
Speeding up the Optimal Method of Drezner’s for the p−Centre
Problem in the Plane∗

Becky Callaghan, Said Salhi, Gábor Nagy

Centre for Logistics & Heuristic Optimisation (CLHO), Kent Business School,
The University of Kent, Canterbury, Kent, UK,

CT2 7NZ

Abstract

This paper revisits an early but interesting optimal algorithm first proposed by Drezner to

solve the continuous p−centre problem. The original algorithm is reexamined and efficient

neighbourhood reductions which are mathematically supported are proposed to improve its

overall computational performance. The revised algorithm yields a considerably high reduc-

tion in computational time reaching, in some cases, a decrease of 96%. This new algorithm

is now able to find proven optimal solutions for large data sets with over 1300 demand points

and various values of p for the first time.

Keywords: Location, p−centre problem, continuous space, Z−maximal circles, optimal

algorithm.

1. Introduction

The p−centre problem seeks to minimise the maximum distance or travel time whilst en-

suring all the n demand points are covered by at least one of the p chosen facilities. This

problem can be categorised as either the vertex p−centre problem or the absolute p−centre

problem. In the former, which is the discrete case, the optimal facilities are part of a set

of the potential facility sites which can be either the demand points or other known sites.

However, in the latter the facilities can be located anywhere along network edges (as intro-

duced by not solved by Hakimi (1965)) or in the plane.

In this paper, we will explore the absolute p−centre problem in the plane, which is also

∗This research has been supported in part by the UK Research Council EPSRC EP/L504981/1 and the
Spanish Ministry of Economy & Competitiveness, research project MTH2015.70260-P.

Email addresses: bc349@kent.ac.uk (Becky Callaghan), s.salhi@kent.ac.uk (Said Salhi),
g.nagy@kent.ac.uk (Gábor Nagy)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/46521493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

known as the continuous or the planar p-centre problem. It is worth noting that the con-

tinuous p−centre problem, besides being used for interesting real life location applications

that will be briefly mentioned next, could also provide a greenfield solution which can be

used as a guide to identify potential sites for the discrete case as in some cases this data can

be very expensive to gather. In addition, the p−centre problem can also be used as a basis

for academic research in the general area of global optimisation including other continuous

related location problems.

Here are some of the papers describing real-life problems tackled by p−centre models. One

of the earliest applications is by Richard, Beguin & Peeter’s (1990) who used the p−centre

problem to locate fifteen fire stations in the Belgian province of Luxembourg. Pacheco &

Casado (2004) located a number of health resources such as geriatric and diabetic health care

clinics in the rural area of Burgos in Spain. Wei et al. (2006) adapted their Voronoi-based

algorithm developed for the constrained continuous p−centre problem to locate twenty-five

emergency warning sirens in Dublin, Ohio. Kaveh & Nasr (2011) modified a harmony search

heuristic to locate bicycle stations in Isfahan, Iran by solving the conditional and uncondi-

tional discrete p−centre problem. Finally, Lu (2013) used the p−centre problem to locate a

number of urgent relief distribution centres after the 7.3 Richter scale earthquake in Taiwan.

Most of the real-life applications for the p−centre problem have been solved success-

fully using powerful heuristics and metaheuristics. However, recent developments in exact

methods, with the advances in computing power, memory management and powerful com-

mercial optimisation software such as IBM ILOG CPLEX, mean that the proven optimal

solution can now be worth exploring for larger problems. This study aims to respond to

such scientific and technological change. In addition, if an optimal solution can be found in

a reasonable amount of time, this will provide flexibility in performing scenario analysis for

strategic planning purposes which is of extreme importance in practice due to the massive

investment usually required.

A Brief Literature Review

The single facility minimax location problem (1−centre) in the continuous space has a

long history and was posed originally in 1857 by the English mathematician James Joseph

Sylvester (1814-1897). A few years later, in 1860, he proposed an algorithm to solve it.

Elzinga & Hearn (1972) developed an efficient and widely used geometrical-based algorithm

2

to solve the problem optimally. Their algorithm was adapted and enhanced by many authors

including Elshaikh et al.(2015). For more information on continuous centre problems and

references therein, see Drezner (2011). The idea was extended to find solutions to multi-

facility location problems including the p−centre problem. Hakimi (1965) was the first to

formulate the continuous 1−centre problem in a network, and Minieka (1970) studied the

case where p > 1. The first paper discussing the p−centre problem in the plane was by

Chen (1983). The problem has been shown to be NP-hard when p is variable, see Megiddo

& Supowit (1984). For a fixed value of p the problem can be solved in polynomial time,

O(n2p+4), though requiring an excessive amount of computational effort especially for larger

values of p, see Drezner (1984).

There exist a few variations of the continuous p−centre problem. For example, Chen &

Handler (1993) proposed an efficient algorithm to solve the conditional p−centre problem.

Here, the aim is to locate p facilities given that q facilities already exist. Wei et al.(2006)

suggested a Voronoi-based algorithm to solve the constrained continuous p−centre problem

where the facilities cannot be located within some forbidden regions such as rivers, lakes,

military areas etc. Chen & Chen (2013) used Minieka’s algorithm and the relaxation method

to solve the α−neighbour p−centre problem. In this variation, each demand point is covered

by at least α facilities which can be important in the case of facility disruption.

Among the most recent theoretical work is the use of the relaxation concept, where a large

problem is broken down into relatively much smaller and more manageable sub−problems

that are easier to solve. For more details on this particular topic, see Chen & Handler (1987),

Chen & Chen (2009) and Chen & Chen (2010). For the discrete case, though not directly

related to our research, the following studies by Elloumi et al.(2004), Brandenberg & Roth

(2009) and Caruso et al.(2003) can be found to be interesting and also informative. In both

the discrete and the continuous problems, Cooper’s (1964) Multi-Start method, which is

based on the locate-allocate principle, is often used to produce an upper bound for optimal

methods or initial solutions for metaheuristics.

This paper will be analysing the original continuous p−centre problem by revisiting an

interesting, though originally very slow, optimal algorithm proposed thirty years ago by

Drezner (1984). This older method used a subset of facility locations based on specific cir-

cles rather than demand points. As this algorithm is the basis of our research, it is detailed

in the next section.

3

The contributions of this study include:

i) revisiting an early but slow optimal algorithm for the continuous p−centre problem;

ii) introducing neighbourhood reduction schemes supported mathematically to improve

drastically the computational performance of this exact method;

iii) embedding an adaptive CPLEX policy to further enhance its efficiency;

iv) solving optimally for the first time relatively much larger problems with up to 1300

demand points and up to 100 facilities.

