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ABSTRACT In the current study, the wettability between molten slag and dolomitic refractory 

materials used in the ladle during steel refining was investigated. The contact angle between molten 

slag and dolomitic substrate decreased with increasing temperature. The slag with lower basicity 

spread on the substrate more easily and penetrated deeper into the substrate. The penetration depth of 

slag into the refractory increased with the extension of holding time. The CaO in the refractory 

dissolved into slag which was then saturated with CaO. The reaction between slag and substrate 

resulted in the formation of solid Ca3SiO5, which slowed down the further penetration of slag into the 

refractory. 
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1. Introduction 

The dolomitic refractory is widely used for containment of steel melts during steelmaking and 

refining, especially in the production of special steels and clean steels[1-3], due to its excellent high 

temperature stability, slag erosion resistance and peeling resistance[4]. Compared with MgO-C 

refractory, dolomitic refractory will not cause the increase of carbon in molten steel. Besides, CaO in 

dolomitic refractory can purify the molten steel by removing inclusions from molten steel[5-7]. Based 

on the previous advantages, the dolomitic refractory plays an important role in the production of 

stainless steels. However, the application of dolomitic refractory is restricted to the hydration of free 

CaO[4, 8] at room temperature and the low erosion resistance of low basicity slag[1]. In MgO-based 

refractory, MgO was proved to be less reactive during the manufacture of refractory[5, 6, 9, 10] as well as 
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during the erosion of refractory. The main erosion focuses on the reaction between slag and CaO[11].  

The consumption of refractory is one of the major costs  of steel production. Compared with the 

hydration of CaO contained refractory, the erosion of refractory is the most important reason for the 

wear of refractory [12]. According to Cooper[13], the erosion of oxides is not only caused by the 

dissolution or evaporation of the oxides, but also the penetration of liquid phase into the oxides. 

Penetration of slag into refractory, which is closely related to the wettability between slag and 

refractory, mainly through pores, grain boundaries and cracks under capillary force. 

Ladle Furnace (LF) process is a widely-used secondary steel refining process. During LF process, 

three electrodes are used to heat the molten steel to the required temperature. By blowing argon gas, 

adding alloys, and adjusting slag composition, molten steel is deoxidized, desulfurized and alloyed. 

The erosion of lining refractory not only relates to the chemical reaction, but also some physical 

processes. The penetration of molten slag into refractory and then the dispersion of refractory grains 

into slag is one of the damage mechanisms of the refractory. Since the temperature increases during 

LF process, the wettability between molten slag and refractory varies. Furthermore, the slag basicity 

also varies during the refining of steel.  

Monaghan et al.[14] investigated the dynamic wetting of slags with different compositions on solid 

oxides representing inclusion phases (Al2O3, MgAl2O4 and CaO·Al2O3), and concluded that for basic 

type ladle slags the plateau contact angle was independent of slag composition and for acid type slags 

the plateau contact angle decreased with increasing basicity. Choi and Lee[15] conducted a number of 

experiments with different slag compositions and the results showed that the effect of slag basicity on 

the wettability depended on the slag composition. The slag basicity might have an opposite effect on 

the wettability in different composition regions. In the region of low SiO2 content, the slag with higher 

CaO content exhibited a smaller contact angle. 

The existing researches mainly focused on the wettability between slag and single component 

substrate representing for inclusion. The interaction between slag and refractory substrate as well as 

the influence of slag basicity on the penetration were not clearly indicated. In the current study, the 

wettability between slag and dolomitic ladle lining refractory used for the LF refining of a stainless 

steel was studied. Experiments were conducted to analyze the effects of slag basicity and holding time 

on the wettability. 



- 3 - 
 

2. Sample preparation 

The slag sample was taken during LF refining process in a steel plant. It was the final slag of LF 

refining process, which was usually considered stable in composition. It was pulverized after cooling 

down, and became powder containing some iron droplets. The sample was sieved through a 100 mesh 

sifter to remove iron droplets. After being well mixed, the slag sample was pressed into a cylinder of 

0.20 g for each experiment. 

The ladle lining refractory brick chosen for the wettability experiment was the one before service, 

which was completely new. The refractory brick was crushed and ground to small particles, and then 

the powder was tabletted into thin substrates with 30 mm in diameter and 3 mm in thickness. The 

substrates were sintered at 1600 oC for 2 h. After sintering, the substrates were polished and the surface 

roughness of the final substrates were 0.4~0.6 μm.  

