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Abstract— Success of autonomous vehicle to effectively 

replace a human driver depends on its ability to plan safe, 

efficient and usable paths in dynamically evolving traffic 

scenarios. This challenge gets more difficult when the 

autonomous vehicle has to drive through scenarios such as 

intersections that demand interactive behavior for successful 

navigation. The many autonomous vehicle demonstrations over 

the last few decades have highlighted the limitations in the 

current state of the art in path planning solutions. They have 

been found to result in inefficient and sometime unsafe 

behaviours when tackling interactively demanding scenarios. In 

this paper we review the current state of the art of path planning 

solutions, the individual planners and the associated methods 

for each planner. We then establish a gap in the path planning 

solutions by reviewing the methods against the objectives for 

successful path planning. A new adaptive tactical behaviour 

planner framework is then proposed to fill this gap. The 

behaviour planning framework is motivated by how expert 

human drivers plan their behaviours in interactive scenarios. 

Individual modules of the behaviour planner is then described 

with the description how it fits in the overall framework. Finally 

we discuss how this planner is expected to generate safe and 

efficient behaviors in complex dynamic traffic scenarios by 

considering a case of an un-signalised roundabout.  

 

Keywords—Path Planning, Global Planner, Local Planner, 

Behaviour Planner, Situation Awarness, Dynamic Bayesean 

Network. 

I. INTRODUCTION 

The digital technology advancements in the 21st century has 

given new impetus to research the autonomous vehicle 

technology in the automotive sector. Autonomy has already 

been successfully demonstrated in indoor robotics, with the 

early interest mainly driven by academia and other robotics 

research institutions. However the aim of having vehicles that 

drive autonomously on public roads is now looking much 

closer to fulfilment. This change in perception has been 

brought about by considerable research effort by academia, 

industry and through government intervention over the last 

two decades [1],[2],[3],[4]. There have been many well 

publicised demonstrations of the autonomous ground vehicle 

technology, however it is important to note that they were 

carried out in limited risk or controlled environments. For 

instance the cars at the DARPA Urban Challenge (DUC) for 

example had a remote monitor and controller, which on many 

occasion avoided collision by remotely switching of the cars. 

Vislab Intercontinental Autonomous Challenge, had only 

simple autonomous functions such as following a vehicle 

ahead [2]. The Mercedes Berth drive [3] and Google 

driverless vehicles had human operators in them to intervene 

in times of failure or uncertain behaviour [4].  

 

The control software that replaces a human operator in the 

autonomous vehicle has undergone steady evolution over the 

years. This software essentially consists of three main parts,  

a. Perception - tasked with collating sensed information of 

the vehicle surroundings to form a world representation. 

b. Path planning - tasked with generating a future path from 

the vehicles current location to its intended destination  

c. Motion control - tasked with having to execute the 

planned path to reach the intended destination. 

The schematic shown in Fig.1, encompasses the general 

format of the control software architecture derived from 

various published literature of autonomous ground vehicle 

control software implementations.  

 
Fig. 1. Autonomous Control Software Architecture. 

The advances in sensor technologies (camera, LIDAR, 

RADAR GPS etc.), has aided the research community to 

make significant progress in the area of world perception. 

Although there are still some unsolved challenges such as 

sensor accuracy, data reliability and the cost of the sensors 

itself, significant progress have been made in all of these 

areas. The motion control area of the control software has also 

matured significantly, and is already used in different degrees 

of application in Advance Driver Assistant Systems in 

conventional vehicles [5]. The focus of this paper is therefore 
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on path planning which is yet to mature to a level that is 

acceptable for autonomous vehicle to be running on public 

roads. 

 

