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Abstract

A process defined by a continuum of random variables with non-degenerate
idiosyncratic risk is not jointly measurable with respect to the usual prod-
uct σ-algebra. We show that the process is jointly measurable in a one-way
Fubini extension of the product space if and only if there is a countably
generated σ-algebra given which the random variables are essentially pair-
wise conditionally independent, while their conditional distributions also sat-
isfy a suitable joint measurability condition. Applications include: (i) new
characterizations of essential pairwise independence and essential pairwise
exchangeability; (ii) when a one-way Fubini extension exists, the need for
the sample space to be saturated if there is an essentially random regular
conditional distribution with respect to the usual product σ-algebra.

Keywords: Continuum of random variables, joint measurability problem,
one-way Fubini property, conditional distributions, characterizations of con-
ditional independence.
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1 Introduction

In this paper, a continuous parameter random process (or simply a process)
is formalized as a continuum of random variables — i.e., a collection of ran-
dom variables indexed by points in an atomless measure space. When the
index space is the time line, such a process is usually assumed to be jointly
measurable with respect to time and the random state in the usual product
σ-algebra of probability theory.

Following the work on oceanic games by Milnor and Shapley [32] and on
large economies by Aumann [2], [3] and Hildenbrand [18], economists and
game theorists have long been interested in the “continuum limit” of an eco-
nomic model or game as the number of agents or players tends to infinity
— see also the survey chapter [25]. Agents or players in such a limit are
indexed by points in an atomless probability space. Such “continuum” mod-
els of random processes involving many agents work well for systemic risks
taking the form of common random shocks that influence a non-negligible
set of agents. Yet reality suggests that these systemic risks are supplemented
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by risks at the individual level in the form of idiosyncratic micro shocks that
influence a negligible set of agents. As shown in Corollary 1 below, however,
a process that generates a continuum of random shocks satisfies a standard
joint measurability condition only if there is essentially no idiosyncratic risk
at all.

In terms of the Kolmogorov construction for a continuum of independent
random variables, the first references to this non-measurability issue are by
Doob [6, Theorem 2.2, p. 113] and [7, p. 67]. In general, [38, Proposition 1.1]
shows that independence and joint measurability with respect to the usual
product σ-algebra are never compatible with each other except for the trivial
case. Indeed, the failure of joint measurability led Doob to claim in [7, p. 102]
that processes with mutually independent random variables are only useful
in the discrete parameter case.1

The papers [37] and [38] adopted the framework of Loeb product measure
spaces in nonstandard analysis, which extends the usual measure-theoretic
product, as noted by Anderson in [1], while retaining the common Fubini
property (as shown by Keisler in [21] — see also [22], [28] and [31]). Any
atomless Loeb product measure space always has an abundance of nontrivial
independent processes (Theorem 6.2 in [37]). In particular, Keisler’s Fubini
theorem implies that the joint measurability problem is automatically solved
for independent processes that are Loeb product measurable. On the other
hand, for an arbitrarily given process with a continuum of independent ran-
dom variables, a two-way Fubini extension as in [37] (and more generally in
[39]) may not be possible in general (see Remark 3.2 in [15]). The approach
used in [15] is to work with an extension of the product space satisfying a
limited form of joint measurability, which we associated with a “one-way
Fubini” property of double integrals.

The main aim of this paper is to characterize completely all processes
that satisfy the one-way Fubini property, without assuming independence. In
particular, the main result, Theorem 1, shows that a process satisfies the one-
way Fubini property if and only if there is a countably generated σ-algebra C

1Here we note that studying a continuum of (conditionally) independent random vari-
ables within an appropriate analytic framework has allowed the discovery of several new
connections between some basic concepts in probability theory. For example, Theorem 1
in both [38] and [16] shows the essential equivalence of pairwise and mutual (conditional)
independence, which also implies the essential equivalence of pairwise and multiple ver-
sions of exchangeability. For other results related to the exact law of large numbers and
its converse, see [37] and [39].
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such that: (i) the random variables are essentially pairwise conditionally
independent given C; and (ii) the conditional distributions of the random
variables given C satisfy a suitable joint measurability condition.

We also discuss several applications. First, we show in Proposition 4 that,
if a one-way Fubini extension exists, then the underlying sample probability
space must be saturated if the regular conditional distribution with respect
to the usual product σ-algebra is essentially random. Second, using the one-
way Fubini property along with regular conditional distributions with respect
to the usual product σ-algebra, Proposition 5 provides new characterizations
for the basic concepts of independent and exchangeable random variables. In
a more general setting, these characterizations allow us to show the duality
between independence and exchangeability when considering the basic ran-
dom variables on the one hand, and the random sample functions generated
by a process on the other hand.

In the sequel, we introduce the basic concepts in Section 2. The main
result is stated in Section 3 and proved in Sections 4 and 5. As a first
application of the general results proved earlier, Section 6 shows that any
function that is jointly measurable in the usual sense differs fundamentally
from a process that includes non-trivial idiosyncratic micro shocks. The
second application in Section 7 considers, in the framework of a one-way
Fubini extension, regular conditional distributions of a process with respect
to the usual product σ-algebra. As a corollary, we use the regular conditional
distributions to give new characterizations of essential pairwise independence
and essential pairwise exchangeability as well as to demonstrate their duality.

