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Abstract 

 

      The thermal conductivity of low-dimensional materials and graphene nanoribbons in 

particular, is limited by the strength of line-edge-roughness scattering. One way to 

characterize the roughness strength is the dependency of the thermal conductivity on the 

channel’s width in the form W
β
. Although in the case of electronic transport this 

dependency is very well studied, resulting in W
6
 for nanowires and quantum wells and W

4
 

for nanoribbons, in the case of phonon transport it is not yet clear what this dependence 

is. In this work, using lattice dynamics and Non-Equilibrium Green’s Function 
simulations, we examine the width dependence of the thermal conductivity of ultra-

narrow graphene nanoribbons under the influence of line edge-roughness. We show that 

the exponent β is in fact not a single well-defined number, but it is different for different 

parts of the phonon spectrum depending on whether phonon transport is ballistic, 

diffusive, or localized. The exponent β takes values β < 1 for semi-ballistic phonon 

transport, values β >> 1 for sub-diffusive or localized phonons, and β = 1 only in the case 

where the transport is diffusive. The overall W
β
 dependence of the thermal conductivity is 

determined by the width-dependence of the dominant phonon modes (usually the acoustic 

ones). We show that due to the long phonon mean-free-paths, the width-dependence of 

thermal conductivity becomes a channel length dependent property, because the channel 

length determines whether transport is ballistic, diffusive, or localized.   

                        

     

Keywords: low-dimensional phonons, graphene nanoribbons, thermal conductance, line-

edge roughness, atomistic simulations, non-equilibrium Green’s functions - NEGF. 
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Graphene nanoribbons (GNRs) and low-dimensional materials in general, have 

recently attracted significant attention, both for fundamental research as well as for 

technological applications [1-14]. Specifically with regards to their thermal transport 

properties, these materials are heavily studied as they exhibit features distinctively 

different from bulk materials such as deviation from Fourier’s law [3, 6, 10, 15, 16], 

crossover from ballistic into diffusive transport regimes [17, 18], even a counter-intuitive 

increase in the thermal conductivity with confinement [19], and extremely high 

thermoelectric properties [12].      

The major effect in limiting thermal conductivity in 1D channels, however, seems 

to be boundary scattering [7, 20, 21], and thus, large efforts are devoted into 

understanding the influence of surface roughness, and line-edge roughness in particular 

for GNRs, on the thermal conductivity. One of the most common ways to characterize the 

effect of roughness on the conductivity of the channel and determine the transport regime 

of operation, is the use of specific power-laws in the form of L  and W  , where L  is the 

length of the channel, and W  is the width of the channel. The length-dependence power-

law on the thermal conductivity has been studied extensively [22-25].With regards to the 

width-dependence, a lot of work can be found for electronic transport, yielding under 

diffusive transport conditions 6W  for nanowires [26- 28], and 4W  for nanoribbons [29]. 

In the case of phonon transport, however, no systematic work to-date exists that studies 

the width-dependence of the thermal conductivity of low-dimensional channels in the 

presence of line-edge roughness.  

In this work we perform such an investigation using simulations of phonon 

transport in ultra-narrow GNRs by employing lattice dynamics for the phonon spectrum 

and the non-equilibrium Green’s function (NEGF) approach for transport. The method is 

described in detail in our previous work, where we explored the length-dependence of the 

thermal conductance of GNRs [25, 30]. We show that the exponent   is in fact not a 

single well-defined number, but it takes different values depending on whether the 

phonon transport is quasi-ballistic ( 1  ), diffusive ( 1  ) or localized ( 1  ).   
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The 4
th

 nearest-neighbor force-constant-method that we use (with parameters 

from [30]) can correctly regenerate the bandstructure of graphene as compared to 

experimental data [12], and also provides very good agreement with experimental data 

for rough GNRs with widths up to ~15 nmW  [31]. Figure 1a shows for reference a 

typical phonon spectrum for a GNR channel of width 4 nmW   with the colormap 

showing the contribution of each phonon state to the ballistic thermal conductance at 

room temperature, (light indicates high and dark indicates low contribution). Using 

NEGF we then simulate phonon transport in GNRs of widths 1 nmW   up to 5 nmW   

and lengths from 5 nmL   up to 1000 nmL  . To construct the line-edge-roughness 

geometry we use an exponential autocorrelation function with root mean square of the 

roughness amplitude rms 0.1 nmW   and roughness correlation length C 2 nmL  [31]. 

