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Abstract
We present a comprehensive study and full classification of the stationary
solutions in Leith’s model of turbulence with a generalised viscosity. Three
typical types of boundary value problems are considered: Problems 1 and 2
with a finite positive value of the spectrum at the left (right) and zero at the
right (left) boundaries of a wave number range, and Problem 3 with finite
positive values of the spectrum at both boundaries. Settings of these problems
and analysis of existence of their solutions are based on a phase–space analysis
of orbits of the underlying dynamical system. One of the two fixed points of
the underlying dynamical system is found to correspond to a ‘sharp front’
where the energy flux and the spectrum vanish at the same wave number. The
other fixed point corresponds to the only exact power-law solution—the so-
called dissipative scaling solution. The roles of the Kolmogorov, dissipative
and thermodynamic scaling, as well as of sharp front solutions, are discussed.Q1

Keywords: Leith model of turbulence, stationary solutions, solvability of
boundary value problems, bottleneck phenomenon
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1. Introduction

Leith’s model of turbulence is a nonlinear degenerate inhomogeneous parabolic equation with
absorption of the form [1–3]:
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where º ( )E E k t, is the one-dimensional energy spectrum, k is the absolute value of the
wave number, n = >const 0 is a viscosity coefficient and = >z const 0 is the degree of the
viscous dissipation. The usual kinematic viscosity corresponds to z=2, friction dissipation
—to z=0, hyper-viscous dissipation (often used in numerics)—to >z 2. We will be
interested in the stationary version of this equation:
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has the meaning of the energy flux through k. Clearly  ( )k is always a monotonously
decreasing function for n > 0 and constant for n = 0.

Transient solutions of the inviscid Leith model, i.e. equation (1) with n = 0, arising from
an initial spectrum compactly supported at low k were investigated in [2, 3]. These solutions
precede the formation of a steady cascade in the full Leith model. It was shown that this
regime becomes self-similar just before the breaking of the energy conservation (which
occurs once the cascade has proceeded far enough to generate a finite flux of energy to
= ¥k ). This regime is interesting because it does not exhibit the scaling inherited from the

Kolmogorov spectrum. Namely, the transient spectrum was found to have a power-law
asymptotics with an exponent which is smaller than the Kolmogorov index. The self-similar
solutions which were analyzed numerically in [2] has a ‘sharp’ nonlinear front which
accelerates explosively reaching = ¥k at a finite time *=t t . In [7] we recovered this result
analytically and established the existence of a self-similar solution with a power-law
asymptotic on the low-wavenumber end and a sharp boundary on the high-wavenumber end
which propagates to infinite wavenumbers in a finite-time *t . It was shown that such a self-
similar solution is realised by a heteroclinic orbit of the corresponding dynamical system. It
was proven that this solution has a power-law asymptotic with an anomalous exponent *x
which is greater than the Kolmogorov value, * >x 5 3, and less than value »x 1.952

corresponding to a Hopf bifurcation. The existence of weak solutions (the spectrum evolving
from an arbitrary finitely supported initial data) of the initial-boundary value problem was
proven and convergence to the self-similar solution as *t t was established. In paper [8],
the symmetry analysis was applied to describe all essentially different invariant solutions of
the Leith model with or without viscosity.

The present paper is devoted to the study and full classification of the stationary solutions
of the Leith model (1). In absence of viscosity, the general stationary solution was found in
[2, 3]:

= +-( ) ( ) ( )E k ck Pk Q , 4P Q,
2 11 2 2 3

where = ( )c 24 11 2 3 and P and Q are arbitrary constants. For Q=0, this gives the pure
Kolmogorov cascade solution, whereas for P=0 this is a pure thermodynamic spectrum. For

J. Phys. A: Math. Theor. 00 (2016) 000000 V N Grebenev et al

2



the general solution, both the constant flux energy  = = ¹( )k P const 0 and a
thermodynamic part ¹Q 0 are present as a nonlinear combination which is a nonlinear
mixture of the Kolmogorov cascade (dominating at small k ) and a thermal Rayleigh–Jeans
spectrum (dominating at large k ). Respectively, solution EP Q, with ¹P Q, 0 was called a
‘warm cascade’ spectrum in [2, 3]. Such a warm-cascade solution describes a bottleneck
phenomenon of spectrum stagnation near the dissipative scale. It is a prototype of the
bottleneck phenomenon in the numerical simulations of the Euler (inviscid) turbulence using
spectral methods, where the energy spectrum accumulates at high wavenumbers near the
truncation wavenumber [4]. It also similar to a real physical bottleneck phenomenon in
superfluid turbulence—an energy accumulation at the classical–quantum crossover scale, an
effect predicted in [5].

The bottleneck effect was shown to exist, although in a much milder form, in viscous
(Navier–Stokes) fluids too, even without a cut-off wave number [6]. It was explained in [6] by
using the fact that the Navier–Stokes are nonlocal in the k-space.

In the present paper we will study the stationary solutions of the viscous Leith model, i.e.
solutions of equation (1). We will see that the inviscid warm-cascade spectra (4) still play an
important role in some relevant asymptotic regimes. However, we will see that in absence of a
maximum (cut-off) wave number such spectra (or any milder bottleneck) require presence of
an extra energy source at = ¥k . This results agrees with the view of [6], nonlocality of
interaction in the k-space is important—the property absent in the Leith model. However, we
will see that the warm-cascade described by the Leith model is still relevant to the situations
where a maximum (cut-off) wave number is naturally present.

The present paper is structured as follows. In section 2, we perform the change of
independent and dependent variables which transforms the stationary viscous Leith’s type
model into an autonomous nonlinear ordinary differential equation. The corresponding
dynamical system is presented and its fixed points are found and classified. This is followed
by an analysis of the inviscid asymptotics and the power-law scalings, and the behaviour of
solutions near a sharp front, where both the stationary spectrum E(k ) and the flux of energy
are vanishing. Section 3 is devoted to a qualitative analysis of the dynamical system based on
phase portraits for different values of z found numerically. The solutions are interpreted in
terms of their physical meanings as low and high Reynolds number direct and inverse energy
cascades. Section 4 is devoted to rigorous proofs of the assertions made in section 3,
including the formulation of relevant types of Cauchy problems, studying their solvability and
identifying several classes of qualitatively different solutions, their dependence on z and on
the initial conditions. The full classification is given in terms of the three sets of the quali-
tatively different orbits existing for any z. A summary and discussion of results is given in
section 5.

2. Autonomous dynamical system and its basic solutions

2.1. The stationary model as an autonomous dynamical system

To introduce into consideration the autonomous dynamical system, we change variables as

= = - ( )s k k E k fln , , 5z
0

2 3 2

where k0 is the left or right (depending on the particular problem) boundary of the considered
k-range. Then equation (2) is transformed into the following autonomous ODE
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where

= - -( )( )D z z3 2 2 5 .

For the flux (3), we have in terms of f and s:

 = - - +- ⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )( )s z f f

f

s

1

8
e 2 5

d

d
. 7z s3 2 3 2

Since  ( )k is always a monotonously decreasing function for n > 0,  ( )s is also always a
monotonously decreasing function for n > 0.

We can write equation (6) in the form of a dynamical system in D2 phase space by
introducing a new variable g via

= +( ) ( )f

s
f g

d

d
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Then from(8) and(6) we have
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Notice that(9) is singular at f=0. To remove the singularity, we introduce a new ‘time’
variable τ by
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and as a result the dynamical system reads
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For equilibria we have either f=0, g=0 or

n+ = =f g Df f0, 8 .2

Therefore, we always have fixed point = ( )P1 0, 0 , and sometimes also fixed point
= -n ( )P2 1, 1

D

8 . The latter exists only for >D 0 since from the physics f must be a non-
negative function. A linearised version of the dynamical system near the fixed point
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with degenerate eigenvalues l l= = 01 2 and a single eigenvector ( )0, 1 . Correspondingly,
near P2 we have the following linearised system
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where = -A z6 17

2
. The eigenvalues are given by

l
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The expression under the square root is always positive. However, P2 exists only for <z 2 3
and >z 5 2. We have stability if >z 19 12 and instability otherwise. Thus, P2 is an
unstable node for <z 2 3 and a stable node for >z 5 2.

