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SMARTER – LIGHTER – GREENER: 

Research Innovations for the Automotive Sector 

Professor Lord S K Bhattacharyya FRS, FREng  

 

ABSTRACT 

This paper reviews the changing nature of research underpinning the revolution in the automotive 

sector.  Legislation controlling vehicle emissions has brought urgency to research, so we are now 

seeing a more rapid development of new technologies than at any time in the past century.  The 

light-weighting of structures, the refinement of advanced propulsion systems, the advent of new 

smart materials, and greater in-vehicle intelligence and connectivity with transport infrastructure all 

require a fundamental rethink of established technologies used for many decades – defining a range 

of new multi-disciplinary research challenges.  Whilst meeting escalating emission penalties, cars 

must also fulfil the human desire for speed, reliability, beauty, refinement and elegance, qualities 

that mark out the truly great automobile.     

 

Key Words:  advanced propulsion, automotive, light-weighting, low-carbon. 

 

INTRODUCTION 

My research vision has focused on enabling engineering breakthroughs that address the major 

economic, technological, and societal challenges which transform the global automotive sector.  

The Warwick Manufacturing Group (WMG), which I founded in 1980, has been dedicated to 

creating research innovations and sharing knowledge to transform a global range of businesses and 

universities through collaborative research, doctoral programmes and bespoke executive training.  

Our proposition is that through this approach both academic research excellence and industrial 

relevance can be achieved. 

Since the founding of WMG, we have focused on collaborative research that enables the automotive 

industry to create vehicles that are, in engineering terms, superior to their predecessors and address 

consumer and societal needs better than the global competition.   

Over the decades, addressing this vision has required a response to very different challenges.  In the 

nineteen fifties and sixties the key forces driving the automotive sector were Europe’s growing 

post-war prosperity and ‘the white heat of technology’.  In the seventies and eighties it was ‘oil 

shocks’, the rise of computing, stricter safety legislation, and overseas competition.  In parallel, 

managers and unions had to address the consequences of technological change on labour relations.  

In the last two decades, major trends have been global markets, information networks and tighter 

climate change legislation.  The automobile has evolved throughout this period, where the allure 

and desirability of the vehicle has been maintained through step changes in safety, emission levels, 

fuel consumption, driver assistance and connectivity.  The images in Figure 1 depict this evolution 

through Jaguar cars:  E-Type (1961 – 1975), XK (1996 – 2014) to the current F-Type introduced in 

2013. 
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Figure 1 - The Changing Face of the Automobile through the Decades   

Research has to address an ever increasing pace of change.  It reacts to major challenges and 

perturbations, for example the ‘oil shock’ enabled more fuel efficient engines coupled with a 

removal of lead in petrol.  Today, the requirement to reduce CO2 and other emissions is leading to 

electric and hybrid propulsion and autonomous vehicles; this opens up research questions regarding 

the end-of-life of lithium batteries.  Alongside these changing technological and societal needs, cars 

must also fulfil the human desire for speed, reliability, beauty, refinement and elegance, qualities 

that mark out the truly great automobile.  For an engineer, any solution to these challenges that is 

overly complex or impractically expensive is no solution at all.  Responding to these pressures has 

meant that for thirty-five years, we at WMG have developed technologies which make cars, and 

indeed companies, smarter, lighter, and greener. 

WMG’s first decade saw our research focus predominantly in automotive and aerospace 

manufacturing.  These major industries have remained core to our research.  Insights that our 

research advanced in these sectors led to research in our second decade in new sectors such as 

construction, defence, pharmaceuticals, and telecommunications.  Our third decade embraced 

services including health, finance and rail.  All are sectors where strong understanding of linked 

innovations in technology and processes can enable major societal impacts; for example, through 

our Institute of Digital Healthcare, delivered in partnership with the University of Warwick’s 

medical school, NHS and industry and working closely with the Academic Health Sciences 

Network.  

