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Abstract A fundamental problem in data management
and analysis is to generate descriptions of the distribu-

tion of data. It is most common to give such descrip-

tions in terms of the cumulative distribution, which is

characterized by the quantiles of the data. The design

and engineering of efficient methods to find these quan-
tiles has attracted much study, especially in the case

where the data is given incrementally, and we must

compute the quantiles in an online, streaming fashion.

While such algorithms have proved to be extremely use-
ful in practice, there has been limited formal compar-

ison of the competing methods, and no comprehensive

study of their performance. In this paper, we remedy

this deficit by providing a taxonomy of different meth-

ods, and describe efficient implementations. In doing
so, we propose new variants that have not been studied

before, yet which outperform existing methods. To il-

lustrate this, we provide detailed experimental compar-

isons demonstrating the tradeoffs between space, time,
and accuracy for quantile computation.

Keywords Data stream algorithms · quantiles.

1 Introduction

Given a large amount of data, a first and foundational
problem is to describe the data distribution. If the data

follows a known distribution family, such as Gaussian,

G. Luo · L. Wang · K. Yi
Department of Compute Science and Engineering, HKUST,
HongKong
E-mail: (luoge, luwang, yike)@cse.ust.hk

G. Cormode
Department of Computer Science, University of Warwick
E-mail: G.Cormode@warwick.ac.uk

it can be described succinctly by the parameters of the
distribution. This is rarely the case in practice, which

thus calls for nonparametric methods. Quantiles are the

mostly commonly used nonparametric representation

for data distributions. They correspond to the cumu-

lative distribution function (cdf), which in turn yields
the probability distribution function (pdf). Thus, quan-

tile computation is arguably one of the most funda-

mental problems in data analysis. For example, rank-

ings are often expressed in terms of percentiles, such as
for giving results of standardized testing, or measuring

children’s physical development. Distributions are com-

monly compared via quantiles, in the form of quantile-

quantile plots, which leads to the Kolmogorov-Smirnov

divergence, one of the most commonly used distance
measures between distributions.

Computing the quantiles has significant practical

importance: Standard statistical packages, such as R

and Excel, include functions to compute the median
and other quantiles. In the Sawzall language that is the

basis for all of Google’s log data analysis, quantile is

one of the seven basic operators defined (the others in-

clude sum, max, top-k, and count-distinct) [24]. The

quantiles also play an important role in network health
monitoring for Internet service providers [8] and data

collection in wireless sensor networks [26].

The problem is also intellectually interesting enough

to have attracted a lot of prior study, from both the

algorithms and the database community, sometimes in-
vestigated under the name of “the selection problem”

or “order statistics”. Algorithmic interest dates back to

at least 1973, when the celebrated linear-time selection

algorithm was invented [4]. In the past 35 years, this
problem has received particular attention in the stream-

ing model, i.e., the data elements arrive one by one in

a streaming fashion, and the algorithm only has lim-
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ited memory to work with. There have been numerous

algorithms proposed in this setting, using a variety of

different techniques and offering different performance

guarantees [23, 15, 21, 22, 13, 7, 12, 18, 27]. In addition,

there have been many studies on variations and exten-
sions of the problem, such as computing quantiles over

sliding windows [3], over distributed data [26, 1, 16, 17],

continuous monitoring of quantiles [9, 30], biased quan-

tiles [10], computing quantiles using GPUs [14], etc.

The median has long been recognized as a more sta-

ble statistic of data distribution than, say, the average,

in the sense that it is very robust to outliers. The quan-

tiles are a natural generalization of the median. Let S

be a (multi)set of n elements drawn from a totally or-
dered universe. Recall that the φ-quantile of S, for some

0 < φ < 1, is the element whose rank is ⌊φn⌋ in S, where

the rank of an element x is the number of elements in

S smaller than x.

The quantiles can be easily found by sorting if suf-

ficient space is available. The problem becomes signifi-

cantly more challenging in the streaming model, which

is the focus of this work. It dates back to 1980, when

Munro and Paterson [23] showed that any algorithm
that computes the median exactly with p passes over

the data has to use Ω(n1/p) space. Thus, approximation

is necessary for any streaming quantile algorithm using

sublinear space. Recall that a streaming algorithm is
one that makes one pass over the data and perform the

desired computation. Often, the algorithm is not given

the knowledge of n, the length of the stream, so that

the algorithm has to be ready to stop and provide the

results at any time. This corresponds to the practical
setting where the stream is conceptually an infinite se-

quence of elements, and the algorithm should always be

ready to provide the results for the data seen so far. In

line with most prior work, we also adopt this require-
ment.

Subsequently, the problem of computing approxi-

mate quantiles over streaming data has been widely

studied in the past three decades (which will be re-

viewed shortly). The commonly used notion of approx-
imation for this problem is the following: For an error

parameter 0 < ε < 1, the ε-approximate φ-quantile is

any element with rank between (φ− ε)n and (φ+ ε)n.

Since quantiles are used for approximating the data dis-

tribution anyway, and the input data is often noisy in
itself, allowing some errors in the computed quantiles

is often tolerable.

However, despite the importance of the problem and

the many efforts devoted, a complete and clear pic-
ture of the problem still appears elusive, both theo-

retically and empirically. We lack matching upper and

lower bounds for the problem, which constitutes a top

open problem in data stream algorithms (see http://

sublinear.info/2).Moreover, existing empirical stud-

ies are both incomplete and outdated. In this work, we

set out to address this issue, and carry out an extensive

experimental comparison of various quantile algorithms
that have not been compared before. In doing so, we

also propose new variants that have not been studied

before, yet which turn out to perform the best.

1.1 Classification of algorithms

Depending on different models, algorithms for comput-

ing quantiles of data streams can be classified along the
following axes:

1. Whether elements can only be added or can be both

inserted and deleted.

In the cash register model, elements arrive one by

one in the stream and they are never removed. In the

turnstile model, the stream consists of a sequence of

updates where each update either inserts an element

or deletes one, but a deletion cannot delete an ele-
ment that does not exist. When there are duplicates,

this means that the multiplicity of any element can-

not go negative.

2. What operations are allowed on the elements.

In the comparison model, the algorithm can only ac-

cess the elements through comparisons. Implicitly,
this means that the algorithm must store a set of

elements that it has observed from the stream (to-

gether with some extra information), and only re-

turn from this set as quantiles in the end, namely it
cannot “create” or “compute” elements to return.

In the fixed universe model, the elements are in-

tegers in the universe [u] = {0, . . . , u − 1}. Here,
the algorithm is allowed to perform bit manipu-

lation tricks, and return elements that may have
never appeared in the stream as quantiles provided

they satisfy the approximation guarantees. Clearly,

the comparison model is more restrictive, so any

comparison-based algorithm also works in the fixed
universe model, but not vice-versa. However, the

benefit of comparison-based algorithms is that they

can handle elements that cannot be easily mapped

to a fixed universe [u], such as variable-length strings

or user-defined types1.

3. Whether the algorithm is deterministic or random-

ized.

1 Note that floating-point numbers in standard representa-
tions (e.g. IEEE 754) can be mapped to integers in a fixed
universe in an order-preserving fashion.
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We are not aware of any Las Vegas quantile algo-

rithms, so we will only consider Monte Carlo ran-

domization, where an algorithm may return an in-

correct quantile (i.e., exceeding the stated ε error)

with a small probability. We usually consider the
probability that the algorithm returns all quantiles

correctly, but this will be the case as long as it is cor-

rect on the 1/ε− 1 quantiles for φ = ε, 2ε, . . . , 1− ε.

The quantiles in between any two of these quantiles
will thus have error at most 2ε, and scaling ε down

by a factor of 2 will restore the ε-approximation

guarantee for all quantiles. To simplify the bounds,

most theoretical analyses make this probability a

constant. This probability can always be boosted
using standard techniques; in practice, due to the

looseness of the analysis, it suffices to set the suc-

cess probability to a reasonable constant.

1.2 Existing quantile algorithms and our new findings

1.2.1 The cash register model

In their pioneering paper [23], Munro and Paterson

also gave a p-pass algorithm for computing exact quan-
tiles. Although not analyzed explicitly, the first pass of

the algorithm yields a streaming algorithm for comput-

ing ε-approximate quantiles using O(1ε log
2(εn)) space.

This fact was made more explicit by Manku et al. [21],

who also proposed another algorithm that is empiri-
cally better, though it has the same worst-case space

bound. In 2001, Greenwald and Khanna [15] designed

a quite ingenious algorithm (referred to as the GK al-

gorithm below) and showed that it uses O(1ε log(εn))
space in the worst case. But interestingly, their exper-

imental study implements a simplified algorithm (re-

ferred to as GKAdaptive below), for which it is not

clear if the O(1ε log(εn)) space bound still holds. Nev-

ertheless, they showed that this algorithm empirically
outperforms that of Manku et al. [21]. All these algo-

rithms are deterministic and comparison-based. Hung

and Ting [18] showed an Ω(1ε log
1
ε ) space lower bound

for such algorithms. In this category, the GK algorithm
is generally considered to be the best, both theoretically

and empirically (in its respective versions).

