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Abstract— In this work we investigate phonon transport in 

low-dimensional, disordered armchair graphene nanoribbons 

(GNRs) in order to illuminate phonon transport effects in 1D 

disordered systems. We use the non-equilibrium Green’s function 

(NEGF) simulation technique for transport, coupled to the force 

constant method for obtaining the phonon bandstructure. We 

focus on how different parts of the phonon spectrum are 

influenced by geometrical confinement and line edge roughness. 

In the ballistic case, phonons throughout the entire phonon 

energy spectrum contribute to thermal transport. With the 

introduction of line edge roughness, the phonon transmission is 

reduced, but quantitatively and qualitatively in different ways 

throughout the energy spectrum. We identify how each region of 

the spectrum reacts to low-dimensionality and disorder, and 

elaborate on how phonon transport is affected by that. We 

explain how and when phonons in different energies within the 

spectrum flow either ballistically, diffusively, or become localized 

depending on features of the channel geometry. Finally, we 

derive exponents related to the length and width dependence of 

the thermal transport in the GNRs under the influence of line-

etch roughness. Our results could provide generic features of 

thermal transport in different classes of low-dimensional 

materials beyond GNRs, and could help understand heat 

transport at the nanoscale better.  

Keywords— theory; simulation; phonon transport; graphene 

nanoribbons; low-dimensionality; NEGF 

I. INTRODUCTION 

Carbon related materials such as graphene, nanotubes, and 
graphene nanoribbons (GNRs) have huge thermal 
conductivities in their pristine form, reaching values as high as 
of 3080-5150 W/m K at room temperature, and have attracted 
significant attention both for fundamental research as well as 
for technological applications [1-9]. Ultra-narrow graphene 
nanoribbons have been shown to retain at some degree the 
remarkable thermal properties of graphene, however, the 
presence of edges can determine its heat transport properties 
[7, 10-12]. Even a small degree of disorder can drastically 
degrade this superior thermal conductivity. Several works 
have indeed shown that the transport properties of low-
dimensional systems are significantly degraded by the 
introduction of scattering centers and localized states [7, 9, 10, 
13-15]. For example, two orders of magnitude reduction in 
thermal conductivity has been reported for roughened GNRs, 

but also for several other low-dimensional materials. For 
certain applications, such as heat management, this is 
detrimental, but for other applications such as thermoelectric 
materials, reduction in the thermal conductivity is beneficial as 
it significantly improves the thermoelectric conversion 
efficiency, and thus, it creates interest from technological 
point of view as well [9, 16, 17].  

Several works attempt to compute and understand the 
thermal properties of low-dimensional materials using various 
methods, depending on the size of the systems and the 
computational complexity it involves. These are molecular 
dynamics (MD) [18-22], the Boltzmann Transport Equation 
(BTE) for phonons using scattering rates based on the single 
mode relaxation time approximation (SMRTA) [23-26], the 
non-equilibrium Green’s function (NEGF) method [27-33], 
and the Landauer method [34-36], and even more simplified 
semi-analytical methods based on the Casimir formula to 
describe boundary scattering [37, 38].  

Thermal transport studies in graphene and GNRs, 
specifically, are in general more computationally tangible, and 
could illuminate the physics of phonon transport at the 
nanoscale, which reveals features distinctly different from 
bulk materials. For example, several experimental and 
theoretical works suggest that the thermal conductivity could 
deviate from Fourier’s law [39-41]. It was observed that it 
grows monotonically with channel length before it saturates at 
large channel lengths, even lengths significantly larger than 
the average mean-free-path (MFP) [42, 43], an indication of a 
crossover from ballistic into diffusive transport regimes [44, 
45]. In fact, a theoretical work suggested that all experiments 
to date are actually carried out in the quasi-ballistic, rather 
than the diffusive regime [20]. Another recent theoretical 
study showed that in the case of pristine 1D channels the 
thermal conductivity could even increase with confinement 
[46], and it is even a function of the width-dependent phonon 
spectra [18]. References [47-49], demonstrated that the 
thermal conductivity in 1D channels grows as a power-law 
function of the length and that roughness affects the value of 
the exponent of this dependence.  