2 Basic Definitions

We first fix some notation. Let (T, T , λ) be a complete atomless probability
space. Let (Ω,A, P ) be a complete, countably additive probability space.
Let X be a Polish space (i.e., homeomorphic to a complete separable metric
space) with the Borel σ-algebra B. A process g is a mapping from T × Ω
to X such that, for any fixed t ∈ T , the mapping ω 7→ gt(ω) = g(t, ω) is
A-measurable — i.e., gt is a random variable defined on (Ω,A, P ). Thus, the
pair of probability spaces (T, T , λ) and (Ω,A, P ) are used as the parameter
and sample spaces, respectively, for the process g.
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In the following subsections, we introduce the three main concepts in this
paper: (i) one-way Fubini extension; (ii) regular conditional independence;
(iii) essentially random process.

2.1 The one-way Fubini property

The following definition was introduced in [15].

Definition 1. A probability space (T × Ω,W , Q) extends the usual product
probability space (T × Ω, T ⊗ A, λ × P ) provided that W ⊇ T ⊗ A, with
Q(E) = (λ× P )(E) for all E ∈ T ⊗A.

1. The extended space (T ×Ω,W , Q) is a one-way Fubini extension of the
product probability space (T ×Ω, T ⊗A, λ×P ) provided that, given any
Q-integrable function f : T × Ω→ R:
(i) for λ-almost all t ∈ T , the function ω 7→ ft(ω) is integrable on
(Ω,A, P );
(ii) the function t 7→

∫
Ω
ftdP is integrable on (T, T , λ), with integral

that satisfies
∫
T

(∫
Ω
ftdP

)
dλ =

∫
T×Ω

fdQ.

2. The space (T×Ω,W , Q) is a (two-way) Fubini extension of the product
probability space (T × Ω, T ⊗ A, λ × P ) provided that, given any Q-
integrable function f : T × Ω → R, in addition to (i) and (ii) above,
one has:
(iii) for P -almost all ω ∈ Ω, the function fω is integrable on (T, T , λ);
(iv) the integral of fω w.r.t. t satisfies

∫
T×Ω

fdQ =
∫

Ω

(∫
T
fωdλ

)
dP .2

A process g : T × Ω → X is said to satisfy the one-way Fubini property
if there is a one-way Fubini extension (T × Ω,W , Q) such that g is W-
measurable.

2.2 Regular conditional independence

Recall that a σ-algebra C on Ω is said to be countably generated if there exists
a countable family {Cn }∞n=1 of subsets of Ω such that C = σ({Cn }∞n=1), the

2See [39, Definition 2.2]. For a nontrivial example of two-way Fubini extensions beyond
atomless Loeb product measure spaces, see [39, Proposition 5.6]. This example involves an
extension of the Kolmogorov continuum product; see also [33] and [40] for other examples
of this type.
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smallest σ-algebra including the whole family — see, for example, [4] (Ex.
2.11, p. 34). As shown in [4] (Ex. 20.1, p. 270), the σ-algebra C is countably
generated if and only if there exists a Borel measurable mapping θ : Ω→ R
such that C = σ({θ}), the smallest σ-algebra on Ω that makes the function
ω 7→ θ(ω) Borel measurable.

Given the probability space (Ω,A, P ), a sub-σ-algebra C ⊂ A is said to
be essentially countably generated if it is the strong completion of a countably
generated σ-algebra C ′,3 in the sense that

C = {A ∈ A | ∃A′ ∈ C ′ : P (A4 A′) = 0 }.

For simplicity, from now on we describe a σ-algebra as countably gen-
erated even when it is only essentially countably generated. Of course, the
extra sets in the essentially countably generated σ-algebra are all null.

Given the codomain X of the process g : T × Ω→ X, let M(X) denote
the space of Borel probability measures on X endowed with the topology of
weak convergence of measures.4

Definition 2. Let g a process from T × Ω to X, and C be a countably gen-
erated sub-σ-algebra of A.

1. Two random variables φ and ψ that map (Ω,A, P ) to X are said to be
conditionally independent given C if, for any Borel sets B1, B2 ∈ B,
the conditional probabilities satisfy

P (φ−1(B1) ∩ ψ−1(B2)|C) = P (φ−1(B1)|C)P (ψ−1(B2)|C). (1)

2. The process g is said to be essentially pairwise conditionally indepen-
dent given C if, for λ-a.e. t1 ∈ T , the random variables gt1 and gt2 are
conditionally independent given C for λ-a.e. t2 ∈ T .5

3Note that this definition for a sub-σ-algebra to be essentially countably generated does
not depend on the assumption of P being a probability measure. One can use the same
definition in the case of a finite measure space.

4Recall that a mapping φ from a measurable space (I, I) toM(X) is measurable w.r.t.
the Borel σ-algebra generated by the topology of weak convergence of measures onM(X)
if and only if it is event-wise measurable — i.e., for every event B ∈ B, the mapping
i 7→ φ(i)(B) is I-measurable (see, for example, [14, p. 748]).

5Note that this condition implies that the process satisfies essential mutual conditional
independence, as shown in Theorem 1 of [16].
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3. A T ⊗ C-measurable mapping µ from T × Ω to M(X) is said to be an
essentially regular conditional distribution process of g given C if, for
λ-a.e. t ∈ T , the C-measurable mapping ω 7→ µtω from Ω to M(X) is
a regular conditional distribution P (g−1

t |C) of the random variable gt.

4. The process g is said to be regular conditionally independent if there
exists a countably generated sub-σ-algebra C of A such that g is essen-
tially pairwise conditionally independent given C, and also g admits an
essentially regular conditional distribution process given C.

Remark 1. An important special case of the above definition that is discussed
in [14] is when all the random variables gt are conditionally independent and
identically distributed — i.e., they are exchangeable with µtω = µ∗ω, indepen-
dent of t; see also Proposition 5 below.