In 2004, Shrivastava et al. [26] designed a determin-
istic, fixed-universe algorithm, called q-digest, that uses

O(1ε log u) space. This algorithm was designed for quan-

tile computation in sensor networks, and is a mergeable

summary [1], a model that is more general than stream-
ing. But no better fixed-universe algorithm is known in

the streaming model. Note that the log u and log(εn)

terms are not comparable in theory, and [26] did not

include an experimental comparison with the GK algo-

rithm.

Randomized algorithms have also been investigated.
Classic results [28] show that a random sample of size

O( 1
ε2 log

1
ε ) preserves all quantiles within ε error with

at least a constant probability. This fact was reproved

in [21] and exploited for computing quantiles by feed-

ing a random sample to a deterministic algorithm. But
this algorithm requires the a priori knowledge of n, so

it is not a true streaming algorithm. Later, Manku et

al. [22] proposed a randomized algorithm (henceforth

referred to as MRL99) that does not need the knowl-
edge of n, and showed that its space requirement is

O(1ε log
2 1

ε ). Note that the log2 1
ε factor could be ei-

ther larger or smaller than the log(εn) factor of GK,

and these two algorithms have not been compared ex-

perimentally. Subsequently, Agarwal et al. [1] gave a
more complicated algorithm with a space complexity of

O(1ε log
1.5(1ε )) without implementation. Very recently,

Felber and Ostrowsky [11] provided a randomized algo-

rithm (also without implementation) for this problem
that achieves O(1ε log

1
ε ) space cost. However, the hid-

den constant in the big-Oh is very substantially large

that it makes this algorithm only of theoretical inter-

ests. Our prototype implementation of this algorithm

confirmed that it is not competitive in practice with
others, so we do not consider it further in this empiri-

cal study.

In this paper, we empirically compare GKAdaptive,

q-digest, andMRL99. We omit results for the algorithms

of Munro and Paterson [23] and the earlier algorithm

of Manku et al. [21], since they have previously been

demonstrated to be outperformed by the GK algorithm.
We have also implemented GKTheory, and found out

that it does not perform as well as GKAdaptive, despite

the O(1ε log(εn)) space guarantee of the former.

Our experimental study reveals that MRL99 gener-

ally performs the best, but it suffers from the following

undesirable properties. First, it uses some fairly com-

plex rules for maintaining its samples and sets its pa-
rameters delicately by solving an optimization problem,

which increases implementation difficulty. Second, as

the algorithm is difficult to analyze, the analysis given

in [22] is quite pessimistic, resulting in an O(1ε log
2(1ε ))

bound. In practice, this mean that for an error target ε,
we often allocate more space than necessary. Through

our experimental study, we observed that many of the

details of MRL99 were not actually needed, and the al-

gorithm can be significantly simplified without affecting
its performance. In addition, we give a new analysis on

this simpler algorithm (referred to as Random), leading

to an improved O(1ε log
1.5(1ε )) bound.
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Table 1: All algorithms evaluated in this paper. Those marked with * are new variants.

Algorithm Space Update time Randomization Model

GKAdaptive — O(log Space) Deterministic Comparison

GKTheory O
(

1
ε
log(εn)

)

O
(

log 1
ε
+ log log(εn)

)

Deterministic Comparison

FastQDigest O
(

1
ε
log u

)

O
(

log 1
ε
+ log log u

)

Deterministic Fixed universe

MRL99 O
(

1
ε
log2 1

ε

)

O
(

log 1
ε

)

Randomized Comparison

Random * O
(

1
ε
log1.5 1

ε

)

O
(

log 1
ε

)

Randomized Comparison

Random subset sum O( 1
ε2 log2 u log( log u

ε
)) O( 1

ε2 log2 u log( log u

ε
)) Randomized Fixed universe

DCM O(1
ε
log2 u log( log u

ε
)) O(log u log( log u

ε
)) Randomized Fixed universe

DCS * O(1
ε
log1.5 u log1.5( log u

ε
)) O(log u log( log u

ε
)) Randomized Fixed universe

On the other hand, GKAdaptive remains the most

competitive deterministic algorithm. However, the orig-
inal paper [15] focused only on space usage, and did

not elaborate on the running time of the algorithm. In

this paper, we have identified two different ways to im-

plement the algorithm, and investigated their practical

performance.

1.2.2 The turnstile model

The turnstile model presents additional challenges, due
to the deletions of elements. Attempts to adapt the

above algorithms to this model can often be thwarted

by finding particularly adversarial patterns of insertions

and subsequent deletions. In fact, it can be argued that

no comparison-based algorithm is possible using sub-
linear space under the turnstile model: Imagine that

we first insert n elements and then delete all but one.

Before the deletions, the algorithm has no informa-

tion about which element will survive, and because the
comparison-based model does not allow the creation or

computation of elements to return, it has to retain all n

elements. Therefore, all turnstile algorithms work only

for a fixed universe, and are mostly randomized algo-

rithms. Deterministic algorithms for the fixed universe
model have been provided: Ganguly and Majumder de-

scribe an algorithm which uses O( 1
ε2 log

5 u log( log u
ε ))

space [12]. The high dependency on 1
ε and log u is not

considered practical.
Existing algorithms in the turnstile model all make

use of a dyadic structure imposed over the universe of

possible elements. More precisely, we build log u levels,

decomposing the universe [u] as follows. In level 0, every

integer in [u] is by itself; in level i, the universe is parti-
tioned into intervals of size 2i; the top level thus consists

of only one interval [0, u − 1]. Every interval in every

level in this hierarchy is called a dyadic interval. The

algorithms make use of randomized sketch data struc-
tures which process a stream of updates in the turnstile

model, and allow the frequency of any element to be es-

timated [5, 7]. Each level keeps a frequency estimation

sketch that can be used to estimate the total number

of elements in any interval on that level. To find the
rank of a given element x, we decompose the interval

[0, x− 1] into the disjoint union of at most log u dyadic

intervals, one from each level. From the frequency esti-

mation sketch, we estimate the number of elements in

each dyadic interval, and then add them up. Then for
any given φ, we can find an approximate φ-quantile by

doing a binary search on [u] to find the largest element

whose rank is below φn.

Different frequency estimation sketches have been

proposed to instantiate this outline. Gilbert et al. [13]

first proposed the random subset sum sketch for this
purpose, which results in a size ofO( 1

ε2 log
2 u log( log u

ε )).

Later, Cormode and Muthukrishnan applied the Count-

Min sketch in the dyadic structure (the resulting algo-

rithm is referred to as DCM, for “Dyadic Count-Min”),

reducing the overall size to O(1ε log
2 u log( log u

ε )) [7].
This remains the best bound in the turnstile model.

In this paper, we propose to use the Count-Sketch [5]

(the algorithm is thus referred to as DCS, for “Dyadic

Count-Sketch”), and give a new analysis showing that it
further reduces the space to O(1ε log

1.5 u log1.5( log u
ε )),

which is the best bound for this problem under the turn-

stile model. We also carry out an experimental compar-

ison of these different variants, which shows that DCS is

not only theoretically the best, but also gives superior
performance in practice.

Finally, to further improve the accuracy of DCS, we
design a fast post-processing step to eliminate the dis-

crepancies in the frequency estimates across different

levels, using the ordinary least squares method. Exper-

imental results show that this post-processing step can
further reduce the error of DCS by 60–80%.

Table 1 summarizes all the algorithms that we eval-

uate in this paper, in both the cash register and the

turnstile model.
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1.3 Relation to conference publication

This paper extends our earlier work [29], in which we

identified GKAdaptive to be the best deterministic al-

gorithm, Random to be the best randomized algorithm,

while DCS the best algorithm in the turnstile model.

In this paper, we develop several new ideas that lead
to further improvements to these algorithms. In par-

ticular, we give a new implementation of GKAdaptive,

called GKArray, which uses buffering techniques to sig-

nificantly improve the running time (Section 2.1.2). For
DCS, we give a novel “post-processing” step to make

better use of the estimates generated, to give substan-

tially improved accuracy for this class of algorithms

(Section 3.2).

To keep this paper focused and avoid redundancy,
we will only describe and analyze the above three most

competitive algorithms in their respective categories,

together with the new improvements introduced in this

paper. The details of the other algorithms can be found
in the original conference version of this paper [29].

2 Cash Register Algorithms

In this section, we describe the cash register algorithms.

Recall that in this model, there are only insertions in

the stream. We use n to denote the current number of

elements in the stream. We use r(x) to denote the rank
of x in all the elements received so far.