The paper is organised as follows: the investigated exact method is introduced and described

in Section 2, alongside initial results based on the original algorithm. Section 3 proposes the

suggested enhancements to the algorithm which are supported by new lemmas and proofs.

The computational results are given in Section 4 followed by an adaptive CPLEX policy in

Section 5 making this revised optimal algorithm even more efficient. The overall computa-

tional results are given in Section 6. Our conclusions and suggestions are summarised in the

final section.

2. Drezner’s Optimal Algorithm

2.1. Introduction

Drezner’s algorithm is based on the idea of Z−maximal circles. A circle is defined as maximal

based on a given upper bound, Z. The set of maximal circles based on Z is then identified

and their respective centres are then used as a subset for the potential facility locations.

Let us define the following notations.

I: set of demand points indexed by i = 1 . . . n;

J : set of all possible circles indexed by j = 1 . . .m;

Cj: circle j defined by its centre (xcj, y
c
j) and radius rj, j ∈ J ;

K: subset of I;

R(K): the radius of the smallest circle encompassing all points in K;

4

di,j: Euclidean distance from demand point i to the centre of circle Cj, i ∈ I, j ∈ J ;

p: number of facilities to locate;

d′i,l: Euclidean distance from demand point i to demand point l;

Z: the upper bound at a given iteration;

JZ : set of Z−maximal circles (JZ ⊂ J).

Definition 2.1. The closure of circle Cj is the set of demand points encompassed by circle

Cj which is defined as

Clj = {i ∈ I| di,j ≤ rj} ∀ j = 1 . . .m.

Definition 2.2. The minimum covering circle (MCC) of the set K is the smallest circle

encompassing all points in K with radius R(K).

We can now define a Z−maximal circle in the following way, as given by Drezner (1984).

Definition 2.3. A circle Cj with radius rj is said to be Z−maximal (often simply called

maximal) if:

1. rj < Z;

2. For every demand point i /∈ Clj, R(Clj ∪ {i}) ≥ Z.

Drezner proposed two ways to solve the p−centre problem using Z−maximal circles. The

first, which will be referred to as CP
(a)
0 , uses the set covering problem to find the minimum

number of Z−maximal circles needed. First, let the input Ai,j be defined as

Ai,j

1 if i ∈ Clj,

0 else.

(CP
(a)
0) Minimise

∑
j∈JZ

xj (1)

subject to
∑
j∈JZ

Ai,jxj ≤ 1 ∀i ∈ I, (2)

5

xj ∈ {0, 1} ∀j ∈ JZ , (3)

where xj =

1 if Z−maximal circle Cj is selected,

0 else.

The objective function (1) refers to minimising the number of Z−maximal circles. Con-

straint (2) guarantees that every demand point is encompassed, or covered, by at least one

Z−maximal circle.

In the second method, referred to as CP
(b)
0 , a new constraint (4) is added to CP

(a)
0 to

impose that the number of covering circles has to be equal to p, while the objective function

(1) is omitted turning the problem into a feasibility problem.

(CP
(b)
0): Find xj ∈ {0, 1} ∀j ∈ JZ

subject to (2)− (3),∑
j∈JZ

xj = p. (4)

If the minimum number of covering circles found in (1) is ≤ p or if CP
(b)
0 is feasible, then

the upper bound is decreased by setting Z to the radius of the largest Z−maximal circle

from the obtained solution, and the process of identifying the Z−maximal circles is then

repeated. Otherwise (i.e. the minimum number is > p or CP
(b)
0 is infeasible), the current

upper bound Z is taken as the optimal solution and the algorithm terminates.

Before we use Drezner’s optimal algorithm, as described in Figure 1, we shall first define

the following additional notations.

C1
J : the set of null circles created from one critical point only (i.e., note: rj = 0 ∀ Cj ∈ C1

J);

C2
J : the set of circles created from two critical points defining its diameter;

C3
J : the set of circles made up from three critical points forming an acute triangle.

It is important to note that an appropriate heuristic could be used to find an initial up-

6

per bound in Step 2. For instance, a simple multi start heuristic can be used. In this study

we opted for the H2 heuristic proposed by Drezner (1984) for consistency reasons.

Step 1. Find all three sets of circles C1
J , C2

J and C3
J .

Step 2. Find an initial solution and set the solution value as the initial upper
bound, Z.

Step 3. Eliminate all circles whose radii are ≥ Z from C2
J and C3

J .

Step 4. Find all Z−maximal circles using Procedure FMC(C1
J , C

2
J , C

3
J , Z, JZ)

(see Figure 2).

Step 5. Solve CP
(a)
0 or CP

(b)
0 using the Z−maximal circles JZ .

If the optimal value of CP
(a)
0 is ≤ p or CP

(b)
0 is feasible, set the new upper

bound Z as the radius of the largest Z−maximal circle found in the
solution and go to Step 3.

Else take the upper bound Z as the optimal solution value of the planar
p−centre problem and stop.

Figure 1: Drezner’s Original Algorithm (Drezner (1984))

Procedure FMC(C1
J , C

2
J , C

3
J , Z, JZ)

Step 1. Set JZ = ∅.
Step 2. (Find all Z−maximal circles in the set C1

J .)

For each Cj = {i} ∈ C1
J do: If

d′j,l
2
> Z ∀ l 6= i ∈ I, add C1

J to JZ . Else
the (single point) circle Cj is not Z−maximal.

Step 3. (Find all Z−maximal circles in the set C2
J ∪ C3

J .)
While ∃ Cj ∈ {C2

J ∪ C3
J} do:

If R(Clj ∪ {i}) > Z ∀ i /∈ Clj (i.e. the circle Cj is Z−maximal by
definition) set JZ = JZ ∪ {Cj}.

Else, the circle Cj is not Z−maximal.

Step 4. Return JZ .

Figure 2: The FMC Algorithm given a threshold Z

2.2. Initial results & the need for an improved implementation

Our initial results were found for two TSP-Library (2015) data sets, namely pr439 and rat575

which represent a 439-city problem and a 575-rattled grid problem respectively. Note that

the basic tricks of using squared distances were also adopted here when required to improve

code efficiency (e.g. when distances are compared, or for non-acute triangle detection).