The chemical composition of slag and refractory determined by XRF are given in Table 1 and Table 

2 respectively. The refractory mainly consisted of MgO and CaO, while the slag mainly consisted of 

CaF2-CaO-SiO2, and both of them contained small amount of other oxides. The basicity of the slag 

was 2.24. Considering the possible working condition of the refractory[1, 16], five other slags with 

basicity of 2.5, 2.0, 1.75, 1.5 and 1.25 as listed in Table 3 were prepared by adding certain amounts 

of SiO2 or CaO. 

Table 1 Chemical composition of LF slag 

Composition CaF2 CaO SiO2 MgO Al2O3 CaS MnO Fe2O3 Cr2O3 TiO2 

Content(%) 13.86 54.79 24.51 3.60 1.06 1.23 0.11 0.26 0.24 0.31 

 

Table 2 Chemical composition of ladle lining refractory 

Composition MgO CaO SiO2 Fe2O3 Al2O3 MnO S P2O5 Cr2O3 TiO2 

Content(%) 56.70 39.80 1.55 1.22 0.52 0.09 0.03 0.04 0.03 0.03 

 

Table 3 Slags with different basicity 

Slag A B C D E F 

Basicity 2.5 2.24 2.0 1.75 1.5 1.25 

3. Experimental setup and procedure 
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The wettability is usually described by contact angle. In the current study, the sessile drop method[17] 

was employed to measure the contact angle between molten slag and dolomitic refractory. The 

measurement of contact angle was conducted in a horizontal tube furnace. The experimental setup is 

shown in Figure 1. The substrate and the slag sample were placed in the constant temperature zone of 

the alumina tube. Both sides of the tube were sealed by flange plates equipped with quartz glass. The 

temperature rose from room temperature to the desired temperature at a heating rate of 5 oC/min. The 

experiment was conducted in Ar gas (purity 99.999 vol pct), which was purified by Ar purification 

device and magnesium powder at 600 oC. The light of the lamp passed through the tube and the shadow 

of samples was recorded by a CCD camera, simultaneously the temperature and time were also 

recorded. The profile of the liquid drop was extracted by ellipse fitting using a software. The contact 

angle was obtained by drawing the tangent line of the ellipse at the three-phase contact point. In the 

current study, eight experiments were conducted to study the effects of slag basicity and holding time 

on the wettability. 

 

  

(a) Front view (b) Side view 

Fig.1 Experimental setup 

 

  After the measurement of contact angle, the samples were still protected by Ar gas till the furnace 

was cooled down to the room temperature. During cooling, the slag was completely pulverized. After 

removing the powder, the substrate was cut perpendicularly from the center, and the cross section was 

analyzed by SEM-EDS. 

4. Results 

4.1 Contact angle between molten slag and dolomitic substrate 

The slag usually melts gradually with the rising of temperature in a wide range. The height of the 

slag decreases with the spreading of slag on the substrate. In the current study, the hemisphere point 

temperature is considered as the melting point of the slag, and the temperature range corresponding to 

five-sixths and one-third of the initial height (represented by H) of slag is considered as the melting 



- 5 - 
 

temperature range. Both the melting point and melting temperature range are empirical values that 

have been widely used[18, 19]. The temperatures measured by this method are shown in Figure 2. The 

slag with higher basicity had higher melting point and wider melting temperature range. 
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Fig. 2 Melting temperature of slags with different basicity 

 

Once the slag melted and formed an obvious liquid phase at the three-phase point, the contact angle 

was defined as the initial contact angle in the current study. The initial contact angle was approximately 

55o. Figure 3 shows the contact angle between slags with different basicity and refractory substrates. 

When the basicity of slag increased from 1.25 to 2.5, the temperature corresponding to the initial 

contact angle increased. The slag with lower basicity had lower contact angle at the same temperature. 