The phonon spectrum of ultra-narrow GNRs and 1D-
dimensional channels in general, however, consists of various 
phonon modes and polarizations, which react differently in the 
presence of disorder (e.g. line-edge roughness) and exhibit 



 

different mean-free-paths and localization lengths. The few 
studies that attempt to address this issue (for different families 
of 1D channels) reach various and differing conclusions. A 
study on thermal transport in 1D Si nanowires, for example, 
indicated that line-edge roughness scattering affects the 
thermal conductivity by introducing band-mismatch in the 
optical region of the spectrum [14]. Different works attribute 
the reduction in thermal conductance to phonon localization 
and the appearance of non-propagating modes [13, 50, 51]. 
Specifically in the case of GNRs, it is indicated that the 
majority of eigenmodes are localized and do not contribute to 
thermal transport [52], whereas other studies suggest that heat 
transport is semi-ballistic [45]. Most studies, however, 
examine and present how the overall thermal conductivity (or 
thermal conductance) behaves under disorder, and 
dimensionality scaling. On the other hand, a lot of information 
about what determines the overall phonon transport properties 
resides in the individual phonon frequencies in the phonon 
spectrum. Thus, a study on how line edge disorder in 1D GNR 
channels affects phonon modes of different frequencies and 
wavevectors in the entire phonon spectrum will be extremely 
helpful in providing insight in thermal transport at low-
dimensions.  

In this work we theoretically investigate the effect of line 
edge roughness and confinement in phonon transport in ultra-
narrow GNRs for the modes in the entire energy spectrum 
independently. The basic conclusions of this study can be 
applied generically to other 1D systems. Four distinct 
behaviors within the phonon spectrum in the presence of 
disorder are identified: i) the low-energy, low-wavevector 
acoustic branches are affected the least by edge disorder; ii) 
energy regions that consist of a dense population of relatively 
‘flat’ phonon modes (including the optical branches) are also 
not significantly affected; iii) ‘quasi-acoustic’ bands that lie 
within the intermediate region of the spectrum are strongly 
affected by disorder; iv) the strongest reduction in phonon 
transmission is observed in energy regions that are composed 
of a small density of phonon modes. In this case, we describe 
a new effect, namely the creation of effective ‘transport gaps’ 
in the phonon spectrum as a result of band-mismatch in the 
presence of roughness, which drives transport strongly into the 
localization regime. We then show that the dependence of the 
thermal transport properties on the length and the width and 
the channel can be characterised by specific exponents in the 
form of L

α
, and W

β
, which indicate the dominant transport 

regimes from semi-ballistic to localization. The length 
dependence exponent for the ultra-narrow channels examined 
is in agreement with results in wider, but longer channels, as 
well, whereas the width dependence exponent is another new 
result we present, which is only studied expensively in the 
case of electrons for such ultra-narrow channels, but not 
phonons.            

II. METHODS 

 We employ the NEGF method, which can take into 

account the exact geometry of the roughness without any 

underlying assumptions, while we describe the phonon 

spectrum atomistically using the force constant method 

(FCM). The NEGF method is appropriate for studies of 

phonon transport in geometries with disorder because the 

exact geometry is included in the construction of the 

dynamical matrix. Employing an atomistic approach that 

considers the discrete nature of the line-edge roughness and 

accurately models its impact on phonon modes is essential for 

the analysis of thermal properties of narrow GNRs (with 

W<20nm). In addition, this approach allows the description of 

channels with 100s of thousands of atoms, something that 

would be computationally extremely difficult to implement 

using ab initio DFT methods, for example. The method 

considers the wave nature of phonons, rather than their 

particle description, and all interference and localization 

effects, which could be important in low-dimensional 

channels, are captured. In addition, it is most appropriate for 

the purposes of this study, which investigates the influence of 

line-edge roughness for phonons of different frequencies of 

the spectrum, as NEGF computes the energy resolved phonon 

transmission function. The system geometry consists of two 

semi-infinite contacts made of pristine GNRs, surrounding the 

channel in which we introduce line-edge roughness. The 

Green’s function is given by: 
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where D  is device dynamical matrix and E   is the 

phonon energy. The contact self- energy matrices å 1,2
 are 

calculated using the Sancho-Rubio iterative scheme. The 

transmission probability through the channel can be obtained 

using the relation: 
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where G 1
 and G 2

 are the broadening functions of the two 

contacts defined as 
1,2 1,2 1,2i       . The thermal 

conductance can then be calculated in the framework of the 

Landauer formalism as: 
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where  n   is the Bose-Einstein distribution and T is the 

temperature. In this work we consider room temperature 
T=300K. At room temperature and under ballistic conditions 
the function inside the integral spans the entire energy 
spectrum [53, 46], which allows phonons of all energies to 
contribute to the thermal conductance.  