Both CP
(a)
0 and CP

(b)
0 were initially used to solve the p−centre problem, and both were

7

found to take a considerable amount of computational time as a large number of iterations

was required. As an illustrative example, we show the result found for the TSP-Library data

sets pr439 and rat575 where p = 90. For the data set pr439, the 90−centre problem was

optimally solved using CP
(a)
0 requiring more than 38 hours (i.e. 137692.6 seconds) and 4580

iterations. When using CP
(b)
0 , the time was reduced to just below 3 hours (10654.30 seconds)

while using 393 iterations only. For rat575, an optimal result was obtained using CP
(b)
0 ,

however it required nearly 30 hours (107916.0 seconds) and 2729 iterations. Furthermore,

when using CP
(a)
0 , the program was stopped after the time limit of 2 days with only one

feasible solution found with a value of 21.471 (a percentage difference of 18% from the optimal

solution). It will be shown later that the optimal solution can be found in less than half an

hour (996.43 seconds) with our improved method. This example highlights the importance

of developing ways to enhance the efficiency of Drezner’s algorithm optimal algorithm.

2.3. Modification of the Covering Problem (Enhancement Zero)

Traditionally, the continuous p−centre problem is formulated as the Euclidean unweighted

p−centre problem. This multiple facility location problem has been examined by a small

number of authors, see Plastria (2002) and the references therein. It can also be formulated

as a non-linear mathematical programming formulation. However, the formulation that we

will use in this paper is similar to Drezner’s CP
(b)
0 formulation with two commonly used

additions consisting of a) an objective function that aims to minimise the largest radius

(5) and b) an extra constraint to deal with the characteristics of the p−centre (8). This

formulation, referred to as CP1, will be used throughout this work.

(CP1) Minimise D (5)

subject to
∑
j∈JZ

Ai,jxj ≥ 1 ∀i ∈ I, (6)

∑
j∈JZ

xj = p, (7)

xjrj ≤ D ∀j ∈ JZ , (8)

xj ∈ {0, 1} ∀j ∈ JZ . (9)

8

where

D: the maximum distance between a facility and a demand point.

The use of CP1 is first tested on the previous two data sets. It was observed that for

p = 90 and 100, the computational times were 1258 and 462 seconds respectively, approxi-

mately 9 (resp. 7) times faster than using CP
(a)
0 (resp. CP

(b)
0). It is also worth noting that

CP1 has an advantage over Drezner’s original suggestions as the optimal solution value D

is much tighter leading to requiring a relatively smaller number of iterations. Although it

may be harder to solve CP1 than CP
(a)
0 or CP

(b)
0 , the last two require a large number of

iterations, each including a lengthy Z−maximal circles identification step.

2.4. Observations

Optimal solutions for p = 10, 20 . . . , 100 were found using CP1 instead of CP
(a)
0 or CP

(b)
0 for

the TSP-Library data sets pr439 and rat575. The results are given in the Appendix under

Tables A.2 & A.3 and Figure A.1. Based on these results, it can be observed that there

are two areas where enhancements could be introduced in an attempt to shorten the overall

computational time. These include:

a) the way the Z−maximal circles are identified from one iteration to the next;

b) a choice of a compromise between the quality of a feasible solution and its corresponding

computational time when solving CP1 (i.e. finding an optimal solution or just a good

feasible solution).

This paper will now investigate several ways in which the original algorithm using CP1

can be efficiently implemented. Sections 3−5 will cover (a) and Section 6 will deal with (b).

Note that the introduction of CP1, instead of using CP
(a)
0 or CP

(b)
0 , could be considered

as our first enhancement due to generating tighter bounds. However, for simplicity and con-

ciseness, the results of CP1 will be used as our starting point from which we will base our

improvements.

9

3. The Z−maximal circles-Based Enhancements

3.1. Enhancement One: EHA-Based Implementation

The Elzinga-Hearn algorithm (EHA) is used to find the MCC of a set of demand points. As

this is repeatedly needed in Step 3 of the FMC algorithm, in order to calculate R(Clj∪{i}),

two ways in which the overall time performance can be enhanced are highlighted.

Early Termination

The EHA starts with a circle made from any two selected points and continues to find a

covering circle of increasing size until all points are covered. It is important to realise that

in the FMC algorithm, the exact centre point and the radius of the MCC are not needed:

we simply aim to establish whether or not the radius of the MCC will be larger or smaller

than the upper bound Z.

If the MCC is smaller than the upper bound, then the EHA will continue until the end

as normal. However, it can be terminated early if the circle’s radius exceeds Z during the

algorithm. This is because at each iteration in the EHA, the new circle’s radius is either the

same or larger. Therefore, if a circle has a radius ≥ Z at any point in the algorithm there is

no need to continue as the final circle (the MCC) will be even larger.

More Informative Initial Points

Instead of starting the EHA from random points or selecting points using selection rules,

such as the ones adapted by other authors including Welzl (1991) and Elshaikh et al.(2015),

we take into account the information we have already found. In other words, the two or the

three critical points that defined the circle found at a current iteration are the points that

we choose as our initial points for the EHA. This makes the selection deterministic and

yields faster results.

This double enhancement, referred to as Enh1, is incorporated only into Step 3 of the

FMC algorithm and does not affect the total number of iterations of the algorithm.

3.2. Enhancement Two: Efficient Recording of the Z−maximal circles

At each new iteration in Drezner’s algorithm, the process of finding the Z−maximal circles

begins again from the start irrespective of earlier iterations. However, when examining the

first set of results it was observed that many of the same circles were being classified as

10

Z−maximal during successive iterations.

As an example, Table 1 shows the number of Z−maximal circles found at each of the

first 10 iterations of the original algorithm for the data set pr439 with p = 100. In this

Iteration # # Original Circles # Z−maximal circles # Circles Previ-
ously Identified

Extra % Re-
quired

1 9281 860 - -
2 9189 855 780 8.77
3 8835 797 597 25.09
4 8796 805 758 5.84
5 8652 809 684 15.45
6 8449 798 640 19.80
7 8384 804 735 8.58
8 7922 756 478 36.77
9 7855 767 693 9.64

10 7637 770 601 21.95

Average 8500.00 802.10 662.88 16.88

Table 1: Number of Z−maximal circles required & previously identified for the first 10 iterations
(n = 439, p = 100)

example, approximately 17% of the new Z−maximal circles need to be identified at each

iteration only, as the other ones have already been found in previous iterations. Therefore,

a technique to identify whether a circle is Z−maximal or not in subsequent iterations is

worthwhile constructing.

Lemma 1. If circle Cj is Zt−maximal at iteration t, then it is also Zt+1−maximal for

iteration t+ 1 if and only if its radius rj < Zt+1.

Proof. We know at each iteration t, the upper bound Z strictly decreases. Therefore, we

can say Zt > Zt+1. For circle Cj to be a Z−maximal circle at iteration t, the following two

conditions need to be satisfied:

1. rj < Zt;

2. for every demand point i ∈ I such that i /∈ Clj, R(Clj ∪ {i}) ≥ Zt.

As Zt+1 < Zt, we can deduce that R(Clj ∪ {i}) > Zt+1. Thus if rj < Zt+1, circle Cj will still

be a Z−maximal circle by definition at iteration t+ 1.