2.3 Saturation and essential randomness

For any A ∈ A with P (A) > 0, one can define the restricted σ-algebra
AA := {D ∈ A : D ⊆ A}, which leads to the restricted measure space
(A,AA, P ). The probability space (Ω,A, P ) is said to be saturated if it is
nowhere countably generated in the sense that the restricted measure space
(A,AA, P ) is not countably generated for any A ∈ A with P (A) > 0.6

Definition 3. The T ⊗ C-measurable mapping µ : T × Ω → M(X) is es-
sentially random if, for (λ× P )-a.e. (t, ω) ∈ T × Ω, the probability measure
µtω ∈M(X) is not a Dirac measure concentrated at a single point in X.

Suppose that the regular conditional distribution process µtω in Part 3 of
Definition 2 is essentially random. Then Proposition 4 below shows that the
probability space (Ω,A, P ) must be saturated.

3 The Main Result

The following theorem characterizes the one-way Fubini property.

6For other equivalent definitions of saturation, see Section 2 of [24]. As noted in [13],
[19] and [20], atomless Loeb probability spaces are always saturated. For some recent
applications of Loeb and more generally saturated probability spaces, see for example [8],
[10], [12], [23], [24], [26], [30], [35], and [36].
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Theorem 1. A process g from T × Ω to X satisfies the one-way Fubini
property if and only if it is regular conditionally independent.

As noted in the introduction, the Loeb product framework introduced in
[27] provides a rich class of (two-way) Fubini extensions. For these we note
that Theorem 1 also implies that any process on a Loeb product probability
space must be regular conditionally independent.7

4 Proof of Necessity

Proof of the necessity part of Theorem 1: Suppose that the process g :
T×Ω→ X has the one-way Fubini property because the product probability
space (T × Ω, T ⊗ A, λ× P ) has a one-way Fubini extension (T × Ω,W , Q)
such that g is W-measurable. For any A ∈ A and B ∈ B, let ω 7→ 1A(ω)
and (t, ω) 7→ 1g−1(B)(t, ω) denote the respective indicator functions of the
sets A and g−1(B). Because T ⊗ A ⊂ W , the mapping (t, ω) 7→ 1A(ω)
is W-measurable. By the the one-way Fubini property, so is the mapping
(t, ω) 7→ 1g−1(B)(t, ω). It follows that (t, ω) 7→ 1A(ω)1g−1(B)(t, ω) is also W-
measurable, and so Q-integrable. By part (ii) of Definition 1, it follows that
the mapping

t 7→
∫

Ω

1A(ω)1g−1(B)(t, ω)dP = P (A ∩ g−1
t (B))

is T -measurable. That is, the process g has event-wise measurable condi-
tional probabilities, as defined in property (3) in the statement of Theorem 1
in [17]. So property (1) of that theorem follows: specifically, the process g is
regular conditionally independent with respect to a suitable countably gen-
erated conditioning σ-algebra C.

We remark that the appropriate conditioning σ-algebra in this result is
the Monte Carlo σ-algebra Cg specified in Definition 3 of [17].

7When the process is used to model many agents with random outcomes, Theorem 3
in [34] shows that the conditioning σ-algebra could be taken as the σ-algebra representing
all the systemic risks that influence a non-negligible set of agents.
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5 Proof of Sufficiency

Throughout this section, let g be a regular conditionally independent process
from T × Ω to X. Thus, there exists a countably generated sub-σ-algebra
C of A such that g is essentially pairwise conditionally independent given
C, and also g admits an essentially regular conditional distribution process
given C.

Define the mapping H : T ×Ω→ T ×Ω×X by H(t, ω) := (t, ω, g(t, ω)).
Note that for each fixed t ∈ T , the component mapping Ht satisfies Ht(ω) =
(ω, gt(ω)). Let E := T ⊗A⊗B denote the product σ-algebra on T ×Ω×X.
Let F := {H−1(E) : E ∈ E}. Then it is clear that F is a σ-algebra. Also,
the first two components of H(t, ω) are given by the identity mapping idT×Ω

on T × Ω, while the last component is g(t, ω). Hence, F is the smallest σ-
algebra such that idT×Ω and g are both measurable. This means that F is the
smallest extension of the product σ-algebra T ⊗A such that g is measurable.

Given any event E ∈ E = T ⊗ A ⊗ B, along with any fixed t ∈ T and
ω ∈ Ω, let Et denote the section {(ω, x) ∈ Ω×X | (t, ω, x) ∈ E} and Etω the
section {x ∈ X | (t, ω, x) ∈ E}.

Our proof of the sufficiency part of Theorem 1 relies on the following:

Proposition 1. Given any event E ∈ E = T ⊗ A ⊗ B, for λ-a.e. t ∈ T the
following four properties hold:

(i) the set H−1
t (Et) is A-measurable;

(ii) the mapping ω 7→ µtω(Etω) is A-measurable;

(iii) P (H−1
t (Et)) =

∫
Ω
µtω(Etω)dP ;

(iv) the mapping t 7→ P (H−1
t (Et)) is λ-integrable.

In order to prove this proposition, we need several lemmas.

Lemma 1. For all s, t ∈ T and B ∈ B, one has

E[1g−1
s (B)E(1g−1

t (B)|C)] = E[E(1g−1
s (B)|C)E(1g−1

t (B)|C)]

Proof. By the law of iterated expectations,

E[1g−1
s (B)E(1g−1

t (B)|C)] = E[E(1g−1
s (B)E(1g−1

t (B)|C)|C)]
= E[E1g−1

s (B)|CE(1g−1
t (B)|C)]

because the function ω 7→ E(1g−1
t (B)|C)(ω) is already C-measurable — see, for

example, [9] (p. 266).
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Fix any Borel set B in X. For each t ∈ T , define the random variable
ω 7→ ht(ω) on (Ω,A, P ) so that

ht(ω) := 1g−1
t (B)(ω)− E(1g−1

t (B)|C)(ω) (2)

Evidently for all t ∈ T one has E(ht|C)(ω) = 0 for all ω ∈ Ω, and so Eht =
E[E(ht|C)] = 0

Lemma 2. If gs and gt are conditionally independent given C, then hs and ht
are uncorrelated random variables with zero mean.