2.2. Asymptotes to inviscid solutions

Let us assume that z is of order one and not too close to 2/3 or 5/2. Then it is clear from (11)
that the viscous term can be neglected if nf or/and n∣ ∣g . Thus, the general stationary
solution for regions nf or/and n∣ ∣g is given by the warm-cascade spectrum (4). If
both P and Q are positive then such a spectrum grows unbounded at both small and large k.
However, we will see later that solutions with either P or Q (but not both simultaneously)
negative are also of interest. Cases < >P Q0, 0 and > <P Q0, 0 correspond to solutions
that have a sharp front on the left and the right sides of the k-range respectively. Both types
are majorating solutions for orbits in the case with n > 0 and same values of P and Q at
large f.

2.3. Power law scalings

For reference, let us first find power-law solutions in the inviscid case (n = 0), i.e.
~ -( )E k k x. We have

= =
- - - ( )f k E k 141 2z z x3 2
2

3 2
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This corresponds to f (s) in the form ~f e ps with = - -( )p x z3 2 2. Then from (6)
with n = 0 we have: + - + =( )p z p D6 12 19 02 , i.e. =  -( )p z19 11 12 . Here, the
plus sign corresponds to the thermodynamic and the minus to the Kolmogorov spectra. For
Kolmogorov solution (corresponding to Q = 0 in the mixed solution (4)):

= =- - ( )( )f ke . 16P
z s z

,0
2 3 2 3

In this case fP,0 is an increasing function of k if <z 2 3, constant for =z 2 3, and
decreasing otherwise. For thermodynamic solution (P = 0):

= =- - ( )( )f ke . 17Q
z s z

0,
5 2 5 2

In this case f Q0, is an increasing function of k if <z 5 2, constant for =z 5 2, and
decreasing otherwise.

Pure power-law Kolmogorov and thermodynamic spectra are not solutions when n ¹ 0.
However, in this case there also exists a power law solution—it corresponds the fixed point
P2. For such a ‘viscous scaling’ we have f constant so that = -x z3 2 . If the viscous scaling
is steeper than Kolmogorov, it will be observed on the low-k side of the spectrum. This occurs
for - >z3 2 5 3 i.e. for <z 2 3.
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For the ratio we have = - -( )g f z x1 2 2. For Kolmogorov solution:

= - - ( )g f z1 3 . 18P P,0 ,0

For thermodynamic solution:

= - ( )g f z3 2 . 19Q Q0, 0,

2.4. A sharp-front solution

Let us analyse the behaviour of solutions of equation (2) under the assumption that there
exists a finite point k* where the stationary spectrum E(k ) and the energy flux ò, are van-
ishing, which implies

* *
= ==( ) ( ) ∣ ( )E k E k kd d 0. 20k k

Let us seek a solution of equation (2) for *<k k in the form

*= -( ) ( ) ( )E k A k k . 21y

Assuming that * *- k k k , in the leading order in * *-( )k k k by direct calculation we
have
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From here it follows that y=4 and
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satisfies equation (2) and the condition(20). For the phase variables f and g we have
respectively

* *= -
-

( ) ( )f k A k k , 241 2 2
z3 2

2

* * n» ¶ = - = -
-

( ) ( ) ( )g f A k k k f2 5 . 25s
1 2 1 2

z5 2
2

This solution corresponds to the motion in a small vicinity of fixed point P1 on its slow
manifold (both its stable and the unstable parts). It is not captured by the linear analysis near
P1 because such motion is nonlinear due to the zero eigenvalue. Note that there is no k*
dependence in this expression. Solutions with different k* (and therefore with different energy
flux) correspond to the same orbit, namely the slow manifold of P1. The different energy flux
corresponds to different choices of the initial wave number. For example, we fix the flux if we
specify condition =( )f k f0 0: then the value f0 will correspond to a unique starting point on
the slow manifold. Thus, the ‘time’ to the collapse is uniquely determined by the starting
point on the slow manifold i.e. * *= ( )s k kln 0 will be a unique function of f0.

Note that there is also another orbit connecting to the fixed point from the positive side.
Asymptotic consideration similar to the one above give for this orbit

* * n» ¶ = - =
-

( ) ( ) ( )g f A k k k f2 5 , 26s
1 2 1 2

z5 2
2

where now the cut off is on the left side, * <k k .
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3. Phase analysis of orbits: qualitative considerations and overview of results

The easiest way to understand the main features of the steady state solutions for different
parameter values is to consider the phase space plots of the respective dynamical systems.
There are three qualitatively different cases: <z 2 3, < <z2 3 5 2 and >z 5 2; see
figures 1, 2 and 3 respectively. As we said before, there are two fixed points for <z 2 3 and
>z 5 2, ( = ( )P1 0.0 and n n= -(P D D2 8 , 8 ), and only one for < <z2 3 5 2,

( = ( )P1 0.0 ). The Kolmogorov and the thermodynamic scalings correspond to straight lines
with slopes - - z1 3 and - z3 2 respectively. Since >z 0, the Kolmogorov slope is

Figure 1. Case <z 2 3. Phase portrait for n= =z 0, 1 4. The solid straight line
shows the Kolmogorov scaling, the dashed line—thermodynamic, and the dotted line
is = -f g.

Figure 2. Case < <z2 3 5 2. Phase portrait for n= =z 2, 1 4. The solid straight
line shows the Kolmogorov scaling, the dashed line—thermodynamic, and the dotted
line is = -f g.
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always negative and below the thermodynamic one (the latter is positive for <z 3 2 and
negative otherwise). It is also instructive to mark the line = -g f where the orbits are vertical
(have an infinite slope), i.e. f (s) reaches a local maximum or minimum. This line passes
through P2 when the latter exists.

Figure 3. Case >z 5 2. Phase portrait for n= =z 3, 5 8. The solid straight line
shows the Kolmogorov scaling, the dashed line—thermodynamic, and the dotted line
is = -f g.

Figure 4. Sketches of spectra in case <z 2 3. Left panel corresponds to the direct
cascade: solid line is the high-Reynolds-number spectrum described by orbit U2;
dashed line is the low-Reynolds-number spectrum described by orbit H. Right panel
corresponds to the inverse cascade described by orbit U1 (similar spectrum is associated
to orbit U1 for < <z2 3 5 2).
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3.1. Separatrices

The most physically important orbits are represented by separatrices. These solutions are
generic in the sense that they correspond to a single energy source at one of the ends of the k-
range and no sinks (i.e. the energy is dissipated by the viscosity only).

There are two separatrices in the case < <z2 3 5 2: the stable manifold of P1
asymptoting to the Kolmogorov line at infinity, S1, and the unstable manifold of P1
asymptoting to the thermodynamic line, U1. There are three separatrices in each of the
<z 2 3 and >z 5 2 cases. One of them is a heteroclinic orbit connecting P1 and P2. For
<z 2 3, the other two separatrices are represented by the unstable manifold of P2 asymp-

toting to the Kolmogorov line, U2, and the unstable manifold of P1 asymptoting to the
thermodynamic line, U1. For >z 5 2, the other two separatrices are represented by the stable
manifold of P2 asymptoting to the thermodynamic line, S2, and the stable manifold of P1
asymptoting to the Kolmogorov line, S1.

Let us analyse solutions corresponding to the separatrices.

3.1.1. Case z < 2=3. We start with the case <z 2 3. Orbit U2 corresponds to a direct energy
cascade from low to high k: it starts with the dissipative scaling near P2, ~ -E k z2 3, where the
energy flux is gradually weakening, followed by transition to the Kolmogorov scaling,
~ -E k 5 3, at high k where the energy flux saturates to a constant k-independent value; see

figure 4, left. The -5 3 scaling will continue to infinite k corresponding to the fact that the
dissipation is negligible in this range. A solution of this kind was first found in [10]. Note that
orbit U2 corresponds to an energy source at the low k boundary strong enough for f to be
greater than n D8 (i.e. to the right of P2). We will refer to this solution as high-Reynolds-
number direct cascade.

Remark 3.1. At large k (corresponding to large f in this case) the dissipation is negligible
and the solution tends to one of the inviscid solutions (4). Importantly, the solution in this
case is pure Kolmogorov, =Q 0. Indeed, any finite Q would lead to deviation from the
Kolmogorov line at  ¥k , which is not the case here.

Orbit H (a heteroclinic orbit connecting P1 and P2) corresponds to forcing with
n<f D8 —we will call it the low-Reynolds-number direct cascade; see figure 4, left. This

solution also starts with the dissipative scaling near P2, ~ -E k z3 2 , where the energy flux is
gradually weakening. However, this scaling does not transition to the inviscid-5 3 scaling
(as in of the high-Reynolds-number case) but drops to zero, together with the energy flux, at a
finite wave number k*. This corresponds to arrival of H at fixed point P1 and described by
solution (24) in the vicinity of k*.