In this paper, I introduce the contribution my research and that of the WMG research group has 

made to the UK’s international competitiveness and societal priorities, in the context of changing 

social needs and scientific advance.     
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SMARTER 

The most significant challenge we faced in 1980 was to transform industrial design and production 

through ground-breaking computing technologies.  In the 1950s and 60s industrial design was paper 

based, with meticulous one-off drawings produced in each companies drawing offices, and 

suppliers making components to print - stifling creativity in the supply chain (Figure 2).    In the 80s 

there was the emerging impact of Computer Aided Design and Computer Aided Manufacture 

(CAD/CAM); and now the power of high-performance computers and virtual reality where 

companies and their suppliers and customers can co-design future products and assess their 

performance in use prior to manufacture (Figure 2). 

 

Figure 2 – The Evolution of Advanced Design  

Each shift was resisted by some in the industry who were familiar with the old and unsure of the 

new.  However, each innovation offered very significant advantages to those willing to embrace 

them.  From the outset, I decided that WMG would be a pioneer in using CAD/CAM to create 

engineering solutions for the automotive and aerospace sectors.  

It was important not only to apply the technology ourselves, but to create a generation of engineers 

who were comfortable with this fast developing side of the industry.  This combination of people 

and technology led to WMG’s research to support the creation of the British Leyland (BL) K-series 

engine (Figure 3).  BL required a modern, lightweight engine design to compete with emerging 

international competition.  They did not have the resources to design, develop and manufacture such 

an engine in the traditional manner.  BL approached WMG to assist in creating an innovative 

solution; for two years, we deployed our experience in CAD/CAM, materials and process 

management to enable BL to create a revolutionary new engine design.  

Instead of an engine block held together by a series of bolts at different points and angles, we 

applied a single long bolt.  This reduced complexity and weight, but required absolute precision in 

casting.  To achieve not only the design, but the production of this engine, computer simulation 

technologies were applied to every aspect of manufacturing - developing an aluminium casting 

process that utilised a fully automated robotic production line to produce an engine with low weight 

and high thermodynamic efficiency.  The new technology was based on fundamental research as 

well as ground-breaking design and we were privileged to work with BL in the endeavour.  
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Figure 3 – The Ground-breaking BL K-series Engine 

WMG has subsequently been one of the pioneers in the introduction of digital technology to 

manufacturing, with CAD/CAM, product life-cycle management, simulation and modelling, 

robotics, and embedded systems featuring prominently in our research agenda of the past twenty 

years.   

In 2005, recognising that advances in data connectivity would have huge consequences for the 

physical realm, and that traditionally engineered products and production systems were slow to 

apply the potential uses of large scale digital information and processing power, I spoke of the ‘holy 

grail’ of systems integration and the emergence of a world platform of connectivity that previous 

generations of engineers could only dream about 
1
.  This has come rapidly to fruition, with virtual 

testing enabling designers to anticipate how a system will perform, simulate how it will interact 

with users, and discover when it might fail, all without leaving the laboratory.  For example, 

avoiding unnecessary noise and providing the best experience is a key aspect of vehicle design.  

Sound quality engineers in companies are responsible for understanding and/or conducting the 

physical and perceptual measurement of automotive sound 
2
.  Significant research has been 

conducted into the appropriateness of data capture techniques, including the compromise between 

the accuracy of the results, level of discrimination between stimuli and the time needed for 

realisation of the test 
3
.  We have enabled this process through research led by Professor Paul 

Jennings to capture a person’s subjective reaction to sound and translate this into engineering design 

parameters 
4
.  This enables the power and refinement of an attractive engine sound to be captured in 

the vehicles distinctive ‘DNA’ which you now hear, for example, in the acoustic delivery of the 

Jaguar F-Type.  This expertise has been captured by Bruel and Kjær in their PULSE NVH 

Simulators, which enable automotive company Chief Engineers to approve Noise Vibration 