Proof. By the law of iterated expectations,

Eht = E1g−1
t (B) − E[E(1g−1

t (B)|C)] = E1g−1
t (B) − E1g−1

t (B) = 0

and similarly Ehs = 0. Furthermore,

Ehsht = E[1g−1
s (B)1g−1

t (B)]− E[1g−1
s (B)E(1g−1

t (B)|C)]
−E[1g−1

t (B)E(1g−1
s (B)|C)] + E[E(1g−1

s (B)|C)E(1g−1
t (B)|C)]

= E[E(1g−1
s (B)1g−1

t (B)|C)]− E[E(1g−1
s (B)|C)E(1g−1

t (B)|C)]

by Lemma 1 and the law of iterated expectations. But

E(1g−1
s (B)1g−1

t (B)|C) = E(1g−1
s (B)|C)E(1g−1

t (B)|C)

because gs and gt are conditionally independent given C. So Ehsht = 0,
implying that the two zero-mean random variables are uncorrelated.

Lemma 3. Suppose that the component random variables ft (t ∈ T ) are
all square-integrable and are essentially uncorrelated — i.e., suppose each
ft ∈ L2(Ω,A, P ) and, for a.e. t1 ∈ T , one has E(ft1ft2) = Eft1 · Eft2 for
a.e. t2 ∈ T . Then, for every A ∈ A, one has

∫
A
ftdP = P (A)Eft for λ-a.e.

t ∈ T .

Proof. This is Lemma 1 of [15], which was proved by considering orthogonal
projections in Hilbert space.

Lemma 4. Given any A ∈ A and B ∈ B, for λ-a.e. t ∈ T one has∫
A

1g−1
t (B)dP =

∫
A

E(1g−1
t (B)|C)dP

9



Proof. Because of Lemma 2, we can apply Lemma 3 to the bounded and
so square-integrable random variables ht (t ∈ T ) defined by (2). Hence, for
λ-a.e. t ∈ T ∫

A

htdP = P (A)Eht = 0

Then the definition (2) of ht implies the claimed result directly.

Let D denote the collection of all events E ∈ E whose sections Et and
Etω satisfy

1. properties (i)–(iii) in the statement of Proposition 1, for λ-a.e. t ∈ T ;

2. the mapping (t, ω) 7→ µtω(Etω) is T ⊗ A-measurable.

Lemma 5. Each measurable triple product set E = S × A × B ∈ E belongs
to D.

Proof. First, it is easy to see that Etω = ∅ unless t ∈ S and ω ∈ A, and so
µtω(Etω) = 1S(t) 1A(ω)µtω(B). By definition, the mapping (t, ω) 7→ µtω(B)
is measurable w.r.t. T ⊗C, and so w.r.t. T ⊗A. It follows that the mapping
(t, ω) 7→ µtω(Etω) is also T ⊗ A-measurable. It remains to verify properties
(i)–(iii) of Proposition 1.

In the trivial case when t 6∈ S, then Et = ∅ and µtω(Etω) = 0 for all
ω ∈ Ω, so the three properties (i)–(iii) follow immediately.

Otherwise, suppose that t ∈ S.
(i) Then Et = A×B, so H−1

t (Et) = A∩ g−1
t (B), which is the intersection

of the two A-measurable sets A and g−1
t (B). Thus, H−1

t (Et) is A-measurable.
(ii) Furthermore, Etω = B if ω ∈ A, but Etω = ∅ if ω 6∈ A. It follows that

µtω(Etω) = 1A(ω)µtω(B) for all (t, ω) ∈ S × Ω. So obviously the mapping
ω 7→ µtω(Etω) is A-measurable for all t ∈ S.

(iii) For all t ∈ S, Lemma 4 implies that

P (H−1
t (Et)) = P (A ∩ g−1

t (B)) = E1A1g−1
t (B) = E[1AE(1g−1

t (B)|C)]

Using the definition of µtω gives

P (H−1
t (Et)) = E[1AE(1g−1

t (B)|C)] = E[1Aµtω(B)] =

∫
Ω

µtω(Etω)dP

as required.
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Lemma 6. The family D is a Dynkin (or λ-) class in the sense that:

(a) T × Ω×X ∈ D;

(b) if E,E ′ ∈ D with E ⊃ E ′, then E \ E ′ ∈ D;

(c) if En is an increasing sequence of sets in D, then ∪∞n=1E
n ∈ D.

Proof. (a) Evidently Lemma 5 implies that T × Ω×X ∈ D.
(b) If E,E ′ belong to D with E ⊃ E ′, then (E \ E ′)t = Et \ E ′t and

(E \ E ′)tω = Etω \ E ′tω. Hence:
(i) For λ-a.e. t ∈ T , the set H−1((E \ E ′)t) = H−1

t (Et) \ H−1
t (E ′t) is

A-measurable.
(ii) The mapping ω 7→ µtω((E \ E ′)tω) = µtω(Etω) − µtω(E ′tω) is A-

measurable.
(iii) Also

P (H−1((E \ E ′)t)) = P (H−1
t (Et))− P (H−1

t (E ′t))

=

∫
Ω

[µtω(Etω)− µtω(E ′tω)]dP =

∫
Ω

µtω((E \ E ′)tω)dP

Finally, because both (t, ω) 7→ µtω(Etω) and (t, ω) 7→ µtω(E ′tω) are T ⊗A-
measurable, so is (t, ω) 7→ µtω(Etω \ E ′tω) = µtω(Etω)− µtω(E ′tω).