The contact angle between the slag with lower basicity and dolomitic substrate decreased fast and 

finally reached a low value. According to the work done by Monaghan[14] et al. and Choi[15] et al., the 

effect of slag basicity on the contact angle might be quite different for different slag compositions. In 

the current study, the contact angle between slag with lower basicity and substrate was smaller, which 

was in consistent with Choi’s result. However, the reaction product for all the slags are the same, which 

will be shown in the following part, the stable contact angle varied little. Figure 4 shows the contact 

angle between slags and refractory substrates with different holding time. After 120 minutes, the 

contact angle reached a stable value of approximately 5o. 
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Fig. 3 Contact angle between refractory and slags with different basicity 
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Fig. 4 Contact angle between refractory and slags with different holding times 

Figure 5 shows the evolution of slag morphology at different temperatures. The slag with basicity 

of 2.24 melted in a wide temperature range and spread on the substrate slowly. The contact angle 

gradually decreased with the spreading of slag. The spreading of slag and the decrease of contact angle 

in the isothermal stage were much slower compared with those in the temperature rising stage. The 

other slags show the similar melting process, but in different temperature ranges and at different 

spreading rates. 

   

(a) 1200oC (b) 1300oC (c) 1400oC 

   

(d) 1500oC (e) 1550oC (f) 1566oC 

Fig. 5 Morphology of the slag with the basicity of 2.24 at different temperatures 
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4.2 Penetration of slag into substrate 

The cross section of substrates after experiment were analyzed by SEM-EDS. As a reference, 

another substrate without involving in the wetting experiment was prepared in the same way. Figure 

6 shows the SEM images of the two substrates. The original substrate mainly consisted of several big 

grains (<150 μm), large amount of small grains (~7 μm) and the continuous phase among grains. Some 

pores distributed along the margin of big grains. The EDS result confirmed that both big grains and 

small grains were MgO, and the continuous phase was CaO. Small amount of impurities mainly 

existed in the CaO phase. The substrate after experiment showed similar structure. However, part of 

CaO was replaced by the penetrated slag phase. Figure 7 shows the composition distribution of the 

substrate. Since the slag was pulverized during cooling, only a thin slag layer stuck on the substrate. 

The composition of the slag layer above the substrate detected by EDS indicated little difference with 

the penetrated slag in the substrate. The typical composition of different locations presented with 

different color is listed in Table 4. Considering the inaccuracy of EDS for the element fluorine, the 

detected CaF2 content might be lower than the true value, leading to a higher content of CaO, 

especially for the light grey area in Table 4. The slag penetrated into the substrate through grain 

boundaries, micro-cracks and pores. All the other substrates showed similar structures and 

compositions. 

  

(a) Without being involved in the wetting 

experiment 
(b) Involved in the wetting experiment 

Fig. 6 SEM image of the substrate 
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Fig. 7 Composition mapping of the cross section of one substrate 

Table 4 EDS composition at different locations 

Slag basicity  CaO SiO2 Al2O3 MgO Fe2O3 CaF2 TiO2 MnO Cr2O3 

2.24 

Light Grey 82.78 15.34 0.27 0.47 0 0.44 0.12 0.37 0.21 

Grey 96.47 0.32 0.14 1.74 0.53 0.15 0.25 0.29 0.11 

Dark grey 2.17 0.16 1.13 91.96 1.82 0.77 0 0.58 1.42 

 

Since the penetration of slag into refractory substrate was hardly uniform along the interface, no 

remarkable penetration layer could be observed, the line scanning perpendicular to the surface of the 

substrate could hardly accurately illustrate the penetration depth of the slag. In the current study, 

several equally spaced locations at the interface between slag and substrate were chosen to perform 

EDS composition mapping. The scanning started from the interface to the inner of the substrate, as 

shown in Figure 8. Then, the result of the EDS mapping was converted to intensity data according to 

the gray value of scanning point. The distribution of elements were finally represented in the form of 

oxide, which is shown in Figure 9. It indicated that the magnesia did not dissolve into the slag , and 

the distribution of silica and magnesia could be used to represent the slag and substrate respectively. 

The outline of the magnesia characterized by red line in Figure 9(c) represented the interface between 

the slag and the substrate. Thus, the distribution of silica in Figure 9(a) was separated into two parts, 

only the silica below the interfacial line was the penetrated slag, shown in Figure 9(c), and that above 

the interfacial line was the slag stuck on the surface. 
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Fig. 8 Schematic of the scanning area 

  

 

(a) Silica (b) Magnesia 
(c) Boundary of the penetrated 

slag characterized by silica 

Fig. 9 Distribution of silica and magnesia 

Figure 10 and Figure 11 show the distribution of silica in the substrate after experiment. Slag F 

spread out of the margin of the substrate in a short time, so that only small amount of slag left on the 

substrate, and no obvious penetration was observed. Both of the substrates contacted with slag D and 

E cracked during cooling, mainly caused by the penetration of slag and the different expansion 

coefficients of the three phases listed in Table 4. The substrate contacting with slag D was seriously 

broken that no such intact cross section of the substrate could be prepared to show the element 

distribution.In all experiments, the silica-rich area didn’t locate at the center where the slag contacted 

with the substrate during all the experiment time. Instead, the silica concentrated in one ring between 

the center and the margin of the contact area. Figure 12 illustrates the schematic penetration 

phenomenon. 

