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Abstract

In the classic Hotelling-Downs model of political competition there is (almost

always) no pure strategy equilibrium with three or more strategic candidates where

the distribution of voters’ preferred policies are single-peaked. I study the effect of

introducing two idealist candidates to the model who are non-strategic (i.e., fixed

to their policy platform), while allowing for an unlimited number of strategic can-

didates. Doing so, I show that equilibrium is restored for a non-degenerate set of

single-peaked distributions. In addition, equilibria have the following features: (i)

the left-most and right-most candidates (i.e., extremists) are idealists; (ii) strategic

candidates never share their policy platforms, which instead are spread out across

the policy space; (iii) if more than one strategic candidate enters, the distribution

of voter preferences must be asymmetric. I also show that equilibria can accom-

modate idealist fringes of candidates toward the extremes of the political spectrum.

(JEL: C72; D72)
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1 Introduction

The Hotelling-Downs model of political competition is the workhorse of political scientists

and political economists. A classical result is that candidates’ incentives to maximize their vote

share will lead them to converge on the median voter’s preferred platform in the unique equilib-

rium with N = 2 candidates. In the model, strategic candidates do not choose extreme positions

because it would render them unelectable. Furthermore, Osborne (1993) shows that in general

when N > 2, equilibria do not exist. However, many political races feature multiple candidates

with distinct policy positions i.e., there often exist distinct, extreme (left-most and right-most)

candidates. In many countries, candidates near the ends of the political spectrum exist and run

in elections, even when it is unlikely they will win. Even when one considers more mainstream

parties, recent research suggests that the presence of extreme candidates within them may be

“due in significant part to candidates’ own convictions” (Bartels, 2016). Using US data, Bar-

tels shows a surprising lack of responsiveness of candidates’ positioning to the views of swing

voters.1 Rather than rejecting the workhorse model, in this article I investigate the impact of

introducing such idealist candidates into the baseline framework. Specifically, I suppose that

in addition to the usual strategic candidates, there are two idealist candidates, who are fixed to

their policy platforms. My first result establishes that for equilibria to exist (within the class

of single-peaked distributions), these idealists must indeed be extremists i.e., occupy left-most

and right-most positions.

Osborne (1993) shows the negative result that the workhorse model, allowing for endoge-

nous entry with N > 2 strategic candidates who maximize their plurality, fails to admit an

equilibrium in pure strategies for all single-peaked distributions of voter ideal points except for

some pathological cases. These cases constitute a degenerate class of distributions including

the uniform, which significantly weakened the results of previous studies that employed such

distributions e.g., Cox (1987, Theorem 2). In this article, I show that the introduction of ide-

alist candidates restores the existence of pure strategy equilibria for a non-degenerate set of

1He also shows that the data are not consistent with the hypothesis that candidate positions are a compromise

between the locations of the relevant party’s base and swing voters because candidates’ positions tend to be even

more extreme than the base.
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single-peaked distributions, and provide a characterization thereof.2 Moreover, this is done in

a setting where the number of potential entrants is unlimited, i.e., N =∞.

Platform-sharing is not an attractive prediction for empiricists. The second result I present

says that in almost any equilibrium, it must be that there is exactly one strategic candidate at any

occupied policy platform. Combined with the fact that strategic candidates who enter tie, this

implies that their positions are spaced evenly throughout the distribution of voter preferences.

This maximal differentiation of candidate positions in equilibrium shows that in this setup, the

prediction of platform-sharing is strongly rejected.

For symmetric distributions of voter ideal points I find a unique equilibrium in which one

strategic candidate enters and wins the election outright, when the idealists are not too extreme

or too moderate relative to the distribution of voter preferences. I then show that if an equilib-

rium features multiple strategic entrants then the distribution of voter ideal points is asymmet-

ric, but that the converse is not true. I provide a characterization for equilibria under asymmetric

single-peaked distributions. I also give examples of equilibria for various symmetric and asym-

metric distributions. The main analysis is done with two idealist candidates. In the final section,

I illustrate that equilibria are robust under the more general assumption that both ends of the

political spectrum are populated with multiple idealist candidates, or ‘idealist fringes’.

The paper proceeds as follows: Section 2 reviews some relevant literature; Section 3 presents

the model; Section 4 provides and discusses the main results; Section 5 introduces idealist

fringes; Section 6 concludes.

2 Literature

Other researchers have also proposed variations of the canonical model in which a pure

strategy equilibrium obtains when N > 2.3 Palfrey (1984) studies N = 3 and shows that two

parties locate at distinct locations to keep an entrant at bay, although the analysis quickly be-

comes intractable for higher N (see his Remark 1). Osborne (1993) defines a dynamic version

of the model, and offers results for N = 3 (and partial results for N = 4, 5) showing, among

2I study pure equilibria in this article and hereon refer to these simply as ‘equilibria’.

3For a survey of results under N = 2, see Grofman (2004).
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other findings, that there is always an equilibrium in which N−2 candidates enter and locate at

the median. Xefteris (2016) shows that when one allows for each voter to cast k ≥ 2 votes each

instead of just k = 1, then equilibrium exists for a non-degenerate class of distributions where

there are at least k + 1 candidates at every location. In contrast, I offer results in a plurality

voting system (common to many countries e.g., United States, Canada, India and United King-

dom) where the number of potential strategic candidates, who may choose whether to enter in

equilibrium, is unlimited i.e., N =∞.