Remark 3.2. Importantly, viscous scaling will show up on the spectra for the direct or
inverse energy cascade only for very special initial data corresponding to = =∣f f s0 0 close to
n D8 , i.e. such that ( )E k0 is close to n- ( )k D8z

0
2 3 2. For a generic case this condition is not

satisfied, i.e. the starting point on orbitsU2 or H is far from P2 and there is no viscous scaling
range on the spectrum.

Finally, orbit U1 corresponds to an inverse energy cascade; see figure 4, right. Here, the
energy forcing is at high (or infinite) wave number k0 and the energy flux  ( )k is negative at
<k k0, gradually decreasing in magnitude toward lower kʼs and turning into zero, together

with the spectrum itself, at a finite k*. At high k, the dissipation is negligible and the spectrum
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tends to the warm-cascade solution (4), dominated by the thermodynamic part, but with a
finite flux correction which is negative and almost k-independent in the high-k range,
  = <( )k P const 0. On the dimensional grounds we can estimate:

n~
-
- - ( )P Q . 27

z
z z

2 3
5 2

11
5 2

3.1.2. Case 2=3 < z < 5=2. This case is the simplest because there is no P2 equilibrium.
Orbit S1 corresponds to a direct energy cascade. It starts with the Kolmogorov scaling at low
kʼs (there viscosity is negligible) and terminates, with zero flux, at a finite right boundary

*=k k (corresponding to the arrival at P1); see figure 5, left. In the low-k range the
Kolmogorov scaling has a finite thermal correction with <Q 0.

Orbit U1 corresponds to an inverse-cascade spectrum which terminates, with zero flux, at
a finite left boundary *=k k ; see figure 4, right. At large k the spectrum asymptotes to a
warm-cascade spectrum dominated by the thermodynamic part, but with a finite flux P. The
value of P can be estimated as before by equation (27).

3.1.3. Case z > 5=2. For >z 5 2, the orbit S1 behaves qualitatively similar to the behaviour
of S1 in the case < <z2 3 5 2; see figure 5, left. Orbits S2 and H describe a high-Reynolds
and a low-Reynolds number inverse cascades respectively; see figure 5, right. The energy
source is located at the right boundary of the k-range, k0, near which it has the dissipative
scaling ~ -E k z2 3 if (and only if) ( )E k0 is close to n- ( )k D8z

0
2 3 2 (see case <z 2 3). At

small k the dissipation is negligible and the solution is close to pure thermodynamic. We have
P=0 because otherwise the flux part would win at k 0 in the warm-cascade solution (4),
which is not the case here. The low-Reynolds number inverse cascade does not transition to
the thermodynamic scaling: it terminates, with zero spectrum and flux, at a finite left
boundary *=k k .

Figure 5. Sketches of spectra in case >z 5 2. Left panel corresponds to the direct
cascade described by orbit S1 (similar spectrum is associated to orbit S1 for

< <z2 3 5 2). Left panel corresponds to the inverse cascade: solid line is the
high-Reynolds-number spectrum described by orbit S2; dashed line is the low-
Reynolds-number spectrum described by orbit H.
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3.2. Orbits other than separatrices

The other orbits are less interesting because they correspond to more artificial boundary
conditions with extra sources and sinks, but we will consider them too for completeness.
Orbits from part I of the phase space (below the lower separatrix/separatrices) correspond to
warm direct-cascade spectra that turn into zero at finite right boundary *=k k with a finite
positive value of the energy flux, which implies presence of a point sink at *k ; see figure 6,
left. Orbits from part III (above the upper separatrix/separatrices) correspond to warm
inverse-cascade spectra that turn into zero at finite left boundary *=k k with a finite negative
value of the energy flux, which, again, implies presence of a point sink at *k ; see figure 6,
centre. Orbits from part II (in between of the lower and the upper separatrices) which have
their two ends on the opposite sides of the thermodynamic line correspond to spectra with two
point sources located at both ends of the k-range (energy fluxes converging toward the centre
of this range are dissipated by the viscosity); see figure 6, right. If both ends of the type II
orbit are below (above) the thermodynamic line then the we get a warm direct (inverse)
cascade spectrum with a point sink and the right (left) end of the k-range. Obviously, if one of
the orbit’s ends is exactly on the thermodynamic line, there are no point sinks. This special
case is relevant to some numerical simulations, as will be discussed in the Conclusions
section.

4. Rigorous analysis of solutions

4.1. Boundary value problems

For equation (2) we are interested in studying the following boundary value problems. Find
solutions of equation (2) supplemented by the conditions

* *= = >( ) ( ) ( )E k E E k k k, 0, 280 0 0

Figure 6. Sketches of spectra corresponding to orbits which are not separatrices. Left:
high-Reynolds (solid line) and low-Reynolds number direct cascades (dashed line)
described by the part I orbits in case <z 2 3. Spectra for >z 2 3 are similar except
~ -E k z2 3 part is absent. Centre: high-Reynolds (solid line) and low-Reynolds number

inverse cascades (dashed line) described by the part III orbits in case >z 5 2. Spectra
for <z 5 2 are similar except ~ -E k z2 3 part is absent. Right: dual (converging)
cascade spectra described by the part II orbits in cases < <z2 3 5 2 (solid line),
<z 2 3 (dashed line) and >z 5 2 (dashed–dotted line).
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such that >( )E k 0 for *Î [ )k k k,0 (which corresponds to = <s k kln 00 ) and

* *= = < <( ) ( ) ( )E k E E k k k, 0, 0 290 0 0

for *Î [ )k k k, 0 which corresponds to <s 0. We will refer to these as Problem 1 and
Problem 2 respectively. In an addition, we also consider Problem 3:

= =( ) ( ) ( )E k E E k E, . 300 0 1 1

We show that not for all combinations E0, E1, k* and k1 Problems 1–3 are solvable.
It will be convenient to write equation (6) in an equivalent form:

nº + - + - =⎜ ⎟⎛
⎝

⎞
⎠ˆ ( ) ( ) ( )F f

s
f

f

s
z f

f

s
Df f2

d

d

d

d
12 19

d

d
8 0. 312 2 3 2

Notice that equation (31) admits the translation group of transformations of independent
variable  +s s b, where b is a constant with the infinitesimal operator = ¶

¶
X .

s
For the

original equation (2) this symmetry is transformed into the scaling symmetry. Therefore we
set =k 10 for the first boundary condition in (28). In terms of f (s) the boundary value
problems are formulated as solving equation (31) with the following boundary conditions.
Problem 1f:

* *= > = >( ) ( ) ( )f f f s s0 0, 0, 0, 320

Problem 2f:

* *= > = <( ) ( ) ( )f f f s s0 0, 0, 0 330

and Problem 3f:

= > = >( ) ( ) ( )f f f s f0 0, 0. 340 1 1

To study these boundary value problems, we apply the well-developed methods of the theory
of nonlinear ODEs, see e.g. [9]. First of all, we notice that solutions of these problems are (if
exist) unique. Also, it is easy to establish that the Kolmogorov solution denoted by fP,0 is a

super solution of equation (31), i.e. ˆ ( )F f 0P,0 . The same is true for the thermodynamic
spectrum f Q0, and for the general solution of the inviscid form of equation (31)

= +- -( ) ( ) ( )( )f s c P Qe e . 35P Q
z s s

,
1 2 5 2 2 11 2 1 3

4.2. Case z < 2=3

Let us consider the case <z 2 3 which means that >D 0 and - <z12 19 0. We will
consider equation (31) and the phase portrait of the dynamical system (10) and (11) to
establish which data guarantees solvability of the Problems 1 and 2. Instead of directly using
the boundary conditions (32) and (33) let us employ a shooting method. Namely, let us
supplement equation (31) by the initial conditions

= > =
=

( ) ( )f f
s

f0 0,
d

d
0. 36

s
0

0

These initial conditions mean that we study the orbits of the dynamical system which start on
the line + =f g 0 of the phase plane ( f, g). Note that the direction of velocity

t t( )f gd d , d d on the line + =f g 0 is vertically down for >f fD and vertically up for
<f fD, where n=f D8D . Recall that equation (31) has an exact positive solution º( )f s fD

which corresponds to the unstable node P2 on the phase plane.
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We begin with a preliminarily analysis of the behaviour of orbits of the dynamical
system (10) and (11).

Lemma 4.1. The orbits of the dynamical system (10), (11) intersecting the line + =f g 0
with  nf D48 5 do not approach the fixed point P1. Instead, these orbits approach, in finite
time, the g-axis without intersecting it, so that   -¥f g0, as * >s s 0.