      Under the harmonic approximation, the motion of atoms 
can be described by a dynamical matrix as: 
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where 
,i jM  is the atomic mass of the i

th
, j

th
 carbon atom (in 

this case all atoms have the same mass), and the dynamical 
matrix component between atoms ‘i’ and ‘j’ is given by: 



 

 
Fig. 1.  Typical phonon dispersions for GNRs [55]. (a) W=5nm, (b) 

W=3nm, (c) W=1nm wide GNRs. As the width is decreased, the number 

of phonon modes is reduced. The colormap shows the contribution of 

each phonon state to the total thermal conductance (red: largest 

contribution, blue: smallest contribution).  
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where                                               
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is the second derivative of the potential energy (U ) after 

atoms ‘i’ and ‘j’ are slightly displaced along the m-axis and 

the n-axis ( i

mr  and j

nr ), respectively. 

      For setting up the dynamical matrix component between 
the i

th
 and the j

th
 carbon atoms, which are the N

th
 nearest-

neighbors of each other, we use the force constant method 
(FCM), involving interactions up to the fourth nearest-
neighbor [54, 55]. The force constant tensor is given by:   
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where ( )N

r , 
( )N

ti , and 
( )N

to  are the radial, the in-plane 

transverse, and the out-of-plane transverse components 
respectively. The force constant fitting parameters are taken 
from Ref. [56] and are shown to accurately reproduce the 
phonon dispersion of graphene. The 3x3 components of the 
dynamical matrix are then computed as: 
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mU  is a unitary rotation matrix defined as: 
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Assuming the graphene sheet is located in the x-y plane, 
ij  

represents the angle between the x-axes and the bond between 
the i

th
 and j

th
 carbon atom.  

In addition, the phonon dispersion can be computed by 
solving the following eigenvalue problem using a unit cell: 

            2exp . ( ) ( )l

l

D D iq R q q q  
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where Dl  is the dynamical matrix representing the interaction 

between the cell and its neighboring cells spaced by R , and 

( )q  is the phonon mode eigenfunction at wavevector  q .  

III. THE INFLUNCE OF CONFINEMENT 

Figures 1a, 1b, and 1c show typical dispersion relations for 
GNR channels of widths W=5nm, W=3nm, and W=1nm, 
respectively [55]. The W=1nm case resembles a purely 1D 
channel, whereas at a width of W=5nm the dispersion diverts 
towards 2D (although the dispersions in both cases are 1D). 
These sizes are computationally manageable, and comparison 
between their transport properties allows comparison between 
1D and less confined, ‘towards 2D’, phonon transport. The 
colormap in Fig. 1 shows the contribution of each phonon 
state to the ballistic thermal conductance at T=300K [55]. To 
analyze the observed features of the GNR phonon dispersions, 
we first discuss the graphene phonon dispersion. In graphene, 
there are 6 phonon modes, 3 acoustic and 3 optical modes 
[56]. The highest frequency acoustic mode is the longitudinal 
acoustic (LA) mode, the next one is the in-plane transverse 
acoustic mode (TA) and lowest frequency mode is the out-of 
plane acoustic mode (ZA). The latter is recently shown to 
make the largest contribution to the thermal conductivity of 
graphene [57]. The highest frequency optical mode is the 
longitudinal optical (LO), followed by the in-plane transverse 
optical (TO), and the lowest is the out-of-plane optical (ZO) 
[58]. The LA mode of the GNRs shown in Fig. 1 is the 
corresponding LA mode of graphene with group velocity 
νs=19.8 km/s. The LA and TA modes are linear at low 
frequencies, and extend up to E~0.16eV and E~0.14eV, 
respectively. The ZA mode is quadratic for low frequencies 
and extends up to E~0.07eV. At the higher part of their energy 
region, the acoustic modes become relatively ‘flat’. The ZO 
modes extend from E~0.7eV-0.11eV, whereas the LO and TO 
modes are located at higher energies, from E~0.16eV-0.2eV. 
The relatively ‘flat’ mode regions around energies E~0.07eV-
0.11eV consist of ZO modes, in addition to the dispersive LA 
and TA modes. The less dispersive modes located from 
E~0.11eV-0.16eV are the ‘flat’ parts of the LA and TA 
modes. 