My model assumes the existence of idealistic candidates, not specifying the origin of their

conviction.4 One approach that shares the feature that candidates are fixed to their platforms

envisages candidates as members of the electorate who are assumed to be committed to impos-

ing their own ideological stance, termed ‘citizen-candidates’ (Besley and Coate, 1997; Osborne

and Slivinski, 1996). These approaches are undoubtedly deeper than the analysis in the baseline

Hotelling-Downs model through their endogenization of the origin of candidates. Also related

is the differentiated candidates framework of Krasa and Polborn (2012, 2014) which also al-

lows for a multi-dimensional policy space but assumes the positions of two candidates are fixed

in some dimensions, while flexible in others. In contrast, the model of this article sticks closely

to the canonical framework which in turn implies a reduction in richness. However, my model

does manage the coexistence of both ideological candidates (who stick to their positions) and

strategic candidates (who could be interpreted as career politicians, with the sole desire to

gain office). The model also offers features that meet with some basic observations concern-

ing elections e.g., platform differentiation, multiple candidates, asymmetric voter-preference

distributions.

3 Model

The model setup stays close to the canonical Hotelling-Downs model, generalizing it by

allowing for endogenous entry, an unlimited number of candidates, and a reasonable objective

function for strategic candidates as in Osborne (1993). The policy space is represented by some

interval X ⊆ R. The ideal policies of voters are spread out along X by an atomless distribution

4This also mirrors the agnosticism of Bartels (2016) as to the cause of candidates’ convictions.
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function F which is assumed continuous, guaranteeing it has a density, f , which may be asym-

metric. Voters are assumed to be sincere and to have symmetric preferences around their ideal

points, meaning that they vote for the candidate positioned closest to that point. If there are

multiple candidates at a position, each of these candidates receives an equal share of the votes

from the voters for whom that position is closest. There is an unlimited number of strategic

candidates (i.e., N = ∞) and two idealist candidates. Idealist candidates always enter and

occupy positions denoted z1, z2 ∈ X where z1 < z2.5 Strategic candidates each have the action

set X ∪{out} i.e., they either enter and choose a policy platform denoted xi, or they choose not

to enter the race. The number of strategic candidates choosing to enter the race is denoted n

and the vector of positions chosen, x. Candidates who do not enter are referred to as inactive.

The functions vi : Xn → [0, 1] denote the share of votes obtained by each candidate i given a

vector of positions x.

Strategic candidates maximize their plurality i.e., their margin of victory. Their preferences

are represented by the following utility function:

ui(x) = vi(x)−max
l 6=i
{vl(x)}

An oft-used objective function for candidates is that of vote maximization. However, vote

maximization is not a reasonable objective function for candidates when N > 2, as it is in-

compatible with preferences in which winning an election is preferred to losing it (Osborne,

1995, p.280). To illustrate, I offer the following example: X = [0, 1], f uniform and position

vector xA = (0, 0.5, 0.8) which gives v1(xA) = 0.25, v2(xA) = 0.4, v3(xA) = 0.35 and a

victory for candidate 2. Now consider xB = (0, 0.2, 0.8) i.e., candidate 2 moves left, which

gives v1(xB) = 0.1, v2(xB) = 0.4, v3(xB) = 0.5 and a victory for candidate 3. Under vote-

maximization, candidate 2 should be indifferent between xA and xB yet wins the election under

xA and loses under xB. Plurality maximization does not suffer this criticism, saying that can-

didates prefer to: (1) win (or tie for the win) than to lose; (2) stay out than lose; and (3) win

outright by wider margins. In addition, it is assumed that candidates prefer to win (outright or

tie) than {out}, but prefer {out} to entering and losing.

5Although z1 and z2 refer to locations, sometimes I also call the idealists z1 and z2.
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There are r + 1 ≤ n + 2 occupied positions denoted y0, . . . , yr indexed without loss of

generality such that y0 < · · · < yr. The midpoint of two locations yj and yj+1 is denoted

mj = 1
2
(yj + yj+1). The total number of candidates located at yj is denoted kj (regardless of

whether the candidate(s) are idealistic or strategic). The constituency of a position yj is the

share of voters that vote for one of the candidates at yj . The left (right) constituency of yj

denotes the mass of voters voting for a candidate at yj who have ideal points to the left (right)

of yj , denoted Lj, Rj i.e., Lj = F (yj) − F (mj−1) and Rj = F (mj) − F (yj) for j = 0, . . . , r

where F (m−1) ≡ 0 and F (mr) ≡ 1.

4 Results

I first present necessary conditions for an equilibrium to exist for almost any single-peaked

density f . These include the results that idealists must be the extreme candidates and that plat-

forms are not shared (Propositions 1 and 2). I then add sufficient conditions in order to charac-

terize equilibria for symmetric and asymmetric single-peaked distributions (Propositions 3 and

4). Proofs and intermediate Lemmas are relegated to the Appendix.

Proposition 1 (Extreme idealism). For almost any single-peaked f : y0 = z1, yr = z2 and

k0 = kr = 1 in equilibrium.

Proposition 1 reveals that the left-most and right-most (i.e., extreme) positions must be

occupied by idealists for an equilibrium to exist for almost any single-peaked f . In analysis

with only strategic candidates, it must be that k0 = kr = 2 and therefore that L0 = R0 and

Lr = Rr (Lemma A1, b and c) which are so restrictive that they preclude equilibrium in all but

very special cases of F (Osborne, 1993). In contrast, when extreme positions are occupied by

candidates who are void of strategic concerns these requirements do not arise. This gives rise

to Proposition 1: in any equilibrium, extremists must be idealists.