Harshness (NVH) targets in an interactive, context-rich environment, based on synthesised sounds 

in the early stages of design, reducing the need for expensive modifications later in the design 

process.  For example, at the concept stage it is possible to achieve an exciting sound to enhance 

and compliment a new vehicle, applying the approach to set vehicle level sound quality targets to 

enhance appeal and achieve the final sign off at target confirmation drive events 
5
.  WMG’s desktop 

simulator is depicted in Figure 4.     
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Figure 4 – A Desktop Simulator at WMG 

Looking forward, a high proportion of automotive research will focus on information technologies 

and software engineering.  Coupled with this will be an urgent requirement to incorporate this 

emerging knowledge into the skills base of companies.  Without a graduate-level skilled workforce 

complimented by artisans, companies cannot grow, innovate, adopt new technologies such as those 

based on software engineering and create new products.  They face reduced profitability and will 

not compete globally.  A strong focus on improving the levels of technical and managerial skills in 

industry, including those in emerging information technologies, has been a parallel priority in 

WMG 
6, 7

.  Software engineering and the digital ability to manage and automate information will 

encourage the development of the ‘intelligent’ vehicle with ever increasing levels of driver 

assistance and active safety features, enabled by all-round sensing, electronic actuation of steering 

and braking and assistance in monotonous driving tasks and hazardous situations.   

Vehicles will learn driver behaviour, increasing vehicle safety; they will optimise to the driver to 

reduce emissions and fuel consumption, and react to hazards.  Second generation sensors with on-

board processing capability will enable the vehicle to interact with customers in a smarter way; 

learning habits, being situationally aware and interacting in a more ‘human’ fashion.  Near field and 

remote vehicle communications will provide the platform for an almost unlimited set of features 

and applications.  The ability to ‘download’ to the car will dramatically change the relationship with 

the customer and introduce new business models around the ‘incomplete car’, enabling 

personalisation of the vehicle through digital interfaces and technologies.  This does, however, 

introduce new challenges in cyber security, particularly in relation to personal data and vehicle 

vulnerability to malicious attack.  Consideration needs to be given to the risks associated with these 

added value services.  It is for precisely this reason that WMG has invested in research and 

education in cyber security, for example Professor Carsten Maple’s research in network security 

countermeasures 
8
. 

Future research will explore the driver-in-the-loop (including electric vehicle driving style, 

distraction free driving and prioritising information), vehicle to vehicle connectivity, vehicle to 

infrastructure (e.g. aligning a vehicle in a car park or on the move for charging), and vehicle in 

society (including behaviour and behavioural change) research.  Digital Connectivity will impact all 

aspects of a vehicle, driver and passenger interfaces and the supply chain.  Internet-based systems 

will enable the reconfiguration and evolution of vehicle systems throughout the product lifecycle, 

including condition based maintenance, e.g. a ‘self-healing’ vehicle that can diagnose faults, 

attempt repairs and communicate faults to garages.  
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LIGHTER 

WMG’s K series engine research was an early example of the application of lightweight materials 

in the automotive sector.  Looking forward, the Royal Society and US National Academy of 

Sciences have identified climate change as ‘one of the defining issues of our time’ 
9
.  Vehicles 

currently produce 12% of the total EU emissions of CO2; accordingly legislation has been enacted 

within the EU (and around the world) to drive a reduction.  A key enabler for this is light-weighting 

of the vehicle, as each 100 kg of mass reduction can save 8g/km of CO2.  In Europe the penalty for 

non-compliance with the legislation is a fine escalating to €95 per additional g/km for every car 

produced 
10

.  Regulation and legislation are societal responses to the impact of industry on citizens, 

for example health and safety legislation or environmental regulation.  These can have major 

impacts on production companies, for good and ill.  This is nothing new; there are many historical 

precedents, from workplace safety legislation to the clean air act.  They are challenges that usually 

increase cost, at least in the short term, and that can lead to sudden dislocating change.   