Three main changes on the phonon bandstructure can be 
observed as the width is reduced, i.e. comparing Fig. 1a with 
Fig. 1c: i) The optical and ‘quasi-acoustic’ modes (folded 
acoustic branches of the host material) show strong 
confinement dependence. The number of modes depends on 
the number of atoms within the unit cell. As the width is 
reduced, the number of modes in these regions is also reduced. 
ii) The number of acoustic modes remains intact, and they 
carry a much larger portion of the heat (as indicated by their 



 

 
   Fig. 2.  The phonon transmission times the channel length (Tph×L) 

versus channel length for rough nanoribbons at energies (a) E=0.01eV, 

which correspond to the acoustic branches, (b) E=0.19eV, which 

corresponds to the optical branches, (c) E=0.13eV, and (d) E=0.16eV. In 

each sub-figure, results for channels of width W=5nm (red-dashed lines) 

down to W=1nm (blue lines) are shown. 

red coloring in Fig. 1a and 1c), especially in the case of the 
narrower GNR. iii) Small bandgaps appear in some regions in 
the bandstructure, especially in regions around the interface 
between the ‘flat’ optical modes and the more dispersive 
‘quasi-acoustic’ modes (primarily around E=0.16 eV, and 
secondly around E=0.11 eV, and E=0.07 eV). Large regions in 
the phononic (E,q)  space, especially in the ‘quasi-acoustic’ 
band regions, become ‘empty’ of modes (sparse) where for 
rather extensive energy and momentum intervals no phonon 
states exist. As we show below, such regions are extremely 
more sensitive to disorder compare to the rather dense mode 
regions of the spectrum. 

IV. THE INFLUENCE OF LINE-EDGE ROUGHNESS 

Next, we then investigate phonon transport in these low-
dimensional GNRs in the presence of disorder. At such small 
ribbon widths with rough edges, the edge-phonon scattering is 
the dominant scattering mechanism [15]. For this, we simulate 
rough GNR channels of width W=5nm (relatively wide) down 
to W=1nm (purely 1D), and examine the phonon transmission 
across the phonon energy spectrum as the length of the GNR 
increases even up to 1000 nm (i.e. as the effective disorder 
increases). To provide an indication of the computational cost, 
we note that the largest nanoribbon we consider, of width 
W=5nm and channel length of L=500nm, consists of nearly 
100,000 atoms. To describe the motion of each atoms a 3×3 
matrix is needed, see Eq. (4) and Eq. (5). The resulting 
Hamiltonian and Green’s functions at each energy point are 
matrices with a size of 300,000×300,000. To simulate the 
phonon transmission of this structure, it takes several hours on 
a 16 core machine with 128 GB of memory. Since the 
roughness produces a random edge topology, all results we 
present, are extracted by averaging 50 different realizations of 
roughened channels. We note that in this work our goal was to 
investigate effects of disorder on the phonon transport of 1D 
channels. However, using the same computational resources 
we could scale the GNR width even up to W=50nm, but in that 
case we would have to reduce the length down to L=50nm-
100nm. At such wide and short channel, though, the effects of 
edge roughness are minimized. 

To construct the line-edge-roughness geometry on the edge 
of the GNR, we use an exponential autocorrelation function as 
explained in our previous work [59]. We construct a 
roughness line at the top and bottom edges of the GNR and 
atoms located in the outer direction of the lines are removed, 
whereas all regions in the inner part of the lines are filled with 
atoms if needed. In this work we only consider GNRs with 
armchair edges, however, we have also performed simulations 
for GNRs with zig-zag edges and we verify that the main 
conclusions of this work still apply to the zig-zag GNR case as 
well. Finally, we note that the GNRs are assumed to be 
suspended and the edge atoms are allowed to move freely, 
vibrating in harmony with the other atoms according to the 
lattice wave/dynamics. 

Since each phonon mode responds differently to disorder, 
it is essential to investigate the regions of operation of the 
different modes, and identify the different behaviors, from 
semi-ballistic to localization. To illustrate the distinctly 
different behavior of the various phonon modes in the 

presence of line edge roughness, Fig. 2 shows the product of 
the transmission times the length of the channel (Tph×L) versus 
channel length L at certain phonon frequencies as a function of 
the channel length L. In the case of ballistic transport, the 
Tph×L product increases linearly. In the case of diffusive 
transport it remains constant. In the case of sub-diffusive 
transport the product reduces with length [60], and for 
localized transport, the product drops exponentially. We focus 
on four different phonon categories, and pick a specific 
phonon energy within the spectrum indicating each of these 
categories. These are: i) acoustic phonons (E=0.01eV) shown 
in Fig. 2a, ii) optical, ‘flat’ dispersion phonons (E=0.19eV) 
shown in Fig. 2b, iii) ‘quasi-acoustic’, dispersive phonon 
modes (E=0.13eV) shown in Fig. 2c, and iv) regions of very 
low mode densities, in which confinement can even result in 
narrow bandgaps (E=0.16eV) shown in Fig. 2d. In each figure 
we consider GNRs of widths W=5 nm (red-dashed lines) down 
to W=1 nm (blue lines).  