To prove this Lemma, we consider an integral identity obtained by multiplying
equation (31) by f f sd d2 , integrating over [ ]s0, and setting =f sd d 0 at s=0:

ò h
h+ - + F = F⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( ) ( )f

f

s
s z f

f
f f2

d

d
12 19

d

d
d , 37

s
2

2

0

4
2

0

where F = - n( )f f fD

6
6 8

5
5. Function F( )f has zeros at f=0 and = nf ;

D

48

5
F <( )f 0 for

Î n( )f 0,
D

48

5
, and F >( )f 0 for > nf

D

48

5
. The minimum of F( )f is achieved at = nf

D

8 . First,

let us show that at least for  nf D48 50 the corresponding solutions are decreasing
functions up to the intersection with the s-axis. Indeed, since  n n>f D D48 5 80 the
solutions are decreasing functions for small s because f (s) has a local maximum at s=0:
¢ =  = ¢ <( ) ( ) ( )f f g0 0, 0 0 0. Now suppose that f (s) also has a positive minimum at >s 0

(including the case  >( )f s const 0 as  ¥s ): then the first term in(37) is zero, the
second term is negative and, therefore, F > F( ( )) ( )f s f0 . But this means that >( )f s f0
which contradicts the assumption that this is a minimum, i.e. has to be less than the
maximum. Therefore, there can be no positive minima, as required.

Now let us show that f can vanish at finite point *=s s only. Assume that * = ¥s : then
f sd d 0 as  ¥s and the first term of the left-hand side of(37) tends to zero. So do the

third and the fourth terms on the left-hand side, whereas the second term is bounded from
above by a negative number (in principle it could be-¥ if the integral was divergent). But
then we arrive at a contradiction as the right-hand side in(37) is positive. Therefore * < ¥s .

By the same argument we see that at the point * < ¥s , where * =( )f s 0 we must have

*
= ¹ ( )f f slim d d const 0s s

2 and, therefore,
*

= -¥ ( )f s slim d ds s . In view of the
formula = +f s f gd d we get that  -¥( )g s as *s s ( *t t ). Therefore the
corresponding orbits of the dynamical system(10) and (11) cannot approach the equilibrium
P1 (where =( )f s sd d 0), but instead asymptote to the g-axis with  -¥g .

Corollary 4.1. At least for  nf D48 50 there exits * < ¥s such that the boundary value
problem(31),(32) is solvable. Flux ò defined by (3) and (7) tends to a positive constant
as *s s .

Corollary 4.2. The boundary value problem(31) and (32) with * = ¥s has no solutions at
least for  nf D48 50 .

Remark 4.1. We show later that the orbits for all >f fD0 asymptote to the g-
axis,  -¥( ) ( )f g, 0, .

On the orbits asymptoting to the g-axis the flux ò defined by (7) is positive at each s. We
see that  > 0 for <f sd d 0, which includes the line + =g f 0 and below. For the orbits
that go to P1 (i.e. the heteroclinic orbit H) we have * =( )s 0 since at this point
= =( )f f s sd d 0. For  nf D48 50 we showed that

*
= < ( )f f slim d d const 0s s

2

(actually, the same is true for all orbits with n>f D80 ). Thus for small f (and therefore large
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negative » )f s gd d we have from (7):

*

* = = >


-( ) ( )( )s A Alim e , const 0. 38
s s

z s3 2

Therefore, * >( )s 0, as required. Moreover, * ( )s is a decreasing function of *s .

Remark 4.2. Each orbit of(10),(11) is invariant under shifts along the trajectory
t t + a or the translation symmetry (with respect to  +s s b) of equation (31).
According to formula = -( )E k k fz2 3 2, the translation symmetry generates a one-parametric
family of solutions = -( ) ( )( )E k b E bk, eb z 3 2 for each known solution ( )E k . In the other
words, each orbit on the ( )f g, plane corresponds to not just one, but to a one-parametric
family of solutions.

To prove the existence of separatrices, we present a technical result concerning the
direction of the vector field on the Kolmogorov line + + =( )f g z f: 1 3 0K and ther-
modynamic line + - =( )f g z f: 3 2 0T . Notice that f K is located above of the line
+ =f g 0 and below the thermodynamic line which is located in the first quadrant of the

phase plane for <z 2 3. We write = ( )g g f where

n
= -

+
- - -

+
+

+
º

( ) ( )
( )

( )g

f

f g

f
z

D

f g f g
G f g

d

d

2
6 17 2

2

4
, .

Lemma 4.2. - + > - +( ( ) ) ( )G f z f z, 1 3 1 3 for the Kolmogorov line and
- - > - -( ( ) ) ( )G f z f z, 3 2 3 2 for the thermodynamic line.

By simple calculations, we have - +( ( ) )G f z f, 1 3
n= - + + -( ) (( ) )z z f1 3 4 2 3 for the Kolmogorov line and

n- - = - - + -( ( ) ) ( ) (( ) )G f z f z z f, 3 2 3 2 4 5 2 for the thermodynamic line. Geo-
metrically lemma 4.2 states that along f K and f T the flow is directed into the domains
+ + >( )g z f1 3 0 and + - >( )g z f3 2 0 respectively.
Now we show the existence of a heteroclinic connection between the fixed points P2

with P1.

Lemma 4.3. There exists an orbit H (a heteroclinic connection) of(10), (11) which emerges
out the unstable node P2 and goes to the equilibrium P1 with time.

Consider a Cauchy problem for equation (31) supplemented with the initial data

e= º - = < = ¼
=

( ) ( )f f f
s

f f m0 ,
d

d
0, 1, 39D

s
m0

0

for arbitrary small e > 0. Notice that vertical line e= -f fD intersects the Kolmogorov line
on the phase plane and also the orbits obtained in lemma 4.1. First of all, we indicate that for
sufficiently small values of ∣ ∣fm the orbits, which correspond to solutions of(31) and (39),
intersect the line + =g f 0 since the direction of the velocity field ( )f s g sd d , d d is directed
into + >g f 0 for <f fD. Therefore, these solutions achieve local minima. At the same time,
there exists fm such that the corresponding solutions decrease monotonically with time
vanishing at some finite points. Indeed, the line e= -f fD always intersects the orbits
obtained in lemma 4.1 and fm, together with f0, fix the coordinates of these intersections. For
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completeness, we notice that if we take fm positive and sufficiently large such that we are
located above of the Kolmogorov line then solutions of(31) and (39) are increasing
functions, see lemma 4.2. Therefore, there exists families of orbits with different behaviours
on the phase plane and it should be a separatrix which separates them. To prove it, let us
consider the set = <{ }A f f, 0m m with the properties: the corresponding solution of the
Cauchy problem has a positive minimum at =s smin . This set is not empty and not a single
element set. Moreover, A is bounded below, see the discussion above. It means that Ainf
exists, which we denote by fA, and the solution we denote by ( )f s f; A . We denote the
corresponding orbit by H. According to the definition of the infimum any vicinity of fA
produces solutions both in and outside of A, i.e. =f sd d 0 at the boundary *=s s which, by
definition, is where f=0. (We discard possibility for  < ¥( )f s f; constA with

f sd d 0 at  ¥s , as there are no fixed points in the system other than P1 and P2.)
However, the point where = =f f sd d 0 is P1 and, therefore, orbit H goes to P1 and
reaches it (as it follows from the asymptotics of solution near P1 found in section 2.4) in
finite *=s s .

If we now change τ to the inverse time t t= -ˆ then H goes to the stable node P2. It
follows from the Poincaré–Bendixon theorem. Indeed, let us consider a finite area of the ( f,
g)-plane: the g-axis, the Kolmogorov line, a horizontal line somewhere below P2, =g gb
const<-fD and the vertical line = -f gb. Easy calculation shows that on the boundary of
this domain vector field t t( ˆ ˆ )f gd d , d d is either directed into this domain or along the
boundary. Note that there is only one orbit passing through P1 within the specified domain—
the orbit H. The other orbit passing P1 is describes motion toward this fixed point (in the
reverse time) from outside of the specified domain. This follows from the local structure of
this trajectory (and of H) f∼g2, see equations (26) and (25). Thus, H cannot return to P1 as
this would imply leaving the specified domain first, which is impossible by the construction—
i.e. H is not a homoclinic orbit. Therefore, H approaches the stable (in the reverse time) node
P2 and this is a heteroclinic connection.

Corollary 4.3. There exists a solution of Problem1f which vanishes together with the flux ò
defined by (7) at a finite point *=s s . This solution is represented by the orbit H .