Such negative consequences are often publicised, but they are, in almost all cases, a major positive 

factor in that the resulting challenges combine to provoke innovation.  Companies that embrace 

these changes as a challenge benefit disproportionately 
11

.  The escalating penalties of international 

emissions legislation have proved to be a major driver of materials innovation in the automotive 

sector.  Today the pressure for lighter vehicles and enhanced safety has focused research on 

embedding functionality into materials, reducing weight while enabling superior safety and 

increased connectivity.  Accordingly, at WMG, we built an early capability in UK academia in 

rapid-prototyping technology (now referred to as additive layer manufacturing or 3D printing).  In 

addition to competencies in metals and alloys processing, the research of Professor Gordon Smith 

led to novel innovations in the use of polymers and composites in automotive and other sectors, for 

example ‘in-mould’ painting.  A novel process to inject powder coat paint into an injection 

moulding machine achieved 100% solid paint in ‘in-mould’ painted lightweight components 
12

.  

Additional advantages included eliminating paint shops, avoiding volatile emissions and effluent, 

and recyclability as compatibility of paint and polymer substrate ensures reprocessing without paint 

removal 
13

.  Applying a paint chemistry designed to give a pseudo-plastic phase prior to cure 

resulted in a component with exceptional paint coverage and adhesion to a core polymer.  Figure 5 

depicts paint flow into the injection moulding tool; such high pressure injection can lay extremely 

thin evenly distributed layers of material on a tool surface prior to injection moulding to develop a 

multi-layered structure of materials. 

 

 

 

 

 

 

 

 

Figure 5 – High Speed Camera Capture of Paint Flow into a Perspex Moulding Tool 
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Low density materials substitution is often proposed as the solution to light-weighting of vehicles; 

however light-weighting can be achieved through better design or through the application of higher 

strength materials.  The most appropriate approach is a holistic one, investigating the design, 

forming, joining and performance of materials.  Vehicle bodies contribute 25% of the total weight 

of a car 
14

.  A lighter car body can use a lighter engine and lighter suspension, creating a ‘circular’ 

weight saving, doubling the original benefits.  Our research, led by Professor Richard Dashwood, 

focuses on addressing the manufacturing challenges preventing the volume application of advanced 

materials and on creating the digital tools required to enable the exploitation of new materials and 

technologies.  

Many of the innovations resulting from such research, including refinements in self-pierce riveting 
15

, cold forming and resistance spot welding, have been adopted by automotive manufacturers and 

suppliers, leading to cost reduction, weight saving and environmental benefits.  The 

multidisciplinary research into self-pierce riveting, enabling its introduction into the industry, has 

been global, involving companies including Audi, BMW, General Motors, Peugeot-Citroën and 

Jaguar Land Rover and research groups in Australia 
16

, China 
17

, France 
18

, Germany 
19

, Italy 
20

, 

Japan 
21

, Norway 
22

, Poland 
23

, Slovakia 
24

, UK and USA 
25

.  Resistance spot welding had 

traditionally been ignored as it was impossible to control in lightweight materials, and there was no 

guarantee that joints would be reliable.  However, theoretical analysis showed that contact 

resistance was the key issue for joint integrity; it was influenced by a range of factors, including the 

surface conditions of sheets.  The final surface topography and the solid wax lubricant used to assist 

metal forming each led to unpredictable changes in contact resistance and consequently affected the 

stability of the resistance spot welding process.  Research identified fundamental relationships 

between weld qualities, joint strength, governing metal thickness and stack orientation for resistance 

spot welding of aluminium 
26

.
  

These pioneering approaches to the application of high-strength steel and aluminium, requiring 

innovative approaches to forming and joining, have helped develop lighter Jaguar cars e.g. the F-

Type and the 420 kg lighter new Range Rover.  Its ‘Body in White’, where sheet metal components 

have been joined together, but before moving parts, engine, chassis and trim have been added and 

before painting, is shown in Figure 6.  Here self-pierce riveted and adhesively bonded aluminium 

replaces steel and welding in production.  Aluminium also brings specific strength benefits leading 

to improved crash performance characteristics.   