2.1 The GK algorithm

The GK algorithm [15] is a deterministic, comparison-

based quantile algorithm. It maintains a list of tuples

L = 〈(vi, gi, ∆i)〉, where the vi’s are elements from the

stream such that vi ≤ vi+1. The gi’s and ∆i’s are inte-
gers satisfying the following conditions:

(1)
∑

j≤i gj ≤ r(vi) + 1 ≤
∑

j≤i gj +∆i;
(2) gi +∆i ≤ ⌊2εn⌋.

Note that condition (1) gives both a lower and an upper

bound on the possible ranks of vi. Also, gi+∆i−1 is the
maximum possible number of elements between vi−1

and vi, so (2) ensures that for any 0 < φ < 1, there must

be an element in the list whose rank is within εn of φn.
Thus, to extract the φ-quantile, we can find the smallest

i such that
∑

j≤i gj+∆i > 1+⌈φN⌉+maxi (gi +∆i) /2,

and then report vi−1. It can be verified that this vi−1

will be a valid ε-approximate φ-quantile.
The list is initialized as L = 〈(∞, 1, 0)〉. To in-

sert a new element v, we find its successor in L, i.e.,

the smallest vi such that vi > v, and insert the tuple

(v, 1, ⌊2εn⌋) right before vi. We may also remove tu-

ples: To remove (vi, gi, ∆i), we set gi+1 ← gi + gi+1

and remove the tuple from L. Note that this may vio-

late condition (2) for the next tuple, so we call a tuple

removable if gi + gi+1 +∆i+1 ≤ ⌊2εn⌋.
In order to keep |L| small, the original paper [15]

gave a fairly complex Compress procedure to care-
fully select tuples to remove while maintaining (1). It

is performed once every 1
2ε incoming elements. It has

been shown that after the Compress procedure, |L| is
at most 11

2ε log (2εn). Compress can be done in time

O(|L|), so if it is performed only when |L| doubles, its
amortized cost is O(1) per update. An insertion can be

done in time O(log |L|) if we maintain a binary search

tree on top of L, therefore the amortized per-element

update time is O
(

log 1
ε + log log(εn)

)

.

2.1.1 Variant: GKAdaptive

The algorithm described was structured to permit the-
oretical analysis of the space cost; in the paper [15], the

authors instead implemented the following variant:

1. To insert v, insert to L a tuple (v, 1, gi + ∆i − 1)

instead of (v, 1, ⌊2εN⌋).
2. Following an insertion, try to find a removable tu-

ple in L. If there is one, remove it; otherwise |L|
increases by 1.

Note that Compress is never called in this variant,

so the O(1ε log(εn)) bound may not hold.

The original paper [15] did not specify how to find a

removable tuple, as they did not focus on running time.

There can be two ways to implement this efficiently.
The first is to maintain a min-heap on the tuples in

L ordered by gi + gi+1 + ∆i+1. When a new tuple is

inserted, we first check if the tuple itself is removable,

and remove it immediately if so. Otherwise, we check

the top tuple in the heap, and remove it if it is remov-
able. If the top tuple in the heap is not removable, then

no others are. When this happens, |L| increases by 1.

The heap can be maintained in O(log |L|) time per el-

ement, so the asymptotic update time is not affected.
We refer to this variant as GKAdaptive.

2.1.2 Variant: GKArray

A quite different way to implement the algorithm above

is to do defer some actions and operate in a “batch

mode”. We store all tuples in L in an array instead of a

list. We do not insert tuples into the array so we will not
need the binary search tree. We remove the use of the

heap as well. Instead, the algorithm maintains a buffer

to store the incoming elements from the stream, and



6 Ge Luo et al.

merges the buffered elements into L whenever the buffer

is full. Specifically, the algorithm proceeds as follows.

1. Buffer the arriving elements into an array A. When

A is full, sort the elements in A.

2. Merge A into L. More precisely, we scan A and L
in parallel. In doing so, for each v ∈ A, we can find

the smallest vi ∈ L such that vi > v, and thus can

compute the (v, g,∆) tuple for v. During the merge,

we also check each tuple in A or L to see if it is
removable, and if so remove it (i.e., don’t output it

to the new L).

3. After the merging, flush the buffer and go back to

step 1).

Since the size of the buffer is Θ(|L|), the cost of
step 1) is Θ(|L| log |L|), which is O(log |L|) per element

amortized. The cost of step 2) is just O(1) per element

amortized. Thus, this variant has the same asymptotic

update time (though amortized) as GKAdaptive. How-
ever, since sorting and merging are both much more

cache-efficient than searching in a binary search tree

and heap operations, this variant could be much faster

in practice than GKAdaptive. We refer to this variant

as GKArray.

2.2 The randomized algorithm: Random

We now describe a randomized quantile algorithm, which
can be seen as a simplified version of the one by Manku

et al. [22]. It is also inspired by the algorithm by Agar-

wal et al. that provides the mergable property [1]. We

denote this algorithm as Random. It will correctly re-
port all quantiles with constant probability.

Setting h = log 1
ε , b = h + 1 and s = 1

ε

√

log 1
ε ,

Random maintains b buffers of size s each. Each buffer

X is associated with a level l(X).

Two buffers at the same level l can be merged into

one buffer at level l+1. To do so, in the sorted sequence

of elements from both buffers, we randomly choose half

of them: either those at odd positions, or those at even

positions, each with probability 1/2. The merged 2 buffers
are then marked as empty.

Initially all buffers are marked as empty. We set

the active level l = max{0,
⌈

log n
s2h−1

⌉

}. If there is an
empty buffer X , we read the next 2ls elements from the

stream. For every 2l elements, we randomly pick one

and add it to X . Thus X contains s sampled elements,

becoming full, unless the stream is terminated. X is
associated with level l. Whenever all buffers becomes

full, we find the lowest level that contains at least 2

buffers, and merge 2 of them together.

Fig. 1: Illustration of Random.

In the end, the rank of an element v is estimated as

r̂(v) =
∑

X 2l(X)|{i < v|i ∈ X}|, where X ranges over

all nonempty buffers. A φ-quantile is reported as the
element whose estimated rank is closest to φn, which

can be found using a binary search.

Figure 1 illustrates the algorithm. New elements of

the stream arrive at the right of the figure. The al-
gorithm can be understood in terms of a binary tree

imposed over the stream. Each node in the tree corre-

sponds to a buffer, and internal nodes are formed from

the merger of their two children. Initially, leaf buffers
are filled from s elements directly from the stream, but

as the stream goes on, sampling is applied to fill the

leaf buffers. There are 2h−1 leaf buffers at level 0, each

storing s elements from the stream; for 1 ≤ l < ln,

there are 2h−2 leaf buffers at level l, each storing s ele-
ments sampled from 2ls elements in the stream. There

are 2h−2 non-leaf buffers at level l for any 1 ≤ l ≤ ln,

and 2ln+h−l−2 non-leaf buffers for ln+1 ≤ l ≤ ln+h−2.

Space and time analysis. Two buffers can be merged

in O(s) time, and the total number of merges is O(n/s)

throughout the entire data stream, which is amortized

O(1) for each update. Each buffer is sorted when it
just becomes full, which can be done in O(s log s) time,

so O(log s) per update amortized. Hence the amortized

update time is O(log s) = O
(

log 1
ε

)

.

The space bound is simply bs = O
(

1
ε log

1.5 1
ε

)

.

Error analysis. We show that with constant probabil-

ity, this algorithm finds all quantiles correctly.

Since our analysis will focus on the asymptotics, we
assume that n/s is a power of 2, which means that when

the stream terminates, l has been just increased by 1

and becomes ln = log( n
2hs

)+ 2. In order to simplify the

proof, at this point we merge all the buffers into one,

whose level is ln + h − 2 = log(n/s). Note that this
operation can only increase the error.

If the estimated ranks of all the 1/ε − 1 elements

that rank at εn, 2εn, . . . , (1− ε)n are correct (i.e., with

at most additive εn error), then all the quantiles can
be answered correctly. By the union bound, it suffices

to ensure that each rank is correct with probability at

least 1− ε.
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When the algorithm estimates the rank of any ele-

ment, the error comes from two sources: random sam-

pling and random merging. Clearly, the expected error

of each type is zero, so the estimator is unbiased. Now

we analyze the probability that the error is larger than
εn. For the random sampling part, consider any sam-

pled element at level l, which has been chosen from 2l

elements, so the error is between −2l and 2l. By Hoeffd-

ing’s inequality, the probability of the absolute value of
their sum exceeding εn is at most

exp



− 2(εn)2
∑

leaf buffer X

4l(X)s



 = exp
(

−Θ
(

ε22hs
))

< ε/2,

since the summation over X is dominated by the con-

tribution from the highest level, where l(X) = logn/s.

Next consider the error from the random merging.