We extract the frequency dependent phonon transmission, phT , and normalize it by the 

channel width W . The quantity ph /T W  will be referred to as the ‘normalized 

transmission’, and has the same width-dependence as the thermal conductivity. For all 

data we average over 50 different roughness realizations.  

The transmission function in the ballistic regime is equal to the number of modes 

at given energy/frequency. This Landauer approach is widely used for phonon and 

electron transport in nanostructures. In the presence of scattering, the contribution of each 

mode to transport is reduced, which is captured by the reduction in their transmission. 

Thus, this approach can describe transport from ballistic to diffusive (can be mapped to 

Boltzmann transport) and localized regimes [32-34]. Note that the details of the rough 

edges, strain fields, and relaxation that might develop could quantitatively affect phT , but 

we do not expect it to alter our qualitative conclusions about the nature of width-

dependence. This is more adequately captured by the NEGF transport model we employ 

through the atomistic description of the edges.     

As an example on how to identify the different transport regimes, in Fig. 1b we 

pick an energy 0.13 eVE   (~ in the middle of the spectrum) and plot the normalized 

transmission of those phonons versus channel width, W. We consider channels of lengths 

20 nmL   (blue-squares), 40 nmL   (green-diamonds), and 100 nmL   (red-stars). 



 

4 

We then extract the exponent β for the width-dependence of the normalized transmission 

as W  . The shorter channel (blue line), has a rather weak width-dependence, especially 

for larger channel widths, approaching a 0.6W  behavior. For the narrower channels the 

exponent increases to 4  . For the longer channel, (red line in Fig. 1b), the width-

dependence becomes stronger especially for the narrow channels, where the exponent 

largely increases as 21W .  

The different exponents reflect to different transport regimes, which can be 

identified by plotting the product of the normalized phonon transmission multiplied by 

the channel length, ph /T L W  versus the channel length L , as shown in Fig. 1c for the 

phonons with energy 0.13 eVE  . Channels of two different widths 1 nmW   (solid 

line) and 5 nmW   (dashed line) are shown. Intuitively, for ballistic transport, the 

ph /T L W  product increases linearly with channel length. For diffusive transport it 

remains constant. In the case of sub-diffusive transport it is reduced with L  [35, 36], and 

for localized transport it drops exponentially. Thus, from Fig. 1c, it can be deducted that 

the wider GNR channels (dashed line) are semi-ballistic for short channel lengths, reach 

the diffusive regime at lengths around 40 nm 100 nm , and the sub-diffusive regime for 

channel lengths beyond ~100 nm . Phonons in the ultra-narrow 1 nmW   GNRs (solid 

line) reach the localization regime for channels somewhat larger than ~10 nmL , in 

which case the phonon transmission is diminished.  

We can now map these regimes to the exponents of Fig. 1b, which indicate 1   

for semi-ballistic phonons, 1   for diffusive phonons, and 1   for sub-diffusive or 

localized phonons (see letters identifying the channels in the figures). Intuitively, ballistic 

transport will provide 0  , in which case the line-edge roughness does not influence 

the phonon conductivity, and the normalized transmission is roughly independent of the 

channel’s width. On the other hand, large   signals localization, because as the width 

increases, localization weakens, which translates into a relatively large increase in the 

normalized transmission ph /T W .    
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Using the   extraction procedure as in the example of Fig. 1b, we now 

investigate the width-dependence of the normalized transmission for all phonons in the 

spectrum. As we previously describe in Ref. [25] within a given channel phonons of 

different frequencies can be ballistic, diffusive, or even localized. Thus, it follows that 

different phonon frequencies will have a different   dependence as well. In Fig. 2 we 

extract the parameter   of the normalized transmission in channels of widths 1 nmW   

(blue-solid lines) and 5 nmW   (red-dashed lines). Results for three channel lengths 

20 nmL  , 100 nm, and 500 nm are shown in Fig. 2a-c, respectively. In most of the 

spectrum, and for all channel lengths,   is larger for the narrower GNRs because of the 

stronger roughness influence. For the narrower channel (solid-blue lines), the lowest   

value is observed for low frequency modes, whereas for energies above 0.025 eVE     

increases drastically, and increases even more as the channel length increases. For the 

wider channels with 5 nmW   (dashed-red lines), the lowest   value is also found at 

low energies. At higher energies   resides around 1   (indicated by the dashed-black 

horizontal line), with a slight increase as the length of the channel increases (compare red 

lines in Fig. 2a to Fig. 2c).   