    

Figure 6 – The New 420 kg Lighter Range Rover  

In steel manufacturing, our research with TATA Steel and groups at universities including 

Cambridge and Carnegie Mellon, will help drive the transformation of iron and steel manufacturing 
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into a process that enables flexibility at the front end with regards to raw materials and energy 

sources and at the product end with regards to enhanced value and product specialisation, including 

metal/foam sandwich structures.  Research includes novel iron making (Professor Sridhar 

Seetharaman) 
27

, direct strip casting (Professor Claire Davis) 
28

 and new ways of coating and 

surface engineering of steels (Professor Barbara Shollock) 
29

.   

Steel is today the most recycled material on the planet, with the amount of recycled steel totalling 

more than all other industrial materials combined.  The energy cost and CO2 output per tonne of 

steel has, during the last two decades, been reduced by nearly 30%.  However, the differences 

between the actual and theoretical minimum in consumption of energy and output of CO2 are still 

significant 
30

.  Nearly 4 GJ/tonne steel or a 30% reduction in energy (or associated output of CO2) 

can be saved in iron and steel making alone.  A further 3 GJ/tonne can be saved in hot and cold 

rolling.  In addition to the reduction in energy, there is a need to operate flexibly and be resilient 

with regard to market changes in raw material, energy prices and product demand.  A major 

challenge is to create innovative processes for high value added steels, such as Advanced High 

Strength Steel.  These contain high Al, Si and other reactive chemistries and offer micro-structural 

control, which enables enhanced deformation and strength compared to conventional steels
 31, 32

.  

However, the processing of these steels, especially for coated products, in conventional integrated 

steel mills remains highly problematic 
33, 34

. 

We have built a state of the art laboratory at Warwick that enables exploration of evolving reactions 

and transformations in-situ while simulating the thermal, chemical and mechanical conditions that 

exist in the manufacturing facilities.  Application of techniques such as X-ray scattering 
35, 36

 have 

revolutionised the manner in which the kinetics of high temperature processes can be quantified to 

gain the knowledge needed to improve product quality and process control.  

One example, is applying confocal scanning laser microscopy 
37, 38

 and X-ray Computerised 

Tomography 
39

 to explore metal-slag interfacial phenomena for optimising refining; thereby 

enabling flexibility in the use of low-grade iron ores 
40

.  An impediment to their use is the 

phosphorous content, a low level in the final steel product is essential for steel applications where 

high ductility is required for example in pipelines.  The two images in Figure 7 show how an iron 

droplet breaks up during de-phosphorisation.  The increase in interfacial area would have a 

significant impact on the kinetic rate of phosphorous refining. 

 

 

 

 

 

 

 

 

 

Figure 7 – Slag, Metal, Drop Reactions from 0 sec to 60 sec 
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Another is addressing European REACH (Registration, Evaluation, Authorisation and Restriction 

of Chemicals) legislation which, through identification of ‘substances of very high concern’, will 

change the way in which surfaces are treated before painting.  Current research on the pre-treatment 

of galvanised steel strip has focused on chromium-free treatments as depicted below, and the 

durability of the final product.  Research is extending into new pre-treatments and coatings, 

including graphene, for late-stage product differentiation.  These environmentally acceptable 

alternatives have the potential to provide a life guarantee of 40 years for building cladding.  Figure 

8 depicts a galvanised steel surface and the aluminium distribution on the surface obtained using 

Time-of-Flight Secondary Ion Mass Spectrometry which allows measurement of the elemental 

composition down to parts per million levels. 

 

Figure 8 - Galvanised Steel Surface (left) and Aluminium Distribution on the Surface. 

Aluminium intensive vehicles have been introduced in the premium sector and composite intensive 

vehicles in the niche vehicle sector.  In the future, these technologies will migrate into the higher 

volume markets.  We are seeing an increase in multi material vehicles in development where 

optimum materials (in terms of performance and cost) are chosen on a part by part basis.  This 

reflects WMG’s materials agnostic approach covering all structural material classes including 

metals, ceramics, polymers, composites and hybrids, with the effective integration of multiple 

materials into a single structure becoming a key research challenge.  Increasing research in 

composites (including bio-composites) will enable further light-weighting through embedded 

functionality.  This could enable, for example, the removal of the wiring harness in cars and the 

copper lightning strike shell in aircraft.  