 From Fig. 2a, it can be seen that for the wider GNR 
channels, the acoustic modes are ballistic, or semi-ballistic, 
even for channel widths W=3nm and lengths up to L=1μm. In 
the ultra-narrow W=1nm GNRs (blue line in Fig. 2a), the 
acoustic modes reach the diffusive regime at around lengths of 



 

 
Fig. 3.  The transmission function versus energy in logarithmic scale for 

rough edge GNRs of width W=5nm. The ballistic transmission (pristine 

GNRs, non-roughened ribbons) is depicted by the black-dashed line. 

Results for nanoribbons with lengths L=5nm (blue line), L=40nm (red 

line), L=100nm (green line), and L=500nm (black-solid line) are shown.    

L~200nm, and get into the localized regime for lengths larger 
than L~700nm. The influence of roughness in the acoustic 
modes, in general, is relatively weak, and can be understood 
from the fact that they are composed of LA modes with long 
wavevectors [8, 10], which makes them very weakly affected 
by defects, and this is the case for both wider and ultra-narrow 
GNRs. Interestingly, a similar trend is observed for the optical 
modes (Fig. 2b) as well at energies E=0.19eV. GNRs with 
widths W=5nm (red-dashed line) and W=3nm (green line) 
indicate a semi-ballistic behavior even up to channel lengths 
of hundreds of nanometers. In the W=1nm and W=2nm cases, 
however, the optical modes reach the sub-diffusive and 
localization regimes at lengths even below L~100nm. Under 
such narrow channels, the optical modes density becomes 
sparse. This combined with the fact that the optical modes are 
rather ‘flat’, introduces band-mismatch from layer to layer 
along the transport path in the presence of line-edge 
roughness, which strongly degrades phonon transmission.     

The behavior of the ‘quasi-acoustic’ modes at energies 
E=0.13eV (Fig. 2c), on the other hand, is very different. These 
modes enter the diffusive regime at much shorter channel 
lengths compared to the acoustic and the optical modes. They 
even enter the localization regime after L~300nm for the 
W=5nm GNRs, after L~100nm for the W=3nm GNRs, and just 
after L~10nm for the W=1nm GNRs. This is quite intriguing 
since these are dispersive modes with much higher group 
velocities compared to the optical modes. The strongest 
reduction in transmission, however, is observed for the energy 
regions E~0.16eV (Fig. 2d), which are regions of low mode 
density (see Fig. 1). For these modes, the transmission is 
diminished after channel lengths of L~200nm in the case of 
the wider channels, and after L~10nm in the case of the ultra-
narrow channel.  

The reason why the ‘quasi-acoustic’ mode regions and the 
low density mode regions behave so drastically different 
compared to the optical modes can be explained by their 
behavior under confinement. Figure 1 shows that under 
confinement, the number of modes in these energy regions 
(E~0.13, and E~0.16) is reduced significantly, making these 
regions look almost ‘empty’ of modes. In the presence of line 
edge roughness in a real geometry, the sparsity of the modes 
makes these particular energy regions more susceptible to the 
formation of ‘effective’ bandgaps by increasing the band-
mismatch between the modes in the physical channel regions 
along the propagation path of the phonons. Such an event is 
not the case for the optical modes for the geometries we 
examine. The ‘effective’ transmission bandgap formation is 
demonstrated in the transmission functions shown in 
logarithmic scale in Fig. 3 for the W=5nm channel under 
ballistic (pristine channel) conditions (black-dashed line) and 
under line edge roughness when the channel length is L=5nm, 
40nm, 100nm, and 500nm (black-solid line). For short 
channels, the transmission is not significantly disturbed. For 
the longer channels, however, it is evident that for energies 
around E~0.07eV and E~0.13eV large ‘effective’ bandgaps 
form as indicated by the arrows. Notice the even larger 
bandgap formation at energies E~0.16eV. Comparing this to 
Fig. 1c, there is a clear indication that the energy regions 
which become sparse of modes under confinement are very 

susceptible to roughness in less confined geometries as well. 
This suggests that the influence of confinement has similar 
features in the transmission as the effect of roughness.  

The behavior described above should hold for any sparse 
mode energy regions. Note, for example, that gaps do not form 
in the regions of the ‘flat’ optical modes, and the transmission 
does not degrade as much. Under strong confinement, 
however, the ‘flat’ optical mode regions become sparser, and 
in extreme cases begin to ‘look’ like the low-density regions 
as well. Under these conditions, they could also be subject to 
band mismatch, and to the effect we describe above. In this 
context, the thermal conductivity is a function of the width-
dependent phonon spectra [15], for which line edge roughness 
could either further increase the band mismatch, or form 
‘effective’ transport bandgaps. 