A. History of Path Planning 

Path planning refers to the act of the robot being able to find 

a traversable path from one location to another. Path planning 

have their roots in indoor robotics and computer gaming 

design, where the environment is either static, less dynamic 

or known well in advance. These solutions however are not 

directly applicable to autonomous ground vehicle application 

as the real world scenario is highly dynamic and cannot be 

predicted with accuracy in advance. The earliest path 

planning implementations had only a single planner that 

planned the complete path prior to start of motion. This 

concept was further improved to handle more difficult 

scenarios by having two planners. The first one was refered 

to as the “global planner” planned a complete path for the 

vehicle through a static environment. The second planner was 

refered to as the “local planner” generated safe motion 

trajectory considering both static and dynamic obstacles 

while following the global path [6]. The two level planning 

solutions were found to be sufficient for vehicle applications 

less dynamic or in controlled environments and were not 

efficient for higly dynamic scenarios. For driving in complex 

real world scenarios a three level architecture became 

increasingly popular [1]. In the three level architecture the 

third planner sandwiched between the global and local 

planners was referred to as a behavior planner. Operating at a 

slower refresh rate than the local planner and tasked with 

planning complex behaviours of the vehicle, the behaviour 

lowers the workload of the local path planner by reducing the 

number of trajectories to evaluate [7]. 

 

B. Objectives of path planning and challenges. 

The quality of the generated path plan and its acceptability 

differs based on the application. To review the capability of 

the present state of the art path planning solutions the 

following list of objectives were identified as the necessary 

requirements of successful autonomous ground vehicle path 

planning, 

a. Feasible: Path feasibility refers to a path that does not 

pass through obstacles or non-traversable areas. 

b. Safe: “Safe path” refers to the one that is at acceptable 

distance away from obstacles, 

c. Optimal: “Optimal path” refers to the one with either 

“shortest distance”, “least travel time” or “least fuel 

energy used”, 

d. Usable Path: In dynamic environments a path can 

become unusable over time. Therefore the path 

generation process has to be fast enough so that it is 

usable in real-time, 

e. Adaptive: In dynamic environments changes are 

inevitable, the planner should be able to adapt to those 

changes to allow continuous uninterrupted motion, 

f. Efficient and Progressive: The plan should be based on 

quick decision making to enable progressive movement 

in traffic, 

g. Interactive: The planning should generate appropriate 

vehicle behaviours that fits with the dynamic traffic 

scenario. This implies the vehicle motion following those 

paths does not cause disturbance to the traffic flow and 

therefore does not add to traffic congestion problem.  

 

There have been attempts of autonomous vehicle driving on 

public roads either under supervision or in controlled 

environment [4],[8],[9]. However we are yet to witness 

unaided demonstration of this technology on busy 

intersections such as busy un-signalised roundabouts. While 

autonomous vehicles are expected to behave well when rules 

exists, it is not expected that every intersection on future 

roads will have a control signal to regulate traffic. Also many 

of the roundabouts in Europe are made increasingly made 

“un-signalised”, as they have shown to reduce traffic 

accidents, a claim backed by statistical evidence [10]. Also 

and recent trend suggests intersections are increasingly being 

replaced by roundabouts as they are considered less prone to 

accidents [11]. This implies that autonomous vehicle will 

have to identify and use priority rules while handling 

intersection. Also it is virtually unthinkable that the landscape 

will completely change and all human driven vehicle will be 

off-road. This implies that autonomous vehicle will have to 

share the roads with non- autonomous and semiautonomous 

traffic. Therefore being able to successfully plan its 

navigation within these settings makes the requirement of an 

effective path planning necessary requirement. 

 

Traffic scenarios such as un-signalised roundabouts are too 

complex to be characterised by few set of patterns. The 

behaviour of other actors (road users) that have different level 

of tactical skill [12], [13] and manoeuvring capability (truck 

bus ,car motorcycle etc.) leads to multiple scenarios 

variations. This study will focus on the challenges to path 

planning such traffic scenario presents with the case study 

involving an un-signalised roundabout as shown in Fig.2. 
 

     
(a)                                  (b)                                   (c) 

Fig.2. Scenario illustration for vehicle turning right at a roundabout. 

 

This paper uses the UK driving rules as guiding principles of 

path planning. The priority for vehicles at junction are 

therefore decided according to the “UK Highway Code”, This 

code says that the vehicle on the right has priority to enter the 

junction and vehicles already in the junction have priority 

over vehicle trying to enter the junction. These rules however 

are not always strictly followed in real world. Also some 

vehicles navigate the intersections more efficiently than 

others depending on the driver’s tactical skill and 

manoeuvring capability leading to inconsistent behaviours. 

