observed when the helical milling 

method is compared with the drilling method [5-7]. Another advantage of helical milling is that it 

can make different diameter holes only using one tool, which significantly improves the processing 

efficiency [8]. 

Recently, a number of research efforts have been directed towards the helical milling in the 

aspects of the influences of cutting parameters on cutting force, cutting temperature, tool wear and 

quality of the machined surface [9-12]. However, the variation of cutting parameters directly affects 

the cutting depth, cutting volume and undeformed chip morphology, and then the changes of these 

indexes lead to the variation of cutting force, cutting temperature and so on [13-14]. Therefore, it is 

necessary to build a mathematical model to describe the relationships between the cutting depth, 

cutting volume and cutting parameters, and have a fundamental research on the change regulations 

of undeformed chip geometry under varying cutting parameters. 

Brinksmeier et al. [15] described mathematically the cutting depths of periphery and front 

cutting edges of conventional end mill, the ratio between periphery cutting volume and front cutting 

volume was also discussed. Based on chip-splitting principle and tool’s movement feature, Liu et al. 

[16] designed a new specialized tool for helical milling with distributed multi-point front cutting 

edge and modeled the undeformed chip morphology using 3D modeling software, the material 

removal rates for conventional end mill and helical milling specialized tool were also obtained 

using 3D modeling software. Denkena et al. [17] modeled the undeformed chip geometry for helical 

milling in which the axial depth of cut of periphery cutting edges is assumed to increase 

approximately linearly with the tool rotation angle, and used it to explain the impact of the axial and 

tangential feed per tooth on the process forces. Li et al. [18] described the cutting depths and 

undeformed chip geometry of conventional end mill, then proposed a novel dynamic cutting force 

model for helical milling. Chen et al. [19] presented a new dynamic cutting force model with 

nominal chip thickness for predicting the stability of interrupted turning, in where the dynamical 

cutting force was defined by a function of nominal chip thickness and dynamical chip thickness. Liu 

et al. [20] proposed an analytical model to accurately predict the cutting forces and torque during 

helical milling operations as a function of helical feed, spindle velocity, axial and radial cutting 

depth and milling tool geometry.  



The cutting depth is essential during the cutting force modelling, and the cutting volume ratio 

can reflect contribution of different cutting edges during the material removing process. The 

undeformed chip geometry is useful for the prediction of cutting force and surface quality [21]. 

However, there are no reports on the theoretical calculation method of cutting depths and cutting 

volume for helical milling specialized tool. There is also little information available in literature 

about change rules of undeformed chip geometry of specialized tool under different cutting 

parameters so far. Therefore, it is necessary to establish the models for the cutting depth and cutting 

volume of helical milling specialized tool, investigate the effects of the helical course (ap) and 

eccentricity (e) on the cutting depths, cutting volume, volume ratio and undeformed chip geometry 

based on the established models, and obtain the change regulations of the undeformed chip 

geometry. 

2 Helical milling process 

In helical milling process, strong interaction will happen between tool and workpiece [22]. 

Thus, high performance is demanded for the milling tool. The structures of conventional end mill 

and helical milling specialized tool are shown in Fig. 1. Different from the structure of conventional 

end mill, the front cutting edge of the helical milling specialized tool is composed of two parts: the 

part far from tool axis is called outside front cutting edge (outside edge) and the part near tool axis 

is called inside front cutting edge (inside edge). This special structure makes it participate in a 

discontinuous cutting and produce discontinued chips.  

    

(a)                            (b)  

Fig. 1 Structure of two different helical milling tools: a conventional end mill b helical milling specialized 

tool 



 

Fig. 2 Kinematics of helical milling 

Helical milling is composed of three movements: rotation about the tool axis (spindle rotation), 

rotation about the axis of the machined hole (revolution), linear motion along with the axis direction 

of the machined hole (Fig. 2). The circumferential feed and axial feed are provided respectively by 

revolution and linear motion of the tool. It is convenient to change the machining diameter of hole 

by varying the eccentricity (e) between the axis of tool and the axis of hole. Different cutting edges 

produce different types of cutting force. When adopting different cutting parameters, the volume of 

material removed by periphery cutting edge and front cutting edge will change and lead to the 

variation of cutting force components in axial and radial direction. Therefore, the material removal 

rate is also a parameter worthy of further study. 

3 Cutting depths of periphery cutting edge, inside edge and outside edge 

In helical milling process, all cutting edges are involved directly and cutting states vary with 

different cutting parameters. In order to observe and analyze the cutting depths, the machined 

surface is modeled with SolidWorks. Fig. 3 shows the geometrical conditions between the tool and 

workpiece, there are three cutting zones in helical milling process: the periphery cutting zone, the 

outside cutting zone, the inside cutting zone.  