Merging 2 buffers at level l may contribute an error be-

tween −2l and 2l. Again by Hoeffding’s inequality, the

probability that the total error exceeds εn is bounded
in terms of the sum of the squares of the absolute er-

rors (also dominated by the contribution of the highest

level), as

exp



− 2(εn)2
∑

non-leaf buffer X

4l(X)



 = exp
(

−Θ
(

ε2s2
))

< ε/2.

Finally, when n/s is not a power of 2, then there

will be more than one buffer left even if we perform

all possible merges. However, as the weights of these

buffers are geometrically smaller, this does not change

the error asymptotically.

3 Turnstile Algorithms

Recall that all algorithms in the turnstile model build
upon the dyadic structure over the universe [u] as de-

scribed in Section 1, and use a frequency estimation

sketch for each level. Known turnstile quantile algo-

rithms only differ in the sketches they choose to use.
Over a stream of updates with both insertions and dele-

tions of elements, a frequency estimation sketch should

be able to return an estimate of the frequency of any

given element x. Note that when used in level i in the

dyadic structure (the bottom level is level 0), an “el-
ement” is actually a dyadic interval of length 2i, and

the frequency estimation sketch summarizes a reduced

universe [u/2i]. Thus, for an integer x in the stream, we

take its first log(u)− i bits to map it to level i. Finally,
it is obvious that if the reduced universe size u/2i is

smaller than the sketch size, we should maintain the

frequencies exactly, rather than using a sketch.

In the turnstile model, we use n to denote the num-

ber of elements currently remaining, which is at most

the stream length.

3.1 DCS: Dyadic Count-Sketch

We propose to use the Count-Sketch [5] for frequency

estimation in the dyadic structure. The Count-Sketch

consists of an array C of w × d counters. For each
row i, it uses a pairwise independent hash function

hi : [u] → [w] that maps the elements in the (reduced)

universe to the w counters in this row, as well as a 4-

wise independent hash function gi : [u] → {−1,+1}
that maps each element to −1 or +1 with equal prob-

ability. To insert/delete an element x in the sketch, for

each row i, we add/subtract gi(x) to C[i, hi(x)]. To

estimate the frequency of x, we return the median of

gi(x) · C[i, hi(x)], i = 1, . . . , d (assuming d is odd).
By setting w = O(1/ε) and d = O(log 1

δ ), the Count-

Sketch returns an estimate with more than εn error

with probability at most δ, which is the same as the

Count-Min sketch. However, we observe another prop-
erty of the Count Sketch that makes it appealing for the

quantile problem, that it produces an unbiased estima-

tor. Since we add up the estimates from log u sketches

in the dyadic structure, it is likely that some of the

positive and negative errors will cancel each other out,
leading to a more accurate final result. Below we give a

new analysis showing that this intuition in fact leads to

an asymptotic improvement over using the Count-Min

sketch for the quantile problem (DCM).

Analysis. Below we prove that DCS can return all ε-

approximate quantiles with constant probability using

space O(1ε log
1.5 u log1.5( log u

ε )).
Consider the estimators Yi = gi(x) · C[i, hi(x)], i =

1, . . . , d. Each Yi is clearly unbiased, since gi(x) maps

to −1 or +1 with equal probability. Let Y be the me-

dian of the Yi’s. The median of independent unbiased
estimators is not necessarily unbiased, but if each esti-

mator also has a symmetric pdf, then this is the case.

This result seems to be folklore. In our case, each Yi

has a symmetric pdf, so Y is still unbiased.

Using the same argument as for the Count-Min sketch,
we have

Pr[|Yi − E[Yi]| > εn] < 1/4.

Since Y is the median of the Yi’s, by a Chernoff bound,

we have

Pr[|Y − E[Y ]| > εn] < exp(−O(d)).

Now consider adding up log u such estimators; the

sum must still be unbiased. By the union bound, the
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probability that every estimate has at most εn error is

at least 1 − exp(−O(d)) · log u. Conditioned upon this

event happening, we can use Hoeffding’s inequality to

bound the probability that the sum of log u such (in-

dependent) estimators deviate from its mean by more
than t as

2 exp

(

− 2t2

(2εn)2 log u

)

.

We see that if we set t = Θ
(

εn
√
log u

)

, this prob-

ability will be a constant. This means that, summing

over the log u levels, the error only grows proportionally

to
√
log u.

To make this bound rigorous, we must ensure that

all quantiles are correct with constant probability. So

each such sum should fail with probability no more than

ε/ logu. Thus, we set t = Θ

(

εn
√

log u log( log u
ε )

)

. In

addition, we need to choose d = Θ(log( log u
ε )) to ensure

that the prerequisite condition holds with probability

at least 1− ε/ logu. Finally, to get εn error in the end,

we use a parameter ε′ = ε

/

√

log u log( log u
ε ) in the

sketches (i.e., w = 1/ε′). Thus, the total space of DCS

is w · d · log u = O(1ε log
1.5 u log1.5( log u

ε )), and its up-

date time is d · log u = O(log u log( log u
ε )), as claimed in

Table 1.

3.2 Post processing

All the quantile algorithms make use of the dyadic struc-

ture and use an independent frequency estimation sketch
for each level. However, the true frequencies across dif-

ferent levels are not independent. Consider the toy ex-

ample in Figure 2, which shows a dyadic structure on

a tiny universe {0, 1, 2, 3}. For each node v in this bi-

nary tree, DCS returns an unbiased estimator Yv for the
number of elements in the corresponding interval. Writ-

ing xv to denote the true frequency at node v, we have

the prior knowledge that x1 = x2 + x3, x2 = x4 + x5

and x3 = x6 + x7. However, it is very unlikely that
Y1 = Y2+Y3 or Y2 = Y4+Y5. The question is thus, can

we use this prior knowledge to improve the accuracy

of the Yi’s (which in turn leads to better accuracy for

quantile approximation). The answer is yes, at least on

this toy example. Let us assume that all the Yi’s are
independent (actually, pairwise independence suffices),

and have the same variance σ2. Consider Y2. If we set

Y ′
2 = Y1/2+ (Y2− Y3)/3+ (Y4+ Y5− Y6− Y7)/6, it can

be checked that E[Y ′
2 ] = E[Y2] and Var(Y ′

2) = 7
12σ

2,
namely, Y ′

2 is still an unbiased estimator of x2 but with

a smaller variance than the original estimator. The rea-

son we can achieve this improvement is that the other

estimators include information about x2, which can be

used in conjunction with Y2. For instance, Y4 + Y5 and

Y1 − Y6 − Y7 are unbiased estimators of x2 (from in-

dependent estimators), and these can be combined to

reduce the variance.

More questions naturally follow: Is this the best es-

timator of x2? Is there a principled approach? Can we
compute the improved estimators efficiently? These are

the questions we address in this section.

3.2.1 Ordinary least squares

We can formalize the problem as follows. Let x = (xi)

be a vector of hidden values. We are given a vector

of observations y = (yi), where each yi is an unbiased

estimator of some linear combination of the xi’s. This
can be succinctly expressed in a matrix form:

y = Ax+ δ,

where δ = (δi) is a vector of pairwise independent ran-

dom variables with mean 0, and Var(δi) = σ2
i . In our

case, the xi’s are the true frequencies at the leaves of

the binary tree T corresponding to the dyadic struc-
ture, the yi’s are the estimators returned by the Count-

Sketch at every node of T , and A is a 0-1 matrix that

encodes which xi’s are covered by each yi.

The problem is thus to obtain the best estimates for

the xi’s. Once the xi’s are known, the values at inter-

nal nodes of T can be computed easily. This is exactly

the ordinary least squares (OLS) problem, and the best
linear unbiased estimator for x is the vector x∗ such

that
∑

i(yi−Aix
∗)2/σ2

i is minimized. According to the

Gauss-Markov theorem [25], the variance of any linear

combination of the x∗
i ’s is also minimized, so it exactly

serves our purpose, since the rank of any element is the
linear combination of some xi’s.

However, one technicality in our case is that some
of the σi’s are 0: for some nodes high in the tree, we

record the exact frequencies when this is more space

efficient than using a sketch. This means that for some

k, we have σi = 0 for i = 1, . . . , k. Thus the modified
problem formulation is as follows.

Y2 Y3

Y6 Y7Y4 Y5

Y1

level 1

level 0

level 2

[0,1] [2, 3]

0 1 2 3

[4]

Fig. 2: The binary tree corresponding to the dyadic

structure on the universe {0, 1, 2, 3}.
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Definition 1 Given a vector x = (xi) of unknowns, a

vector y = (yi) of observations, an m×n matrix A, and

an integer k, such that
{

yi = Aix, i ≤ k

yi = Aix+ δi, i > k,
(1)

where Ai is the i-th row of A. The δi’s are pairwise in-

dependent random variables with mean 0 and variance

σ2
i > 0 . A vector x∗ = (x∗

i ) is the best linear unbiased
estimator (BLUE) for x if yi = Aix

∗ for all i ≤ k and
∑

i>k(yi −Aix
∗)2/σ2

i is minimized.