The overall thermal conductivity of a channel and any experimentally determined 

  value will include weighted contributions from all phonon modes in the spectrum. 

Figure 3 shows the width-dependence of the overall normalized thermal conductance 

(which has the same trend as conductivity) for the 20 nmL   (blue-squares), 

500 nmL   (black-circles), and 1000 nmL   (red-triangles) channels in logarithmic 

scale, which allows for plotting straight lines of slope  . We plot the trends for low 

temperature 20 KT   (Fig. 3a), room temperature 300 KT   (Fig. 3b), and higher 

temperature 450 KT   (Fig. 3c), and label W   dependences in various places. The 

exponents   vary significantly from 0.45    to 2.6   (we discuss the meaning of 

the negative   below), indicating that the nature of thermal transport, from ballistic to 

localized, is channel geometry dependent.  
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We start our discussion with the room temperature results in Fig. 3b. For the 

shortest 20 nmL   channel (blue line), 0.8   is extracted independent of the channel’s 

width, indicating that the overall phonon transport in this channel is quasi-ballistic 

towards diffusive, as one would have expected from such a short channel. As the channel 

length increases to 500 nmL   (black line)   increases to 1.45   (for wider channels) 

and somewhat more to 1.65   as the width decreases down to 1 nmW  . These 

channels are clearly in the diffusive to sub-diffusive regime for all widths. For even 

longer channels, 1000 nmL  , although   remains close to one for the wider channels 

( 1.05  ) indicating diffusive transport, as the width scales down to W = 1 nm, transport 

deviates from the diffusive to the sub-diffusive even the localized regime, and   

increases to 2.6  . This behavior is in agreement with Fig. 2, where as the length of the 

channel increases (and the width decreases) more parts of the spectrum fall into 

localization (larger 's ), which increases the overall averaged  . The different transport 

regimes are also very well demonstrated by plotting the normalized phonon transmission 

multiplied by the channel length, ph /T L W , versus L , as previously in Fig. 1c, but now 

phT includes the contribution of all excited phonon modes. This is plotted in Fig. 4a for 

channel widths 5 nmW   (dashed line) and 1 nmW   (solid line). The increasing trend 

for short channels justifies the quasi-ballistic 1   in Fig. 3b, whereas the saturation 

with channel length for the wider GNR (dashed-red line) justifies the diffusive to sub-

diffusive 1 1.4   . The decreasing trend with length for the narrow GNR (solid-blue 

line) justifies the sub-diffusive/localized 2.6  .  

The   exponents behavior we observe at room temperature in Fig. 3b, essentially 

remains unchanged for higher temperatures, at least up to 450 KT  , as indicated in Fig. 

3c. A slight   increase appears due to the fact that higher temperatures excite more high 

energy modes, which have a higher   as we observed in Fig. 2. The change is small 

because room temperature already involves a large part of the spectrum anyway.  

The situation changes, however, when we consider low temperatures, 20 KT  , 

as shown in Fig. 3a. Here only the low energy phonon modes with a very low   are 
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excited, and thus the overall   is also significantly reduced. Interestingly, although long 

and narrow channels still show sub-diffusive behavior with 1.9   (red line – left side of 

Fig. 3a), shorter and/or wider channels have negative   exponents. This means that the 

thermal conductivity can actually increase with decreasing channel width. This non-

trivial effect is related to the increasing importance of the low frequency acoustic modes 

in determining the overall thermal conductivity. It was described in detail using simple 

analytical models in [19], but it is interesting that it is also verified by the more 

sophisticated NEGF method. The number of the acoustic modes does not scale with 

width as higher energy modes do and they are affected the least by line-edge roughness. 

Thus, as the width W  decreases, the conductivity ~ /K W  increases. Indeed, Fig. 4b 

shows a zoom in the low energy region of Fig. 2a in linear scale, indicating that for the 

narrow 1 nmW   channel most   values are actually negative. Therefore, when the low 

energy phonon modes dominate transport, the overall exponent   tends to decrease and 

even turn negative. This happens as the temperature decreases, but also interestingly as 

the length of the channel increases. In long channels, the high frequency modes fall deep 

into localization and do not contribute at all, which again increases the relative 

importance of the low-frequency modes. Thus, there is a competition between roughness 

reducing the conductivity (increasing  ), but through this it increases the importance of 

the low-frequency phonons, which decreases   again. This explains why in Fig. 3a and 

Fig. 3b, for the wider channels (right side), as the channel length increases one obtains a 

negative (or reduced)   (red line). 