Proposition 2 (No platform sharing). For almost any single-peaked f , kj = 1 for all j when

n ≥ 2 in equilibrium.

Proposition 1 dealt with the extreme locations. Proposition 2 deals with the intermediate

positions and shows that these also cannot generally hold two strategic candidates in equilib-
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rium. Due to the endogenous entry decision all strategic candidates who enter, tie in equilibrium

(Lemma A1, d). Together with Proposition 2 this implies that a necessary condition of equi-

librium is that the strategic candidates are spaced evenly throughout the distribution of voter

preferences. In contrast, the hypothesis of convergence stipulates that candidates are incen-

tivized to converge upon shared locations. The separation of candidates’ equilibrium positions

here shows this can fail, irrespective of the number of strategic entrants.

The results of Propositions 1 and 2 lay the groundwork for the equilibrium characteriza-

tions. Proposition 3 provides the conditions for which there is a unique equilibrium for sym-

metric single-peaked distributions of voter ideal points.

Proposition 3 (Symmetric distributions). For almost any symmetric, single-peaked f , there is

a unique equilibrium where n = 1 strategic candidate enters at location y1, where y1 solves (1):

(1) F (m0) = 1− F (m1)

where m0 = 1
2
(z1 + y1) and m1 = 1

2
(y1 + z2), whenever the positions of the idealists (z1, z2)

satisfy (2) and (3):

(2) not too moderate: m0 < F−1
(
1
3

)
⇐⇒ m1 > F−1

(
2
3

)
(3) not too extreme: if z1 is closer to the maximizer of f than z2, F (y1) ≥ 1− 2F (m0)

if z2 is closer to the maximizer of f than z1, F (y1) ≤ 2F (m0)

Except for single-peakedness, the conditions of Proposition 3 deliver equilibrium existence

without other restrictions on the shape of f . Condition (1) is implied by the requirement that

the idealists’ vote-shares must be equal in equilibrium (Lemma A6: if not, then due to sym-

metry the strategic candidate could profitably deviate by moving slightly towards the idealist

with the higher vote share). Conditions (2)-(3) balance the centripetal and centrifugal forces

present in the model, that relative to the distribution of voter preferences the idealists cannot

be too moderate or too extreme. They cannot be too moderate because a strategic candidate

must win (specifically, their constituencies must be clear of the central third of F ). They can-

not be too extreme else there is room for an entrant to deviate in and win. I now illustrate the

characterization with two examples, depicted in Figure 1.6

6Supporting MATLAB files on my website can be used to replicate the examples shown throughout this article.
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Example 1: Let F be the standard Normal Distribution and the idealists be located at per-

centiles 20 and 85: (z1, z2) = (F−1(0.20), F−1(0.85)) = (−0.84, 1.04). Condition (1) then

gives y1 = −0.10. The remaining conditions are also satisfied: (2) becomes m0 = −0.47 <

−0.43 = F−1
(
1
3

)
and the first statement of (3) becomes F (y1) = 0.46 ≥ 0.36 = 1− 2F (m0).

The left panel of Figure 1 shows this equilibrium.

Example 2: Let F be the triangular distribution with the density f(x) = 1 − |x| for x ∈

[−1, 1] and the idealists be located at percentiles 10 and 80: (z1, z2) = (F−1(0.1), F−1(0.8))

= (−0.55, 0.37). Condition (1) then gives y1 = 0.09. The remaining conditions are also satis-

fied: (2) becomes m0 = −0.30 < −0.18 = F−1
(
1
3

)
and the second statement of (3) becomes

F (y1) = 0.73 ≥ 0.51 = 1− 2F (m0). The right panel of Figure 1 shows this equilibrium.

Figure 1: Equilibrium for symmetric single-peaked distributions

z1 y1 z2

f(x)

z1 y1 z2

Left panel: Differentiable f with unbounded support (Standard Normal); idealists at percentiles 20 and 85. One
strategic candidate enters at y1 which is percentile 46, and obtains a vote share of 0.36. The idealists’ vote shares
are both 0.32.

Right panel: Non-differentiable f with bounded support (triangular distribution); idealists at percentiles 10 and
80. One strategic candidate enters at y1 which is percentile 59, and obtains a vote share of 0.41. The idealists’
vote shares are both 0.30.

Hollow (filled) circles represent the location of idealist (strategic) candidates. Shaded (unshaded) areas are the
constituencies of the winning (losing) candidate.

A feature of Proposition 3 is that with symmetric single-peaked densities, only one strate-

gic candidate enters in equilibrium. In Corollary 1, I show that this feature is not special to

symmetry per se: it will hold in equilibrium for almost any single-peaked distribution where

the mode (Mo) equals the median (Md).

Corollary 1. For almost any single-peaked f where Mo(f) = Md(f), n = 1.
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To understand the result, suppose instead that n > 1. This implies that exactly one idealist

loses (Lemma A4). Further, there cannot be more than one strategic candidate with any of their

constituency on the same side of the mode as the losing idealist (else the candidate closest to

the losing idealist could profitably deviate by moving slightly towards the mode). There is then

be at least one strategic candidate with their whole constituency on the same side of the mode

as the idealist who ties for the win. However, for these candidates to win, there must be more

than half of the probability density on that side of the mode, contradicting Mo(f) = Md(f).