   

(a) Basicity = 2.5 (b) Basicity = 2.24 (c) Basicity = 2.0 
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(d) Basicity = 1.5 (e) Basicity = 1.25  

Fig. 10 Penetration of slag with different basicity into refractory characterized by silica 

   

(a) 1h (b) 2h (c) 3h 

Fig. 11 Penetration of slag into substrate with different holding times characterized by silica 

 

Fig. 12 Schematic of the penetration area 

5. Interaction between slag and substrate 

After the measurement of contact angle, the surface of the substrate and the pulverized slag together 

with the original sample were detected by XRD and the results are shown in Figure 13. 
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Fig. 13 XRD result of substrates and slags 

There were  no big differences between the pulverized slag and the original slag. The main 

composition in the slag was γ-Ca2SiO4. The phase transformation of Ca2SiO4 during cooling was the 

main reason for the pulverization of slag[20]. Compared with the original substrate, the composition of 

slag stuck on the substrate was quite different from that of the pulverized slag. Except for MgO and 

CaO, , Ca3SiO5 phase which was formed above 1250 oC was generated in the substrate during the 

experiment according to Equation 1. The chemical reaction mainly occurred at the interface. CaO in 

the dolomitic substrate provided the source for the formation of Ca3SiO5, meanwhile, MgO promoted 

the formation of Ca3SiO5
[21].  

Ca2SiO4+CaO=Ca3SiO5         (1) 

The mass of slag in each experiment was 0.2 g. Taking the main compositions in the slag, i.e. CaF2-

CaO-SiO2-MgO-Al2O3, into consideration, the equilibrium phases are calculated by Factsage 7.0. 

Most of CaO is transformed to complex compounds or dissolved into liquid slag, while part of MgO 

in the slag is kept unreacted, as shown in Figure 14. When the slag contacts with the dolomitic 

substrate, CaO and MgO in the substrate may react with or dissolve into the liquid slag. Assume that 

2.0 g slag reacts with 5.0 g dolomitic, and the dolomitic substrate only contains MgO and CaO. The 

ration of CaO and MgO in dolomitic substrate participating in the reaction between slag and substrate 

are shown in Figure 15. MgO in the substrate is inert under the experiment condition. only CaO in the 

substrate can react with or dissolve into the slag, which means that the spreading and penetration of 

slag are not only a physical process but also a chemical process. Except for the traditional channels, 

such as grain boundaries, micro cracks and pores, the liquid slag may penetrate into the substrate 

through the channel where CaO exists once CaO dissolves into the liquid slag. 

 

Fig. 14 Unreacted MgO in the slag 
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(a) CaO (b) MgO 

Fig. 15 CaO and MgO in the substrate participating in the reaction between slag and substrate 

 

6. Factors affecting the penetration depth 

6.1 Slag basicity 

As is mentioned above, there were large grains, irregular pores and micro-cracks in the substrate, 

providing channels for the penetration of slag. The slag penetrated into the substrate much deeper at 

the location with more pores. However, the distribution of pores was hardly uniform. As a result, the 

largest penetration depth was random and the amount of the penetrated slag was small at the deepest 

penetrated location. In the current study, considering the SEM images and the scanning intensity, the 

largest penetration depth of the slag was only focused on the silica-rich area, not including the trace 

content at deeper area. The red line shown in Figure 10 and Figure 11 indicates the interface between 

slag and substrate, and is defined as the zero penetration depth. The largest penetration depth in the 

two figures are marked by bold white line. The largest penetration depth of the four substrates are 

shown in Figure 16, indicating the relationship between slag basicity and penetration depth. The slag 

with lower basicity had larger penetration depth. Similar results were reported by Luz[22]. In the current 

study, the largest penetration depth was 178 μm for the slag with basicity of 1.5. 
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Fig. 16 Penetration depth of the slag with different basicity 

The slag penetrated into substrate mainly through grain boundaries, micro cracks and pores. The 

capillary force was the driven force for the penetration of slag. The wettability between molten slag 

and substrate was one of the important factors that affecting the capillary force. Slag with lower 

basicity wet the substrate more easily (Figure 3). Therefore, a larger penetration depth could be 

obtained. 