Fig.2. highlights some scenarios to give a brief understanding 

on how a vehicle approaching a junction to turn right can have 

different possibilities depending on the dynamic scenario. In 

scenario “a”, the blue vehicle will wait for the “red” coloured 

vehicle to enter the junction as it has reached the give-way 

line and has priority. In scenario “b”, it can safely enter the 

junction with the knowledge that the “green” coloured 

vehicle has priority and will necessitate that the “red” vehicle 

has to stop at the give-way line. In scenario “c” again the 

intention of the “red” coloured vehicle turning left increases 

the chances of the blue vehicle entering the roundabout. The 

above scenario are not an exhaustive list but highlight how 

interpreting the scenario effectively can lead to decisive 

interaction based decision making. Most demonstrated 

techniques such as those based “open space” search methods 

or “trajectory propagation” methods are not efficient in these 

scenarios as the very existence of a vehicle already in the 

roundabout, and a vehicle approaching from the right would 



lead to the blue vehicle stopping all the time. This 

unnecessary wait leads to reduced intersection flow 

efficiency and increased traffic congestion [14]. While these 

demonstration covered a vast number of traffic scenarios, 

highly demanding and dynamic scenarios such as a busy 

roundabout were not covered. This highlights the gap that 

exists between “expert human drivers”- who have shown the 

ability to successfully plan and execute navigation in such 

scenarios and current state of the art autonomous vehicle path 

planning technology. This paper therefore reviews the current 

state of the art to highlight the limitation of the existing 

solutions and the technological gap then proposes a novel 

behaviour planner to fill this gap. 

 

II. REVIEW OF CURRENT S.O.A PATH PLANNERS. 

 

A. Global Path Planners 

In this study global path planning refers to the process of 

finding a long-term path from the vehicles current location to 

a desired destination. The global path objectives are that the 

generated path needs to be feasible, safe and optimal. Global 

path is planned in a known and generally static world map, 

and has travel times lasting over minutes/hours. These paths 

can be planned prior to travel/offline and does not involve 

frequent re-planning unless more information is available that 

significantly affects the quality of the chosen path. Fig.3. 

gives a broad categorisation of the types of techniques used 

for global path planning. 

 
Fig. 3. Global Path Planning Techniques. 

Most of the path planning methods shown in Fig 3 are 

inspired by indoor robotic and computer video gaming. These 

methods have been greatly researched in academia and have 

now been successfully used to plan global path in static 

environments. A brief description is given below, 

a. The “graph search” methods require a prior world model 

before a path can be found. The accuracy of the solution 

depends on the available world information. Sensing and 

interpretation inaccuracy can lead to frequent 

requirement of re-planning. The Dijkstra’s search 

methods [15],[16] and A* search methods and its 

variants [17],[18],[19],[20],[21],[22],[23],[24] are in this 

category. 

b. The “sampling” based methods do not require prior 

environmental modelling, and have the advantage over 

the “graph search” methods in that they can plan a path 

with incomplete knowledge of the world. RRT based 

methods [25],[26],[27],[28],[29],[30],[31] and the PRM 

based methods and its variants [32], [33], [34], [35], [36], 

[37] are in this category. 

c. The “Artificial Potential Field” methods are based on 

laws of physics. Build on the rules of attraction towards 

goal and repulsion from obstacles these methods are easy 

to implement. They however suffer in tight environments 

and generate unstable oscillatory path near obstacles. 

They also does cannot guarantee a solution and sometime 

fail to generate a successful plan. Following are some of 

the implementations of Artificial Potential Field and its 

variants [38],[39],[40]. 

 

Successful demonstrations of global path planning in static 

environments or environments that have been known in 

advance shows that the above listed methods are capable of 

achieving the objective of global path planning[41], [42]. 

Therefore this study concludes that global path planning 

methods are quite mature enough to meet the demands of the 

autonomous ground vehicle. 

 

B. Local Path Planners 

The local path planners are tasked with finding a feasible, safe 

and optimal trajectory that connects various state 

points/waypoints of the global path in real time. These 

trajectories are planned within the sensor range of the vehicle 

and they consider both the static and dynamic nature of the 

surrounding environment. The planner objective is to 

generate future trajectory that are usable manoeuvrable and 

optimal. Fig.4. gives a broad categorisation of the different 

methods in local path planning. 

 
Fig.4. Local Path Planning Techniques. 

 

a. The classical methods are similar to global path planners 

with re-planning to cater for dynamic environments. 