I now characterize equilibria where n > 1 strategic candidates enter. By Corollary 1

we know that distributions of voter preferences that support such equilibria are such that

Mo(f) 6= Md(f), and hence are asymmetric. Furthermore, the simple fact of whether the

median or the mode of f is greater will play a role in determining equilibria. Proposition 4

provides conditions for an equilibrium to exist for asymmetric single-peaked distributions of

voter preferences where Mo(f) 6= Md(f). Figure 2 gives two examples.

Proposition 4 (Asymmetric distributions). For almost any asymmetric, single-peaked f sat-

isfying (4) - (6) where Mo(f) 6= Md(f), there is an equilibrium with n > 1 strategic candidates

where locations and vote-shares are given by Lemma A7.

If Mo(f) < Md(f) If Mo(f) > Md(f)

f(m0) ∈ [f(m1), 2f(m1)] f(mn) ∈ [f(mn−1), 2f(mn−1)](4)

f(mj−1) ≤ 2f(mj) j = 2, . . . , n f(mj) ≤ 2f(mj−1) j = 1, . . . , n− 1(5)

f(m0) ≤ max{f(y1), f(z1)} f(mn) ≤ max{f(yn), f(z2)}(6)

Compared to the symmetric case, there are more equilibrium conditions when n > 1.

Lemma A7 provides conditions (A6) and (A9) which are analogous to condition (2) of Proposi-

tion 3 which say the losing idealist must be extreme enough to lose. The Lemma also provides

the exact equilibrium location of strategic candidates (conditions A4, A5, A7, A8) which as

Proposition 2 revealed, are spaced out evenly through the distribution of voter ideal points.

Specifically, the locations of the idealist candidates pin down the vote share, s∗, enjoyed by

each of the strategic candidates in equilibrium. The strategic candidates’ locations are then de-

termined by a ‘spacing procedure’ (detailed in precisely in Lemma A5). To illustrate, suppose
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that z1 ties for the win (which is the case if Mo(f) < Md(f)); then place the first strategic

candidate at y1, such that z1 has a vote share of s∗; then place the second strategic candidate

at y2, such that the candidate at y1 has a vote share of s∗, and so on; the losing idealist, in this

case z2, will then be left with the residual vote share of 1− s(n+ 1).

For equilibria with n > 1, there are also conditions concerning the shape of f , given by

(4)-(6). The requirement of (4) and (5) that f(mj−1) ≤ 2f(mj) for j = 1, . . . , n is driven by

the fact that strategic candidates are plurality maximizers. To see this, consider the candidate

at y2 in the top panel of Figure 2, and a deviation slightly to the left. This reduces the vote

share of the candidate at y1, but raises that of z2. The marginal gain in plurality is f(m1), but

the marginal loss is 2f(m2): f(m2) for the loss in vote share and another f(m2) for the gain

in vote share of z2. Therefore, if f(m1) > 2f(m2) there would be such a deviation. Condition

(6) requires that the density of the midpoint between the losing extremist and their neighbor-

ing strategic candidate not be higher than the density of both of those candidate’s locations.

The condition precludes the possibility that there could be a profitable deviation for an inactive

candidate to enter. All conditions are met by the examples in Figure 2 which are therefore

equilibria with asymmetric, single-peaked distributions of voter preferences.

5 Idealist fringes

The preceding analysis assumed the existence of two idealist candidates which kept the

analysis more tractable. However, the model can be extended beyond the two-idealist set-up.

Here, I show equilibria can accommodate multiple idealist candidates at the extremes of the po-

litical spectrum, which I term ‘idealist fringes’. Their introduction requires minor re-workings

of the equilibrium conditions derived previously. In Figure 3 I augment examples from Figures

1-2 to incorporate idealist fringes.

Here, I contrast the equilibria shown in Figure 3 relative to the corresponding panels of Fig-

ures 1-2. In the symmetric example where f is the Standard Normal, the equilibrium location

of strategic candidate y1 is such that the adjacent idealists z1 and z2 tie for second place. This is

the analog of condition (1) of Proposition 3 and similarly it ensures the strategic candidate does

not want to deviate within their constituency. Proposition 3’s conditions (2) and (3) are also
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Figure 2: Equilibrium for asymmetric single-peaked distributions with n > 1 strategic
candidates

z1 y1 y2 z2

f(x)

z1 y1 y2 y3 y4 y5 y6 y7 z2

f(x)

Top panel: f is the Log-Normal distribution lnN(0, 0.5); idealists at percentiles 5 and 80. Two strategic
candidates enter at y1 and y2 which are percentiles 23 and 58 respectively, and both obtain a vote share of 0.29.
The idealists z1 and z2 obtain vote shares 0.13 and 0.29 respectively.

Bottom panel: f is the Linear distribution; idealists at percentiles 7 and 100. Seven strategic candidates enter at
y1, . . . , y7 which respectively are percentiles (17, 30, 40, 53, 63, 77, 86), and all obtain a vote share of 0.116. The
idealists z1 and z2 obtain vote shares 0.116 and 0.07 respectively.

Hollow (filled) circles represent the location of idealist (strategic) candidates. Shaded (unshaded) areas are the
constituencies of the winning (losing) candidates.

reflected respectively by the facts that the idealists are located such that the strategic candidate

wins and that inactive strategic candidates prefer not to enter. Introducing any additional num-

ber of idealist candidates to the fringes such that they do not change the vote share of z1 or z2

will not alter the equilibrium beyond changing the vote shares of those in the fringes (e.g., the

idealists shown at percentiles 0.5, 97 and 98). In the asymmetric example, the equilibrium lo-

cations of the strategic candidates is recalculated to ensure that y1, y2 and z2 all tie for the win.