Research being explored in collaboration with industry partners and others includes functional 

nanomaterials, led by Professor Tony McNally, including carbon nanotubes, graphene, 1D and 2D 

inorganics.  His group is working to incorporate these into bulk (and foamed) polymer and low 

melting point aluminium systems and subsequently process them to produce multifunctional 

lightweight components that have application in a broad range of industries.  His research in 

polymer blends 
41

 complements major activity on the dispersability and localisation of carbon 

nanotubes in France, Germany and Japan 
42, 43, 44, 45

 building on earlier research in the USA 
46

.   The 
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aim is to produce components that are simultaneously stronger, smarter and lighter than anything 

that has gone before.  Figure 9 is a high resolution transmission electron microscope (HRTEM) 

image showing the concentric arrangement of a multi-walled carbon nanotube (MWCNT) 

embedded in a poly(ethylene) matrix.  A key aspect is the ability to effectively process the 

nanocomposites 
47

.  Research builds on a strong legacy of international research into the drawing 

(or extrusion) of the polymer, polyethylene terephthalate 
48, 49, 50, 51, 52, 53, 54

.     

 

 

Figure 9 –HRTEM Image of a Multi-walled Carbon Nanotube Embedded in a Poly(ethylene) 

Matrix.  

The application of nanoparticles enables the creation of products with combined higher 

performance and smart characteristics, including self-healing, self-cleaning, enhanced fire-

retardancy, anti-corrosion, anti-scratch resistance and static dissipation.  Our research, based in the 

recently founded International Institute for Nanocomposites Manufacturing, is also focused on 

highly selective and sensitive gas sensors, scale up of materials for battery components, noise and 

vibration damping and the applications of piezoelectric and electroactive materials in smart 

products incorporating sensing and energy harvesting capabilities.  Innovation in the advanced 

manufacturing of nanocomposite materials will contribute significantly to increasing the UK’s share 

of the global automotive market. 

 

GREENER 

Lighter and smarter vehicles have a role in addressing the legislative penalties on vehicle CO2 

emissions.  However, this is far from the full extent of the automotive sector’s environmental 

research.  Another important challenge is that of life cycle analysis.  It is no longer sufficient to 
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simply consider the CO2 saved during the use of a vehicle.  One should, and now has to, consider 

the CO2 associated with materials production, manufacture and end of life.  If this is not included it 

is possible to consume more CO2 over the whole life of a lighter vehicle compared to a previous 

heavier design of vehicle.  An example of this is in the application of magnesium alloys where the 

CO2 ‘cost’ of its production can be ten to twenty times that for steel.  

The Royal Society People and the Planet 
55 

report encouraged ‘investment in sustainable resources, 

technologies and infrastructures and systematically decoupling economic activity from 

environmental impact’.  The application of sustainable materials in automotive and other sectors has 

provided a timely environmental focus to research (e.g. recycled composites, natural-fibre 

composites, materials from industrial waste, and biofuels).  Much of this is undertaken to address 

more rigorous climate change targets on emissions and carbon use, and end-of-use legislation.   

The requirement to be ‘greener’ has driven greater change in automotive technology over the past 

fifteen years than seen in the previous century – and the pressure is accelerating.  Natural origin and 

sustainable polymers can replace oil-based polymers when cost, legislation or consumers drive their 

introduction.  Motorsport provided a high profile ‘platform’ to demonstrate their capabilities.  Dr 

Kerry Kirwan and Dr Steve Maggs created the environmentally friendly ‘World F3rst’ Formula 3 

racing car (Figure 10a), which was selected as one the ‘50 Best Inventions of the Year’ by TIME 

Magazine in 2009 
56

.  World F3rst raised awareness of the opportunities to apply sustainable 

materials in motor racing, changed the industry’s way of thinking and helped to pave the way to a 

sustainable future for motorsport through the creation of new race formats.   