Classical methods include, graph based planners 

[43],[44],[45],[46], and Sampling based [47],[48]. 

b. The open space velocity based approaches are based on 

finding an admissible velocity trajectory. The methods in 

this category include “obstacle velocity” approach [49], 

[50], [51], and the dynamic window approach and its 

variants [52], [53], [54], [55]. 

c. The behaviour based approaches generate a continuum 

of trajectories based on unique vehicle behaviour such as 

lane following, vehicle following etc.,[56],[57], [58].  

d. Template based methods plan the trajectory using a set 

of prior defined trajectory templates. Methods in this 

category include Bezier curves approach [59], lattice 

based planners [60],[61],[62] and tentacles based 

planners [63],[64]. 

e. Biologically inspired methods plan the trajectory using 

traditional optimisation techniques. Methods in this 

category include, Artificial Neural Network [65], 

Genetic Algorithm [66],[67],[68], Particle Swarm 

Optimisation [69],[70], [71]. 

f. Probabilistic based approaches are a recent trend and 

incorporate the environmental uncertainty within the 

planned trajectory. Methods in this category include 

recursive agent modelling [72], stochastic reachability 

sets [73],[74], Rapidly Exploring Random Belief trees 

[75] and RR-GP [76]. 

 

The local path planning methods in autonomous vehicle 

discussed above have been shown to be capable enough to 

generate manoeuvrable trajectories in real-time when the 



behaviour is selected through a behaviour planner [77], [78]. 

This study therefore concludes that the methods described 

above are sufficient to meet the objectives on the local 

planner. 

 

C. Behaviour Planners 

The behaviour planner objectives as part of the path planning 

solution are to generate fast, adaptive and interactive 

behaviours for the local planner to generate local trajectories. 

The Darpa Urban Challenge (DUC) saw for the first time 

behaviour planners used in many of the vehicles. One of the 

main reasons for their extensive use was due to the need to 

handle urban traffic scenarios. The early implementation of 

the behaviour planners was mainly of three types, 

1. Reactive - state machine based planners [78],  

2. Layered - hierarchical state machine  based planners [7]  

3. Strategic - logic selection based planners [79].  

These planners performed reasonably well for the scenarios 

they were tuned for, but were seen to be inefficient and led to 

many failures during the testing when the scenario was not 

clearly perceived. Since then attempts have been made to 

develop other types of behaviour planners that include those 

based on fuzzy logic [80], multi-objective cost function [81] 

and more recently those based on the Markov Decision 

Process [82],[83]. These planners however still suffer from 

the need for extensive tuning and are also not scalable to 

complex dynamics of real world scenarios, The MDPs based 

planners become computationally intractable when more 

actors are considered. These behavioural planners are also 

“less-adaptive and therefore leads to a generally defensive 

behaviours which is not acceptable as it leads to traffic 

congestion issues and poor throughput from the intersections.  

 

After reviewing the three planners which form the part of a 

path planning solution it is clear that the global path planner 

and the local path planner are well equipped with methods 

that can achieve the respective objectives. However the local 

planner depends on the effective behaviour planning from the 

behaviour planner. As highlighted above although there are 

several different types of behaviour planners that can plan 

successful behaviours in less complex scenarios, when the 

scenario becomes more dynamic and has multiple actors 

these methods fall short in delivering efficient solutions. 

Human drivers have generally shown “expert” ability to 

tackle such highly dynamic and complex scenarios. Therefore 

to address the gap in the path planning a “human like” 

adaptive tactical behaviour planner is proposed in this study. 

Section III will describe the adaptive tactical behaviour 

planner framework and associated modules and in section IV 

we discuss the merits of the proposed behaviour planner. 

 

III. ADAPTIVE TACTICAL BEHAVIOUR PLANNER 

The proposed novel behaviour planner framework is 

motivated by how experienced human drivers plan their 

behaviours in different traffic situations [84],[85]. The 

framework introduces a novel approach to mimicking human 

behaviour planning perception-prediction-action by having a 

three module behaviour planning framework. These three 

modules are Situation Awareness (SA), Behaviour Prediction 

(BhvPrd) and Behaviour Selection (BhvSel) This framework 

also incorporates the human tendency of discretising complex 

scenario into manageable phases [86]. In this proposed 

framework the scenario is discretised into three phases i.e. 