A recalculation is necessary because the introduction of the idealist to the right of z2 reduced

z2’s constituency. The idealists introduced to the left of z1 have no effect on the equilibrium

other than changing the vote shares of the idealists in the left fringe (e.g., the idealists shown
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at percentiles 0 and 0.1). Similarly, introducing idealists to the right of the far-right idealist

candidate would also have no effect on the equilibrium except altering the vote shares among

the right fringe. The positions depicted also satisfy conditions (4)-(6) of Proposition 4 and so

constitute an equilibrium.

Figure 3: Equilibrium with idealist fringes

z1 y1 z2

f(x)

z1 y1 y2 z2

f(x)

Top panel: f is the Standard Normal as in the left panel of Figure 1; idealists at percentiles 0.5, 5, 20 on the left,
85, 95, 97, 98 on the right. One strategic candidate enters at y1 which is percentile 48, and obtains a vote share of
0.36. The idealists’ vote shares, from left to right respectively are (0.02, 0.09, 0.22, 0.22, 0.05, 0.01, 0.02).

Bottom panel: f is the Log-Normal distribution lnN(0, 0.5) as in the top panel of Figure 2; idealists at percentiles
0, 0.1, 5 on the left, 80, 99 on the right. Two strategic candidates enter at y1 and y2 which are percentiles 31 and
54 respectively, and both obtain a vote share of 0.26. The idealists’ vote shares, from left to right respectively are
(< 0.001, 0.01, 0.16, 0.26, 0.04).

Hollow (filled) circles represent the location of idealist (strategic) candidates. Unlabeled circles represent the
idealists who were not included in the corresponding panels of Figures 1 and 2. Shaded (unshaded) areas are the
constituencies of the winning (losing) candidates.

6 Conclusion

This article analyzed a variant of the canonical Hotelling-Downs model which features ide-

alist candidates in addition to the standard strategic candidates. In doing so, I found that equi-
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libria exist for a non-degenerate set of distributions of voter preferences, while allowing for

an unlimited number of potential entrants. The model makes a number of predictions. Those

more straight forward are that (for almost any single-peaked distribution of voter preferences):

i) extreme candidates will tend to be ideologically fixed to their platform and that ii) strategic

candidates locate on distinct policy platforms. Other predictions include a relationship between

the mode and median of f as a determinant of the number of candidates entering in equilibrium:

If there are multiple strategic candidates, the distribution of voter preferences is such that the

mode and median are distinct. Conversely, if the distribution of voter preferences is symmet-

ric, one strategic candidate will run and win. A binary comparison between mode and median

cannot of course capture all the ways in which distributions can be asymmetric, but neverthe-

less acts as a succinct predictive measure in plurality voting systems with idealist candidates.

Finally, I showed how equilibria can accommodate ‘idealist fringes’ where multiple idealistic

candidates populate the extremes of the political spectrum.
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Appendix

Lemma A1. When at least one strategic type is at yj:

(a) kj ≤ 2.

(b) kj = 2 for j = 0, r.

(c) If kj = 2, Lj = Rj .

(d) All strategic candidates who enter, tie and win.

Proof: When all candidates at a given location are strategic, the proofs are identical to Cox

(1987, Lemma 1) and Osborne (1993, Lemma 1) where all candidates are strategic (note that

Cox does not have part (d) as he studies exogenous entry). In fact, so long as there is at least

one strategic type at a given location, their proofs continue to hold, so I do not repeat them.

Lemma A2. For almost any distribution F , not all candidates tie.

Proof: Suppose not. Firstly, consider the case where there are two candidates at an extreme

location and without loss of generality, suppose this is on the left i.e., k0 = 2. By Lemma A1

(c), y0 = F−1
(

1
n+2

)
and m0 = F−1

(
2

n+2

)
. If k1 = 2, then y1 = F−1

(
3

n+2

)
which implies

F−1
(

1
n+2

)
+F−1

(
3

n+2

)
= 2F−1

(
2

n+2

)
, which is not satisfied for almost any distribution. Con-

tinuing similarly, one shows that generically, kj = 1 for all j > 1 (see the proof of Lemma 2 in

Osborne (1993) which up to this point, I have presented an adapted version of). It must be there-

fore that r = n and yr = z2. For all candidates to tie, mj = F−1
(
j+2
n+2

)
for j = 0, . . . , n − 1.

Solving recursively yields y0 = (−1)nz2 + 2
∑n−1

j=0 (−1)jF−1
(
j+2
n+2

)
. However, we also re-

quired y0 = F−1
(

1
n+2

)
. These two expressions are not satisfied simultaneously for almost any

distribution.

Now consider the case where there is one candidate at each extreme location k0 = kr = 1,

which by Lemma A1 implies y0 = z1 and yr = z2. For all to tie, F (mj) = F (mj−1)+sj for j =

0, . . . , r−1 where sj =
kj
n+2

. Solving recursively yields z1 = (−1)rz2+2
∑r−1

j=0(−1)jF−1 (Sj),

where Sj =
∑j

i=1 si which is not true for almost any F .
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Proposition 1 (Extreme idealism). For almost any single-peaked f : y0 = z1, yr = z2 and

k0 = kr = 1 in equilibrium.

Proof: Suppose not. Either k0 = 2 or kr = 2 by Lemma A1 (b). Without loss of generality say

k0 = 2, which implies L0 = R0 by Lemma A1 (c). Denote the equilibrium vote share of the

winning candidates by s.