The information denoting whether or not circle Cj has been found to be Z−maximal or not

11

can be stored in a binary or logical vector CircMax where

CircMaxj =

1 if Cj ∈ JZt ,

0 else.

This result is incorporated into Steps 2 and 3 of the FMC algorithm to avoid performing

redundant calculations. We will refer to this enhancement as Enh2.

3.3. Enhancement Three: Fast Identification of some Non-Z−maximal circles

This enhancement, which we will refer to as Enh3, aims to quickly identify some non-

Z−maximal circles without performing unnecessary calculations. As an example, take circle

Cj with a centre point (xcj, y
c
j) and radius rj < Z. We can now create a new circle C+

j

centered at (xcj, y
c
j) and with radius Z. Therefore, it is clear that Cj ⊂ C+

j .

Lemma 2. If s ∈ I is not covered by Cj (i.e. s /∈ Clj) but is strictly covered by C+
j , then

circle Cj is not Z−maximal.

Proof. Let s ∈ I with s /∈ Clj but strictly covered by Cl+j . Then the smallest circle, C,

containing s and the whole circle Cj, contains all the points in Clj and is strictly contained

in Cl+j . Hence, C’s radius is at least R(Clj ∪ {s}) and is strictly less than Z. It follows that

R(Clj ∪ {s}) < Z, and so Cj is not Z−maximal.

Thus a minimum distance, or threshold, of value Z is established. In other words, if there is

at least one demand point not covered by circle Cj which lies within this distance, then the

circle cannot be classified as Z−maximal.

In summary, if

∃ i /∈ Clj | di,j < Z, (10)

we can conclude that circle Cj is not Z−maximal.

Additionally, a maximum threshold of 2Z can also be added using Lemma 3.

Lemma 3. Take any demand point s ∈ I not covered by Cj. In case ds,j ≥ 2Z, then

R(Clj ∪ {s}) > Z.

12

Proof. Take s ∈ I with ds,j ≥ 2Z. Consider the circle C with centre s and radius 2Z. As

rj < Z, the centre of Cj is not encompassed by C. Therefore, the circle arc of Cj lying

within C is strictly less than half the circle.

But the critical points of Cj span at least half the circle, and so cannot all lie within C.

Therefore, ∃ i ∈ Clj such that di,s > 2Z, which implies that R(Clj ∪ {s}) > Z.

Thus if a point that lies at a distance ≥ 2Z from (xcj, y
c
j) is added to the set of points en-

compassed by the circle Cj, the MCC that covers all these points would have a radius ≥ Z.

Thus, if this information is known, any point in this area does not need to be checked again

and hence computational time can be saved without affecting the quality of the solution.

In summary, if

di,j ≥ 2Z ∀ i /∈ Clj, (11)

then we can conclude that circle Cj is Z−maximal.

These two observations lead to the construction of a checking area for circle Cj, say Checkj.

This is represented by the shaded area in Figure 3, and is defined as follows:

Checkj = {i /∈ Clj | Z ≤ di,j < 2Z}. (12)

We can therefore conclude that further calculations must be performed only if the two

observations above are not true and Checkj 6= ∅.

Figure 3: Checking Area for circle Cj

13

We incorporate Enh3 into Step 2 and Step 3 of the FMC algorithm.

3.4. Enhancement Four: Identifying Non-Z−maximal circles

If circle Cj is not maximal, then there must be a demand point i /∈ Clj such that R(Clj ∪

{i}) < Z. If this point is recorded, in the next iteration this demand point can be the

first to be checked and hence repeated computations can be discarded. If the MCC of the

next iteration is still < Z, then we can deduce that this circle is still not Z−maximal thus

saving computational time. If the MCC is ≥ Z, we either continue with calculations and

conclude it is now classified as Z−maximal, or we record the next demand point to cause

Cj to be non-Z−maximal if it exists. In other words, either way will provide us with useful

information that can be used in subsequent iterations.

As an example, say at iteration t it takes qj points to find a demand point that determines

circle Cj as not Z−maximal. This means the next iteration ought to start with the qthj point

instead of starting from scratch at the beginning. This saves the computational time it

takes to check the previous (qj − 1) points, say Savtj. As this scheme is applied to Cj where

j = 1, . . . ,m′, the saving at iteration t could be significant and of the order of
∑m′

j=1 Sav
t
j.

Let Start be an integer vector of dimension m. The entry Startj denotes which demand

point i should be checked first in the next iteration to see if circle Cj is Z−maximal or not.

This enhancement, referred to as Enh4, is incorporated into Step 2 and Step 3 of the

FMC algorithm.

4. Analysing the Z−maximal circle-Based Enhancements

4.1. Individual Performances

The enhancements were first analysed separately so that each one’s improvement in compu-

tational time could be assessed and its impact measured. For illustrative purposes, the com-

putational times for the individual enhancements for the data set pr439 where p = 70, 80, 90

and 100 are first shown in Figure 4. This is then followed by combining all the refinements to-

gether using a certain order that will be based on the individual enhancement performances.

Figure 4 suggests that the best enhancement, giving an average decrease in computa-

tional time of 84.42%, is Enh3. By providing minimum and maximum thresholds by which

the demand points are checked reduces many calculations as many points sit outside the

checking area. Enh4 yields the second best result with an average decrease of 83.26% in

14

computational time. By starting at the last known non-Z−maximal circle all previous de-

mand points can be disregarded, thus avoiding the unnecessary calculations that they incur.

Enh1 is the third best at improving the overall computational time, with an average decrease

of 50.65%. This enhancement reduces the number of calculations by terminating the EHA

algorithm earlier whenever possible. Also, by choosing the current critical points as the ini-

tial points, the EHA will have less iterations to find the MCC. Finally, Enh2 improves the

computational time the least. This is due to not dealing with the Z−maximal circle calcu-

lations directly; it simply minimises how many circles are needed for these calculations. The

average improvement of computational time for Enh2 is 26.26%, which is still significant.

Figure 4: Individual Performances

4.2. Combined Performance

The four enhancements are embedded into Drezner’s original algorithm that uses formulation

CP1. These are added in the order of individual performances observed earlier which is as

follows: Enh3−Enh4−Enh1−Enh2. To assess the incremental gain of these enhancements

we also conduct the following experiment: in the first run we use Enh3, in the second we use

Enh3 and Enh4, and in the third Enh3, Enh4 and Enh1 are used. The fourth run consists of

the overall algorithm with all the enhancements incorporated as noted earlier. The results

are shown in Figure 5.