“entry phase”, “intermediate phase” and the “exit phase”. In 

the context of the roundabout scenario the three phases are 

approach to the roundabout, the entry and travel within the 

roundabout and the exit of the roundabout. The behaviours in 

each of these phases are then stitched together over the 

temporal space to give a continuum of vehicle behaviours. 

The proposed behaviour planner is shown in Fig 5 

 
Fig.5. Tactical Behaviour Planning Framework. 

 

A. Situation Awareness (SA) 

The SA module deals with knowing the position of the 

autonomous vehicle and its surroundings. A term made 

famous by “Endsley” [87], in this framework SA essentially 

involves perception of the individual parts of the scenario and 

projection of this abstracted world information on the 

scenario map. In the proposed approach this information is 

collated to build a dynamic attribute based “situation map” 

using scenario attributes seen in Fig.6. 

 
Fig.6. Scenario Map Attributes. 

 

The attributes in each of the category classes shown in Fig.6, 

are not an exhaustive list and will be evolved with further 

research. The attributes relevant to the scene in question are 

projected on to the static scene of the road. The regular update 

of temporal information creates a dynamic map of the traffic 

scene referred in this study as a “situation map”. Fig 7 gives 

a graphical illustration of how the map is formed. This 

scenario map is refreshed at fixed time stamps and results in 

identifying, critical actors to enables the planner to predict the 

evolution of the traffic scenario. 

 
Fig.7. Illustration of map construction for example Scenario. 

 

B. Behaviour Prediction (BhvPrd) 

The behaviour prediction module is designed with the ability 

to predict future behaviours of the other actors in the scene 

based on their current states and past movements. The 



behaviour of any moving actor also depends of traffic rules 

applicable for the scenario and their interaction with other 

moving actors. The designed behaviour prediction is 

stochastic as very rarely one can get complete information 

form the sensing units for complete and accurate prediction.  

 

Behaviour prediction has been in the automotive domain for 

a long time, with most of the current approaches being 

motivated by collision/crash avoidance techniques found in 

Advance Drive Assisted Systems (ADAS). There are mainly 

two approaches that have been researched extensively. The 

first approach involve future trajectory prediction using the 

present and past physical state parameters of the actors[88]. 

The second approach involve trajectory matching where a 

matching trajectory is selected from statistically populated 

database of possible behaviours[88]. Both these approaches 

are not very efficient and are unable to predict behaviours in 

real time especially when the number of actors increase. In 

this study the behaviour prediction is interaction based, and 

the behaviour of other actors is predicted based on temporal 

evolution of behaviour through the use of Dynamic Bayesian 

Network (DBN). This approach is using similar concepts 

used by Lefèvre et al [89] however considers the Traffic rules 

case as a separate exclusive node. The graphical 

representation of the DBN framework is shown in the Fig 8 

 
Fig.8. Behaviour Prediction framework using DBN. 

 

𝐵𝑒:  is the expected behaviour of a moving actor.  

𝐵𝑎:  is the actual behaviour comprising of the actors        

present intention” (𝐼) and its present manoeuvre (𝑀).  

𝑃 :   is the estimated physical state of the actor.  

𝑄: is the measured state from externally sensed parameters of 

Speed S and Orientation O. 

𝑅:  is the state of specific traffic rules and encompasses the 

expectation according to the traffic rule. 

 

The proposed DBN framework enables the behaviour 

prediction module to predict the expected behaviour of the 

actor in question based on its past states. Therefore the 

expected behaviour 𝐵𝑒 at a future time step (t+1) is given by 

 

𝑃(𝐵𝑒(𝑡)|𝐵𝑎(𝑡−1), 𝑃(𝑡−1)) = 𝑃(𝐵𝑒(𝑡)|𝑀(𝑡−1), 𝑆(𝑡−1), 𝑂(𝑡−1)) 

 

The other variable of interest is the actor’s intention at the 

scenario which depends on its previous intention and the 

traffic rules and the expected intention is given by 

𝑃 (𝐼(𝑡)|𝐵𝑎(𝑡−1), 𝐵𝑒(𝑡)) = 𝑃 (𝐼(𝑡)|𝐼(𝑡−1), 𝑅(𝑡), 𝐵𝑒(𝑡)). 

 

The behaviour intention (stop/cruise/accelerate/decelerate) is 

than evaluated against the expected behaviour to check if the 

vehicle is compliant/non-compliant to follow priority rules. 