Indeed, since for H we have = =f f sd d 0 at *=s s , the right-hand side of (7) is zero.
Existence of the orbit H allows us to generalise lemma 4.1 to all >f fD0 as stated in

remark 4.1. Indeed, such orbits are bound by H on one side and by the orbits with
 nf D48 5 which approach the g-axis. Thus they also asymptote to the g-axis.

Now let us prove that there exists an orbit U2 which originates at the fixed point P2 and
asymptotes to the Kolmogorov line f K for large τ, see figure 1.

Lemma 4.4. There exists an orbit U2 which emerges out the unstable node P2 and
transitions to the Kolmogorov line as t  ¥

Consider a Cauchy problem for equation (31) supplemented with the initial data

e= = + = = ¼
=

( ) ( )f f f
s

f f m0 ,
d

d
, 1, . 40D

s
m0

0

Here e > 0 is arbitrarily small. Note that vertical line e= +f fD intersects the Kolmogorov
line on the phase plane. Let us consider the solution ( )f s f; m of(31) and (40). Assume that

( )f s f; m is large at sufficiently large s, namely that there exists >s 00 such that
( )f s f f; m D for >s s0 so that the right-hand side of (31) is negligible compared to the
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last term on the left-hand side, and in the leading order we have an inviscid equation:

+ - + =⎜ ⎟⎛
⎝

⎞
⎠ ( ) ( )

s
f

f

s
z f

f

s
Df2

d

d

d

d
12 19

d

d
0. 412 2 3

Solutions of this equation are

= +- -( ) ( ) ( )( )f s c P Qe e . 42P Q
z s s

,
1 2 5 2 2 11 2 1 3

They correspond to the warm-cascade solutions (4). In view of the theorem of continuous
dependence of solutions on the right-hand side applied to equation (31), we have that for

 ¥( )f s fD0 , f (s) converges to ( )f sP Q, for s s0 at least in the Hölder norm a+C2 ,
a< <0 1 on each compact interval. Therefore ( )f s f; m converges to ( )f sP Q, for s s0.
Function ( )f sP Q, is the two-parametric general solution of the inviscid form of the

inviscid equation (41), where >c 0 and P, Q are constant parameters. Parameter P is the flux
ò which is constant on ( )f sP Q, . Case Q=0 gives the Kolmogorov solution fP,0 parametrised
by P, whereas for P=0 we get the thermodynamic solution f Q0, parametrised by temperature
Q. For different values of the parameters P and Q we have both increasing and decreasing
behaviour of ( )f kP Q, . It follows from(42) that the Kolmogorov solution fP,0 is positive
everywhere and is a solution of the minimal growth among solutions ( )f sP Q, . If P and Q have
different signs, ( )f sP Q, vanishes at = -( ) ( )s P Q2 11 ln . Therefore for the growing ( )f s f; m
the corresponding orbits either asymptote to the Kolmogorov line or pass above this line
asymptoting to the thermodynamic line as t  ¥, as the Q-term in(42) is always dominant
for large s.

Consider the set = ={ ( ) }C f s fd 0 d m with the properties: corresponding solutions of the
Cauchy problem(31) and (40) have one positive maximum at =s smax . On the phase plane
( f, g) the points of local maximum of ( )f s f; m are located on line + =f g 0 for >f fD and
go along this line as fm grows. Clearly, values of fm such that the corresponding orbits
intersect line + =g f 0 exist: for example one can take an initial point very close and just
above line + =g f 0. Thus, set C is not empty. Also, set C is bounded from above: at the
very least it is bounded by the value fm corresponding to the Kolmogorov line. Indeed, the
orbits cross the Kolmogorov line from the lower to the upper side, and, therefore, once
crossing it will never cross back, see lemma 4.2. Therefore, < ¥Csup exists, let us denote it
by fC, and the solution ( )f s f; C of(31),(40) is a positive increasing function defined for
s 0. Orbit U2, corresponding to ( )f s f; C , asymptotes to the Kolmogorov line on the phase

plane as  ¥s . Indeed, ( )f s f; C presents the minimally monotonically growing solution as
 ¥s in the sense for d= -f fm C with arbitrary small d > 0 the corresponding solution of

the Cauchy problem is not a monotonically increasing function. For positive d  0 we have
 ¥smax and  ¥( )f smax so that for ~s smax the solution converges to an inviscid

solution ( )f sP Q, with a finite positive P and negative Q 0 (see remark 4.3 below). For
negative d  0 we have no maximum, but for large s the solution also converges to an
inviscid solution ( )f sP Q, , now with a finite positive P and positive Q 0. Therefore,

( ) ( )f s f f s; C P,0 for  ¥s . By construction, orbit U2 is above of the line + =g f 0.
Also, it remains below the Kolmogorov line, because crossing this line and then asymptoting
back to it would contradict the monotonous decrease of  ( )s property.

Let us now show that orbit U2 emerges out of the unstable node P2. Consider a finite
domain bounded by the Kolmogorov line, line + =g f 0 for f fD, orbit H for <f fD and a
vertical line e= +f fD . For the inverse time t t= -ˆ , the vector field t t( ˆ ˆ )f gd d , d d is
directed either inwards or parallel to the boundaries of this domain (e.g. for the Kolmogorov
line see lemma 4.2). Thus, by the Poincaré–Bendixon theorem the orbit U2 must approach P2.
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U2 cannot approach P1 since the only orbit in the fourth quadrant that goes to P1 is H (see
section 2.4).

Remark 4.3. We established that there exist a monotonically growing solution ( )f s f; C and
converging to ( )f sP,0 in the Hölder norm a+C2 as  ¥s . Respectively, the flux  ( )s f; C
calculated for ( )f s f; C converges to the flux  ( )sP,0 for the Kolmogorov solution fP,0 as
 ¥s . Direct calculation shows that  º( )s PP,0 is a positive constant for all s. Thus
 ( )s f P; C as  ¥s . Let us now take Îf Cm sufficiently close to fC: there exists an
interval [ ]a b,m m , >a 0m , < ¥bm where ( )f s f f; m D or/and ∣ ( )∣g s f f; m D. Hence the
difference -∣ ( ) ( )∣f s f f s; m P Q, is small in the norm of the Hölder space a+ [ ]C a b,m m

2 for
some choice of the parameters P and Q, where Q is always a negative quantity. Therefore the
flux  ( )s tends to constant P and ( )f sP Q, is an asymptotic of ( )f s f; m .

Let us denote by OI the set of orbits which located below of È ÈH U P22 . By OII we
will denote the set of orbits which emerge out P2 and located above of È ÈH U P22 . As we
will shortly show, the latter set is bounded from above on the ( f, g)-plane by yet another
separatrix, U1. The set of orbits in the first quadrant of the ( f, g)-plane above U1 will be
called OIII.

The flux ò is positive on the g-axis and on the line + =g f 0 of the fourth quadrant. All
orbits from OII can be obtained by starting from different initial points on the Kolmogorov
line. Moving backwards in time one can see, by the Poincaré–Bendixon theorem using the
domain bounded by È ÈH U P22 and the Kolmogorov line, that the orbits converge onto
P2. Moving forwards in time we get solutions f (s) that grow monotonously and, therefore, at
large s converge to ( )f sP Q, with >Q 0. Note that, in spite of the two parameters in ( )f sP Q, ,
the respective family of orbits is one-parametric due to the translational symmetry mentioned
in remark 4.2. But the Q-part always wins in ( )f sP Q, over the P-part at large s, so all these
orbits asymptote to the thermodynamic line. This applies to the limiting orbit starting at P1. In
fact we already know, that when run backwards in time the trajectory starting at P1 also ends
at starting at P2—like any orbit from the OII set: this is orbit H. Thus we have proven the
following lemma concerning the orbit starting at P1 and running forward in time.

Lemma 4.5. There exists an orbit U1 of the dynamical system(10) and (11) which emerges
out the fixed point P1 and asymptotes to the thermodynamical line.

Remark 4.4. OrbitU1 starts with zero flux at  =( )P1, 0 0, and asymptotes to ( )f sP Q, with
>Q 0 and <P 0. Thus, U1 lies above the thermodynamic line (on which  =( )s 0).

Note that this remark does not contradict the preceding lemma because at large s the Q-
term is dominant over the P-term in ( )f sP Q, for any finite P and Q.

Thus, U1 represents an inverse energy cascade solution vanishing, together with the flux,
at a finite wave number. The fact that  =( )0 0 follows from (7) upon substitution
= =f f sd d 0. The fact that   <P 0 for  ¥s follows from the fact that  ( )s is always

a monotonically decreasing function of s.
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Corollary 4.4. U1 realises a solution of Problem2f which vanishes, together with f f sd d2

and ò, at **=s s , ** <s 0.