If n = 1 this imposes F (z1) = F (1
2
(z1 + z2))− F (z1), which is not true for almost any F .

If n = 2, s ≥ 1
4
. If s = 1

4
, all candidates tie, which is ruled out by Lemma A2. If s > 1

4
, then by

Lemma A1 (d), z2 is the sole loser. It must be that the strategic candidate is located at y1 < z2:

if they were located at z2, then they would tie with z2; if they were located right of z2, they could

profitably deviate slightly to the left. If f(m0) > f(m1), then the candidate at y1 can profitably

deviate by moving slightly to the left (they increase their share, and decrease the shares of can-

didates at y0). If f(m0) ≤ f(m1), R0 < L1 because f is single-peaked. But L0 = R0 = s,

hence the candidate at y1 must get strictly more than s votes and wins outright, a contradiction.

For n ≥ 3 strategic candidates, y0 = F−1(s) and m0 = F−1(2s). If there is a strategic can-

didate at y1 and k1 = 2, then y1 = F−1(3s) which implies 1
2
(F−1(s) + F−1(3s)) = F−1(2s),

which is true for almost no distribution F . Hence k1 = 1 and m1 = F−1(3s). Similarly, if there

is a strategic candidate at y2, k2 = 1 for almost any F , and so on. Denote yl as the left-most

position after y0 where there is an idealist. What I have shown so far is that for almost any

F , kl = 1. Now I consider two cases, both of which end in a contradiction. (Recall that by

Lemma A1 (d) and Lemma A2, z2 must lose for almost all F .)

(i) If there are no strategic candidates to the right of yl, then for the single-peaked density

f : if f(ml−2) ≤ f(ml−1), then L1 > s because R0 = s, which contradicts Lemma A1 (d); if

f(ml−2) > f(ml−1), then the candidate at yl has a profitable deviation slightly to the left (by

increasing their own vote share and decreasing that of the winning candidates).

(ii) If there is a strategic candidate to the right of yl, let the right-most such candidate be at

yj . If f(ml−1) ≤ f(ml), L1 > s. If f(ml−1) > f(ml), I consider two sub-cases: If j = r, then

kr = 2 and Rr = Lr = s < Rr−1. If j < r, then j = r − 1 and there is a lone idealist at yr,

in which case yj can deviate profitably by moving slightly to the left (by increasing their own

vote share and decreasing that of the winning candidates).
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Lemma A3. For almost any distribution F , kj = 1 for all j when n = 2.

Proof: Suppose not. Then by Proposition 1 and Lemma A1 (c), k1 = 2 and L1 = R1. If z1 gets

a strictly lower (higher) vote share than z2, an entrant can locate slightly to the right (left) of the

strategic candidates at y1 and win outright. Thus all candidates tie, contradicting Lemma A2.

Lemma A4. For almost any single-peaked f , exactly one idealist must tie with the strategic

candidates when n ≥ 2.

Proof: First, I show that it cannot be that both idealists lose. Suppose they do and consider first

n = 2. By Lemma A3, k1 = k2 = 1. If f(m0) < f(m1), the candidate at y1 can move slightly

to the right, increasing their vote-share and decreasing that of the other strategic candidate; if

f(m0) ≥ f(m1) then because f is single-peaked, the maximizer of f must lie to the left of

m1, which implies f(m1) > f(m2) and hence that the candidate at y2 can profitably deviate by

moving slightly to the left, increasing their vote-share and decreasing that of the other strategic

candidate.

Now consider n ≥ 3. Denote the equilibrium vote share of strategic candidates as s. If y2

is weakly to the left of the maximizer of f , then k1 = 1 because if k1 = 2, s = R1 < L2, which

contradicts Lemma A1 (d). Because k1 = 1 and z1 loses, the candidate at y1 can profitably

deviate slightly to the right. Now consider the case where y2 is to the right of the maximizer.

There can be no more strategic candidates to the right of y2. If there were, then kj = 1, j > 2

because if kj = 2 for one such j, then Rj−1 > Lj = s. Note now that the candidate at yr−1 has

a profitable deviation to the left because z2 loses. Next I show that it must be that k1 = k2 = 2

and hence that n = 4. If k2 = 1 and f(m1) > f(m2), the candidate at y2 can profitably deviate

to the left; if k2 = 1 and f(m1) ≤ f(m2), k1 = 1 (else s = R1 < L2) and the candidate at y1

can profitably deviate right. Hence k2 = 2. If k1 = 1 and f(m0) < f(m1), the candidate at y1

can profitably deviate right; if k1 = 1 and f(m0) ≥ f(m1) then f(y1) > f(m1) implying R1 >

L2 = s as k2 = 2. As k1 = k2 = 2, by Lemma A1 (c) and (d), L1 = R1 = L2 = R2. But with

only two free variables (y1 and y2) these three conditions will not be satisfied for almost any F .

Hence, for almost all single-peaked distributions at least one idealist must tie, but by

Lemma A2, exactly one idealist must tie.
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Lemma A5. For almost any single-peaked f , kj = 1 for all j when n ≥ 3.

Proof: By Proposition 1, y0 = z1 and yr = z2 while by Lemma A1 (d) all strategic entrants tie

for the win. This implies F (z1) <
1

n+2
and F (z2) >

n+1
n+2

in any equilibrium. By Lemma A4,

exactly one idealist ties with the strategic types and without loss of generality, let this be z1.