It is clear that the enhancements greatly improve the computational time. The first

enhancement reduces the total computational time by an average of 84.49% as noted earlier,

and by adding Enh4 this is decreased further to 90.26%. After the addition of Enh1, the

average decrease becomes 96.46% and finally with all enhancements added this reaches a

massive saving of 96.71%. In other words, just above 3% of computational time is really

15

Figure 5: Comparison on CPU Time for the Enhancements

needed on average, leading to an exciting and strong result.

It is also worth noting that the incremental decrease in computational time is not directly

additive as there is a high level of association between their individual contributions. For

instance, after gaining 84% with Enh3, one might expect Enh4 to yield 83% of the remaining

16%. This would therefore give a new decrease of approximately 97%. However, it only

decreases it to just over 90% (i.e., an extra 5.8% only).

4.3. The Complete Revised Optimal Algorithm

The revised FMC algorithm is given in Figure 6. It is similar to the original FMC algorithm

except Step 2 and Step 3 in Figure 2 have been modified accordingly to accommodate

the enhancements described in this study. The revised Drezner algorithm is similar to

the Drezner’s original algorithm stated previously in Figure 1, except that in Step 5 the

formulation CP1 is used instead of CP
(a)
0 or CP

(b)
0 and an extra step (Step 3 shown in Figure

7) has been added to accommodate the enhancements. For completeness, we reproduce the

full revised optimal algorithm in Figure 7.

5. Computational Results

The proposed algorithm was coded in C + + on a HP Elitebook 8570w with 12GB of mem-

ory. The IBM ILOG CPLEX 12.6 console was incorporated into the program using default

parameters.

Tables 2 and 3 show the results found for the data sets pr439 and rat575. The first col-

umn titled p shows the required number of facilities. The initial upper bound value, denoted

by Z in column 2, was found from a 1000 iteration runs of the H2 heuristic described in

Drezner (1984). The next column, titled Z∗, shows the optimal solution value, followed by

16

Step 1: Input vectors Startj and CircMaxj. Set JZ = ∅.
Step 2: For all Cj ∈ J , if CircMaxj = 1, add Cj to JZ (i.e. set JZ = JZ ∪ Cj)

and remove Cj from the set {C1
J ∪ C2

J ∪ C3
J}.

Step 3: (Find all Z−maximal circles in the set C1
J .)

For all Cj ∈ C1
J where CircMaxj = 0 do:

Take the circle C1
j . Starting from demand point Startj, take l ∈ I and

compute d′j,l. If ∃ l ∈ I such that
d′j,l
2
< Z, the circle is not Z−maximal.

Discard Cj from further investigation and set Startj = l.
Else, the circle is Z−maximal by definition. Add Cj to JZ
(i.e. JZ = JZ ∪ Cj) and set CircMaxj = 1.

Step 4: (Find all Z−maximal circles in the set C2
J ∪ C3

J .)
For all Cj ∈ {C2

J ∪ C3
J} where CircMaxj = 0 do:

Step 4A:

(i) Starting from demand point Startj, if ∃ i /∈ Clj where
di,j < Z, go to Step 4B(ii), else go to 4A(ii).

(ii) Starting from demand point Startj, if ∀ i /∈ Clj, di,j ≥ 2Z,
go to Step 4B(i), else go to 4A(iii).

(iii) While ∃ i /∈ Clj with Z ≤ di,j < 2Z, starting from demand
point Startj do:
Use the EHA to find R(Clj ∪ {i}).
If a circle with radius ≥ Z is found at any point during the
EHA, go back to start of 4A(iii) starting from the next i value,
else continue to find R(Clj ∪{i}). If R(Clj ∪{i}) < Z, then Cj
is not Z−maximal: go to Step 4B(ii).

(iv) If this point is reached the circle is maximal: go to Step 4B(i).

Step 4B :

(i) (Circle Cj is Z−maximal by definition.) Add Cj to JZ (i.e. set
JZ = JZ ∪ Cj) and set CircMaxj = 1.

(ii) (Circle Cj is not Z−maximal by definition.) Set Startj = i.

Figure 6: The FMC-Revised Algorithm

the computational time (in secs) required for the revised Drezner optimal algorithm to find

Z∗ in the Loop CPU Time column. Note that this result excludes the computational time

consumed by the H2 heuristic.

Other information, such as how many loops (iterations) are needed to get the optimal

solution value, the total time spent on computing the Z−maximal circles and the total time

spent on computing the result in CPLEX are reported alongside their corresponding per-

centages in the remaining columns. (Note that these two individual percentages when added

are below 100% due to other calculations.)

For completeness, we also produced a summary result in Table 4 to show for both in-

17

Step 1. Find all circles made from one, two or three demand points. This creates
three sets of circles : C1

J , C2
J and C3

J . Discard any circle in C3
J whose three

points create an obtuse or right-angled triangle.

Step 2. Find an initial solution and set the solution value as the initial upper
bound, Z.

Step 3. Set Startj = 1 and CircMaxj = 0 for j = 1, . . . ,m.

Step 4. Eliminate all circles whose radii are ≥ Z from C2
J and C3

J .

Step 5. Find all Z−maximal circles using the FMC-Revised algorithm with the
threshold Z (Figure 6). Let JZ be the set of Z−maximal circles.

Step 6. Solve CP1 using the set of current Z−maximal circles in JZ . If a solution
is found, set Z to be the new upper bound, JZ = ∅ and go back to
Step 4.
Else, the upper bound Z is the optimal solution value of the planar
p−centre problem and stop.

Figure 7: The Revised Drezner Optimal Algorithm

stances and for each value of p the new and the old duration including the percentage

decrease. It is clear to see that the enhanced method has greatly reduced the computational

time for both data sets. As an example, it took just over 4 hours average computational

time for the data set pr439 previously, whereas now the average time is just over 12 minutes

leading to a massive average reduction of 96%. Note that these computational times do not

include the computational time for the H2 heuristic.

For the data set rat575, the computational time has also been reduced. For the smaller

values of p (10, 20 and 30), the majority of the time was taken computing the Z−maximal

circles leading to a reduction of over 90%. However, for the other values of p the majority

of the computational time is taken up solving the problem in CPLEX leading to an overall

relatively small though still significant reduction of nearly 50%. This observation led us to

face a challenge that will be explored in the next section.

Furthermore, our findings could be compared to the relaxation-based algorithms of Chen

& Chen (2009) for the only reported results for the TSP-Library data set pr439. In this par-

ticular instance, our total computational time (inclusive of the computational time required

for the H2 heuristic) is found to be greater than theirs. However, it is also important to

note that our optimal algorithm is deterministic and hence relatively more robust, as it is

not sensitive to several factors including the initial subset of demand points or the number

of demand points added to the subset at each iteration.