 

 



Fig. 3 Three cutting zones between tool and workpiece during helical milling process 

 

Fig. 4 Schematic drawing of material removal process 

Fig. 4 shows the cutting states of periphery cutting edge, inside edge and outside edge. In the 

cutting process, outside edge will contact with the workpiece and cut off a part of the material first. 

A funnel-shaped cavity will generate under inside edge when the tool rotates around its axis due to 

the inclination of the inside edge, the material in the cavity will be removed by inside edge. The 

material remaining between the two orbital periods that outside and inside edges can’t remove will 

be cut by the periphery cutting edge.  

For calculation simplification，a projection plane through the tool axis (Fig. 5(a)) is built and 

the endpoints of cutting edges on one cutter tooth are revolved around tool axis to the projection 

plane. Fig. 5(b) shows the graph of cutting edges on projection plane. Rm is the distance from the 

lowest point C' on the front cutting edge to the tool axis, θ1 and θ2 are angles between the projection 

lines of the cutting edges and the horizontal plane.  

    

(a)                                            (b)  

Fig. 5 Projection of the helical milling specialized tool: a projection diagram b graph of cutting edges on 

projection plane  

In order to further investigate the cutting stages of the cutting edges and determine the 

periphery cutting depth (h1i), inside cutting depth (h2i) and outside cutting depth (h3i), the variable Ri 



(arbitrary inspection radius) is also introduced to help find the relationships between cutting depths 

(h1i, h2i, h3i) and parameters (Rh, Rt, Rm, ap, θ1, e) [15]. 

For the calculation the following variables are used: 

Rh: hole radius Rt: tool radius 

ap: depth setting of the helical course h1i: cutting depth of periphery edge

h2i: cutting depth of inside edge h3i: cutting depth of outside edge 

Ri: arbitrary inspection radius e: eccentricity 

The value of depth setting of the helical course (ap) has a significant influence on cutting 

depths. With the increasing of ap, the cutting depths of all kinds of cutting edges increase gradually 

and uncut material under the tool shows different morphologies. To some extent, the morphology of 

uncut material formed by the tool can reflect the variation trend of the cutting depths. By observing 

the 3D models formed using SolidWorks, it is noted that there are four types of morphology when 

the ap changes from small to large (Fig. 6). In the first type, the helicoid is divided into three regions 

when the ap is small enough. In the second type, the helicoid is divided into four regions when the 

value of ap exceeds the threshold value ap1. In the third type, the helicoid is divided into three 

regions when the ap exceeds the threshold value ap2.In the last type, the helicoid contains only one 

region when the ap exceeds the threshold value ap3.  

 

(a)                 (b)                  (c)                 (d)  

Fig. 6 Four types of uncut material morphology: a the first type b the second type c the third type d the 

fourth type 

Through the observation of the uncut material morphology, the conclusion can be obtained that 

the cutting depth of the periphery cutting edge can always be reduced to zero within the limits of 

0~π. In different regions, the change rules for cutting depths are various. In following sections, the 

computational method of cutting depths in different kinds of uncut material morphology is 

discussed.  



3.1 Cutting depth of periphery cutting edge 

3.1.1 The first type of uncut material morphology (condition 1) 

In this condition, the helicoid is divided into three regions shown in Fig. 7(a). It can be seen that 

the width of the region 1 is very small when comparing with the widths of region 2 and 3. The 

region 1 is formed by periphery cutting edge; the region 2 is formed by outside cutting edge; the 

region 3 is formed by inside cutting edge. Fig. 7(b) shows the second type of uncut material 

morphology. Four regions can be seen in condition 2. When compared with Fig. 7(a), the regions 1, 

2, 3 in two conditions are the same, but the region 4 only appears in condition 2. The region 4 is 

also formed by periphery cutting edge. 

 In Fig. 8, with the value of ap increasing, the chip formed by periphery cutting edge may come 

into being in different regions and there are four possible status: a) only in region 1, b) in region 1 

and 2, c) in region 1, 2, 3 but not reach maximum, d) reach maximum.  

In regions 1, 2, 3, the calculation methods of periphery cutting depth (h1i) are uniform in 

condition 1 and 2. Therefore, the derivation of periphery cutting depth (h1i) in condition 1 is not 

listed here. 

      

(a)                                     (b)  

Fig. 7 Regional division of the uncut material: a three regions in condition1 b four regions in condition 2 

 

 (a)                   (b)                   (c)                  (d)  



Fig. 8 Periphery cutting chips generated in different regions: a region 1 b region 1, 2 c region 1, 2, 3 d reach 

maximum 

3.1.2 The second type of uncut material morphology (condition 2) 

In this condition, the helicoid is divided into four regions and the cutting trajectory of 

periphery cutting edge from point A to E is also divided into four segments (Fig. 9). The change 

rules of periphery cutting depth (h1i) are different in every region. The variation of cutting depth of 

periphery cutting edge can be divided into two parts: one part comes from the decrease along the 

radial direction and another part comes from the decrease along circumferential direction. In order 

to show the different change rate between the two parts in every region, the variable r is introduced. 