The general method for solving this problem is to

first eliminate the yi’s for i ≤ k by Gauss elimination,
then use the method of Lagrange multipliers [19]. How-

ever, this would take O(u3) time as A in our case is a

(2u − 1) × u matrix, where u is the universe size! In

the rest of this section, we will exploit the special prop-

erties of our setting and develop much more efficient
algorithms.

3.2.2 Truncating the tree

Our first observation is that we should not work on the
entire dyadic structure. Because we can tolerate an er-

ror of εn, any interval that has less than εn weight can

be safely discarded. More precisely, we extract a trun-

cated binary tree T̂ from the DCS as follows. Starting
from root we traverse the dyadic structure top-down.

For each node (interval), we estimate its frequency from

the Count Sketch. If it is larger than εn, we recursively

visit its children; otherwise we skip this node as well as

its subtree. In Appendix A.1, we show that the size of
the truncated tree T̂ is only O(1ε log u) in expectation.

In our implementation, in order to have better accu-

racy, we set the truncating threshold to ηεn for some

small constant η, and experimentally tune the param-
eter η to achieve a desired tradeoff between accuracy

and cost.

Even after truncating the tree, the cubic running

time using the standard OLS method is still too ex-

pensive. By exploiting the special properties of the tree
structure, Hay et al. [20] designed an algorithm to com-

pute the BLUE in linear time. However, their algorithm

can only work on a perfectly balanced tree. In our case,

T̂ can be very unbalanced, which is especially the case
on skewed distributions. Furthermore, their algorithm

cannot handle the case where some σi’s are 0. Below we

present our algorithm that resolves these issues.

3.2.3 The algorithm

First, we decompose the tree T̂ into subtrees such that

the only node with an exact frequency is the root. It is

clear that an exact node “shields” the influence of its

subtree from other parts of tree, so each subtree can be

handled separately.

Let Tr be such a tree with root r. We use w ≺ v to

denote that w is a leaf in below node v. For a node v, let

lpath(v) be the set of nodes on the path from v to the
leftmost leaf below v, anc(v) the set of all ancestors of

v (including v), and parent(v) the parent node of v. For

each node v ∈ Tr, we are given yv, which is an unbiased

estimator of xv =
∑

w≺v xw, with variance σ2
v , and we

wish to compute the BLUE x∗
v for each v.

An important technique to handle an unbalanced

tree is to introduce a weight λv for each node v. Intu-

itively, the weight of a node measures how important

it is for computing the BLUE for the whole system.

When the tree is perfectly balanced, the weights are
the same for all the nodes on the same level. But on

an unbalanced tree, the weights will depend on both

σv and the structure of the tree. Consider the example

in Figure 3, where the number inside each node is the
estimated frequency yv. Here we assume σ2

i = 2 for all

i except that σ2
1 = 0. Node 4 and 5 are on the same

level and have the same variance. However, node 4 has

no children, while node 5 has two children whose sum is

another estimate of the true frequency at node 5. Thus,
the importance of the estimate at node 5 itself should

be discounted relative to that at node 4. This intuition

is captured quantitatively by the following equations:











λv =
∑

w≺v

λw , for all internal nodes v;

πleft child of v = πright child of v, for all internal nodes v,

(2)

where πv =
∑

w∈lpath(v) λw/σ
2
w.

Note that if Tr has τ leaves, hence τ − 1 inter-
nal nodes, then there are 2τ − 1 weights and (2) has

2τ − 2 equations in total. Thus (2) does not uniquely

determine the weights but they only differ by scaling.

This will not be a problem since the weights will only
measure the relative importance of the nodes. For con-

venience, we add the constraint λr = 1 to make the

weights uniquely defined. This way, the weights can be

computed by solving the system of linear equations (2),

and those for the example in Figure 3 are given in Ta-
ble 2.

We can use a bottom-up traversal of Tr to efficiently

solve (2) in linear time. We start from any node that is

just above the leaf level. Let v be such a node with

two children leaves w1 and w2. We have two linear
equations at v involving 3 unknowns λv, λw1 , λw2 . We

solve them and obtain two relationships λw1 = αw1λv,

and λw2 = αw2λv for some αw1 , αw2 . We also have
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15

10 8

2 9

4 3

4 2

1

2 3

4 5 6 7

8 9

Fig. 3: The binary tree.

node λ π Z F x∗

1 1 / 419/62 0 15
2 15/31 12/31 243/62 4.47 8.94
3 16/31 12/31 88/31 3.03 6.06
4 9/31 9/62 54/31 / 1.16
5 6/31 9/62 135/62 8.36 7.77
6 8/31 4/31 48/31 / 4.04
7 8/31 4/31 40/31 / 2.03
8 3/31 3/62 69/62 / 4.38
9 3/31 3/62 33/31 / 3.38

Table 2: Computing the BLUE. ∆ = 59/62.

πv = λw1/σ
2
w1

+ λv/σ
2
v = βvλv for some βv. After

this, we mark v as “done” and move on to any other

node whose children are both done. In general, when

we reach a node v with children u1 and u2, we will
have inductively obtained πu1 = βu1λu1 , πu2 = βu2λu2

for some βu1 , βu2 . We can then solve the 2 equations

at v involving 3 unknowns λv, λu1 , λu2 and obtain re-

lationships λu1 = αu1λv, λu2 = αw2λv, as well as πv =
πu1 + λv/σ

2
v = βvλv, for some αu1 , αu2 , βv. After this

traversal, we will have discovered the relationship be-

tween any λv and λparent(v), and plugging in λr = 1 will

yield all the λv’s and πv’s in linear time.

In order to compute the x∗
i ’s efficiently, we need

some more auxiliary variables. For each leaf w ∈ Tr,
let Zw = λw

∑

z∈anc(w)\r yz/σ
2
z , and for any internal

node v, Zv =
∑

w≺v λwZw. For any node v except

the root r, let Fv =
∑

w∈anc(v)\{r} x
∗
w/σ

2
w. Finally, set

∆ = (Zr − yrπr’s left child)/λr. The values of these aux-

iliary variables for the example in Figure 3 are given in
Table 2.

Using these auxiliary variables, we are able to obtain
the following equations with respect to the x∗

i ’s (proof

given in Appendix A.2):

{

x∗
r = yr,

x∗
v = (Zv − λvFparent(v) − λv∆)/πv, for all nodes v 6= r.

(3)

Note that (3) has exactly 2τ−1 unknowns and 2τ−1
equations. We can then efficiently solve (2) and (3) in

three traversals of Tr, as follows:

1. Top-down traversal to compute a temporary Z ′: Ini-
tialize Z ′

r = 0; for any other v, set Z ′
v = Z ′

parent(v)+

yv/σ
2
v recursively. Note that after this traversal, for

any leaf w, we have computed Zw = λwZ
′
w.

2. Bottom-up traversal to compute Z: With the values

of Zw’s at the leaves, we can easily compute all the

Zv’s a bottom-up traversal.
3. Top-Down Traversal to compute F, x∗: We first com-

pute ∆ = (Zr − yrπs)/λr, and initialize Fr = 0,

x∗
r = yr. During this top-down traversal, we com-

pute Fv = Fparent(v)+x∗
v/σ

2
v for every v. Meanwhile,

each x∗
v can be computed from (2).

It is easy to see that the algorithm takes time linear

in the size of the truncated tree T̂ , which is O(1ε log u)

in expectation.

3.2.4 Discussion

There are a few issues to discuss with respect to our

post-processing algorithm. First, the OLS framework
requires pairwise independence among the estimators

yv. This is not completely true in our setting. Two

nodes on different levels are clearly independent, as they

are returned from independent Count-Sketches. How-

ever, two nodes on the same level are not. Note that
although the Count-Sketch uses a pairwise independent

hash function to distribute elements into counters, the

counters themselves are not pairwise independent. Nev-

ertheless, we have analyzed the covariance of any two
counters, and shown that it is much smaller than the

variance (details in Appendix A.3). Therefore, we argue

that the OLS framework is still suitable to apply.

The second issue is that our algorithm needs the

variance σ2
v for each v. Conveniently, the Count-Sketch

itself actually provides a good estimator for this vari-

ance, which is simply the sum of all the counters squared

in a row [2]. However, when we use multiple rows and

return the median estimator, the variance does not fol-
low so easily. Nevertheless, our algorithm is not affected

if all the σ2
v ’s are reduced by the same factor, so we use

the variance of one row of the sketch as a good empirical

approximation.