We would like to mention that the purpose of this work 

was to elucidate the main features of 1D transport of phonons 

in the presence of disorder in a general sense. An important 

message we convey in this work is the fact that just by looking 

at how the phonon bandstructure behaves under confinement, 

and its low-dimensional dispersion features, one can provide 

an indication of how the modes will behave under edge 

roughness. Qualitatively, the behavior we describe should hold 

for other low-dimensional materials beyond GNRs, but also be 

relevant to phonon dispersions extracted through other 

methods, e.g. DFT calculations etc. Another important point to 

make, is that the diffusive regime in our calculations is caused 

by edge roughness, and not phonon-phonon interactions, 

which are not included in the simulations. Including the full 

unharmonicity of the material within NEGF would have been 

a much more computationally intensive effort. However, edge 

roughness under ultra-narrow channels could have a much 

stronger effect compared to phonon-phonon interactions and 

the thermal conductance could reach diffusive, even 



 

 
Fig. 4.  The thermal conductance (a) and conductivity (b) versus channel 

length for GNRs with widths W=5nm (red-diamond) and W=1nm (blue-

circles).    

localization behavior even before phonon-phonon interaction 

becomes important. This depends on how smaller the MFP of 

edge disorder is compared to the MFP of phonon-phonon 

interaction (which is in the 100 of nanometers in graphene).  

Graphene and graphene nanoribbons indicate significant 

anisotropic behavior and the type of edges plays a role. The 

chirality of GNRs, i.e. armchair (AGNRs), or zig-zag 

(ZGNRs) can provide anisotropy in phonon transport behavior 

(although smaller compared to electronic transport 

anisotropy). In Ref. [61], for example, using the phonon 

Boltzmann transport equation, it was shown that the amount of 

anisotropy between AGNR and ZGNR ribbons can be 

significant, which also increases as the ribbon width decreases 

and as the roughness amplitude increases. We have performed 

the same simulations for the zig-zag GNRs (ZGNRs), in 

addition to the armchair GNRs we present in this work. The 

results for ZGNRs are very similar to those for AGNRs, with 

somewhat less distinctive, but still strong reductions being 

observed in the transmission function around E=0.07eV, 

E=0.11eV and E=0.16eV. The phonon spectrum of ZGNRs 

has slightly more dispersive bands, something also validated 

by first principle calculations [28]. This makes their ballistic 

thermal conductance and transmission somewhat higher 

compared to AGNRs and does not allow the formation of 

‘effective bandgaps’ upon confinement and roughness as 
easily. The main qualitative trends, however as in the case of 

AGNRs are also observed for ZGNRs.  

      We next analyse how these features show up and affect the 

overall thermal conductivity of ultra-narrow 1D GNR 

channels. The thermal conductivity of the GNR channels is a 

length dependent quantity and calculated using the thermal 

conductance as /l lLK A  , where A is the cross section area 

of the GNR with its height assumed to be 0.335nm. Figure 4a 

shows the thermal conductance, Kl, versus channel length for 

GNRs with width W=5nm (red-diamond line) and W=1nm 

(blue-circle line). The thermal conductance drops as the 

channel length increases, and it is significantly lower in the 

case of the narrower channel with W=1nm, compared to the 

wider channel of W=5nm. Figure 4b shows the extracted 

thermal conductivity, κl. Since the dominant mean-free-paths 

for scattering can be quite large, the thermal conductivity will 

increase with an increase in the channel length, until the 

channel length extends beyond the dominant phonon mean-

free-paths. These are the mean-free-paths of the acoustic low-

energy phonons (see Fig. 2a), which can extend even up to 

several micrometers (in some cases even up to millimeters). 

Thus, ballistic transport dictates that the thermal conductivity 

increases linearly with channel length, while saturation comes 

due to scattering. The increase in thermal conductivity with 

channel length for short channels, and saturation for the longer 

ones, indicates the transition between ballistic and diffusive 

transport which was also observed at various instances [45, 

62]. For the wider GNR channel with W=5nm, the saturation 

begins for length scales of several hundreds of nanometers. 