The radiuses of boundaries between different regions are denoted by R1, R2 and R3.  

   

Fig. 9 Four segments of the cutting trajectory of periphery cutting edge in condition 2 

 

Fig. 10 Graphic for the calculation of h1i in region 1 

Region 1: As shown in Fig. 10, the periphery cutting edge cut into the material in point A and 

moves along the clockwise. When the periphery cutting edge moves to point K, the decrease along 



circumference direction can be calculated using angle βi and the decrease along the radial direction 

can be replaced by the decrease along circumference direction from K to K' (corresponding to angle 

θ4i). According to the geometrical relationship in Fig. 10, it is noted that θ4i=βi. Therefore, the 

decrease of cutting depth along radial direction (h1211i) is equal to the decrease along circumference 

direction (h1212i) in region 1 and the following equations can be obtained. 
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Fig. 10 shows the geometrical relationships for angle βi. According to the law of cosines, the 

following equation can be derived. 
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Since θ4i=βi, substituting Eq. (3) into Eqs. (1) and (2) gives: 
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When Ri=R1, the h1211i and h1212i reach maximum. 
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Once h1211i and h1212i are known, the cutting depth of periphery cutting edge in region 1 can be 

obtained. 

 1 1211 1212i p i ih a h h  
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Substituting Eqs. (4) and (5) into Eq. (8) gives: 
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The ratio between the decrease along radial direction and the decrease along circumference 

direction in region 1 (r21) can be expressed as Eq. (10). 
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Eq. (10) shows that the decrease along the circumference direction and radial direction in 

region 1 is always the same.  

 

               

Fig. 11 Schematic diagram for the calculation of L3 and θ5i 

 

Fig. 12 Graphic for the calculation of h1i in region 2 

Region 2: As shown in Fig. 11, the tool mark in region 2 is formed by outside edge. The 

direction of the tool mark is not along radial direction but has an included angle γ. Point J is the 

intersection of radius Ri and tool mark. L3 is the distance from point J to center Ot. The Eq. (11) can 

be developed according to the law of cosines and geometrical relationships in triangle JOhOt.
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Taking the root of Eq. (11) 
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The angle θ5i can be obtained according to the geometrical relationships in triangle IJOh and 

law of cosines.
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Once the L3 and θ5 are obtained, the decrease along radial direction from B to K (h1221i) can 

also be obtained (Fig. 12). 
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Substituting Eq. (13) into Eq. (14) gives: 
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The decrease along circumference direction from A to K (h1222i) can be obtained. 
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When Ri=R2, the h1221i and h1222i reach maximum. 
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Once h1221i and h1222i are known, the cutting depth of periphery cutting edge in region 2 can be 

obtained. 

 1 1211max 1221 1222i p i ih a h h h   
 (19) 

The ratio between the decrease along radial direction and the decrease along circumference 

direction in region 2 (r22) can be expressed as Eq. (20). 
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Substituting Eqs. (7), (15) and (16) into Eq. (20) gives: 
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Region 3: In Fig. 13, the point Om is the center of the circle corresponding arc KK'. The 

decrease along the radial direction can be replaced by the decrease along circumference direction 

from K to K' (corresponding to angle θ6i).  

 

Fig. 13 Graphic for the calculation of periphery cutting depth h1i in region 3 

Eq. (22) can be developed according to the geometrical relationships in triangle KOmOh. 
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According to the geometrical relationships in triangle K'OmOh, the angle θ7i can be obtained: 
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Thus, substituting Eq. (23) into Eq. (22) gives: 

 

2 2 2 2 2 2
2

6
2

arccos arccos
2 2

i m m
i

i

R e R R e R

eR eR


      
    

     (24) 

After angle θ6i is deduced, the decrease along radial direction from C to K (h1231i) can be 

obtained. 
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Substituting Eq. (24) into Eq. (25) gives: 
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The decrease along circumference direction from A to K (h1232i) can be expressed as following. 
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When Ri=R3, the h1231i and h1232i reach maximum. 
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Once h1231i and h1232i are known, the cutting depth of periphery cutting edge in region 3 can be 

obtained. 

 1 1211max 1221max 1231 1232i p i ih a h h h h    
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The ratio between the decrease along radial direction and the decrease along circumference 

direction in region 3 can be expressed as Eq. (31).   
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Substituting Eqs. (18), (26) and (27) into Eq. (31) gives: 
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Region 4: Fig. 14 shows the graphic for the calculation of h1i in region 4. The decrease along 

the radial direction can be replaced by the decrease along circumference direction from K to K' 

(corresponding to angle θ8i). According to the geometrical relationship, it's easy to know θ8i=θ9i. 

Therefore, the decrease of cutting depth along radial direction is equal to the decrease along 

circumference direction in region 4. 