World F3rst was based on a recognised Formula 3 racing vehicle and involved replacing the non-

safety critical parts with environmentally friendly alternatives, for example jute, flax and hemp 

natural fibres as potential replacements for the synthetic fibres that make up the composite materials 

used in the front and rear impact structures of the car 
57

.  The engine was a turbo diesel tuned to run 

on biodiesel manufactured from waste streams, including cooking oil and waste chocolate, which 

provided a race-speed fuel efficiency improved by 125% compared to a typical Formula 3 vehicle. 

Innovations from World F3rst fast-tracked the development of sustainably sourced components and 

led to the incorporation of materials in a racing car that holds the land-speed record for electric 

vehicles - the Lola-Drayson B12/69 electric vehicle (Figure 10b). 

 

Figure 10 a) and b) - World F3rst and the Lola-Drayson B12/69 Electric Vehicle 

To make greater strides will necessitate advanced hybrid vehicles with novel power-train and 

battery technologies.  These require the ‘urgent research’ into energy storage identified by The 

Royal Society 
58

.  Addressing this, at WMG we have completed the construction of a national 
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advanced energy storage facility, the Energy Innovation Centre, which includes the capability to 

validate new battery chemistry and to develop and test alternative battery structures.  The facility 

has a full pre-prototype production capability, replicating the processes used in high volume 

manufacture.  This enables exploration of the manufacturing feasibility, safety and cost-

effectiveness of new battery types.  It enables the rapid characterisation of battery cells at 

temperatures from -40°C to +80°C, the ability to test complete battery systems at up to 1000 Amps, 

and to expose them to extreme vibration, crush and penetration.  

The new battery chemistry scale up facility, sponsored by the UK’s Automotive Council with 

funding from the Department of Business Innovation and Skills (BIS), is the only one of its kind in 

the UK.  It provides a one-stop shop for the creation of new battery chemistry from concept to fully 

proven traction batteries, produced in sufficient quantities for detailed evaluation in target 

applications.  The UK has identified energy storage as a critical breakthrough technology, that 

builds on a strong research pedigree where science underpinning Li-ion battery technologies was 

created at Oxford University in the late 1970’s/early 1980’s 
59, 60, 61, 62

.  It provides a world-class 

facility for energy storage research teams, including collaborators at Argonne National Laboratory, 

Leeds and Oxford universities, enabling electrochemists to create and explore at a single location 

novel battery chemistry, electrodes and separators.  Through the facility we are helping to scale up 

and prepare for exploitation innovative research on new Li-Air and Li-S battery chemistry from 

groups including that at Oxford University 
63, 64

, and newly established small and medium sized 

companies in this field.   

Researchers typically create very small ‘coin cells’ in laboratory glove boxes.  The specification of 

our new, environmentally controlled facility enables the manufacture of large pouch cells, typically 

A5 size, that are relevant to the need for high density energy storage in electric and hybrid vehicle 

applications.  The pouch cells depicted in Figure 11 consist of electrodes, separators and electrolyte 

contained in flexible, heat sealable foil and can be constructed to specific shapes and sizes.  The 

new facility will enable research for wider application requirements including static power storage, 

aerospace, portable power and consumer products.  

The increasing electrification and hybridisation of all vehicle types is increasing the importance of 

the role of electric motors and power electronics.  These are well understood technologies in an 

industrial context, but new market opportunities create challenges for power density, cost, and the 

ability to manufacture at very high quality in volumes of hundreds of thousands per year.  The scale 

of investment is significant on a national and international scale and will help to address the G-

Science Academies imperative for a ‘range of clean, renewable energy options’ 
65

.  The images in 

Figure 11 are of the Energy Innovation Centre.  Upper left is a dry room where the A5 pouch cells 

based on novel chemistries are manufactured; these cells (and commercially available cells) are 

characterised in battery cycling facilities (upper right image).  The lower left image is of the 

dynamometers in the Vehicle Energy Facility, a state-of-the-art facility capable of testing whole 

hybrid vehicle powertrains, components and systems.   
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Figure 11 – WMG’s Energy Innovation Centre and A5 Pouch Cell 

WMG has recently been selected to host the UK Advanced Propulsion Centre – a £1bn., 10 year 

industry/government partnership to help enable new and low carbon technologies bridge the gap 

between research and commercialisation, moving from technology to product, and creating 

employment, wealth and skills within the UK.   