Now consider the following spacing procedure which spaces candidate locations throughout

the distribution F for some arbitrary number of candidates n, where k0 = kr = 2, kj = 1, 2 for

j = 1, . . . , r − 1 and strategic types tie with the idealist z1.

Spacing Procedure:

1. Choose y1 such that s ≡ F (m0) ∈
(
F (z1),

1
n+2

)
.

2. Place the remaining r − 2 candidate locations at yj for j = 2, ..., r − 1 in turn, such that

F (mj−1) = F (mj−2) + kj−1s.

3. Observe whether 1
2
(yr−1 + z2) = mr−1. If yes, stop and denote s as s∗; if mr−1 < (>)

1
2
(yr−1 + z2) return to step 1 and choose a higher (lower) value of s.

Iterating on this procedure, the value of s will converge to s∗. As F is continuous, s∗ exists,

and as F is strictly increasing, s∗ is unique. An example result of the procedure is illustrated be-

low in Figure A1. The points y1, . . . , yr−1 associated with s∗ pin-down the necessary locations

of the strategic candidates in equilibrium.7

It is now straightforward to see that for almost any distribution F , ki = 1 for all i. Suppose

instead that kj = 2 for some j = 2, ..., r. By Lemma A1 (c) we must have that Lj = Rj .

However, as is illustrated in Figure A1 for the example of j = 2, this extra condition will not

be satisfied for all except very particular distributions.

7Notice that although s∗ is necessarily the equilibrium share of the vote for the winning candidates, this proce-

dure is not sufficient to define an equilibrium as for example, it may not be that yj > yj−1 for all j = 1, ..., r− 1.
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Figure A1: An example result of the spacing procedure

z1 y1 y2 y3 z2

s∗ = F (m0)

2s∗ = F (m1)

4s∗ = F (m2)

5s∗ = F (m3)

R2

L2

F (x)

The example shown has n = 4 and r = 4 where ki = 1 for all i except k2 = 2. F
is the standard Normal distribution and z1 = F−1(0.10), z2 = F−1(0.98). Solving
the procedure yields s∗ = 0.19 (2 d.p.) with candidate positions as shown.

Proposition 2 (No platform sharing). For almost any single-peaked f , kj = 1 for all j when

n ≥ 2 in equilibrium.

Proof: Immediate from Lemmas A3 and A5.

Lemma A6. For any symmetric, single-peaked f , when there is n = 1 strategic entrant, the

idealists’ vote shares are equal.

Proof: Suppose not. Without loss of generality, suppose that the idealist z1 has a higher vote

share than z2 which implies that f(m0) > f(m1). The strategic candidate at y1 can move

slightly to the left, simultaneously increasing their own vote share and reducing the vote share

of z1, giving strictly higher utility.

Proposition 3 (Symmetric distributions). For almost any symmetric, single-peaked f , there is

a unique equilibrium where n = 1 strategic candidate enters at location y1, where y1 solves (1):

(1) F (m0) = 1− F (m1)

where m0 = 1
2
(z1 + y1) and m1 = 1

2
(y1 + z2), whenever the positions of the idealists (z1, z2)

satisfy (2) and (3):
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(2) not too moderate: m0 < F−1
(
1
3

)
⇐⇒ m1 > F−1

(
2
3

)
(3) not too extreme: if z1 is closer to the maximizer of f than z2, F (y1) ≥ 1− 2F (m0)

if z2 is closer to the maximizer of f than z1, F (y1) ≤ 2F (m0)

Proof: Firstly I show that n = 1 in equilibrium. Suppose instead n > 1. By Proposition 1 and

Lemmas A3 and A5, for almost all single-peaked f , the strategic candidates occupy the non-

extreme locations and kj = 1 for all j. As f is symmetric, there must be at least one strategic

candidate on either side of the maximizer of f , else Lemma A1 (d) is violated. I now show this

implies that both idealists tie with the strategic candidates. Suppose not and without loss of

generality that z1 loses. As f is symmetric, this implies f(m0) < f(m1) (if not, z1 gets at least

as many votes as the candidate at y2). The candidate at y1 then can profitably deviate slightly

to the right. But by Lemma A2 for almost all distributions F , not all candidates can tie.

I now characterize the equilibrium. By Lemma A6, the idealists’ vote shares must be equal,

meaning that the strategic candidate’s position y1 must solve (1). To be an equilibrium, the

strategic candidate must win, which implies F (m1)−F (m0) >
1
3
. Using (1), this becomes (2).

In equilibrium, the strategic candidate must not want to deviate to the left of z1 or the right of

z2. Note that (2) implies that z1 < F−1(1
3
) and z2 > F−1(2

3
). As the strategic candidate gets at

least 1
3

of the vote share in order to win, there is no such profitable deviation. The strategic can-

didate would also lose if they deviated to an idealist’s location as the other idealist would win

outright. Finally, the strategic candidate does not have incentive to deviate to another location

in (z1, z2): Without loss of generality, consider such a deviation to the left. By Lemma A6 this

increases z2’s vote share (and z2 now beats rather than ties with z1). However, as f symmetric,

this deviation also decreases the strategic candidate’s vote share and hence also their plurality.

In equilibrium, inactive strategic candidates must not wish to enter. Notice that an inactive

candidate could only profitably locate in (z1, z2). Assume first that z1 is closer to the maximizer

of f than z2, so that y1 is to the left of the maximizer. Notice that the payoff of the entrant is in-

creasing as their location approaches y1 from the right. Hence, entry is not profitable if the right

constituency of y1 is less than the vote share of the idealists F (m1) − F (y1) ≤ F (m0) which

gives (3). Similarly, the case of z2 being closer to the maximizer gives the second expression

in (3).
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Corollary 1. For almost any single-peaked f where Mo(f) = Md(f), n = 1.