Other theoretical studies also suggest the ~ 600nm  for the 

phonon-phonon interactions-caused MFP in graphene and 

carbon nanotubes, but this should not be confused with the 

edge-disorder-caused MFP [63-66]. At this channel length, 

however, the narrower GNR with W=1nm is already driven 

into the sub-diffusive and even into the localization regime, 

where the conductivity reduces with increasing the length of 

the channel (blue line). In general, however, it is expected that 

if phonon-phonon scattering was considered, the diffusive 

regime would have been reached at somewhat shorted channel 

lengths, and the effects of localization would have been 

somewhat smoothened. We note that a more detailed 

description of the extraction of the MFPs, the localization 

lengths, as well as theoretical validation of phonon 

localization, can be found in our previous work in Ref. [55].    

      An important parameter that characterizes the heat 

transport properties of the material and the strength of the line-

edge roughness, is the slope of the thermal conductivity versus 

length in the semi-ballistic regime (left side of Fig. 4b). The 

dashed-dotted lines in Fig. 4b indicate the slopes in the two 

channels. Unity slope would be expected for purely ballistic 

channels. The strength of the line edge roughness is indicated 

by the deviation from unity for short channel lengths [67, 68]. 

A power law behavior L
α
 is expected for 1D channels [67, 68]. 

From our data in Fig. 4, the wider channel with W=5nm has 

α=0.7. As the width decreases to W=1nm, the exponent is 

reduced to α=0.5, indicating the stronger influence of line-

edge roughness on the narrower channel [55].   

      Another important aspect of the thermal conductivity in 

ultra-narrow channels under the influence of line-edge 

roughness is the trend of the thermal conductivity versus the 

width of the channel. This has in the past raised significant 



 

 
Fig. 5.  The thermal conductance versus channel width for GNRs with 

lengths L=5nm (red-diamonds) and L=500nm (blue-circles). 

Characteristic exponents in the form Wβ are indicated.    

attention in the case of electronic transport in low-dimensional 

channels, dominated by surface roughness scattering [69]. In 

the case of electronic transport, the surface roughness 

scattering limited electronic mobility or conductivity of a 

semiconductor channel follows a D
6
 trend, where D is the 

diameter of the channel, or the confinement width in the case 

of 2D channels [70, 71]. Thus, as the confining dimension is 

reduced, the transport properties degrade rapidly. In silicon 

channels for example, this effect becomes dominant at 

confinement length scales below 10nm. This trend originates 

from how the subbands of the material shift in energy upon 

quantization, and how that determines the surface roughness 

scattering matrix element.  

      In the case of phonon transport, on the other hand, it is not 

clear how the thermal conductivity of a roughened low-

dimensional channel will behave as a function of its width. 

The reason is that in the case of phonons, the lowest energy 

bands, i.e. the acoustic modes always start from zero energy 

and are not affected by confinement. As we show below, 

however, such information for phonons would also provide 

understanding on which phonon transport regime the channel 

operates at. Figure 5 shows the calculation of the thermal 

conductance in the roughened GNR channels for two different 

lengths versus their width. We examine a very short channel, 

of length Lch=5nm (red line), and a longer channel of length 

Lch=500nm (blue line). The widths we consider vary from 

ultra-narrow W=1nm up to W=5nm. The dashed lines indicate 

a fitting of the thermal conductance simulation points using a 

function W
β
.  

      It is clearly observed that the thermal conductance is 

channel length and width dependent. Here, we discuss the 

behavior under three different transport regimes in Fig. 5: i) 

the ballistic regime, ii) the diffusive regime, and iii) the 

localization regime. The very short channel with Lch=5nm (red 

line), falls into the semi-ballistic transport regime, as also 

shown by the linear increases of the conductivity in Fig. 4 (left 

side), and the conductance can be fitted by a single function 

with a single exponent β=1.46, as W
1.46

. A purely ballistic 

channel would exhibit W
1
 as the thermal conductance 

increases linearly with the width of the GNR due to the linear 

increase in the number of conducting phonon modes with 

channel width. The slightly larger exponent than unity 

indicates that the strength of the line-edge roughness weakens 

as the width increases. For the longer channel Lch=500nm 

(blue line), clearly two different regions can be identified. The 

wider channels, which fall into the super-diffusive towards 

diffusive transport regime, as can be observed in Fig. 4b 

(flattened right side of the red line for W=5nm), can be 

described by an exponent β=2, i.e. W
2
. In the case of the ultra-

narrow W=1nm, Lch=500nm channels (left side of the blue line 

in Fig. 5), however, the exponent β=2 cannot describe the 

data. In contrast, a larger exponent β=2.9, i.e. W
2.9

, provides a 

better fit. This is a clear indication that the channel falls in a 

regime beyond diffusion, more closer to localization, as also 

observed in Fig. 4b (right side of the blue line, for W=1nm). 