 

Fig. 14 Graphic for the calculation of inside cutting depth h1i in region 4 



The decrease along radial direction from D to K (h1241i) can be expressed as follows.
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According to the geometrical relationships in Fig. 14, angle θ8i can be calculated.
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Substituting Eq. (34) into Eq. (33) gives: 
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The decrease along circumference direction from A to K (h1242i) can be obtained. 
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Once h1241i and h1242i are known, the periphery cutting depth in region 4 can be obtained. 
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The ratio between the decrease along radial direction and the decrease along circumference 

direction in region 4 can be expressed as Eq. (38). 
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Therefore, the cutting depth of periphery cutting edge in different regions of condition 2 can be 

expressed as follows: 
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  (39) 

However, The Eq. (39) requires the value of R1, R2, R3 and γ. 

 



              

Fig. 15 Schematic diagram for the calculation of radius R1 and angle γ 

 

Fig. 16 Graphic for the calculation of radius R2 

As shown in Fig. 15, the large blue circle is trajectory of the highest point on outside cutting 

edge rotating around the axis of tool and the small blue circle of radius Ra is trajectory of the point 

which is a feed per tooth lower along axial direction of the hole than the highest point on outside 

edge. The red dotted circle is the position of the big blue circle rotating around the hole axis about a 

feed angle of per tooth around the hole axis. The intersection of the small blue circle and the red 

dotted circle, which is far from the center Oh, is marked N and the value of Ri is equal to the 

distance between point Oh and point N. 

The feed per tooth along axial direction can be calculated by Eq. (40).  

 
p g

za
z

a n
f

Nn




  (40) 

where ng is the revolution speed, nz is the spindle speed, N is the number of tool tooth. 

Furthermore, radius of the small blue circle (Ra) can be obtained. 
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Substituting Eq. (40) into Eq. (41) gives: 
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The feed angle of per tooth (ε) around the hole axis can be calculated as following. 
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According to the geometrical relationships in Fig. 15, angle ε can also be expressed as Eq. 

(44).  
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Let Eq. (43) equals to Eq. (44). 
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The Eq. (45) contains only variable R1 and ap, but it is a transcendental equation which is 

unable to obtain the analytical solution. Assuming that the R1 is expressed by ap with the following 

equation. 

  1 pR f a
  (46) 

Eq. (47) can be developed according to the geometrical relationships in triangle MOhOt (Fig. 

15).
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Rewriting Eq. (47): 
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When Ri=R2, the value of L3 calculated by Eq. (12) is exactly Rm. Therefore, R2 can be 

calculated according to the geometrical relationships in triangle JOhOt (Fig. 16) .
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(a)                                (b) 

Fig. 17 Graphic for the calculation of radius R3: a morphology of the uncut material b calculation chart 

As shown in Fig. 17(a), the altitude intercept between the point E' and H is equal to the height 

of the outside cutting edge. The decrease of periphery cutting depth from F to G can be calculated 

using angle θ10. In addition, point E' and F are at the same height, and point H and G are also at the 

same height. Fig. 17(b) shows the geometrical relationship between the parameters used in 

calculation of R3. 

Therefore, the following equation can be obtained. 
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Rewriting Eq. (50): 
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The angle from position 1 to position 2 (θ11) can be expressed as Eq. (52). 
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In isosceles triangle Om2OhOm1, the length of OhOm1 is equal to the length of OhOm2 and Eq. 

(53) can be derived. 
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The distance between center Om1 and Om2 can be calculated when the angle θ10 is known. 
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Furthermore, the angle θ13 can be calculated because the three sides of the triangle Om2E'Om1 

are known. 
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Substituting Eq. (55) into Eq. (53) gives: 
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The R3 can be calculated according to the geometrical relationships in triangle EOhOm1 and law 

of cosines.
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Substituting Eq. (51) into Eq. (57) gives: 
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  (58) 

The ap1 is the boundary value for morphology of uncut material from condition 1 to condition 

2. Assuming that the region 4 exists and the value R3 can be calculated. However, the region 4 is 

very small and cut by the outside cutting edge, so the region 4 can’t be seen in condition 1. With the 

increase of value ap, the value of R3 also increase. When the R3 reaches Rt-e, the value of ap is the 

boundary value ap1. 

Substituting R3=Rt-e into Eq. (58) and the value ap1 can be calculated. However, the explicit 

solution of ap1 can’t be derived because the Eq. (58) is a transcendental equation. Assume that the 

ap1 is expressed as following. 
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  (59) 

The ap2 is the boundary value for morphology of uncut material from condition 2 to condition 

3. When circle Om and Ot are interior contact (Fig. 18), the value of ap is the maximum that can be 

sustained in condition 2. In this case, the minimum of angle θ10 can be obtained. 



 

Fig. 18 Schematic diagram for the calculation of boundary value ap2 
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Substituting Eq. (60) into Eq. (51) gives: 
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3.1.3 The third type of uncut material morphology (condition 3) 

In this condition, the helicoid is divided into three regions and region 3 disappears compared 

with condition 2 (Fig. 19). The calculation method of the cutting depth is similar to the condition 2 

and the analysis and calculating process is not repeated here.  