Proof: Suppose instead n > 1. By Lemma A4 exactly one idealist loses and without loss of

generality assume this is z2. This implies that f(mr−2) ≤ f(mr−1) else the candidate at yr−1

deviates left. This implies that mr−2 is strictly to the left of the maximizer of f . For the can-

didate at yr−2 and z1 to tie (along with any number of others on the left of the maximizer),

there must be strictly more than half the density to the left of the maximizer, contradicting

Mo(f) = Md(f).

Lemma A7. For almost any single-peaked f , when n ≥ 2, strategic candidates and one ideal-

ist tie for the win with vote share s∗, where:

If Mo(f) < Md(f), then s∗ solves (A4), locations are given by (A5) and the left extremist loses (A6);

z1 = (−1)n+1z2 − 2
n+1∑
i=1

(−1)n+iF−1(1− is)(A4)

yj = (−1)n+1−jz2 − 2

n+1−j∑
i=1

(−1)n−j+iF−1(1− is∗), s.t. z1 < yj < yj+1, j = 1, ..., n(A5)

z1 < 2F−1(s∗)− y1.(A6)

If Mo(f) > Md(f), s∗ solves (A7), locations are given by (A8) and the right extremist loses (A9);

z1 = (−1)n+1z2 + 2
n+1∑
i=1

(−1)n+iF−1(is)(A7)

yj = (−1)jz1 + 2

j∑
i=1

(−1)j+iF−1(is∗), s.t. z1 < yj < yj+1, j = 1, ..., n(A8)

z2 > 2F−1(1− s∗)− yn.(A9)

Proof: I first show that if Mo(f) < Md(f) and n > 1, z1 loses: If not, by Lemma A4 z2 loses

and one can then then follow the proof of Corollary 1 to show that there must be strictly more

than half the density to the left of the maximizer, contradicting Mo(f) < Md(f). Given z1

loses, z2 must tie with the strategic candidates by Lemma A4 and kj = 1 for all j by Lemmas

A3 and A5. This implies that r = n + 1 and that F (mj) = F (mj−1) + s for j = 1, . . . , n + 1

where s is the equilibrium vote share and F (mn+1) ≡ 1. Solving recursively yields (A4) which

the equilibrium s solves, giving equilibrium locations as (A5) where (A6) is the requirement
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for z1 to lose: F (m0) < s∗. Similarly, one finds (A7)-(A9) in the case of Mo(f) > Md(f).

Proposition 4 (Asymmetric distributions). For almost any asymmetric, single-peaked f sat-

isfying (4) - (6) where Mo(f) 6= Md(f), there is an equilibrium with n > 1 strategic candidates

where locations and vote-shares are given by Lemma A7.

If Mo(f) < Md(f) If Mo(f) > Md(f)

f(m0) ∈ [f(m1), 2f(m1)] f(mn) ∈ [f(mn−1), 2f(mn−1)](4)

f(mj−1) ≤ 2f(mj) j = 2, . . . , n f(mj) ≤ 2f(mj−1) j = 1, . . . , n− 1(5)

f(m0) ≤ max{f(y1), f(z1)} f(mn) ≤ max{f(yn), f(z2)}(6)

Proof: I show that conditions (4) - (6) are sufficient for an equilibrium by considering all pos-

sible deviations in the case of Mo(f) < Md(f); those for Mo(f) > Md(f) follow similarly.

Consider deviations of the candidate at y1 within (z1, y2) (the candidate at y1 is the only

strategic candidate who could have a constituency boundary to the left of the maximizer of f )

(i) to the left: the candidate at y2 then becomes the candidate with the highest vote-share of

all other candidates, hence if f(m0) ≤ 2f(m1) there is no profitable deviation within (z1, y1);

(ii) to the right: for a small move, z1 remains a loser and the candidate at y2 becomes a loser.

It must be that f(m0) ≥ f(m1) else the candidate at y1 could profit from such a move. This

implies that any deviation within (y1, y2) reduces this candidate’s vote share, hence there is no

such profitable deviation. This gives (4).

Next consider deviations for the candidate at yj , j > 1 within (yj−1, yj+1) (i) to the left:

their vote share would increase, but so will that of the candidate at yj+1 who then becomes the

candidate with the highest share of all the others, but the plurality of the deviating candidate

decreases if f(mj−1) ≤ 2f(mj) which gives (5); (ii) to the right: their own vote share would

decrease while increasing that of the candidate at yj−1.

Next consider an inactive candidate entering (i) at an occupied location: this is not prof-

itable as it results in an outright loss; (ii) left of z1 or right of z2: this results in an outright loss;

(iii) between two strategic candidates yj and yj+1, j > 1: such an interval does not contain

the maximizer of f , hence the optimal such deviation is as close as possible to the candidate
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whose position is has higher density, yj . But this cannot be profitable because the maximum

vote share is bounded from above by max{Lj, Rj} < s∗; (iv) between z1 and y1, which con-

tains the maximizer of f : under (6), the optimal such deviation is to locate arbitrarily close

to z1 or y1 (whichever has the higher density), but as in case (iii) this is unprofitable because

max{R0, L1} < s∗.

Finally, for deviations of the candidate at yj to locations outside the interval (yj−1, yj+1),

j = 1, . . . , n, it suffices to follow the steps above relating to an inactive candidate.