Hence, E \ E ′ ∈ D.
(c) If En is an increasing sequence in D, then:
(i) For λ-a.e. t ∈ T , the set H−1

t (∪∞n=1E
n
t ) = ∪∞n=1H

−1
t (En

t ) is A-measur-
able.

(ii) Because µtω(∪∞n=1E
n
tω) = limn→∞ µtω(En

tω) for each (t, ω) ∈ T ×Ω, the
mapping ω 7→ µtω(∪∞n=1E

n
tω) is A-measurable, whereas (t, ω) 7→ µtω(∪∞n=1E

n
tω)

is T ⊗ A-measurable.
(iii) Also

P (H−1
t (∪∞n=1E

n
t )) = lim

n→∞
P (H−1

t (En
t )) = lim

n→∞

∫
Ω

µtω(En
t )dP

=

∫
Ω

µtω(∪∞n=1E
n
t )dP

by the monotone convergence theorem for integrals. Hence, ∪∞n=1E
n ∈ D.

This completes the proof that D is a Dynkin class.
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Proof of Proposition 1: Note that the rectangular family of all Carte-
sian products of measurable sets is a π-system — i.e., closed under finite
intersections (see [5], p. 44 and [11], p. 404). By Lemma 5, this rectangular
family is a subfamily of D which, by Lemma 6, is a Dynkin class. There-
fore, we can apply Dynkin’s π–λ theorem to establish that the σ-algebra
E = T ⊗ A ⊗ B generated by this rectangular family is also a subfamily
of D. Since the definition of D implies that D ⊆ E , we have shown that
D = E = T ⊗ A ⊗ B. This verifies parts (i)–(iii) of Proposition 1, and the
T ⊗ A-joint measurability of the mapping (t, ω) 7→ µtω(Etω). So, applying
the ordinary Fubini theorem to the integrand (t, ω) 7→ µtω(Etω) on the prod-
uct space (T × Ω, T ⊗ A, λ × P ) allows us to conclude that the mapping
t 7→

∫
Ω
µtω(Etω)dP is λ-integrable. Thus, part (iv) follows from part (iii).

Proof of the sufficiency part of Theorem 1: Let g be a regular
conditionally independent process. Let F be the σ-algebra H−1(E) as defined
at the beginning of this section. Hence, given any F ∈ F , there exists at least
one E ∈ E such that F = H−1(E). By part (i) of Proposition 1, the section
Ft = H−1

t (Et) ∈ A for λ-a.e. t ∈ T . Part (iv) of the same result implies that
the mapping F 7→ ν(F ) :=

∫
T
P (Ft)dλ defines a unique set function ν on the

σ-algebra F . Arguing as in the proof of Theorem 1 in [15], it follows that ν
is a uniquely defined probability measure, whose restriction to the product
σ-algebra T ⊗A is λ×P . Hence (T ×Ω,F , ν) extends (T ×Ω, T ⊗A, λ×P ).

To show that (T ×Ω,F , ν) is a one-way Fubini extension, we use exactly
the same argument as that used to prove Theorem 1 in [15], without any need
even to change notation. In fact that argument was itself a simple adaptation
of the standard proof of the usual Fubini Theorem — see, for example, [29,
p. 188].

6 Some General Results

As above, assume throughout this section that for some countably gener-
ated sub-σ-algebra C of A, the process g is essentially pairwise conditionally
independent given C, and admits a T ⊗ C-measurable, essentially regular
conditional distribution process (t, ω) 7→ µtω ∈M(X).

Proposition 2. Let h be any measurable function mapping the product space
(T ×Ω, T ⊗A, λ×P ) to a Polish space Y . Then, for λ-almost all t ∈ T , the
two random variables gt and ht are conditionally independent given C.

12



Proof. Let D denote the Borel σ-algebra on Y . For any B ∈ B, C ∈ C
and D ∈ D, consider the set E = (h−1(D) × B) ∩ (T × C × X). Since h
is T ⊗ A-measurable, the set E belongs to T ⊗ A ⊗ B. For each t ∈ T ,
it is clear that Et = (h−1

t (D) × B) ∩ (C × X) = (C ∩ h−1
t (D)) × B, and

so H−1
t (Et) = C ∩ h−1

t (D) ∩ g−1
t (B). It is also clear that Etω = B when

ω ∈ C ∩ h−1
t (D), and Etω = ∅ when ω /∈ C ∩ h−1

t (D). By Proposition 1, for
λ-a.e. t ∈ T we have

P (H−1
t (Et)) = P

(
C ∩ h−1

t (D) ∩ g−1
t (B)

)
=

∫
Ω
µtω(Etω)dP =

∫
C∩h−1

t (D)
µtω(B)dP

(3)

By the properties of conditional expectation, and the fact that the mapping
ω 7→ µtω(B) is C-measurable for λ-a.e. t ∈ T , we obtain∫

C
E
(

1h−1
t (D)1g−1

t (B)|C
)
dP =

∫
C

1h−1
t (D)1g−1

t (B)dP

=
∫
C

1h−1
t (D)µtω(B)dP =

∫
C
E
(

1h−1
t (D)µtω(B)|C

)
dP

=
∫
C
E
(

1h−1
t (D)|C

)
µtω(B)dP

=
∫
C
E
(

1h−1
t (D)|C

)
E
(

1g−1
t (B)|C

)
dP.