  

Fig. 19 Regional division of the uncut material in condition 3 



3.1.4 The fourth type of uncut material morphology (condition 4)  

In this condition, the helicoid contains only one region (Fig. 20). Therefore, the periphery 

cutting depth is easy to calculate and can be expressed as following. 

 

Fig. 20 Regional division of the uncut material in condition 4 
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3.2 Cutting depth of inside cutting edge 

The cutting depth of the inside edge (h2i) is easier to calculate than the cutting depth of the 

periphery cutting edge (h1i). As mentioned above, the formula of periphery cutting depth varies 

when the morphology of uncut material changes. However, the calculation method of inside cutting 

depth remains unchanged no matter what the morphology of uncut material is. 

 

(a)                                   (b) 

Fig. 21 Graphic for the calculation of inside cutting depth h2i: a morphology of the uncut material b 



calculation diagram 

The cutting depth of inside edge (h2i) can be developed with the projected tool path triangle on 

the arbitrary inspection radius Ri (Fig. 21) [15]. 
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Eq. (63) describes the geometric dependence of the inside cutting depth (h2i) on the arc length 

of the full circle with radius Ri, the depth setting per orbital path (ap) and the inspection arc (Umi). 

The value of Umi and URi can be expressed as following. 

 142mi i iU R
  (64) 
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  (65) 

Substituting Eqs. (64) and (65) into Eq. (63) gives: 
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According to the geometrical relationships in triangle BOhOt and combined with the law of 

cosines, the angle θ14i can be derived. 
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Substituting Eq. (67) into Eq. (66) gives: 
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Eq. (68) describes the relationship between the cutting depth of inside edge (h2i) and depth 

setting of the helical course (ap). The value of h2i changes lineally with ap.  

3.3 Cutting depth of outside cutting edge 

As shown in Fig. 22, the uncut material is divided into four zones according to the kinds of 

cutting edges participating in milling process. In zone 1, the periphery cutting edge and outside 

edge participate in cutting process together (Fig. 23(a)). In zone 2, the three kinds of cutting edges 

all participate in milling process (Fig. 23(b)). In zone 3, the outside cutting edge and inside cutting 

edge participate in milling process together (Fig. 23(c)). In zone 4, only the outside cutting edge 

participates in milling process (Fig. 23(d)). 



 

Fig. 22 Area partition of the uncut material according to the participating edges  

 

(a)                   (b)                    (c)                  (d)  

Fig. 23 Type of cutting edges in different zones: a zone 1 b zone 2 c zone 3 d zone 4 

Assuming that h1i and h2i are known, the cutting depth of outside edge (h3i) can be calculated 

with the following equation. 
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4 Effects of the depth setting of the helical course (ap) and eccentricity (e) on 

cutting depths (h1i, h2i, h3i) 

The morphology of uncut material may be different with varying cutting parameters. To some 

extent, it also reflects the variation of the cutting depths. The effects of depth setting of the helical 

course (ap) on morphology of uncut material have been mentioned above (Fig. 6), four kinds of 

morphologies will appear with the increase of ap. The impact of eccentricity (e) on morphology of 

uncut material is shown in Fig. 24. When the value of ap is kept unchanged, the morphology of 



uncut material changes with the increase of eccentricity (e) from a small value to a large value. 

Furthermore, the morphology formed by the tool belongs to the four kinds of morphology 

mentioned above. Therefore, the calculation methods of cutting depths (h1i, h2i, h3i) are also useful. 

In order to find out the relationships between the cutting depths (h1i, h2i, h3i) and the cutting 

parameters (ap, e), the calculation of cutting depths was made with constant cutting parameters in 

table 1. 

  

(a)                        (b)                            (c)  

Fig. 24 Morphology of the uncut material under different eccentricity e (ap=0.4 mm/r): a e=0.5 mm b e=1 

mm c e=2 mm 

Table 1 Cutting parameters and tool structure 

 

 

 

The effects of the depth setting of the helical course (ap) and eccentricity (e) on periphery 

cutting depth (h1i) are given in Fig. 25. The red, green, blue and black curves show the variation of 

periphery cutting depth with Ri under different morphology of uncut material respectively 

(conditions 1, 2, 3 and 4). As shown in Fig. 25(a), when the eccentricity (e) is kept constant, it can 

be seen that the change rule of h1i is a little different with various ap. When the ap is small, the h1i 

decreases with the decrease of Ri at an almost constant change rate in the right part of the curve 

and at a smaller constant change rate in the left part. It is also noteworthy that the value of Ri 

corresponding to h1i=0 decreases with the increase of ap, which means that the length of the 

periphery cutting chip increases with the increase of ap. When the ap is large, the h1i decreases 

sharply with a gradually reductive change rate when the value of Ri decreases in the right part of 

the curve. However, in the middle part of the curve, the h1i decreases almost linearly. Then, the 