4 Experiments

4.1 Setup

We implemented all algorithms in C++, compiled with

GCC. The executables were tested under Linux 2.6.18
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Fig. 4: Distribution of MPCAT-OBS

on a machine with a 3GHz CPU, 6MB CPU cache and
16GB memory.

4.1.1 Data sets

We used 2 real data sets and 12 synthetic data sets in

the experiments. The first real data set is the MPCAT-

OBS data set, which is an observation archive available

from the Minor Planet Center2. We used the optical
observation records from 1802 to 2012. The records are

ordered by the timestamp, and we feed the right as-

censions3 as a stream to the algorithms. The stream

values appear to arrive randomly overall, but consist

of chunks of ordered data of various lengths. This is
because an observatory usually traces a planet contin-

uously in a session, and then moves on to other plan-

ets. The right ascension is not uniformly distributed,

as shown in Figure 4. This data set contains 87,688,123
records, and the right ascensions are integers ranging

from 0 to 8,639,999. The second real data set is the ter-

rain data for the Neuse River Basin4, which contains

LIDAR points measuring the elevation of the terrain.

This data set contains about 100 million points.

In order to study how different data characteristics

affect the algorithms’ performance, we also generated
12 synthetic data sets with different sizes (107 to 1010),

universe sizes (216 to 232), distributions (uniform and

normal with different variances), and order (random

and sorted). Further details are given in context. Note
that we know that certain factors do not affect cer-

tain algorithms, due to their definition. For example,

the universe size and distribution should not affect any

comparison-based algorithms; the stream order should

not affect (the space and accuracy of) the turnstile algo-
rithms; and the stream length should not affect q-digest

and the turnstile algorithms.

2 http://www.minorplanetcenter.net/iau/ecs/

mpcat-obs/mpcat-obs.html
3 Right ascension is an astronomical term used to locate a

point (a minor planet in this case) in the equatorial coordinate
system.
4 http://www.ncfloodmaps.com

4.1.2 Measures

We measure the algorithms along the following dimen-
sions:

Space is one of the most important measures for stream-
ing algorithms. We report space usage in bytes, where

every element from the stream, counter, or pointer con-

sumes 4 bytes. When an algorithm uses auxiliary data

structures such as a binary tree or a hash table, the
space needed by these internally is carefully accounted

for. For algorithms whose space usage changes over time,

we measured the maximum space usage.

Update time is as important as space, if not more

so, as it translates to the throughput of the stream-

ing algorithm. Prior empirical studies have overlooked
this issue [15, 21]; more recent works on other stream-

ing problems have included time as a main considera-

tion [6]. In our experiments, we measured the average

wall-clock processing time per element in the stream.

In some cases, it is important to bound the worst-
case time per element, and some algorithms periodi-

cally use a slower pruning procedure (e.g. a Compress

or merge step). We note that standard de-amortization

techniques, such as use of buffering, can be adopted to
avoid blocking operations.

Accuracy is the third factor we measure: we want
to understand the accuracy-space and accuracy-time

tradeoffs. There are some technical subtleties in mea-

suring the error. The error parameter ε used by the al-

gorithms controls the accuracy, but it is not suited for
use as the measure of empirical accuracy for two rea-

sons. First, the error analysis usually considers worst-

case input and may be loose: the actual error could be

substantially better; and second, the deterministic algo-

rithms provide an ε-error guarantee while the random-
ized ones give such a guarantee only probabilistically,

so it is not a fair comparison. Therefore, in our exper-

iments, we measure the observed errors, and used the

following two error metrics.

We first extract the φ-quantiles for φ = ε, 2ε, · · · , (1−
ε). For each φ-quantile extracted, we compute its true

rank from the data, and take its difference from φn,

divided by n. From all these errors, we take the max-

imum and average values. The former is exactly the

Kolmogorov-Smirnov divergence between the true CDF
and that of the extracted quantiles, while the latter is

determined by the total variation distance of the two

CDFs, both of which are standard statistical distances

between distributions. There is some ambiguity over the
rank of elements which appear multiple times in the

data. We favor the algorithms, so that the rank of such

items is taken as an interval. We compute the error as



12 Ge Luo et al.

10
−5

10
−4

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

ε

M
ax

im
um

 E
rr

or

(a) Maximum error — ε

10
−5

10
−4

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

ε

A
ve

ra
ge

 E
rr

or
(b) Average error — ε

10
−7

10
−5

10
−3

10
−1

10
−3

10
−2

10
−1

10
0

10
1

Average Error

S
pa

ce
(M

B
)

(c) Space — Average Error

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

10
1

Maximum Error

S
pa

ce
(M

B
)

(d) Space — Maximum Error

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0.1

0.3

0.5

0.7

Average Error

U
pd

at
e 

Ti
m

e(µ
s)

(e) Time — Average Error

10
−3

10
−2

10
−1

10
0

10
1

0.1

0.3

0.5

0.7

Space(MB)

U
pd

at
e 

Ti
m

e(µ
s)

(f) Time — Space

GKAdaptive GKArray FastQDigest MRL99 Random ε

Fig. 5: Results on MPCAT-OBS

the difference from φn to the closer interval endpoint,
or 0 if φn is contained within the interval.

Thus, in total we make 5 measurements (space, time,

ε, actual maximum error, actual average error) for each
algorithm in each experiment. For randomized algo-

rithms, we repeat the algorithm 100 times and take the

average. For space reasons, we present a selection of

most representative results in this paper; the full com-

parison across all 9 algorithms and 5 measurements over
14 real and synthetic data sets can be explored (anony-

mously) through an interactive interface at http://

quantiles.github.com. Below, all results are on the

MPCAT-OBS data set unless specified otherwise.

4.2 Results on cash register algorithms

4.2.1 ε vs. actual error

Figures 5a and 5b show how the actual errors of the

algorithms deviate from the given ε parameter. All the
deterministic algorithms indeed never exceed the ε guar-

antee, and they usually obtain average error between 1
4ε

and 2
3ε. The maximum errors of Random andMRL99 are

much smaller than ε, and the average errors are even
smaller, revealing that their bounds are loose. We sub-

sequently use the observed errors (max and average) as

the primary error metric.

4.2.2 Space

Figure 5c and 5d show the error-space tradeoff of the al-
gorithms using the max error and the average error, re-

spectively. We see that MRL99 and Random are the best

two algorithms with very similar performance. Between

the two, MRL99 looks slightly better. This shows that

the detailed choices of MRL99 offer a minor advantage,
but not much. GKAdaptive and GKArray come quite

close, especially when max error is considered. FastQDi-

gest uses the largest space among all algorithms. Note

that log u = 24 in this case; we study other universe
sizes subsequently.

4.2.3 Time

Figure 5e shows the tradeoff between error and the up-

date time per element for each algorithm. Here we use

log scale on the x-axis but linear scale on the y-axis. We

see that for larger errors, all algorithms perform simi-

larly, but GKAdaptive and FastQDigest degrades rapidly
for smaller errors. This phenomenon can be better ex-

plained by the space-time tradeoff plotted in Figure 5f,

in which we see that GKAdaptive and FastQDigest suf-

fer a big speed loss when their space use exceeds 5MB,
which is roughly the size of CPU cache. This is because

they perform a binary search for each incoming ele-

ment, which is not cache-friendly. On the other hand,
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MRL99, Random, and GKArray still perform well, as

they only use sorting and merging as their basic op-

erations. Among these three, the two randomized algo-

rithms are better than GKArray on larger errors, since

this is where sampling kicks in. On smaller errors, the
three algorithms have similar performance, with Ran-

dom being slightly better than the other two.

4.2.4 Varying universe size and data skewness

From the O(1ε log u) bound, q-digest should work bet-

ter with a smaller universe size. We tested the algo-

rithms on synthetic data sets following a normal dis-

tribution, but with different universe sizes. The length

of the stream is fixed at n = 108, and elements arrive
in a random order. In Figures 6a and 6b, we plot the

error-space and error-time tradeoffs of FastQDigest on

data sets with different log u. We also plot the curves

of GKAdaptive and Random, the best deterministic and
randomized comparison-based algorithms, which are un-

affected by the universe size5.

From the figures, we see that q-digest is only com-

petitive when log u = 16 and ε < 10−5. However, when

this is the case, storing the frequencies of all the u ele-

ments exactly only takes 0.25MB space. We also tested

on data sets with different skewness by changing the
variance of the normal distribution, but did not ob-

serve significant changes in the performance of q-digest.

Therefore, we do not find any streaming situation where

q-digest is the method of choice. Nevertheless, the algo-
rithm remains of importance, since it is the only deter-

ministic mergeable summary for quantiles [1], needed

when summaries are merged in an arbitrary fashion.