An interesting observation here is that the value of   in an experimental setup 

could point to the transport regime, in addition to extracting this information from the 

value of   in the length dependence L  behavior. However, since the phonon transport 

regime, whether ballistic, diffusive, or localized, is determined by the channel length, 

then the width-dependence becomes a length-dependent property.  

It is important at this point to examine how our diffusive results correlate with 

well-established macroscale models such as the Casimir model. The 1   value that 
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corresponds to diffusive transport in our results, can be understood in simple terms by 

considering that the total phonon transmission, phT , can be expressed as: 

ph BT T
L







        (1) 

where 
BT  is the ballistic transmission and   is the energy dependent phonon mean-free-

path (mfp) for scattering. In the diffusive limit, L  , such that ph B /T T L . The 

ballistic transmission 
BT  is proportional to W, since the number of modes in the channel 

is affected almost linearly with W . Thus, in the diffusive limit, ph / ~ /T W L . The 

dependence of the mfp on the GNR width, on the other hand, can be extracted by using 

the Casimir’s model. This model considers that the phonon-boundary scattering rate is 

directly proportional to the phonon group velocity and inversely proportional to the 

channel’s width as 1/ ~ /B gv W . This makes the phonon-boundary mfp to be 

~B gv W   . Thus, in simple terms, the overall dependence of the normalized phonon 

transmission, which determines the diffusive thermal conductivity trend, follows a linear 

dependence [31]. (Note that the quantities above can be extracted at individual phonon 

energies and branches, or be averaged/integrated over all energies and phonon branches).  

In the channels we consider, with lengths over a few hundred nanometers and 

widths over ~ 2 nm  (under diffusive transport conditions), we also observe the linear 

width-dependence, well aligned with the Casimir theory, as also shown by Carrete et al. 

for nanowires [37]. The Casimir theory for the fully diffusive case is predominantly 

employed for macroscale channels and roughness, but very frequently without much 

justification for low-dimensional channels as well. It is quite interesting to observe that 

although it is based on a very different logic, it provides the same width-dependence as 

the NEGF simulation results with atomistic roughness description even down to channels 

with width 2 nmW  . Note that this linear behavior is quite different from the boundary 

scattering dependence of electronic transport which follows 4W  for GNRs [29], and 6W  

for nanowires or quantum wells [26-28].  

Finally, we need to mention that anharmonic phonon-phonon interactions, which 

have been ignored in this work, tend to shift transport towards diffusion (especially at 
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high temperatures) as they weaken the coherence that localization depends on [38, 39]. 

However, we believe that the influence of anharmonic interactions will have little 

qualitative and even less quantitative influence on our results. The reason is that the room 

temperature phonon-phonon interaction-limited mfp in graphene (and pristine GNRs) is 

considered to be ~ 775 nm  [16, 40, 41], or sometimes even much longer up to 

~100 μm  [42-44], which is in the order of the channel lengths we consider, or longer. 

In fact, a recent theoretical work suggested that most if not all graphene experiments are 

carried out in the quasi-ballistic regime [45]. On the other hand, the roughness scattering-

limited mfp is as low as ~10s  of nanometers [25, 33], which makes phonon-boundary 

scattering the dominant scattering mechanism. At the higher temperature 450 KT   that 

we consider, qualitatively the   values could be slightly shifted towards unity in the 

presence of anharmonic interactions.  

In conclusion, using lattice dynamics and Non-Equilibrium Green’s Function 

simulations, we have investigated the width-dependence of the thermal conductivity in 

ultra-narrow graphene nanoribbons in the presence of line-edge roughness. This is 

described in the form W  , where W  is the width of the channel and   corresponds to 

the roughness strength. We show that the exponent   varies significantly depending on 

the nature of phonon transport, i.e. from quasi-ballistic ( 1  ), to diffusive ( 1  ), and 

to sub-diffusive and localized regimes ( 1  ). Since the channel length determines the 

transport regime, however, we show that the width-dependence exponent   becomes a 

channel length dependent property as well. Our results add to the current efforts in 

understanding heat flow at the nanoscale and could be relevant to low-dimensional 

systems in general, even beyond graphene nanoribbons.        