18

H2 Heuristic Optimal Solution

p Z CPU
Time
(secs)

Z∗ Loop
CPU
Time
(secs)a

Loops Max
Circles
(secs)

CPLEX
(secs)

Max
Circles
(%)

CPLEX
(%)

10 1716.510 96.88 1716.510 342.78 2 278.96 34.52 81.38 10.07
20 1169.540 170.28 1029.715 2856.38 36 359.05 282.05 12.57 9.87
30 975.000 205.36 739.193 2146.67 49 229.60 207.87 10.70 9.68
40 874.271 218.9 580.005 1515.29 67 171.14 200.49 11.29 13.23
50 580.005 235.61 468.542 159.49 38 21.90 51.09 13.73 32.04
60 570.088 246.86 400.195 170.38 48 23.24 53.20 13.64 31.22
70 503.271 256.30 357.946 97.63 47 13.77 36.71 14.11 37.60
80 467.039 300.01 312.500 73.52 52 9.61 31.62 13.07 43.02
90 391.511 276.20 280.903 38.01 48 4.71 20.85 12.39 54.86
100 315.486 332.53 256.680 16.77 32 1.50 11.06 8.93 65.93

Average 756.272 233.90 614.218 741.69 42 111.35 92.95 19.18 30.75

Table 2: n = 439 TSP-Lib with Enhancements
a This excludes computational time for the H2 heuristic.

H2 Heuristic Optimal Solution

p Z CPU
Time
(secs)

Z∗ Loop
CPU
Time
(secs)a

Loops Max
Circles
(secs)

CPLEX
(secs)

Max
Circles
(%)

CPLEX
(%)

10 69.426 98.34 67.926 5572.02 10 693.86 336.28 12.45 6.04
20 48.107 175.62 45.475 1616.05 11 109.75 495.80 6.79 30.68
30 39.655 238.26 35.556 1023.14 14 46.20 544.21 4.51 53.19
40 33.365 296.90 30.063 37660.80 11 17.41 37514.80 0.05 99.61
50 30.336 403.76 25.826 6352.86 15 12.85 6247.59 0.20 98.34
60 27.951 422.18 23.163 26870.00 18 9.26 26800.50 0.03 99.74
70 25.578 558.85 20.858 26123.80 19 6.22 26082.30 0.02 99.84
80 24.135 535.90 19.026 32343.20 17 4.41 32343.20 0.01 99.91
90 21.932 743.20 17.460 2167.610 18 3.04 2149.99 0.14 99.19
100 20.402 795.13 16.420 25074.40 15 1.93 25074.40 0.01 99.95

Average 34.089 426.81 30.177 16480.39 15 90.49 15.758.90 2.42 78.65

Table 3: n = 575 TSP-Lib with Enhancements
a This excludes computational time for the H2 heuristic.

19

pr439 rat575

p Original
CPU Time
(secs)a

New CPU
Time
(secs)a

Percentage
Decrease
(%)

Original
CPU Time
(secs)a

New CPU
Time
(secs)a

Percentage
Decrease
(%)

10 6252.72 342.78 94.52 83898.60 5572.02 93.36
20 56753.00 2856.38 94.97 19087.6 0 1616.05 91.53
30 37017.10 2146.67 94.20 9743.91 1023.14 89.50
40 31355.00 1515.29 95.17 41733.00 37660.80 9.76
50 4939.25 159.49 96.77 9612.60 6352.86 33.91
60 4956.45 170.38 96.56 28344.00 26870.00 5.20
70 3170.89 97.63 96.92 40256.90 26123.80 35.11
80 2186.27 73.52 96.64 40181.70 32343.20 19.51
90 1258.22 38.01 96.98 4260.10 2167.61 49.12
100 462.30 16.77 96.37 33694.00 25074.40 25.58

Average 14835.1197 741.6913 95.91 31081.242 16480.39 45.26

Table 4: Original vs. Revised Drezner’s algorithm for n = 439 TSP-Lib and n = 575 TSP-Lib
a This excludes computational time for the H2 heuristic.

Figure 8: Average computational time % in CPLEX per iteration vs. last iteration for rat575

20

6. A Self-Adaptive CPLEX policy

In this section, we investigate how to balance the time spent between computing the Z−maximal

circles and the level of the solution quality which we consider to be acceptable when solving

CP1. However, to guarantee optimality, we need to show at one stage that CP1 has no

feasible solution and hence the final iteration needs to run to the very end. In other words,

it is not possible to reduce the computational time by terminating the search earlier in the

last run.

Table 5 shows the total time taken in CPLEX compared to the time consumed in the

last iteration in CPLEX. Though a relatively considerable amount of time is used in the last

iteration accounting for approximately 10-20% of the total computational time, the com-

putational time taken in the previous iterations is nonetheless worth exploring for possible

improvement. A compromise feasible solution to save computational time in CPLEX while

limiting the total number of iterations of the entire algorithm will be our focus in this section.

p CPLEX Loop CPU
Time (secs)

CPLEX Final
Iteration CPU
Time (secs)

Percentage
Use (%)

Loops Average(%)
per Loop
excluding
last iteration

Overall Av-
erage (%)
per Loop

10 336.28 31.81 9.46 10 11.11 10.00
20 495.80 105.96 21.37 11 10.00 9.09
30 544.21 68.25 12.54 14 7.69 7.14
40 37514.80 12789.40 35.81 11 10.00 9.09
50 6247.59 673.42 10.78 15 7.15 6.67
60 26800.50 3821.60 14.26 18 5.88 5.56
70 26082.30 2231.55 8.56 19 5.56 5.26
80 32343.20 647.03 2.00 17 6.25 5.88
90 2149.99 41.48 1.93 18 5.88 5.56
100 25074.40 4577.57 18.26 15 7.14 6.67

Average 15758.91 2498.81 15.86 15 7.14 6.67

Table 5: CPLEX Durations (secs) for both the total and the last iteration in the case of n = 575 TSP-Lib

There are several ways in which the search can be terminated early in previous runs

whilst producing a feasible solution for CP1. An example would be to impose a time limit,

however this does not always guarantee that a feasible solution will be found within that

time and so other options are investigated.

Our study adopts a strategy by which we manipulate the duality gap so that CPLEX

terminates earlier with a good feasible, but not necessarily optimal, solution whenever it

manages to find at least one. However, the value of the duality gap can be both sensitive

and critical which can make our algorithm less robust. The algorithm cannot terminate too

21

early as it could simply increase the number of iterations greatly, and therefore increase the

time spent computing the Z−maximal circles. It is therefore important to find a reasonable

compromise that we wish to devise. In this study, we propose the following self−learning

CPLEX policy which takes into consideration information from previous iterations.