(4)

Let Cπ = {Cn}∞n=1, Bπ = {Bm}∞m=1, and Dπ = {Dk}∞k=1 be countable
π-systems that generate C, B, and D respectively. For each triple (k,m, n),
there exists a set Tkmn with λ(Tkmn) = 1 such that for all t ∈ Tkmn, the
Equations (4) all hold with C = Cn, B = Bm, and D = Dk.

Let T ∗ := ∩∞k=1 ∩∞m=1 ∩∞n=1Tkmn. Because λ(Tkmn) = 1 for each of the
countable family of sets Tkmn, one has λ(T ∗) = 1. Now, whenever t ∈ T ∗,
Equations (4) with C = Cn, B = Bm, and D = Dk, must hold for all triples
(k,m, n) simultaneously.

Because Cπ is a π-system that generates C, Dynkin’s π–λ theorem (see
[11], p. 404) implies that the Equations (4) must hold whenever t ∈ T ∗, for
all C ∈ C, all B ∈ Bπ, and all D ∈ Dπ simultaneously. Finally, because
Bπ and Dπ are π-systems that generate B and D respectively, Equations (4)
must hold whenever t ∈ T ∗, C ∈ C, B ∈ B and D ∈ D. Therefore for any
t ∈ T ∗, the definition of conditional expectation implies that

P (h−1
t (D) ∩ g−1

t (B)|C) = P (h−1
t (D)|C)P (g−1

t (B)|C)

holds for all B ∈ B and D ∈ D. This means that the random variables gt and
ht are conditionally independent given C. Because λ(T ∗) = 1, this completes
the proof.
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Suppose that a standard joint measurability condition is imposed on a
process g that is used to model many agents who face idiosyncratic micro
shocks combined with macroeconomic risks that generate the conditioning
σ-algebra C. Then following corollary, which is Proposition 4 of [17], shows
that there is essentially no idiosyncratic risk at all. The corollary gener-
alizes the type of non-measurability result shown for independent random
variables in Proposition 2.1 of [39], and for exchangeable random variables
in Proposition 2 of [14].

Corollary 1. If g is measurable on (T ×Ω, T ⊗A, λ×P ), then for λ-almost
all t ∈ T , the random variable gt is C-measurable.

Proof. Proposition 2 implies that for λ-a.e. t ∈ T , the random variable gt is
conditionally independent of itself, given C. Thus, for any B ∈ B,

P (g−1
t (B) ∩ g−1

t (B)|C) = P (g−1
t (B)|C) = P (g−1

t (B)|C)P (g−1
t (B)|C)

This evidently implies that P (g−1
t (B)|C) ∈ {0, 1} for all ω ∈ Ω. Let A ∈

C denote the subset of Ω on which P (g−1
t (B)|C) = 1. Then P (g−1

t (B)|C)
essentially has the same value as the indicator function 1A. It follows that
P
(
g−1
t (B) ∩ C

)
= P (A ∩ C) for all C ∈ C. In particular, P

(
g−1
t (B) ∩ A

)
=

P (A) and P
(
g−1
t (B) ∩ (Ω \ A)

)
= 0, which implies that P

(
g−1
t (B)∆A

)
= 0.

Therefore g−1
t (B) ∈ C for each B ∈ B, which completes the proof.

By Theorem 1, the product probability space (T × Ω, T ⊗ A, λ × P )
has a one-way Fubini extension (T × Ω,F , ν) such that g is F -measurable.
The following proposition shows that, in the framework of a one-way Fu-
bini extension (T × Ω,F , ν), the essentially regular conditional distribution
process with respect to T ⊗ C, which is (t, ω) 7→ µtω, must generate regular
conditional distributions of the process g with respect to the usual product
σ-algebra T ⊗ A.

Proposition 3. The T ⊗C-measurable mapping µ : T×Ω→M(X) satisfies
ν (g−1|T ⊗ A) = µtω for (λ× P )-a.e. (t, ω) ∈ T × Ω.

Proof. Take any G ∈ T ⊗A, and any B ∈ B. Let E = G×B. For each t ∈ T ,
it is clear that Et = Gt × B, and H−1

t (Et) = Gt ∩ g−1
t (B). It is also clear

that Etω = B when ω ∈ Gt, and Etω = ∅ when ω /∈ Gt. By Proposition 1,
for λ-a.e. t ∈ T we have

P (H−1
t (Et)) = P

(
Gt ∩ g−1

t (B)
)

=

∫
Ω

µtω(Etω)dP =

∫
Gt

µtω(B)dP.
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Taking the integral of each side w.r.t. the measure λ on T gives∫
T

P
(
Gt ∩ g−1

t (B)
)
dλ =

∫
T

∫
Gt

µtω(B)dPdλ. (5)

But the one-way Fubini property implies, first, that∫
G

1g−1(B)dν =

∫
T

[∫
Ω

1G(t, ω)1g−1(B)dP

]
dλ =

∫
T

P
(
Gt ∩ g−1

t (B)
)
dλ (6)

and second, when combined with the usual Fubini property for the product
space (T × Ω, T ⊗ A, λ× P ), that∫

T

∫
Gt

µtω(B)dPdλ =

∫
G

µtω(B)d(λ× P ) =

∫
G

µtω(B)dν (7)

because (T ×Ω,F , ν) is a one-way Fubini extension. Together Equations (5),
(6) and (7) imply that

∫
G

1g−1(B)dν =
∫
G
µtω(B)dν. Because the two sets G ∈

T ⊗A and B ∈ B were arbitrarily chosen, it follows that ν (g−1|T ⊗ A) = µtω
for (λ× P )-a.e. (t, ω) ∈ T × Ω.