4.2.5 Varying stream length

We tested the algorithm on streams whose length in-

creases from 107 to 1010, and plot how the time and

space changes in Figures 7a and 7b. We used uniformly

distributed data, with the universe size fixed at u = 232

and ε = 10−4. Elements arrive in a random order. We

observe that there is little direct effect on update time

or space usage as stream length grows, implying that

these algorithms can scale to increasingly large data

sets. Indeed, the per-element update time for Random

actually decreases, due to random sampling playing a

more major role as n goes up. The update time of the

q-digest also goes down, since the cost of Compress

is amortized over more elements, as the algorithm only

5 It is possible for the error to be affected due to more dupli-
cates in smaller universes, but we found this effect negligible
in practice.

executes Compress logn times throughout the whole

stream.

Looking at Figure 7b, we see that the space used

by GKAdaptive and GKArray is essentially flat; we con-

jecture that they have a space bound independent of
n on randomly ordered data. The space used by Ran-

dom is constant, because the buffers are pre-allocated

according to ε.

4.2.6 Conclusions for cash register algorithms

From our study, we can safely conclude that GKArray

and Random are generally the best deterministic and

randomized algorithm, respectively. Random is slightly

better than GKArray in terms of both space and time,
but the latter offers a worst-case guarantee on the error.

However, note that we still lack a guarantee on its size

as it uses a heuristic to remove tuples. On the other

hand, Random uses a fixed amount of space that de-

pends only on ε, and should be used when there is a
hard limit on space.

4.3 Results on turnstile algorithms

In this section, we compare the empirical performances

of DCM, DCS, and DCS with post processing, which
we denote as Post. We exclude the random subset sum

sketch, as its performance is much worse than these

three.

Although we are experimenting with turnstile algo-

rithms, it is not necessary to explicitly include deletions
in the data sets: it is clear that the algorithms proceed

in exactly the same way as on insertion-only data sets.

Deleting a previously inserted element completely re-

moves its impact on the data structure, so it has no ef-
fect on the accuracy, either. What matters is only those

elements that remain.

4.3.1 Parameter tuning

Recall that all the three algorithms use a sketch that
is a w × d array, for each level in the dyadic hierarchy.

Theoretically speaking, w determines the error while

d determines the confidence of obtaining an estimate

within the error bound. In Section 3 we have given

their relationships with the commonly used notion of
an (ε, δ)-error guarantee. Intuitively, both w and d are

meant to reduce the observed errors. So the question

is, given a certain total sketch size, what is the best

allocation to w and d?
To this end, we first conduct a series of experi-

ments trying out different combinations of w and d.

Specifically, for a fixed sketch size, we vary d, which in
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Fig. 8: Random order vs sorted — uniform distributed data, u = 232 and n = 108

turn determines w, and record the maximum and av-

erage errors of the computed quantiles. Here we used a

uniformly distributed data set with n = 107 elements

drawn from a universe of size u = 232. In Table 3, we
show the average errors (×10−4) of DCS using a se-

ries of sketch sizes, and find out that d = 7 appears

to be a good choice. Similarly, we did the same for the

maximum error in Table 4. We observe that for the

maximum error, we generally require a slightly larger d
(which makes sense), but still 7 appears to be a good

choice. We performed the same study for DCM and

vDCS and found that d = 7 is the best choice there

also. So we set d = 7 for all the subsequent experi-

Table 3: Tuning d for average error.

sketch size (KB)
d 64 128 256 512 1024 2048 4096

3 10.24 4.307 1.924 0.826 0.425 0.279 0.134
5 9.558 4.447 2.084 0.933 0.558 0.304 0.132

7 8.947 4.198 1.851 1.108 0.621 0.261 0.146
9 11.15 5.043 2.287 1.37 0.603 0.373 0.142
11 11.14 5.753 3.055 1.418 0.652 0.363 0.173
13 21.93 5.121 2.642 1.557 0.707 0.355 0.167

ments. We set w = 1
ε log u for DCM and w =

√
log u/ε

for DCS.
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Table 4: Tuning d for maximum error.

sketch size (KB)
d 64 128 256 512 1024 2048 4096

3 53.67 22.92 9.27 7.71 3.58 2.56 0.931
5 50.04 25.11 11.13 8.07 3.383 2.498 0.931
7 65.26 22.28 8.71 5.49 2.923 1.693 2.419
9 75.41 27.39 8.87 9.543 2.63 2.389 0.542

11 61.03 33.32 13.5 8.769 3.067 2.261 0.824
13 139.3 29.25 17.34 7.503 2.843 1.824 0.869
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Fig. 9: tradeoff between relative size and error

In Post, there is an additional parameter η which de-

termines the tradeoff between the size of the truncated

tree T̂ and the accuracy improvement. The tree size in

turn determines the running time for the post process-
ing algorithm. We conducted a series of experiments by

varying η on different values of ε = 0.1, 0.01, 0.001 on

our real data set. Figure 9 reports the size of T̂ relative

to that of the DCS sketch, as well as the reduced error

relative to that of the original DCS sketch before the
post processing. From the results we find that η = 0.1

is a sweet spot; further reducing η increases |T̂ | without
too much gain in terms of error reduction. We can see

that our post-processing algorithm is quite effective, re-
ducing the error to 20–40% of the original DCS sketch.

It works better for larger ε, which also makes sense since

DCS with a small ε is already quite accurate.

4.3.2 ε vs. actual error

In Figure 10a and 10b, we plot the actual maximum

and average errors on the real data for different ε. This

shows that the asymptotic analysis is rather loose: The

actual maximum error is typically only ε/10, while the

average error is even smaller, and Post is quite effective
at further reducing the error of DCS.

The actual errors of these three algorithms appear

similar, but note that DCM has a larger size than DCS.

Looking more closely at the curves, we see that DCM

tends to be better in terms of the maximum error, but

not as good in terms of average error. This might be due

to the fact that the Count-Min sketch gives out biased

estimators, while the Count Sketch is unbiased. Subse-

quently we will use average error as the error metric

unless specified otherwise.

4.3.3 Space

Figure 10c shows the error-space tradeoffs of the al-
gorithms. We see that to achieve the same error, DCS

require only about 1/10 of the space required by DCM.

While using the same amount of space, Post can further

reduce the error by 60–80%.

4.3.4 Time

Figure 10d shows the error-time tradeoff. Note that

since post processing is only applied at the end of the

stream and it is quite efficient, it has negligible impact

on the amortized update time of DCS, so its curve is just
that of DCS shifted to a smaller error. In the space-time

tradeoff Figure 10e, Post is thus identical to DCS, which

is also very similar to DCM.

It is also instructive to compare Figure 10c and 10d

with Figure 5c and 5e. This shows that the turnstile
model in indeed more difficult to deal with than the

cash register model. To achieve the same accuracy, the

best turnstile algorithm has to spend significantly more

space and time (roughly by an order of magnitude) than
the best algorithm in the cash register model.

4.3.5 Varying universe size

The universe size u plays an important role in the turn-

stile algorithms, as it determines the height of the dyadic

hierarchy. We tested the algorithms with data sets gen-
erated according to a normal distribution with σ =

0.15, but on different universe sizes. Figure 11a shows

two series of trade-offs between error and space: one

is on u = 216, and the other is on u = 232. Clearly,

we see that a smaller universe indeed makes the algo-
rithms more accurate, or equivalently speaking, makes

the data structures smaller. The u = 216 curves halt at

a small error value, since at this point the algorithms

have sufficient space to store all frequencies exactly.

Similarly, Figure 11b shows two series of trade-offs

between error and update time for different universe

sizes. Again, a small universe makes the algorithms

much faster.

4.3.6 Varying data skewness

Finally, we tested the algorithms on data sets with dif-

ferent levels of skewness. We used data generated by

a normal distribution with σ = 0.05 and 0.25. Data
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Fig. 11: Varying the universe size on the Normal distributed data, σ = 0.15

skewness does not obviously affect space or time (for

a given ε), so we only show how the actual errors re-

spond, in Figures 12a and 12b. From the figures, we
see that as the data gets less skewed, the accuracy im-

proves for all three algorithms. The improvement for

DCM is very small, but it is more prominent for DCS

and consequently for Post. This again is predicted well

by the theory: Although in this paper, we analyzed the
error of the Count Sketch in terms of n in order to get

the theoretical bound, its error actually depends more

closely on the second frequency moment of the data,

F2 [5]. As the variance decreases, F2 decreases, and the
Count Sketch gets more accurate. On the other hand,

the Count-Min sketch does not depend directly on F2.

4.3.7 Conclusions for turnstile algorithms

From the experiments, it should be clear that DCS is the

preferred turnstile algorithm for computing quantiles.

DCM uses a much larger amount of space than DCS.

The running time of the two algorithms are similar.

Finally, the post-processing algorithm is always benefi-
cial to DCS, incurring no more space and time (during

streaming) while being quite effective at further reduc-

ing the error.
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A Additional lemmas and proofs

A.1 Size of the truncated tree T̂

Lemma 1 The truncated tree T̂ has size O(1
ε
log u) in ex-

pectation.