Rt (mm) Rm (mm) θ1 (°) N nz (r/min) ng (r/min)

3 1.76 8.32 4 25.64 1500 



changes rate increases rapidly with the decrease of Ri at the left part of the curve. It also can be 

observed that the third type of morphology of uncut material appears only in a very narrow 

interval of ap. When compared the change rules of h1i with different value of e (e=2, e=1, e=0.5), it 

can be found that the width of interval of ap ,in which the second type of morphology appears, 

decreases gradually (see Fig. 25(b)) and becomes zero (see Fig. 25(c)) at some point with the value 

of e reducing. The fourth type of morphology will appear at a lower and lower value of ap with the 

decrease of e.  

    

(a)                                       (b)           

 

        (c)  

Fig. 25 Variation of periphery cutting depth h1i under different ap and e: a e=2 b e=1 c e=0.5 

The effects of the depth setting of the helical course (ap) and eccentricity (e) on inside cutting 

depth (h2i) are also provided based on the established models. Fig. 26(a) shows the influence of ap 

on inside cutting depth when e takes a large value. It can be seen that the h2i increases with the 

increase of ap. The h2i on both ends of curves is zero and sharply increases from the ends to the 

middle part of curves. The maximum of h2i appears near Ri=1, which is not in the middle of curves. 

This phenomenon is caused by two reasons: one reason is that the change rate of cutting depth 



along circumferential direction（ap/2πRi）increases gradually when the Ri changes from Rh to 0; the 

other reason is that the length of the inspection arc Umi first increases and then decreases when the 

Ri changes from Rh to 0. Fig. 26(c) shows the influence of ap on inside cutting depth when e takes a 

small value. It can be seen that the h2i increases significantly till reaching maximum and keeps 

unchanged when Ri changes from a large value to zero. When compared the change rules of h2i with 

different value of e (e=2, e=1, e=0.5), it can be found that the cutting area of inside edge decreases 

with the decrease of e, the material near the center of hole will be removed completely by inside 

edge when e takes a small value. Therefore, the h2i equals to the value of ap in the area near the 

center of hole. 

  

(a)                                          (b)                 

 

      (c)  

Fig. 26 Variation of inside cutting depth h2i under different ap and e: a e=2 b e=1 c e=0.5 

Fig. 27 shows the curves of outside cutting depth (h3i) with different value of ap and e. The 

curves of h3i are a little complex when compared with the curves of h1i and h2i. When the e is kept 



constant, the h3i changes gently with a small value of ap and the change rate of h3i increases with the 

increase of ap. When compared the change law of h3i with different value of e (e=2, e=1, e=0.5), it 

can be found that the curve pattern varies significantly, one reason is that the cutting area of cutting 

edges changes with the variation of e.  

   

(a)                                          (b)        

 

       (c)  

Fig. 27 Variation of outside cutting depth h3i under different ap and e: a e=2 b e=1 c e=0.5 

5 Cut volume and cut volume ratio  

The changes of cut volume of cutting edges will influence the cutting conditions such as 

chattering, variation of the cutting forces and the deformation degree of cutting tool. Therefore, the 

cut volumes of the periphery cutting edge (V1), the inside cutting edge (V2), the outside cutting edge 

(V3) are calculated respectively and then the cut volume ratios are derived. 

5.1 Cut volume of the periphery cutting edge 

On the thin wall cylinder of radius Ri, the cutting area of the periphery cutting edge in one 



orbital revolution can be expressed as following. 

                                 1 12i i iA R h     (70) 

Assuming that the periphery cutting edge participates in cutting in the range of Ri [R0, Rh], the 

volume removed by the periphery cutting edge (V1) is given by the summation of all partial areas 

over the radius Ri [R0, Rh]. The cut volume V1 in one orbital revolution can be obtained by 

integrating the A1i in the range of Ri [R0, Rh].  
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5.2 Cut volume of the inside edge 

On the thin wall cylinder of radius Ri, the cutting area of the inside edge in one orbital revolution 

can be expressed as following. 

       2 22i i iA R h  
   (72) 

The inside edge participates in cutting in the range of Ri [e-Rm, e+Rm], the volume removed 

by the inside edge (V2) is given by the summation of all partial areas over the radius Ri [e-Rm, 

e+Rm]. The cut volume V2 in one orbital revolution can be obtained by integrating the A2i in the 

range of [e-Rm, e+Rm]. 
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5.3 Cut volume of the outside edge 

Direct solution of the cut volume of the outside edge (V3) is a little complicated. Therefore, it 

is obtained by subtracting the volume removed by the periphery cutting edge (V1) and inside edge 

(V2) from the total volume removed by all cutting edges (V) in one orbital revolution. 