Thus, the important observation from Fig. 5 is that we can 

map the roughened channel transport behavior by the 

dependence of the conductance on the channel width. In the 

cases we have studied, it seems that exponents from β=1 to 

β=2 indicate semi-ballistic to diffusive transport, whereas 

exponents around and above β=3 indicate localization. 

      Thus, extracting characteristic exponents based on the 

geometry of the system, could serve as a guide to experiments 

to elucidate the transport regime of operation. Phonon 

localization, in particular, is a transport regime which 

dominates the flow of phonons in low dimensional channels. 

Loh et al. [72] studied the influence of vacancies in phonon 

transport in graphene and showed that acoustic modes tend to 

get localized around the vacancies, which results in a large 

reduction in the thermal conductivity. Isotope scattering could 

also cause localization of high energy optical phonon modes in 

graphene [73]. Kim et al. have recently also experimentally 

showed that phonon localization appears in graphene in the 

presence of graphene nanobubbles formed by noble gas atom 

implantation [74]. Wang et al. [10] showed that the anisotropic 

behavior of thermal conductivity between zigzag and armchair 

edge graphene nanoribbons originates from the stronger 

localization around the armchair edges. In a different work, 

Jiang et al. studied phonon transport in ‘kinked’ edge silicon 
nanowires (edges in a zig-zag form), and demonstrated that 

the twisting and transverse phonon modes also suffer 

localization and reduce heat transport [75]. Of course, 

localization is a coherent process, and inelastic scattering 

introduces decoherence, which could diminish localization. As 

Loh et al. compute, this can be the case for optical phonons in 

graphene, but not for acoustic modes due to larger inelastic 

mean-free-paths for scattering compared to localization 

lengths [72]. Since acoustic modes are the dominant heat 

carriers, the presence of disorder caused localization will have 

dramatic reduction in thermal transport.   

      Finally, we note that although we consider suspended 

GNRs, our general conclusions would be valid for GNRs 



 

placed on substrates as well. Placing GNRs a substrate 

introduces an additional scattering effect, namely substrate 

scattering, as described by Aksamija et al in Ref. [23]. In that 

work, using Monte Carlo simulations for phonons in large area 

GNRs suspended on SiO2 were carried out. The substrate 

scattering was modeled as a point interaction with small 

patches where the ribbon is in contact with the substrate [76]. 

The authors have shown that indeed substrate scattering is a 

dominant scattering mechanism, but the mean-free-path 

(MFP) of substrate scattering is about 67nm, and it dominates 

phonon transport for GNRs with widths larger than 1μm. For 
narrow GNRs with widths below W=130nm (the GNRs we 

investigate here are even smaller down to a few nanometers), 

line-edge roughness dominates phonon transport. In any case, 

for substrate scattering to be modelled within NEGF, one 

should construct a dynamical matrix that could account for the 

deviation in bond length and angle. This should not be based 

on the Force Constant Method (in which case the parameters 

are constant), but potentially based on first principle 

calculations or valence force fields, in which the potential 

energy and force constants are calculated for each atom based 

on its own position and the position of its neighbors. These 

methods require much larger computational time, in contrast 

to the FCM, however. The NEGF formalism could then be 

employed using that dynamical matrix.         

V. CONCLUSIONS 

In conclusion, we have investigated the thermal transport 
properties of low-dimensional, ultra-narrow graphene 
nanoribbon (GNR) channels under the influence of line-edge 
roughness disorder. We employed the non-equilibrium 
Green’s function (NEGF) method for phonon transport and the 
force constant method for the description of the phonon 
modes. We show that the effect of line edge roughness affects 
different parts of the spectrum in different ways: i) Disorder 
does not significantly affect the low frequency acoustic modes 
significantly, except under extreme confinement in purely 1D 
channels; ii) Disorder is not very detrimental for regions of the 
spectrum with a dense population of modes such as the optical 
modes either; iii) Regions of the spectrum with low mode 
density end up becoming ‘effective’ transport gaps as the 
length of the channel increases, or the width decreases, and 
contribute little to thermal transport; iv) Regions of the 
spectrum with very low mode densities, populated with 
relatively ‘flat’ modes suffer from band mismatch in the 
presence of both confinement or roughness, which reduces 
their ability to carry heat. In situations (iii) and (iv) transport is 
driven into the localization regime. We show that the 
dependence of the channel transport properties (conductivity 
and conductance) versus length and versus width could 
indicate the transport regime under which heat propagates 
through the channel. Our results present generic features of 1D 
phonon transport, and could be relevant to different 
nanochannels as well.     
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