Proof Recall that only nodes whose estimated frequency is
above ηεn are added to the truncated tree T̂ , where η is a
constant. We classify these nodes into heavy nodes and non-
heavy nodes. A node is heavy if its true frequency is above
1
2
ηεn, and non-heavy otherwise.

We first observe that, on any level of the dyadic structure,
there are at most n

1

2
ηεn

= O(1/ε) heavy nodes, treating η as

a (small) constant. So even if they are all added to T̂ , there
are only O(1

ε
log u) of them in total.

For a non-heavy node v, the Count-Sketch may overesti-
mate its frequency to above ηεn with a constant probability,
say 1/4. Note that there can be Θ(u) non-heavy nodes being
overestimated in expectation, but we will argue below that
only O(1

ε
log u) will be added during the top-down construc-

tion of T̂ .
Note that for a non-heavy node to be added, its parent

must be a heavy node or another non-heavy node that has
been overestimated. Thus, all the non-heavy nodes in T̂ make
up a number of subtrees, where the root of each subtree must
be a child of a heavy node. Let t be any such non-heavy
subtree, and we will bound E[|t|]. Let r be the root of t.
For any node v below r, let Iv be an indicator variable where
Iv = 1 if v ∈ t and Iv = 0 otherwise. Let d(v) be the depth of
v in t, and we define d(r) = 0. For v to be added to t, all of its
d(v) ancestors must have been added, so E[Iv] ≤ (1/4)d(v)+1

since each level uses an independent Count-Sketch. We then
have

E[|t|] =
∑

v below r

E[Iv]

=
∑

v below r

(1/4)d(v)+1

≤
log u
∑

d=0

2d(1/4)d+1 ≤ 1.

Finally, we observe that at most two such t’s can be at-
tached to a heavy node, and there are only O(1

ε
log u) heavy

nodes, so we conclude that there are O(1
ε
log u) non-heavy

nodes in T̂ in expectation.

A.2 Constraints on the x∗
i ’s

Lemma 2 Let x∗ be the BLUE of (1). Let λv be any solution
to (2). For any leaf w, let Zw = λw

∑

z∈anc(w)\r yz/σ2
z , and

for any internal node v, Zv =
∑

w≺v λwZw. For any node v
except the root r, let Fv =

∑

w∈anc(v)\{r} x∗
w/σ2

w. Let ∆ =

(Zr − yrπr’s left child)/λr. Then we have

{

x∗
r = yr,

x∗
v = (Zv − λvFparent(v) − λv∆)/πv , for all nodes v 6= r.

Proof We will follow the method of Lagrange multiplier [19]
to find the BLUE of (1). Since only the subtree root is known
exactly, we introduce a single Lagrange multiplier η. We set
σ2
r = 1/η instead of 0, and will later take the limit as η goes
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to ∞. Denote by diag(1/σv) the diagonal matrix with 1/σv

at entry (v, v). We further define Z = diag(1/σv)y and U =
diag(1/σv)A. Then the Lagrange function can be rewritten
as (Z − Ux∗)T (Z − Ux∗). By differentiation, we can derive
(i) yr = x∗

r ; and (ii)

UTUx∗ = UTZ. (4)

This is sufficient to define a solution; we can solve for x∗

by premultiplying by (UTU)−1, at the cost of a computing
a matrix inverse. In the following, to derive the equations
stated in the lemma from (4), which leads to a much more
efficient algorithm to compute x∗.

Let anc(u, v) = anc(u)∩anc(v). Let u be any node of Tr.
We also use [τ ] denote the τ leaves of Tr. Then by simple
calculation, we can see that (UTU)u,w =

∑

v∈anc(u,w) σ
−2
v ,

and (UTZ)u =
∑

v∈anc(u) yv/σ
2
v .

First, we take the weighted sum of corresponding rows on
the LHS of (4) to obtain

∑

u≺v λu(UTU)ux∗ =

∑

u≺v

∑

z∈[τ ]





∑

w∈anc(u,z)\anc(v)

λux∗
z

σ2
w

+
∑

w∈anc(u,z)∩anc(v)

λux∗
z

σ2
w





=
∑

u≺v

∑

z≺v

∑

w∈anc(u,z)\anc(v)

λux∗
z

σ2
w

+
∑

w∈anc(v)

∑

u≺v

∑

z≺w

λux∗
z

σ2
w

=
∑

u≺v

∑

w∈anc(u)\anc(v)

λu

σ2
w

∑

z≺w

x∗
z +

∑

w∈anc(v)

∑

u≺v

x∗
w

σ2
w

λu

=
∑

u≺v

∑

w∈anc(u)\anc(v)

λux
∗
w/σ2

w + λv

∑

w∈anc(v)

x∗
w/σ2

w.

(5)

Note that in the last line of (5), the second component
can be written as

λv

∑

w∈anc(v)

x∗
w

σ2
w

= λv(Fparent(v) +
x∗
v

σ2
v

+
x∗
r

σ2
r

).

We can also derive that the first component is

∑

u≺v

∑

w∈anc(u)\anc(v)

λux∗
w

σ2
w

= (πv −
λv

σ2
v

)x∗
v .

To see this, let us assume that this holds for any descen-

dant of v. Then we can derive
∑

u≺v

∑

w∈anc(u)\anc(v)

λux
∗
w

σ2
w

=
∑

{s is a child of v}

∑

u≺s





λux∗
s

σ2
s

+
∑

w∈anc(u)\anc(s)

λux∗
w

σ2
w





=
∑

{s is a child of v}





λsx∗
s

σ2
s

+
∑

u≺s

∑

w∈anc(u)\anc(s)

λux∗
w

σ2
w





=
∑

{s is a child of v}

(
λsx∗

s

σ2
s

+ (πs −
λs

σ2
s

)x∗
s)

=
∑

{s is a child of v}

πsx
∗
s = πsx

∗
v = (πv −

λv

σ2
v

)x∗
v .

Combining the above two results, we have

∑

u≺v

λu(U
TU)ux

∗ = πvx
∗
v + λv(

x∗
r

σ2
r

+ Fparent(v)). (6)

Secondly, we take the weighted sum of corresponding rows
on the RHS of (4) to obtain

∑

u≺v

λu(U
TZ)u =

∑

u≺v

λu

∑

w∈anc(u)

yw

σ2
w

=
∑

u≺v

λu(Zu +
yr

σ2
r

) = Zv +
λvyr

σ2
r

.

(7)

Finally, by combing (6) and (7), we derive that ∀v,

πvx
∗
v = Zv − λvFparent(v) − λv(x

∗
r − yr)η. (8)

Substituting v by r in (8), we can derive

x∗
r =

(Zr

η
+ yrλr)

(πr

η
+ λr)

.

We already have x∗
r = yr. Then we can conclude that

either η = +∞ or yrπr = Zr. As we know, yr is given and
irrelevant to πrZr which implies η = +∞. To handle this
infinity, we first express

∆(η) = (x∗
r − yr)η = (Zr − yrπs)(πr/η + λr),

where s is a child of root r. Now we take limit of ∆(η) and
derive that

∆ = lim
η→+∞

∆(η) = (Zr − yrπs)/λr .

Finally by taking limit on (8) for any v 6= r, we derive x∗
v =

(Zv − λvFparent(v) − λv∆)/πv , and the lemma is proved.

A.3 Covariance analysis

Lemma 3 Suppose we build a Count-Sketch with d = 1
row and w columns on a vector x. For any two elements
u 6= v, let yu and yv be the estimators for xu and xv. Then
Cov(yu, yv) = xuxv/w.

Proof Recall that in the Count-Sketch, for any element v, the
estimator is computed as yv = g(v)

∑

z g(z)xzIv(z), where
Iv(z) = 1 if h(v) = h(z) and 0 otherwise. So we have

Cov(yu, yv) = E(yuyv)− E(yu)E(yv)

=E







g(u)
∑

h(i)=u

g(i)xi







g(v)
∑

h(j)=v

g(j)xj







− xuxv

=
∑

i,j

E[g(u)g(v)g(i)g(j)]xixjE[Iu(i)Iv(j)]− xuxv

Let f(i, j) = E[g(u)g(v)g(i)g(j)]xixjE[Iu(i)Iv(j)]. We find
that f(u, v) = xuxv and f(v, u) = xuxv/w (note, the last
term in f(i, j) is not symmetric in i and j). If {i, j} 6= {u, v},
then f(i, j) = 0, since g(·) is 4-wise independent hash func-
tion. Therefore, we derive that Cov(yu, yv) = xuxv/w.

On the other hand, prior analysis on the Count-Sketch
shows that Var(yv) =

1
w

∑

i x
2
i . Thus, the covariance is usu-

ally order-of-magnitude smaller than the variance.