 

Acknowledgment: 

This work has received funding from the European Research Council (ERC) under the 

European Union's Horizon 2020 research and innovation programme (grant agreement 

No 678763) 

 



 

10 

References 

 
[1] N. Mingo, D. A. Broido, Nano Lett., 5, 1221-1225, 2005. 

[2] D. L. Nika, A. S. Askerov, and A. A. Balandin, Nano Lett., 12, 3238-3244, 2012. 

[3] C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, and A. Zettl, Phys. Rev. Lett., 101, 

075903, 2008.  

[4] L. Lindsay, D. A. Broido, and N. Mingo, Phys. Rev. B, 82, 115427, 2010. 

[5] A. Balandin, Nat. Materials,10, 569, 2011.  

[6] X. Xu, L.F.C. Pereira, Y. Wang, J. Wu, K. Zhang, X. Zhao, S. Bae, C.T. Bui, R. Xie, 

J.T.L. Thong et al., Nat. Comm., 5, 3689, 2014.  

[7] A. V. Savin, Y. S. Kivshar, and B. Hu, Phys. Rev. B, 82, 195422, 2010. 

[8] Y. Wang, B. Qiu, and X. Ruan, Appl. Phys. Lett., 101, 013101, 2012. 

[9] Z. Aksamija and I. Knezevic, Phys. Rev. B., 90, 035419, 2014.   

[10] X. Ni, M. L. Leek, J.-S. Wang, and Y. P. Feng, B. Li, Phys. Rev. B, 83, 045408, 

2011. 

[11] J. Lan, J.-S. Wang, C. K. Gan, and S. K. Chin, Phys. Rev. B, 79, 115401, 2009. 

[12] H. Karamitaheri, N. Neophytou, M. Pourfath, R. Faez, and H. Kosina, J. Appl. Phys., 

111, 054501, 2012.    

[13] A. Cresti, N. Nemec, B. Biel, G. Niebler, F. Triozon, G. Cuniberti, and S. Roche, 

Nano Research, 1, 361-394, 2008. 

[14] G. Iannaccone, Q. Zhang, S. Bruzzone, G. Fiori, Solid-State Electronics, 115, 213-

218, 2015. 

[15] M. Wang, N. Yang, and Z.-Y. Guo, J. Appl. Phys., 110, 064310, 2011. 

[16] D. Singh, J. Y. Murthy, and T. S. Fisher, J. Appl. Phys., 110, 113510, 2011. 

[17] S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. 

Balandin, Nature Materials, 9, 555-558, 2010. 

[18] M. Bae, Z. Li, Z. Aksamija, P. N. Martin, F. Xiong, Z. Ong, I. Knezevic, and E. Pop, 

Nat. Comm. 4, 1734, 2013. 

[19] H. Karamitaheri, N. Neophytou, and H. Kosina, J. Appl. Phys., 115, 024302, 2014. 

[20] M. Luisier, J. Appl. Phys., 110, 074510, 2011. 

[21] A. Hochbaum, R. Chen, R. Delgado, W. Liang, E. Garnett, M. Najarian, A. 

Majumdar, and P. Yang, Nature, 451, 163, 2008. 

[22] S. Lepri, R. Livi, and Antonio Politi, Phys. Rev. Lett., 78, 1896, 1997. 

[23] B. Li and J. Wang, Phys. Rev. Lett., 91, 044301, 2003.  

[24] G. Wu and J. Dong, Phys. Rev. B, 71, 115410, 2005. 

http://dx.doi.org/10.1038/ncomms2755


 

11 

[25] H. Karamitaheri, M. Pourfath, H. Kosina, and N. Neophytou, Phys. Rev. B, 91, 

165410, 2015. 

[26] K. Uchida and S. Takagi, Appl. Phys. Lett., vol. 82, no. 17, pp. 2916-2918, 2003. 

[27] S. Jin, M. V. Fischetti, and T.-W. Tang, J. Appl. Phys., 102, 083715, 2007. 

[28] N. Neophytou and H. Kosina, Phys. Rev. B, 84, 085313, 2011. 

[29] M. V. Fischetti and S. Narayanan, J. Appl. Phys., 110, 083713, 2011. 

[30] R. Saito, M. Dresselhaus, G. Dresselhaus, ‘Physical Properties of Carbon 

Nanotubes’, Imperial College Press, London, 1998. 