Technology foresight in the automotive sector is challenging; legislation, global politics, and 

changing consumer preferences will shape future technology as much as emerging research 

outcomes.  The automotive sector is, however, highly responsive in its ability to embrace systems 

technology developed in other sectors.  Some viable futures are apparent; for example the driverless 

car, an all-electric future, delivery drones replacing some delivery vans, and hire-for-need vehicle 

use rather than personal ownership.  There is a continuing increase in the sophistication of the 

electronics and sensor systems in a car (which account for 50% of the value of a typical premium 

vehicle).  The advanced electronic capabilities in premium vehicles will become the norm in all 

vehicles, and increasing connectivity to transport infrastructure, the workplace, the home, 

information and entertainment systems will be achieved.  Cars can become integral components of 

the ‘internet of things’.  It is a fascinating time to be involved in research for the automotive sector. 

 

CONCLUSION 

The engineering challenges that inspired me at the start of my career are still at work.  They have 

been magnified and transformed by a growing global population, energy resource pressures and an 

increasingly networked world.  The pace of change and the necessary speed of innovation and 

implementation have reached unprecedented levels and continue to accelerate.  With the challenge 

of climate change legislation and greater technological complexity, developing and integrating 

cutting edge research from a diverse range of disciplines into innovative products that meet both 

societal and consumer needs will increase in importance.   

To pursue these objectives most effectively, there is a need to connect seemingly disparate research 

themes and innovations from a diverse range of disciplines into a single, unified whole.  In creating 
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this new environment, we need to create the maximum degree of collaboration; national and 

international, between public institutions and private sector bodies, between universities and 

industry in every possible permutation 
66

.  Accordingly, strands of research in customised design, 

light-weighting, advanced propulsion and energy storage will come together in a new National 

Automotive Innovation Centre (NAIC), where £15M of HEFCE (UK Government) funding has 

stimulated one of the UK’s largest private sector investments in university-based research, with ten 

times as much as from Government.   

The thirty-three thousand square metre NAIC (Figure 12) will provide dedicated facilities for 

research to enable new vehicle types in an environment where industry and academia can 

collaborate to achieve technical breakthroughs.  These will underpin products of the future that 

meet our societal demands for sustainability and are attractive and desirable to own.    

  

Figure 12 – The National Automotive Innovation Centre 

The innovative research infrastructure within the NAIC will include facilities to enable research in 

smart and connected vehicles.  For example, a drive in, driver-in-the-loop simulator, integrated with 

hardware-in-the-loop simulation, infotainment and communication simulation, a multi-sensory 

virtual environment and real-world vehicle environment (Figure 13).  This scalable, configurable 

and compatible collaborative research platform will provide a capacity for whole system level 

design, validation, verification and test of second generation sensors, new technologies and systems.  

It will enable understanding of emerging smart and connected systems, enhanced by human factors 

research to explore how people interact with new technologies. 

  

Figure 13 – Drive-in, Driver-in-the-loop, Multi-Axis Driver Simulator 

The new technologies created through the NAIC will be transferred to other sectors including 

aerospace, marine, rail and defence.  Its critical mass is attracting global Tier One suppliers to 

locate increasing levels of R&D nearby.  The NAIC represents, not only a wonderful investment in 
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the practical application of science, but another step in my own personal journey, one that takes the 

brilliant moments of clarity that scientific research provides, and uses them to improve, just a little, 

the messy, human, challenging environment in which we live. 
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