This statement follows from the shift invariance of the solutions. Changing ** +s s s ,
we shift the point where s=0 to somewhere on U1 away from P1. This will generate the
required solution of Problem2f which vanishes at **=s s with zero flux.

Now, let us consider set OIII. It is clear that the OIII-orbits represent monotonously
increasing f (s) which asymptotes to the inviscid ( )f sP Q, solutions with >Q 0 and <P 0 for
 ¥s . However, OIII are very different from OII near the left boundary of the s-interval.

Indeed, since f (s) is monotonously growing, moving backwards in time the OIII-orbits
will reach small values of f such that f fD and f g. Then the dynamical system (10) and
(11) reduces to:

t t
= = -

f
gf

g
g

d

d
,

d

d
2 ,2

solving which we have

*
* *

t t
t t t t=

-
= - >

( )
( ) ( )g f C

1

2
, , , 431 2

where C is a positive constant.
Thus, the OIII-orbits have a sharp left boundary * <s 0, i.e. correspond to solutions of

Problem2f on * < <s s 0 such that ( )f s 0 as *s s . In fact, f (s) vanishes at a finite
point that follows from(43). Indeed, in terms of f (s) the obtained solution reads:

*= -( ) ( )∣ ∣ ( )f s C s s4 9 . 443 4

Note that at *s we have =f f s Cd d 22 2 , which means that * ( )s is a finite negative number,
see (7). Therefore, any OIII-orbit also corresponds to an inverse energy cascade situation, but
now with a finite amount of (negative) flux left at the point *s where the spectrum turns into
zero. For realisability of such a solution one has to put a point sink of energy at the
boundary *=s s .

We will now put together the classification of the orbits.

Theorem 4.1. È ÈH U P22 and U1 divide the phase plane > -¥ < < ¥( )( )f g f g, 0,
into the parts I II, and III with the different behaviours of orbits. In part I orbits emerge out
of P2 and always asymptote to the negative part of the g-axis. In part II orbits emerge out of
P2, the fourth quadrant intersecting the f -axis (never intersecting g-axis), and asymptote to
the thermodynamic line as t  ¥. In part III orbits emerge with  +¥( ) ( )f g, 0, , go
down along the g-axis, and then turn up asymptoting to the thermodynamic line as t  ¥.

Now we will consider how the orbits classified in theorem 4.1 could be linked to
solutions of Problems1, 2 and 3, or equivalently 1f, 2f and 3f. It is clear that there exist
parameters of these problems for which solutions exist. Below we will show that not for all
values of parameters there exist a solution.

Theorem 4.2. There exist choices of parameters *( )E k,0 (of *( )f s,0 ) for which Problem1
(Problem 1f) is not solvable.

The Problem1 is equivalent to the Problem1f, so we will stick here to the Problem1f.
Initial condition =( )f f0 0 corresponds to the points on the vertical line =f f0 on the ( f, g)-
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plane. Only orbits from the OI family and the orbit H are relevant to the Problem1f, as only
these orbits describe solutions vanishing at a finite right boundary, * >s 0. It is clear that s* is
a monotonously increasing function of g0 for fixed f0. Indeed, larger g0 for fixed f0 mean
smaller negative values of ( )f sd d 0 . If such solutions had smaller s* than the values of s*
corresponding to larger negative ( )f sd d 0 then the two solutions would have to intersect at
some >s 0, which is impossible due to uniqueness of solution of the Problem 1f (arising by
choosing the intersection point at the right boundary). Secondly, for  -¥g0 at fixed f0 we
have *s 0, which follows from the inviscid asymptotics of the solution valid at large ∣ ∣g .
Consider the case <f fD0 . From what we just said it follows that s* is bounded from above
by a finite value corresponding to s* of the solution generated by the heteroclinic orbit H; let
us call it *s H . Thus we have proven that for any <f fD0 there exist *< < +¥s0 H such that
the Problem1f does not have solution with pair *( )f s,0 if * *>s s H and have solution if

* *s s H . Now consider the case f fD0 . In this case the value of possible s* is not bounded:
it tends to infinity when ( )f g,0 0 approaches to U2. Thus we have proven that for any f fD0
the Problem1f has solution with pairs *( )f s,0 for any * >s 0.

Theorem 4.3. There exist choices of parameters *( )E k,0 (of *( )f s,0 ) for which Problem2
(Problem 2f) is not solvable.

The relevant orbits for this case are the ones from OIII and the separatrix U1. In the same
way as in the previous theorem, one can show that s* is a monotonously increasing function
of g0 for fixed f0, and that *s 0 for  +¥g0 at fixed f0. But for any fixed f0, the value of
s* is bounded from below by some finite * <s 0 corresponding to U1; let us call it *s U . Thus
we have proven that for any f0 there exist *-¥ < <s 0U such that the Problem2f does not
have solution with pair *( )f s,0 if * *<s s U and has solution if * *s s U .

Remark 4.5. If we are interested in solutions with finite *s at which both = =f 0 then
physically it makes sense to generalise the Problem 1f (2f) by postulating º( )f s 0 in the
range * *>s s H ( * *<s s U).

Theorem 4.4. There exist choices of parameters ( )E E k, ,0 1 1 (of ( )f f s, ,0 1 1 ) for which
Problem3 (Problem 3f) is not solvable.

This is the most general problem and relevant solutions may be given by orbits from all
three parts of the phase plane. Clearly, in the limit f 01 Problem3f transforms into
Problem1f, and in the limit f 00 and after shifting  -s s s1 it transforms into Pro-
blem2f. Therefore by continuity we conclude from the previous two theorems that Pro-
blem3f has no solutions for sufficiently large s1 and small f0 or/and f1. However, for

< <f f fD 0 1 Problem3f is solvable for any s1. This follows from the monotonously
increasing (decreasing) and unbounded dependence of s1 on g0 when the latter is above
(below) U2 when f0 and f1 are fixed. Indeed, s 01 for  ¥g0 and  +¥s1 for

( )g f U,0 0 2. In particular, for large f or/and g the solutions become fP Q, and, using
equation (35), we find P and Q for any ( )f f s, ,0 1 1 :

= - -- - -[ ] ( ) ( )( )P c f f e 1 e , 45z s s3 2
0
3

1
3 3 5 2 11 21 1

= - -- -[ ] ( ) ( )( )Q c f f e 1 e . 46z s s3 2
0
3

1
3 3 2 11 21 1
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4.3. Case z > 5=2

In this case, f (s) for the Kolmogorov and the thermodynamic spectra are decreasing. Since
>z 5 2 then >D 0 and equation (31) again admits an exact positive solu-

tion n= =( )f s f D8D .
The following technical lemma will be used later.

Lemma 4.6. Solutions of the Cauchy problems for equation (31) are always bounded
functions together with ∣ ∣f f sd d2 .

It is easily established from the integral relation arising from (31):

ò h
h+ - + F

= F +
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d

d
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Since now - >z12 19 0, it follows from(47) that

F < F + ⎜ ⎟⎛
⎝

⎞
⎠( ( )) ∣ ( )∣ ( ) ( )f s f f

f

s
2

d

d
0 . 480

2
2

Therefore <( )f s K where the constant K depends on f (0), ( )f sd 0 d , ν and z. The same
holds for ∣ ∣f f sd d2 because F F( ( )) ( )f s fD .

Lemma 4.7. The orbits of the dynamical system (10),(11) which intersect the line
+ =g f 0 cannot approach the g-axis for g 0 as time t evolves.

Indeed, according to the formula(7),   0 above and on the thermodynamic line (this
includes line + =g f 0) and  > 0 otherwise (including the g-axis for <g 0). But, according
to equation (2),  kd d 0 (hence  sd d 0). Therefore the orbits starting on the line
+ =g f 0 cannot also approach the g-axis where  > 0 for g 0.

Remark 4.6. The flux  for orbits which go to the stable node P2 takes arbitrary negative
values as  ¥k .

Lemma 4.8. There exist orbits (named by OI-set) of the dynamical system(10),(11) which
approach the g-axis for <g 0 of the phase plane ( )f g, . These orbits are always below of the
Kolmogorov line.

The velocity field t t( )f gd d , d d on the g-axis for <g 0 are directed down along this
axis. By starting from different initial points near by the g-axis, we get orbits which asymptote
to this axis with time as follows from the representation(43). If we change τ to the reverse
time t t= -ˆ then these orbits go to infinity never intersecting the Kolmogorov line since the
velocity field - + <( ( ) )G f z f, 1 3 0 i.e. is directed into the region + + <( )g z f1 3 0.