[31] H. Karamitaheri, M. Pourfath, R. Faez, H. Kosina, IEEE Transactions on Electron 

Devices, 60, 2142, 2013. 

[32] C. Jeong, S. Datta, and M. Lundstrom, J. Appl. Phys., 111, 093708, 2012. 

[33] H. Sevincli and G. Cuniberti, Phys. Rev. B, 81, 113401, 2010. 

[34] S.G. Das and A. Dhar, The European Physical Journal B, 85, 372, 2012. 

[35] B. Vermeersch, A.M.S. Mohammed, G. Pernot, Y.-R. Koh, A. Shakouri, Phys. Rev. 

B, 91, 085203, 2015. 

[36] N. A. Gallo, M .I. Molina, J. Phys. A: Math. Theor., 48, 045302, 2015. 

[37] J. Carrete, L. J. Gallego, L. M. Varela, and N. Mingo, Phys. Rev. B, 84, 075403, 

2011.  

[38] S. Soleimani, S.B. Touski, M. Pourfath, Appl. Phys. Lett., 105, 103502, 2014.  

[39] R. Golizadeh-Mojarad, S. Datta, Phys. Rev. B, 75, pp. 081301, 2007.  

[40] S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, 

W. Bao, F. Miao, C. N. Lau, Appl. Phys. Lett., 92, 151911, 2008. 

[41] E. Munoz, J. Lu, and B. I. Yakobson, Nano Lett., vol. 10, pp. 1652–1656, 2010. 

[42] S. Mei, L. N. Maurer, Z. Aksamija and I. Knezevic, J. Appl. Phys., 116, 164307, 

2014. 

[43] G. Fugallo, A. Cepellotti, L. Paulatto, M. Lazzeri, N. Marzari, and F. Mauri, Nano 

Lett., 14, 6109, 2014. 

[44] G. Barbarino, C. Melis, and L. Colombo, Phys. Rev. B, 91, 035416, 2015. 

[45] C. Melis and L. Colombo, Phys. Rev. Lett., 112, 065901, 2014.



 

12 

Figure 1:  

 

 

 

Figure 1 caption:  

(a) Phonon dispersion for a W = 5 nm GNR. The colormap shows the contribution of 

each phonon state to the total ballistic thermal conductance (light: largest contribution, 

dark: smallest contribution). (b) The width-normalized phonon transmission of rough 

nanoribbons of lengths L = 20 nm (blue), L = 40 nm (green), and L = 100 nm (red) for 

phonon energy E = 0.13 eV versus channel width, W. (c) The width-normalized phonon 

transmission times the channel length Tph×L/W versus the channel length L for phonons 

with energy E = 0.13 eV. In (c) results for GNRs of width W = 5 nm (dashed line) and W 

= 1 nm (solid line) are shown. The different channels are labeled in 1b and 1c with the 

letters A-F.     
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 Figure 2:  

 

 

Figure 2 caption:  

The width-dependent exponent β for the width-normalized phonon transmission in the 

entire spectrum for rough GNRs of lengths L = 20 nm (a), L = 100 nm (b) and L = 500 

nm (c). Results for GNRs of width W = 5 nm (dashed-red lines) and W = 1 nm (solid-blue 

lines) are shown. The dashed-black lines indicate the β = 1 value, which corresponds to 

diffusive transport.  
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Figure 3:  

 

 

Figure 3 caption:  

The width-normalized thermal conductance versus channel width W for GNRs with 

lengths L = 20 nm (blue-squares), L = 500 nm (black-circles), and L = 1000 nm (red-

triangles). Results for temperatures (a) T = 20 K, (b) T = 300 K, and (c) T = 450 K are 

shown. Characteristic exponents in the form W
β
 are indicated for various parts of the 

straight lines that are fitted through the data, which vary from β = -0.45 up to β = 2.6.  
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Figure 4:  

 

 

Figure 4 caption:  

(a) The width-normalized thermal conductance times the channel length Kl×L/W versus 

the channel length L at room temperature. Results for GNRs of width W = 5 nm (dashed-

red lines) and W=1nm (solid-blue lines) are shown. (b) A zoom of the width-dependent 

exponent β for the width-normalized phonon transmission in the low energy spectrum 

region of the rough GNR of length L = 20 nm (zoom of Fig. 2a). The dashed-black lines 

indicate the β = 0 value, which corresponds to ballistic transport.  
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