It is worth noting that the following duality gap policy is only implemented when CPLEX

finds at least one feasible solution in any run of CPLEX. However, if no feasible solution has

been identified in a given run, CPLEX continues until the maximum time limit is reached

where the search terminates. Hence the obtained Z value of the previous run is used as the

final solution, which obviously cannot be guaranteed to be optimal.

An Adaptive CPLEX Policy

At iteration t, the moving average for the computational time for calculating Z−maximal

circles (TMax) and solving the problem in CPLEX (TCPLEX) based on the last α iterations

is respectively defined as follows.

Gα
t (A) =

∑t
t′=t−αA

t′

α
(13)

where A = {TMax, TCPLEX}, and At
′

is the corresponding time at iteration t′.

We define α as

α =

 t
2

if t ≥ K,

t else.

In other words, the classical average is used if t < K, otherwise the moving average over half

of the past iterations is adopted. In this study, we used K = 6 based on preliminary results.

We use the following scheme based on the performance ratio ξ =
Gαt (TMax)

Gαt (TCPLEX)
;

a) If

ξ ≥ 1 (14)

then the time for computing the Z−maximal circles is much larger than the time spent

solving the problem in CPLEX. Therefore, the number of iterations need to be reduced as

22

much as possible, and so we set the duality gap to 0%.

b) However, if

ξ ≤ 0.4 (15)

then the majority of the computational time is spent solving the problem in CPLEX, and

therefore we wish to exit CPLEX sooner with a feasible solution rather than seeking an

optimal one, hence we set the duality gap to be 1%.

c) If ξ has any other value, then the computational times are considered to be more or

less similar. In this case, we wish to reach a balance between finding the near optimal solu-

tion and leaving CPLEX early, hence we set the duality gap to be 0.5%.

In summary, the following conditions related to the duality gap are given.

Duality Gap =


0 if ξ ≥ 1,

0.5% if 0.4 < ξ < 1,

1% if ξ ≤ 0.4.

(16)

This policy, which uses adaptive learning, is less sensitive to the effect of the data’s distri-

bution on the computational time and therefore it is very reliable.

The final results for rat575, that include the results where the CPLEX adaptive policy is

incorporated, are found in Table 6, displayed alongside the total computational time required

to optimally solve this data set using the enhanced algorithm without the duality gap policy.

This table also shows that the average decrease in computational time is now 72.91% from

the original CPU times, and it has decreased a further 50.05% from this new computational

time when incorporating the duality gap with the enhancements. This is a promising result

and demonstrates that the CPLEX adaptive policy has a large and positive effect on the

overall efficiency of this enhanced algorithm.

It is important to recognise that for some values of p, such as p = 10, the total dura-

tion could be slightly increased as in this instance the majority of time is spent computing

Z−maximal circles. This is because in the first iteration, we do not know whether the ma-

jority of time will be spent on computing the Z−maximal circles or solving the problem in

23

Optimal Solution

p Loop
CPU
Time
w/o Du-
ality Gap
(secs)a

Loop
CPU
Time
(secs)a

Percentage
Decrease
(%)

#
Loops

Max Cir-
cles (secs)

CPLEX (secs) Max
Circles
(%)

CPLEX
(%)

Total Last
Loop

10 5572.02 5732.12 -2.86 10 690.69 340.37 32.89 12.05 5.93
20 1616.05 1634.74 -1.15 11 112.83 471.74 108.68 6.90 28.86
30 1023.14 1254.57 -22.62 30 58.88 730.55 69.97 4.69 58.23
40 37660.80 25949.90 31.10 15 19.55 25793.20 12936.20 0.08 99.40
50 6352.86 3161.59 50.23 23 14.17 3052.89 675.08 0.45 96.56
60 26870.00 9134.14 66.01 29 10.49 9063.42 3733.39 0.11 99.26
70 26123.80 15961.50 38.91 24 6.53 15920.30 2219.57 0.04 99.74
80 32372.30 5656.99 82.53 74 8.80 5619.18 642.85 0.16 99.33
90 2167.61 996.43 54.03 34 3.98 976.77 41.86 0.40 98.03

100 25086.30 12862.90 48.73 23 2.29 12850.30 4614.62 0.02 99.90
Average 16484.48 8234.49 50.05 27 92.82 7481.87 2507.51 2.49 78.52

Table 6: n = 575 TSP-Lib with Enhancements and Duality Gap Policy
a This excludes computational time for the H2 heuristic.

CPLEX as CPLEX has not run yet. To respond to this issue, we have therefore set a duality

gap of 0.5% for the first iteration.

7. Overall Computational Results

Our algorithm was tested on the TSP-Lib data sets rat575, rat783, pr1002 and rl1323. For

information, the data set rat783 represents a 783-rattled grid problem, and the data sets

pr1002 and rl1323 refer to a 1002 and 1323-city problem respectively. As we aim to obtain

optimal solutions, we used the best known heuristic results from Elshaikh et al.(2015) as

our initial upper bound. This deviates from the method previously used, where the initial

upper bound was found using the simple H2 heuristic whose solutions may be relatively loose

and hence may require an unnecessarily larger overall computational time. Note also that

the computational times given here do not include this heuristic step, but these times are

recorded in Elshaikh et al.(2015).

As these data sets are very large, a maximum time limit of 24 hours was set for each

value of p. If the algorithm happens to take longer than the cutoff time, the program is

terminated and the upper bound at that time is recorded as the best feasible solution.

Tables 7 − 10 are arranged similarly to the tables in Section 5, with the newly found

optimal solutions highlighted in bold. However, extra information for the computational

24

time spent in CPLEX is provided. In order to establish how much computational time can-

not be improved on (the last iteration) the column representing the time spent in CPLEX

is now divided into two, with one half showing the total time spent in CPLEX and the

other half showing how long the last iteration took in CPLEX. Therefore, in the instance

where the algorithm reaches the maximum time limit, the result in the second half of this

column may not be showing the time spent to reach optimality. However, in each of these

circumstances, no further feasible solution was found in the final iteration (except for the

case where n = 783, p = 40). Thus, this indicates that the solution found in the previous

iteration may be the optimal solution.

Furthermore, in the instance where n = 783 and p = 40, a feasible solution was found

but the duality gap policy value had not been reached. The program was therefore allowed

to run for a further hour (with the solution found at this iteration as its new upper bound)

to see if this solution could be improved. Again, no further feasible solution was found which

shows that the last feasible solution could be optimal. This last feasible solution found is

the one given in Table 8.