J. Phys. A: Math. Theor. 00 (2016) 000000 V N Grebenev et al

20



Lemma 4.9. There exists an orbit S1 of the dynamical system (10),(11) which goes from
infinity to the fixed point P1.

Again, let us consider a Cauchy problem for the equation (31) with the initial data

e= º - = <
=

( ) ( )f f f
f

s
f0

d

d
0 49D

s
m0

0

and proceed as in the case with <z 2 3. Consider the set = <{ }B f 0m with the properties:
the corresponding solutions of the Cauchy problem(31) and (49) achieve a positive minimum
at =s smin . It is clear that this set is not empty.

Consider an algebraic second-order curve = ( )g g f determined by the condition
t =gd d 0. From (11) we have:

n= + + - + + - =⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( ) ( )g g f f g z f f g

D
f f: 2 6

17

2 2
4 0. 502 2

This curve goes through the fixed point P1. There exists a branch = ( )g g f1 of = ( )g g f
which is located below of the Kolmogorov line since t >gd d 0 along f K. The velocity field

t t( )f gd d , d d restricted on ( )g f1 has the components: t <fd d 0 and t =gd d 0. Hence
the orbits starting at  ( )g g f1 will always remain in the region  ( )g g f1 , which implies

= + <f s g fd d 0, i.e. f (s) is a monotonously decreasing function. Therefore =f BinfB
exists: we have  +( )f g f fB 1 0 0.

Repeating the same arguments as the ones we used before for the case <z 2 3, we get
that there exists a solution of(31) and (49) with the following property: the minimum of

( )f s f; B is achieved at a point s* where again = =f f sd d 0. Therefore there exists a
solution of Problem1f such that =f f sd d 02 at *=s s . This solution on the phase plane
corresponds to an orbit S1 which goes to P1. If we change the time on the inverse time t̂ then
S1 emerges out the fixed point P1 and goes to infinity never intersecting the Kolmogorov line
(see lemma 4.8) and, therefore, never intersecting the line + =g f 0 (see lemma 4.7). This
orbit corresponds to a monotonously increasing t(ˆ )f which asymptotes to the pure Kol-
mogorov inviscid solution fP,0. Here, Q=0 follows from the fact that S1 remains below the
Kolmogorov line (implying Q 0) and the fact that for <Q 0 the solution fP Q, would not be
monotonously increasing.

Thus, the orbit S1 corresponds to a direct energy cascade whose energy flux is gradually
decreased by the viscous dissipation, so that both the spectrum and the energy flux turn into
zero at a finite wave number * =k k es

0 .

Lemma 4.10. There exists an orbit H of the dynamical system(10) and (11) connecting P1
with P2 (a heteroclinic connection).

Recall that there are always two (and only two) orbits connecting to P1, see section 2.4.
One of them, entering into P1, is the orbit S1 discussed above. Let us call the other orbit by H
—it is emerging out of P1 into the first quadrant. By lemma 4.6, f (s) for such an orbit is
bounded. By the same Lemma, ∣ ( )∣g s is bounded too provided that f is bounded from below,
which is indeed the case, if we start on H stepping slightly away from P1. In this case f cannot
approach zero at <g 0 because this would mean achieving a positive flux ò which is
impossible since the staring flux is negative and  ( )s cannot increase. Neither f can approach
zero at >g 0 because the vector field there is directed toward positive f. Thus, both f (s) and
∣ ( )∣g s are bounded, and the orbit H goes to the fixed point P2 by the Poincaré–Bendixon
theorem.
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Lemma 4.11. The orbits starting at the line + =g f 0 approach the g-axis for >g 0 in the
reverse time, t  ¥ˆ , for f fD0 .

In order to prove lemma 4.11, we consider the Cauchy problem for equation (31)

= = <
=

( ) ( )f f
f

s
s0 ,

d

d
0, 0. 51

s
0

0

The proof is similar to the case of <z 2 3 and is based on the same integral identity (37), but
now for <s 0. In fact, all orbits f fD0 approach the g-axis as they approach the g-axis for

 nf D48 50 and cannot intersect the orbit H. Asymptotic analysis of(10),(11) near the g-
axis for >g 0 gives again * -( )∣ ∣f C s s4 91

3 4 as *s s for a finite *s and constant C1

i.e. f (s) vanishes at a finite point.

Lemma 4.12. There exists an orbit S2 of the dynamical system(10) and (11) which goes
from infinity to the fixed point P2. Orbit S2 asymptotes to the thermodynamic line in the
reverse time, so that f f Q0, as t  ¥ˆ .

Any orbit starting on or above the thermodynamic line and with >f 00 will end at P2.
This can be shown in the same way as in the proof that H goes to P2 in lemma 4.10. Reversed
in time, all these orbits go to the regions where either  ¥f or/and  ¥∣ ∣g , so that
f fP Q, with >Q 0 and P either positive, or negative, or zero. The orbit corresponding to

P=0 is S2: it emanates from P2 and asymptotes to the thermodynamic line. Orbits with
>P 0 asymptote to the Kolmogorov line, because for any finite positive P and Q the P-part

wins in ( )f sP Q, at  -¥s . We will call the set of these orbits OII. Orbits with <P 0
correspond to f (s) that vanishes at finite *= <s s 0. We will call the set of these orbits OIII.

Remark 4.7. The orbits fromOIII are located above the thermodynamic line and, therefore,
characterised by the flux  which is negative. The orbits which approach the g-axis for <g 0
(we will call then the OI-set) lie below the Kolmogorov line can be characterised, for large f
or/and g, by negative temperature Q. Note that for the same orbit, the value of Q is usually
different near the g-axis from its value for large f .

Summarising, we have the following classification of the orbits.

Theorem 4.5. S1 and È ÈH S P22 divide the phase plane > -¥ < < ¥( )( )f g f g, 0,
into parts I II, and III with different behaviours of orbits. In part I (below S1) the orbits
always approach the g-axis for <g 0. Between S1 and È ÈH S P22 , i.e. in II , the orbits go
from infinity along S1 to the stable node P2. Some of these orbits have an intermediate
asymptotics—the S2 orbit. Part III contains the orbits located above È ÈH S P22 . For the
reverse time t̂ , the orbits emerge out the unstable node P2 and go to the first quadrant
approaching the g-axis.

Similarly to how it was done in the case <z 2 3, one can prove that the Problems 1, 2
and 3 (and respectively 1f, 2f and 3f) are not solvable for some sets of parameters.

4.4. Case 2=3 < z < 5=2

We have the following three possibilities: - >z12 19 0, - <z12 19 0 and - =z12 19 0.
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Consider the case of -z12 19 0 and give a qualitative analysis of the behaviour of
orbits. If we start on the line + =g f 0 then we have from the integral identity (37):

F F( ( )) ( ) ( )f s f . 520

Since F( ( ))f s is a negative monotonously decreasing function, it follows from(52) that
> >( )f s f 00 . The maximum principle guarantees that no local maximum of f (s) can be

achieved on the interval ¥( )0, . Indeed, since <D 0, according to (31) the second derivative
of f (s) cannot be negative at points where =( )f s sd d 0. Therefore the solutions f (s)
monotonously increase. This can also be easily observed from the phase analysis of the
dynamical system(10) and (11). Consider the angle G = + ={ }g g f: 0, 0 , <g 0 of the
plane ( f, g). The direction of the velocity field t t( )f gd d , d d restricted on the line
+ =g f 0 is directed into Γ. Therefore orbits cannot leave Γ with time.

Lemma 4.13. There exist orbits which approach the g-axis for <g 0. Also there exist an
orbit S1 which goes to the fixed point P1. This orbit is located below the Kolmogorov line.