CaO coming from the substrate might dissolve into the liquid slag, providing the channel for the 

penetration of slag. The capacity for the dissolution of CaO depended on the CaO saturability of the 

slag. Figure 17 shows the saturated CaO content in all liquid slags. There were no big differences 

between the different slags. Since the slag with higher basicity contained more CaO, fewer would 

come from the substrate. On the contrary, for the slag with lower basicity, more CaO coming from the 

substrate would dissolve into the liquid slag, providing extra penetration channel and causing the 

increase of penetration depth. By the way, the increase of temperature accelerated the dissolution of 

CaO from substrate. 
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Fig. 17 Variation of saturated CaO in liquid slag 
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6.2 Contact time 

Figure 18 shows the relationship between holding time and penetration depth. With the increase of 

holding time, the penetration depth increased. Heo[23] et al. studied the reactive wetting phenomena of 

MgO-C refractories in contact with CaO-SiO2 slag and concluded that an intrinsic contact angle 

existed during initial 4s without chemical reaction. Park[24] et al. also indicated that during the initial 

short period, the dissolution of oxide into slag was neglected. In the current study, when the newly 

contact area was covered by the slag, the initial penetration was caused by the flow of slag through 

grain boundaries, micro cracks and pores without any reaction. The initial penetration finished in a 

short time, within which the dissolution of the solid oxide into the slag was relatively slow[25]. The 

following penetration was accompanied with the dissolution of CaO until the slag was saturated with 

CaO. Once the Ca3SiO5 was generated, the solid phase under the experiment temperature would 

prevent the flow of the original slag. The further penetration of slag was caused by diffusion. Equation 

2 shows ideal penetration depth for an unreactive system. Both the penetration of slag according to 

Equation 2 or the diffusion of slag were closely related to the time, the increase of time lead to the 

deeper penetration. Pretending that other parameters are replaced by a penetration rate k, as shown in 

Equation 3. The penetration rate k is approximately 58 μm/h0.5 according to Figure 18. Meanwhile, 

the CaO also diffused to the slag phase. In Figure 12, the silica-rich area provided a relative big 

interfacial area between the penetrated slag and the dolomitic substrate for the diffusion of CaO. As a 

result, the silica-rich area in the substrate was also the area of slag saturated with CaO above the 

substrate.  

   
c o s

2

r
X t

 


                                (2) 

X k t            (3) 

where X is the penetration depth, r is the radius of the capillary channel, γ is the surface tension of the 

liquid phase, θ is the contact angle, η is the viscosity and t is the penetration time. 
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Fig. 18 Penetration depth of the slag with different holding times 

Although the contact time between slag and substrate in the center was longer than that in the margin, 

the initial contact in the center caused the primary formation of Ca3SiO5, even before the melting of 

slag. Thus the shallow penetration depth in the center was observed.  

7. Conclusions 

(1) In the current study, the contact angle continuously decreased with the increase of temperature. 

The stable contact angle between the substrate and the slag saturated with CaO at 1566 oC was 

approximately 5o. 

(2) MgO in the dolomitic substrate did not react with or dissolve into slag for all slags in the current 

study. The CaO in the dolomitic substrate might react with or dissolve into liquid slag. The substrate 

could provide extra penetration channel once the CaO dissolved into liquid slag, accelerating the 

penetration of slag. The CaO in the substrate also reacted with slag and formed Ca3SiO5, preventing 

the penetration of slag. 

(3) Slag with lower basicity started to wet the substrate at lower temperature, and the contact angle 

decreased fast in a narrow temperature range in the temperature rising stage. The final stable contact 

angle showed no big differences between all slags, i.e. approximately 5o. The strong reactive wetting 

between slag with lower basicity and dolomitic refractory was one of the reason for the fast decrease 

of the contact angle. 

(4) Slag with lower basicity had bigger capacity for the dissolution of CaO, thus achieved larger 

penetration depth in the substrate. The largest penetration depth was 178 μm for the slag with basicity 

of 1.5. 
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(5) With the increase of holding time from 1 h to 3 h, the contact angle between slag and substrate 

decreased from 10.5o to 5.0o, and the penetration depth of slag increased from 55 μm to 100 μm. 
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