Before moving to Proposition 4, we state a lemma that is a special case
of Lemma 2 in [16].

Lemma 7. Let g be a process from T × Ω to X. Let C ⊆ A be a countably
generated σ-algebra on Ω and µ a T ⊗ C-measurable mapping from T ×Ω to
M(X). Assume that for each fixed A ∈ A and B ∈ B, one has

P (A ∩ g−1
t (B)) =

∫
A

µtω(B) dP (8)

for λ-a.e. t ∈ T . Then the process g is essentially pairwise independent
conditional on C, with P (g−1

t |C) = µtω for λ-a.e. t ∈ T .

The following proposition shows that if the mapping (t, ω) 7→ µtω from
T × Ω to M(X) is essentially random, as defined in Definition 3, then the
probability space (Ω,A, P ) must be saturated.

Proposition 4. Assume that the T ⊗ C-measurable mapping µ : T × Ω →
M(X) is essentially random. Then the probability space (Ω,A, P ) must be
saturated.
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Proof. Suppose that (Ω,A, P ) is not saturated. By definition, there exists
an event A ∈ A with P (A) > 0 such that the restricted sub-measure space
(A,AA, P ) is essentially countably generated. By Equation (8), we know
that for any D ∈ AA, any B ∈ B, and for λ-a.e. t ∈ T , one has

P (D ∩ g−1
t (B)) =

∫
D

1g−1
t (B) dP =

∫
D

1B(gt(ω)) dP =

∫
D

µtω(B) dP (9)

Since (A,AA, P ) is essentially countably generated, there is a countable
π-system Dπ = {Dπ

n}∞n=1 in AA such that AA is the strong completion of
the σ-algebra generated by Dπ in the measure space (A,AA, P ). Let Bπ =
{Bm}∞m=1 be a countable π-system that generates B, the Borel σ-algebra
on the Polish space X. For each pair (m,n), there exists a set Tmn with
λ(Tmn) = 1 such that for all t ∈ Tmn, Equation (9) holds with B = Bm and
D = Dπ

n. Let T ∗ := ∩∞m=1 ∩∞n=1 Tmn. Because λ(Tmn) = 1 for all pairs (m,n),
one has λ(T ∗) = 1. Now, whenever t ∈ T ∗, Equation (9) with B = Bm and
D = Dπ

n, must hold for all pairs (m,n) simultaneously.
Next, fix any t ∈ T ∗. Since AA is the strong completion of the σ-algebra

generated by Dπ, for any B = Bm ∈ Bπ, Equation (9) holds for any D ∈ AA.
Hence, for any m ≥ 1, the three integrands in Equation (9) satisfy

1Bm(ft(ω)) = δft(ω)(Bm) = µtω(Bm) (10)

for P -a.e. ω ∈ A, where δft(ω) is the Dirac measure at the point ft(ω). By
grouping countably many P -null sets together, we can obtain a measurable
subset Ā of A such that P (Ā) = P (A) > 0, and for any ω ∈ Ā, Equation
(10) holds for all m ≥ 1 simultaneously.

Finally, fix any ω ∈ Ā. Then Equation (10) implies that the Dirac mea-
sure δft(ω) agrees with µtω on the π-system Bπ that, by definition, generates
B. Therefore, µtω is the same as δft(ω) for any (t, ω) ∈ T ∗ × Ā. This proves
that (t, ω) 7→ µtω is not essentially random.

7 Independence and Exchangeability

The following is part of Definition 5 in [17].

Definition 4. A process g from T ×Ω to X is said to be essentially pairwise
exchangeable if there exists a fixed joint probability measure π on (X×X,B⊗
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B) such that for λ-a.e. t1 ∈ T , the random variables gt1 and gt2 have the given
joint distribution π for λ-a.e. t2 ∈ T .8

Given any process that is measurable in a one-way Fubini extension,
the following proposition characterizes essential pairwise independence and
essential pairwise exchangeability through regular conditional distributions
with respect to the relatively smaller product σ-algebra T ⊗ A.

Proposition 5. Let (T × Ω,W , Q) be a one-way Fubini extension of the
product probability space (T × Ω, T ⊗ A, λ × P ), and f any W-measurable
process from (T × Ω,W , Q) to a Polish space X. Let the mapping (t, ω) 7→
µ′tω = Q(f−1|T ⊗ A) be a regular conditional distribution of f with respect
to T ⊗ A. Then, the random variables ω 7→ ft(ω) are:

(1) essentially pairwise independent if and only if (t, ω) 7→ µ′tω is essen-
tially a function only of t;

(2) essentially pairwise exchangeable if and only if (t, ω) 7→ µ′tω is essen-
tially a function only of ω.

Our proof of Part (2) of Proposition 5 relies on the following lemma,
which is an immediate implication of Propositions 6 and 7 in [17].

Lemma 8. Let g be a process from T ×Ω to X. The process g is essentially
pairwise exchangeable if and only if there exists a measurable mapping ω 7→
µω from (Ω,A) to M(X) such that for each A ∈ A and B ∈ B, one has
P (A ∩ g−1

t (B)) =
∫
A
µω(B) dP for λ-a.e. t ∈ T .