The cut volume V and V3 can be expressed as following: 
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Substituting Eqs. (71) , (73) and (74) into Eq. (75) gives: 
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Fig. 28 shows the impact of ap on cutting volume V1, V2, V3. When ap changes from 0.1 mm/r 

to 2.2 mm/r, the V1 increases almost linearly as a whole, the change rate of V1 is a little lower when 













the ap is small than ap is large. The V2 changes linearly with the ap and this result can also be 

deduced from Eqs. (68) and (73). When the ap changes from small to large, the V3 increases with a 

large rate first and then increases with a smaller rate when the ap beyond a critical value. (Fig. 

28(c)). 

   

(a)                                           (b)                   

 

       (c)  

Fig. 28 Variation of cut volume under different depth setting of the helical course ap (e=2): a V1 b V2 c V3  

5.4 The ratio (G) between periphery cut volume and front cut volume 

In helical milling process, the different cutting edges will produce different types of cutting 

force. The periphery cutting edge produces mainly radial cutting force; the front cutting edge 

produces not only radial cutting force but axial cutting force. The radial cutting force may lead to 

radial deflection of the tool and cause vibration, the axial cutting force may make the workpiece 

deform in axial direction of machining hole and lead to poor surface integrity.  

The ratio G can reflect the distribution of the cutting forces along radial direction and 

circumferential direction to some extent. Therefore, it’s necessary to study the influence of the 



parameters on the ratio G between periphery cut volume (V1) and front cut volume (V-V1). The ratio 

G can be calculated as follows. 
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Fig. 29 shows the impact of the depth setting of the helical course (ap) and eccentricity (e) on 

the ratio G. It can be seen that the calculated ratio G is in good agreement with that of measured in 

Solidworks. The slight difference may be due to the modeling error in Solidworks, approximate 

calculation in Matlab. 

When the e is kept unchanged and the ap takes a small value, the ratio G is very low, which 

indicates that most of the hole volume is removed by inside and outside cutting edge. With the ap 

increasing, the ratio G increases and reaches maximum when ap exceeds a certain threshold, which 

means that the ratio G can only changes in a limited range and can’t increase without limit. When e 

takes value 2, 1, 0.5, the maximum of ratio G are 1.78, 0.78 and 0.36 respectively. It can be seen 

that the maximum of ratio G decreases when the e changes from small to large. The change interval 

of ratio G becomes more and more smaller with the decrease of e. It is remarkable that the 

maximum of ratio G equals to the ratio between the periphery and front cut volume removed by 

conventional end mill over one orbital revolution.  

 

Fig. 29 Variation of the ratio G under different ap and e  

5.5 The ratio (G1 G2 G3) between the cut volume of cutting edges and the total hole volume 

All cutting edges are directly involved in helical milling process and a strong interaction will 

happen between tool and workpiece. The cutting edges will wear gradually with the cut volume 

increasing. Tool failure occurs once the wear condition of any edge reaches the critical value.  

However, some edges wear sharply, but some edges wear slightly in helical milling process, which 



may lead to varying degree of wear on different edges.  

Therefore, it’s essential to find out the ratio between the volume removed by periphery cutting 

edge and the total hole volume (G1), the ratio between the volume removed by inside edge and the 

total hole volume (G2), the ratio between the volume removed by outside edge and the total hole 

volume (G3). The ratio G1, G2, G3 can be calculated as follows. 
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Simulations under different cutting parameters were carried out to reveal the impact of the 

depth setting of the helical course (ap) and eccentricity (e) on the ratio G1, G2, G3, and the results 

were shown in Fig.30. It can be seen that the calculated ratio G1, G2, G3 are in good agreement with 

that of measured in Solidworks.  

As shown in Fig. 30(a), it is easy to be found that the ratio G1 increases remarkably with the 

increase of ap and reaches maximum when ap beyond some certain value. The ratio G2 stays 

constant no matter what value of the ap is. The ratio G3 decreases with the ap changing from small 

to large and reaches minimum when ap beyond some certain value. When the curves of ratio G1 G2 

G3 with different value of e are compared, it can be found that the maximum of ratio G1 decreases 

gradually with the decrease of e. However, the value of ratio G2 and the minimum of ratio G3 

increase with the decrease of e. When e takes a large value (Fig. 30(a)(b)), the volume removed by 

outside edge is larger than the volume removed by periphery cutting edge with a small value of ap 

and smaller than the volume removed by periphery cutting edge with a large value of ap. When e 

takes a small value (Fig. 30(c)), the volume removed by outside cutting edge is always larger than 

the volume removed by periphery cutting edge no matter what value of ap is. 