The behaviour manoeuvre (turn-right/turn-left/straight) are 

based on matching with the exemplar paths built using 

statistically collected data. 
 

 
C. Behaviour Selection (BhvSel) 

This is the final module of the proposed behaviour planner 

framework and is tasked with having to select the best 

behaviour from a set of available behaviours. A complete set 

of vehicle behaviours are designed for the vehicle to choose 

from that are filtered based on scenario identification in the 

SA module. The behaviour set include lateral behaviours such 

as “turn left” “turn right” “move straight”, combined with 

longitudinal behaviours such as “stop”, “creep” “cruise” 

“accelerate”, “decelerate” etc. The types of behaviour 

selection will make the vehicle either defensive (always 

taking the safest option) or progressive (taking calculated 

risks but operating within a safety margin). This behaviour 

selection is “tactical” i.e. with the learned knowledge of the 

scenario through the SA and with the predicted movements 

of the other actors from the “BhvPrd” the autonomous vehicle 

can select tactically competent behaviour based on the traffic 

scenario. The Behaviour selection is carried out through 

evaluation of the payoffs of every possible behaviours of the 

vehicle at each decision point, with the behaviour with the 

best payoff selected as part of the tactical plan. The behaviour 

planner therefore converts the difficult problem of navigating 

a complex scenario such as a roundabout into a control 

problem which is solved using the optimisation principle.   

 

IV. DISCUSSION 

The proposed behaviour planner works on the principle that 

when in a structured settings, the moving actors behave 

rationally, i.e. they do not intentionally try to crash into each 

other. This implies that any actor will not try to occupy a 

position already occupied by another actor. Under these 

assumption the proposed behaviour planner is built to 

tactically select the best behaviour for the autonomous 

vehicle after having identified the expected behaviours of the 

actors that are competing for the same space. Below we 

discuss how the individual modules contribute towards this 

tactical behaviour 

a. The “SA” module of the behaviour planner gives a fluid 

and fast representation of the traffic scenario. With this 

attribute based representation it eliminates the needs for 

complex mapping of the scenario which is both time 

consuming and difficult to analyse. The “SA” module 

helps filter down the critical areas and the critical actors 

of the scenario for “BhvPred”. 

b. The “BhvPred” module is designed using a temporal 

Dynamic Bayesian Network. The behaviour prediction 

for any actor is initiated when it is identified as an actor 

of interest. The behaviour prediction captures the 

interactions with other actors through its manoeuvre and 

intention estimation. The incorporation of traffic rules 

although basic at this stage, makes the prediction more 

representative of real world traffic scenario.   

c. The “BhvSel” module selects the appropriate behaviour 

(longitudinal and lateral) for the autonomous vehicle. 

The decision of the appropriate behaviour at each 

timestamp is based on the payoff/ consequence of 

selection from all the possible behaviours. This enables 

the vehicle to tactically select behaviours that are 

efficient and safe. 

The behaviour planner framework also has a risk estimation, 

which estimates the risk of an every tactical behaviour 

selected by “BhvSel” to generate appropriate evasive 

manoeuvres. The need for the evasive manoeuvres is either 

due to an unexpected behaviour of other actors or when an 

evasive manoeuvre is required by an emergency vehicle 

(police/ambulance). 



V. CONCLUSION  

The behaviour planning is still an emerging field of research. 

The present lack of successful path planning solution that can 

generate efficient and safe path in scenarios such as un-

signalised roundabouts has held the autonomous vehicle 

introduction in public roads. Human drivers have been 

tackling these scenarios for as long as they existed and their 

ability to intuitively interact with the other road users has 

been the main reason for their success. Having identified the 

objective of successful path planning and having reviewed 

the state of the art path planning methods there has been an 

acceptance that global path planning and local path planning 

challenges are effectively solved. However in order to be able 

to successfully navigate all types of real world scenarios and 

enable progressive uninterrupted motion, the behaviour 

planner is required to be more adaptive, scalable and efficient 

and interaction based. In this paper a novel behaviour planner 

framework is proposed, which is designed to promote a 

progressive form of driving. This proposed behaviour planner 

framework is expected to be tuned with statistical data in the 

coming months before being tested for real-world case of un-

signalised roundabouts. 
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