Proof of Proposition 5: Fix any A ∈ A and B ∈ B. For any S ∈ T ,
the definition of µ′ implies that

∫
S×A 1f−1(B)dQ =

∫
S×A µ

′(B)dQ. Because
the mapping (t, ω) 7→ µ′tω must be measurable w.r.t. T ⊗A, the usual Fubini
property implies that

∫
S

∫
A

1f−1
t (B)dPdλ =

∫
S

∫
A
µ′tω(B)dPdλ. But the choice

of S ∈ T was arbitrary, so

P (A ∩ f−1
t (B)) =

∫
A

1f−1
t (B)dP =

∫
A

µ′tω(B) dP for λ-a.e. t ∈ T . (11)

Part (1): Suppose that the random variables ft are essentially pairwise
independent. Then f is essentially pairwise conditionally independent given

8Note that essential pairwise exchangeability is equivalent to its finite or countably in-
finite multivariate versions; compare Footnote 5 in Section 2.2, and see both [16, Corollary
3] and [38, Theorem 4 and Proposition 3.5].
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the minimal σ-algebra C = {Ω, ∅}. It therefore admits a T ⊗ C-measurable,
essentially regular conditional distribution process (t, ω) 7→ µ′tω which must
be essentially independent of ω, and so takes the form t 7→ µ′t = Pf−1

t .
Proposition 3 then implies that Q(f−1|T ⊗A) = µ′t = Pf−1

t , which is essen-
tially a function only of t.

Conversely, suppose that (t, ω) 7→ µ′tω is essentially a function only of t.
Then we can say that (t, ω) 7→ µ′tω is T ⊗ {Ω, ∅}-measurable and satisfies
Equation (11). By Lemma 7 with C = {Ω, ∅}, the random variables ω 7→
ft(ω) are essentially pairwise independent.

Part (2): Suppose that the random variables ω 7→ ft(ω) are essentially
pairwise exchangeable. By Lemma 8, there exists a measurable mapping
ω 7→ µω from (Ω,A) to M(X) such that for each A ∈ A and B ∈ B, one
has P (A ∩ f−1

t (B)) =
∫
A
µω(B) dP for λ-a.e. t ∈ T . Let C be the σ-algebra

generated by the mapping ω 7→ µω. By Lemma 7, the process f is essentially
pairwise conditionally independent given C, and admits a T ⊗C-measurable,
essentially regular conditional distribution process µ. It then follows from
Proposition 3 that µ′tω = µω for λ× P -almost all (t, ω) ∈ T × Ω.9

Conversely, suppose that (t, ω) 7→ µ′tω is essentially a function only of
ω. Then, Equation (11) and Lemma 8 imply that the random variables
ω 7→ ft(ω) are essentially pairwise exchangeable.

The following is an obvious corollary of Proposition 4, which indicates
that for an essentially pairwise exchangeable process f on a one-way Fubini
extension (T × Ω,W , Q) with µ′tω = µω independent of t, if µω is essentially
random, then (Ω,A, P ) must be saturated.

Corollary 2. Let (T×Ω,W , Q) be a one-way Fubini extension of the product
probability space (T × Ω, T ⊗ A, λ × P ), and f any W-measurable process
from (T × Ω,W , Q) to a Polish space X. Let the mapping (t, ω) 7→ µ′tω =
Q(f−1|T ⊗A) be a regular conditional distribution of f with respect to T ⊗A
such that (t, ω) 7→ µ′tω is essentially a function only of ω, which we denote by
ω 7→ µω. Suppose that the process ω 7→ µω is essentially random in the sense

9The regular conditional distribution of f with respect to T ⊗A as in Proposition 3 is
stated for the minimal one-way Fubini extension of the product probability space in which
f is measurable. On the other hand, (T ×Ω,W, Q) is a general one-way Fubini extension
in which f is measurable, and thus includes the minimal one-way Fubini extension. By
the definition of conditional expectations, it is easy to see that the regular conditional
distribution of f with respect to T ⊗ A, as viewed in an extended probability space
(T × Ω,W, Q), remains the same.
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that for P -a.e. ω ∈ Ω, the probability measure µω is not a Dirac measure
concentrated at a single point in X. Then (Ω,A, P ) must be saturated.

Using the framework of Loeb product spaces, it is shown in [38, Theorem
5] that the basic notions of independence and exchangeability are in fact
dual to each other, in the sense that essential pairwise independence of the
random variables is equivalent to essential pairwise exchangeability of the
sample functions generated by the relevant process. The following corollary
of Proposition 5 makes this duality result transparent and allows it to be
extended from the Loeb product spaces used in [38] to the more general
setting of an arbitrary two-way Fubini extension.

Corollary 3. Let (T × Ω,W , Q) be any two-way Fubini extension of the
product probability space (T × Ω, T ⊗ A, λ × P ), and (t, ω) 7→ f(t, ω) a W-
measurable process from (T×Ω,W , Q) to a Polish space X. Then the random
variables ω 7→ ft(ω) are essentially pairwise independent if and only if the
sample functions t 7→ fω(t), regarded as random variables on the probability
space (T, T , λ), are essentially pairwise exchangeable.

Proof. Let µ′ = Q(f−1|T ⊗A) be a regular conditional distribution of f with
respect to T ⊗ A. Because a two-way Fubini extension has the properties
of a one-way Fubini extension, part (1) of Proposition 5 implies that the
random variables ω 7→ ft(ω), are essentially pairwise independent if and only
if (t, ω) 7→ µ′tω is essentially a function only of t.

By viewing (Ω,A, P ) as the parameter space and (T, T , λ) as the sample
space, the two-way Fubini extension property of (T×Ω,W , Q) and Part (2) of
Proposition 5 together imply that (t, ω) 7→ µ′tω is essentially a function only
of t if and only if the functions t 7→ fω(t) for different ω ∈ Ω are essentially
pairwise exchangeable, when viewed as random variables on (T, T , λ).

The result follows immediately from the above two equivalence results.
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