 

(a)                                   (b)    

 

                  (c)  

Fig. 30 Variation trends of G1, G2, G3 under different ap and e: a e=2 b e=1 c e=0.5 

6 Undeformed chip geometry during helical milling processes 

In actual manufacturing process，the undeformed chip geometry is an indicator which should 

be treated carefully. On the one hand, it can reflect the working intensity of the different parts on the 

cutting edge and evaluate the wear rate of the cutting edge. On the other hand, the size of 

undeformed chip will influence the degree of difficulty of chip removal. The machined surface may 

be scratched when the size of undeformed chip is large, which will reduce the quality of machined 

surface. In addition, the deformation degree of cutting chip changes with different morphology of 

cutting chip and too large deformation degree will lead to unfavorable situations, such as the 

increase of power dissipation and cutting force. Therefore, it is necessary to study the relationships 

between the morphology of undeformed chip and the cutting parameters. 

The undeformed chip geometry of the helical milling specialized tool is shown in Fig. 31. 

Three kinds of chip can be seen in picture: the chip formed by periphery cutting edge has a small 



width and height but a large length (part in blue); the chip formed by outside cutting edge has a 

small height but a large width and length, which looks like a fan. Be similar to the morphology of 

chip formed by outside edge, the geometry of the inside cutting chip also looks like a fan, but the 

size of it is smaller than the former. It can also be found that the connection between the chips of 

inside edge and outside edge is weak, which will break easily and facilitates chip removal 

effectively.  

The impact of the depth setting of the helical course (ap) on the undeformed chip geometry is 

given in Fig. 32. The width of undeformed periphery chip stays the same, but the length and height 

increase sharply when ap changes from a small value to a large one, the maximum that the length 

can reaches is πRt. The width, length and width of undeformed inside chip increase with the 

increase of ap, but the length-width ratio decreases. As for undeformed outside chip, the length of it 

increases slowly with ap increasing. When ap takes small value, width of a part of the chip reaches 

maximum and the width of last part is still small. The proportion of part where the width reaches 

maximum increases when the ap takes a larger value. From the Fig. 32, it can also be found that the 

length of the connection between the chips of inside edge and outside edge becomes larger and 

larger, which may lead to a difficulty in separating.  

The influence of the eccentricity (e) on the undeformed chip geometry is given in Fig. 33. The 

length of periphery chip decreases when e changes from small to large, the width and height keep 

unchanged. The length and width of inside chip decrease and length-width ratio increases with the 

increase of e. When e=0.5 and e=1, the width of right part of the inside chip is larger than the width 

of left part obviously. One reason is that the material in the middle of hole is removed by inside 

cutting edge completely. The length of outside chip decreases with the increase of e and the 

proportion of part where the width reaches maximum also decrease. It is also worth noting that the 

length of the connection between the chips of inside edge and chip of outside edge becomes smaller 

and smaller, which improves the chip removal condition. 

The study on relationships between the undeformed chip geometry and cutting parameters ( ap 

and e) are profitable. It is conducive to optimize machining parameters of helical milling and 

helpful to improve the tool life. Structure of the tool has a significant influence on chip morphology. 

Therefore, the research of undeformed chip geometry is useful to assist the design of helical milling 

specialized tool and can make the structure more suitable for helical milling method. 



 

Fig. 31 Undeformed chip geometry formed by helical milling specialized tool 

 

Fig. 32 Variation of undeformed chip geometry under different ap (e=2)  



 

Fig. 33 Variation of undeformed chip geometry under different eccentricity e (ap=0.1 mm/r) 

7 Conclusions 

This paper is focused on calculation method of cutting depths (h1i h2i h3i) , cut volumes (V V1 

V2 V3) and cut volume ratios (G G1 G2 G3) , description of undeformed chip geometry for helical 

milling specialized tool. The influence of the depth setting of the helical course (ap) and eccentricity 

(e) on cutting depths, cut volume, cut volume ratios was also investigated. Based on the results of 

calculation and modeling using SolidWorks, the following conclusions can be drawn: 

1. The comparison between the structures of the conventional end mill and helical milling 

specialized tool shows that the specialized tool is more suitable in helical milling process. 

2. The calculation methods of cutting depths vary with different cutting parameters (ap and e). 

Four types of uncut material morphology may appear and the hole is divided into regions, where the 

cutting depths change with different rules, to calculate the cutting depths using different methods. 

The change rate of cutting depths along the radial direction and circumferential direction is 



different. 

3. The cut volumes (V V1 V2 V3) increase with the increase of ap and e. When ap is small, the 

change rates of the cut volumes are different, the V1 increases faster than V1 and V2, the V2 increases 

faster than V3; the change rates of the cut volumes are the same when ap beyond some certain value. 

4. When e is kept unchanged, the ratios (G G1) increase with the increase of ap and reach 

maximum after ap beyond some certain value, the ratio G2 keeps unchanged no matter what the ap is, 

the ratio G3 decreases with the increase of ap and reaches minimum after ap beyond some certain 

value. When ap is kept unchanged, the ratios (G G2 G3) increase with the increase of e, but the ratio 

G1 decreases with the increase of e. 

5. The changes of ap and e will affect the unchanged chip geometry and the chip geometry can 

be optimized by adjusting the value of ap and e to obtain a good cutting condition. 
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