Consider the dynamical system(10),(11) and the algebraic curve (50). This curve goes
through the fixed point P1. Consider the angle L = + ={ }f g f: 0, 0 with <g 0. The
vector field t t( )f gd d , d d on the g-axis has components -( )g0, 2 and t >gd d 0 on
+ =g f 0 except the fixed point P1. Therefore there exists a branch = ( )g g f1 of = ( )g g f

which is located inside of Λ. The velocity field t t( )f gd d , d d restricted on ( )g f1 has the
components: t <fd d 0 and t =gd d 0. Hence t t( )f gd d , d d is directed into
Y = ={ ( )}f g g f: 0,1 1 and orbits do not leave Y1. This means that there exists a set of initial
data

= = <
=

( ) ( )f f
f

s
f f0 ,

d

d
, 0 53

s
m m0

0

such that solutions of(31) and (53) are monotonously decreasing functions (because region
Y1 is below the line + =f g 0). Local solvability of the problem(31), (53) follows from the
theory of ODE. Thus, there exist two families of orbits. The first family OI presents orbits
which cross the curve =( )g f 01 approaching the g-axis. The second family OII consists of
the orbits which go into Γ. Therefore, there must be an orbit S1 which splits OI and OII. The
existence of S1 can be proven by using the same arguments as before. Consider a Cauchy
problem for the equation (31) with the following condition:

= = <
=

( ) ( )f f
f

s
f0 ,

d

d
0 54

s
m0

0

with arbitrary >f 00 . Define set = { }E fm with the properties: the corresponding solution of
the Cauchy problem has a positive minimum at some =s smin . This set is not empty and
bounded from below in view of the discussion above. Denote by =f EinfE and let ( )f s f; E
be a solution of(31) and (54). As before (see the proof of lemma 4.3), we conclude that there
exists a finite s* such that * =( )f s f; 0E together with

*=( ) ( ) ∣f s f f s f s; d ; dE E s s
2 . This

solution corresponds to the orbit S1 which goes to P1. The orbit S1, and therefore all the orbits
from OI, are always below the Kolmogorov line because the velocity field is crossing this line
in the upward direction (i.e. when traced back in time S1 will not cross the Kolmogorov line).
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Lemma 4.14. There exist orbits which approach the g-axis for >g 0 as the reverse time
t  ¥ˆ . Also there exists an orbit U1 which emerges out the fixed point P1. This orbit
asymptotes to fP Q, with >Q 0 and <P 0, and lies above of the thermodynamic line.

Consider orbits from OII. These orbits go to infinity and, after crossing the line
+ =f g 0, the corresponding t( )f monotonously grow to infinity. The orbits cross the

thermodynamic line and then asymptote towards it as t  ¥. In reverse time t(ˆ )f also
grows monotonously to infinity after crossing the line + =f g 0. The orbits cross the
Kolmogorov line and then asymptote towards it as t  ¥ˆ . Thus for each OII-orbit
asymptotically the value of the energy flux tends to a positive constant at the right boundary
of the s-interval and to a negative constant at the left boundary. Physically, this corresponds to
a system with two energy sources at both ends of the wave number range which produce
energy fluxes from the boundaries toward the middle of the wave number range, gradually
decreased by the viscosity and turning into zero at some point within the wave number range.

The vector field t t( )f gd d , d d restricted on the g-axis for >g 0 towards to the fixed
point P1. Therefore there exist orbits which approach the g-axis with >g 0 as the reverse
time t  ¥ˆ . We shall denote these orbits by OIII. The orbits from OIII asymptote to the
thermodynamic line as t  ¥. The proof is the same as in the case of <z 2 3. Notice that

t t( )f gd d , d d restricted on the second branch = ( )g g f2 of the algebraic curve (50) is
directed into Y = ={ ( ) }g g f f: , 02 2 and = ( )g g f2 is above of the line + =g f 0. This
means that orbits from OIII are always inside Y2. OII and OIII present orbits with different
behaviours. The existence of an orbit which splits up OII and OIII can be proven by using the
same argument as in lemma 4.5. We denote this orbit by U1 and in terms of the reverse time t̂
the orbit U1 realises a solution of Problem2f such that * <s 0, * < ¥∣ ∣s and ( ) ( )f s f s sd d2

vanishes at *=s s . The family OIII corresponds to solutions of Problem2f which vanish at
finite times with ¹f f sd d 02 at these points. Here again we use the asymptotic solution

*» -( ) ( )∣ ∣f s C s s4 91
3 4 near the g-axis with >g 0.

The case - <z12 19 0 is considered similar with the same classification theorem for
orbits of the dynamical system. Summarising the results, we have the following classification
of the orbits.

Theorem 4.6. The orbits S1 and U1 divide the phase plane on I II, and III parts with
different behaviours of orbits. The orbits from I go along the separatrix S1 approaching the
g-axis at <g 0 with a finite flux,  > 0. Part II consists of the orbits located between S1 and
U1, the latter representing asymptotes for each of these orbits as t  ¥ˆ and t  ¥
respectively. For these orbits  < 0 as t  ¥ and  > 0 as t  ¥ˆ . The set III represents
orbits emerging at the first quadrant and approaching U1 with time. For the reverse time t̂
these orbits approach the g-axis at >g 0 as t  ¥ˆ with a finite flux,  < 0.

Similarly to how it was done in the case <z 2 3, one can prove that the Problems 1, 2
and 3 (and respectively 1f, 2f and 3f) are not solvable for some sets of parameters.
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Remark 4.8. Generalising remark 4.5 for any z: one can extend the Problem 1f (2f) in which

* *= =( ) ( )f s s 0 by postulating º( )f s 0 for s which is greater (less) than the maximal
(minimal) allowed *s .

5. Conclusions

In this paper we have presented an exhaustive study and full classification of all possible
stationary solutions of the Leith model of turbulence with dissipation represented by
equation (1) by the phase plane analysis of the corresponding dynamical system. Different
solutions are realised depending on the degree of the dissipation z, the effective Reynolds
number nf 8D , position of the forcing (at the left and right boundaries for the direct and
inverse cascades respectively), absence or presence of extra dissipation or/and forcing at the
boundaries (dual cascades diverging to the centre of the k-range, point sinks instantly
absorbing the remaining flux). Such solutions may or may not have a finite front, they may
asymptotically tend to inviscid ‘warm cascade’ solutions at  ¥k with a finite constant flux
P and/or temperature Q, they may exhibit viscous scaling at high or low ends of the k-range.
Many possible physical situations were linked to three types of the boundary value problems
—Problems 1–3. In spite of the behavioural richness, the solutions may be divided into three
distinct classes corresponding to the orbits the phase plane divided by separatrices which
connect fixed points of the corresponding dynamical system with each other or with infinity.

The most physically relevant solutions are represented by the separatrices themselves.
Let us mention another interesting solution corresponding to a warm direct cascade with

>Q 0 such that the energy flux ò is zero at the right boundary. This is a typical solution in
numerical simulations of turbulence by pseudo-spectral methods, implying there is a maximal
wave number at which the energy flux is reflected. In our classification such solutions are to
be found by solving Problem 3: e.g. one of such solutions could be obtained by first picking
an arbitrary orbit from Part II of the phase plane, then picking its left end arbitrarily, and then
placing its right end onto the thermodynamic line (see the discussion in section 3).

In section 3 we gave a qualitative description of the solutions, including the phase
portraits and sketches of typical spectra. In section 4 we presented rigorous proofs of the
statements made in section 3. The table below provides a brief summary of our solutions with
emphasis on their physical meanings.

In future, it remains to be shown that the steady state solutions found in the present paper
are attractors of the evolving system. It is also interesting to study scenarios of reaching the
steady states. Based on a numerical evidence, the authors of papers [2, 3] suggested that the
steady state in the direct cascade forms as a reflection wave propagating from high to low kʼs
in which the Kolmogorov scaling is gradually replacing an initially steeper transient power
law. This seems to be the typical behaviour for finite capacity turbulent systems [11], and it is
also observed in integral/kinetic equation closures [12]. However, such a scenario has not
been explained analytically yet, and this would be an important subject for future work.

Orbits Physics Problems

<U z,1
5
2

Warm inverse cascade, zero flux at a sharp left end. 2

>S z,1
2
3

Negative-Q direct cascade, zero flux at a sharp right end. 1

<U z,2
2
3

High-Re cold direct cascade; (possibly) the dissipative scaling near the left end
and Kolmogorov near the right end.

3

>S z,2
5
2

High-Re inverse cascade; (possibly) the dissipative scaling near the right end and
thermodynamic near the left end with   0 at k 0.

3
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(Continued.)

Orbits Physics Problems

<H z, 2
3

Low-Re direct cascade, zero flux at a sharp right end. No scaling ranges. 1

>H z, 5
2

Low-Re inverse cascade, zero flux at a sharp left end. No scaling ranges. 2

OI, any z Direct cascade, point sink at a sharp right end. 1
OIII, any z Inverse cascade, point sink at a sharp left end. 2
OII, any z Direct cascade, finite spectrum and point sink at right end, or inverse cascade,

finite spectrum and point sink at left end, or converging direct and inverse
cascades, point sources at both ends, or inverse cascade, finite spectrum and
zero flux at the left end, or direct cascade, finite spectrum and zero flux at the
right end.

3
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