Best Heuristic Optimal Solution

p Z Z∗ Loop
CPU
Time
(secs)a

Loops Max
Circles
(secs)

CPLEX (secs) Max
Circles
(%)

CPLEX
(%)

Total Last
Loop

10 67.926 67.926 489.53 1 413.20 32.37 32.37 84.41 6.612
20 45.6212 45.475 384.79 3 49.50 272.52 107.70 12.86 70.82
30 35.556 35.556 87.16 1 11.19 68.84 68.84 12.83 78.99
40 30.265 30.063 20898.30 5 6.57 20880.01 13085.80 0.03 99.91
50 26.173 25.826 2476.32 10 4.35 2462.60 670.71 0.18 99.45
60 23.622 23.163 8888.40 12 3.03 8878.01 3749.88 0.03 99.88
70 21.059 20.858 16283.70 9 1.64 16277.80 2238.12 0.01 99.9
80 19.510 19.026 3893.66 13 1.45 3887.75 646.53 0.04 99.85
90 17.923 17.460 868.39 18 1.22 863.18 41.75 0.14 99.40

100 16.551 16.420 13268.80 8 0.55 13265.40 4626.44 0.00 99.97

Average 6753.90 8 49.27 6688.86 2526.81 11.05 85.49

Table 7: Solutions for n = 575 TSP-Lib using the Revised Drezner’s Algorithm starting from Best
Heuristic Value

a This excludes computational time for the heuristic step.

25

Best Heuristic Optimal (or Best) Solution

p Z Z∗ Loop
CPU
Time
(secs) a

Loops Max
Circles
(secs)

CPLEX (secs) Max
Circles
(%)

CPLEX
(%)

Total Last
Loop

10 79.313 79.313 5696.39 2 2918.48 978.14 402.57 51.23 17.17
20 53.441 53.332 2884.05 8 224.16 2410.67 400.08 7.77 83.59
30 42.395 42.307 21833.60 4 55.52 21714.00 13229.40 0.25 99.45
40 35.962 35.861∗ 86400.00 1 19.30 86380.00 86370.00 0.02 99.98
50 31.184 31.041∗ 86400.00 10 14.81 86355.50 33887.70⊥ 0.01 99.95
60 28.053 27.880∗ 86400.00 14 10.95 86365.10 80032.39⊥ 0.01 99.96
70 25.446 25.239∗ 86400.00 3 4.21 86381.60 39254.10⊥ 0.004 99.98
80 23.560 23.192∗ 86400.00 9 5.43 86384.24 1530.90⊥ 0.006 99.98
90 21.710 21.319∗ 86400.00 12 5.01 86384.30 54352.70⊥ 0.005 99.98
100 20.334 19.999∗ 86400.00 7 2.03 86387.10 50190.10⊥ 0.002 99.99

Average 7 325.99 62974.05 35964.00 5.94 90.00

Table 8: Solutions for n = 783 TSP-Lib using the Revised Drezner’s Algorithm starting from Best
Heuristic Value

a This excludes computational time for the heuristic step.
∗ best feasible solution found within 86400 seconds.
⊥ no feasible solution found in the last iteration within the time limit allowed.

Best Heuristic Optimal Solution

p Z Z∗ Loop
CPU
Time
(secs) a

Loops Max
Circles
(secs)

CPLEX (secs) Max
Circles
(%)

CPLEX
(%)

Total Last
Loop

10+ 2389.360 − − − − − − − −
20 1609.540 1607.530 4904.66 10 825.07 2786.07 340.83 16.82 56.80
30 1231.360 1231.360 881.26 1 86.42 739.83 739.83 9.81 83.95
40 1030.400 1021.410 1778.08 29 121.62 1404.82 190.49 6.84 79.01
50 901.455 895.342 13011.90 12 42.29 12867.60 353.84 0.33 98.89
60 801.474 795.709 8961.03 22 40.29 8843.69 785.27 0.45 98.69
70 727.154 725.431 1502.26 3 10.86 1458.29 1436.05 0.72 97.07
80 664.798 655.746 917.42 15 16.35 853.75 78.91 1.78 93.06
90 604.152 604.152 373.52 1 4.20 349.55 349.55 1.12 93.58
100 559.017 555.662 123.78 10 6.82 91.64 12.70 5.51 74.04

Average 11 128.21 3266.13 476.39 4.82 86.12

Table 9: Solutions for n = 1002 TSP-Lib using the Revised Drezner’s Algorithm starting from Best
Heuristic Value

a This excludes computational time for the heuristic step.
+ could not be computed due to computer memory.

26

Best Heuristic Optimal (or Best) Solution

p Z Z∗ Loop
CPU
Time
(secs)a

Loops Max
Circles
(secs)

CPLEX (secs) Max
Circles
(%)

CPLEX
(%)

Total Last
Loop

10+ 2897.490 − − − − − − − −
20+ 1886.820 − − − − − − − −
30 1466.970 1466.970 29522.00 2 1605.09 26403.90 12725.60 5.43 89.44
40 1236.380 1235.660∗ 86400.00 5 199.23 86150.77 19277.17⊥ 0.23 99.71
50 1060.820 1060.420∗ 86400.00 2 48.08 85933.90 400.00⊥ 0.06 99.46
60 941.870 940.483∗ 86400.00 7 43.10 86333.90 18895.60⊥ 0.05 99.90
70 844.967 843.801 13454.40 12 38.72 13323.10 6278.02 0.29 99.02
80 774.764 774.764 51229.30 1 9.45 51164.10 51164.10 0.02 99.87
90 720.625 706.145 5942.07 33 46.91 5750.88 119.51 0.80 96.78
100 662.936 658.997 37388.90 15 20.53 37273.30 6915.90 0.05 99.69

Average 10 251.39 49041.73 14471.99 0.87 97.98

Table 10: Solutions for n = 1323 TSP-Lib using the Revised Drezner’s Algorithm starting from Best
Heuristic Value

a This excludes computational time for the heuristic step.
∗ best feasible solution found within 86400 seconds.
+ could not be computed due to computer memory.
⊥ no feasible solution found in the last iteration within the time limit allowed.

It is important to note that for smaller values of p (i.e. p = 10 for pr1002 and p ≤ 20 for

rl1323) computer memory becomes an issue leading to no results being found. This could

be due the initial upper bound being higher in these instances, leading to a relatively large

number of circles being considered and thus making the ILP model too big to be handled.

In summary, the results show that the revised Drezner optimal algorithm can now find

very good and even optimal solutions for these large data sets. In addition, we can also claim

that optimal solutions are found for the first time for the large data sets such as n = 575,

n = 1002 and n = 1323 and some for n = 783 while requiring a reasonable amount of

computational time only for such strategic decision problems.

8. Conclusions and Suggestions

This paper has revisited an optimal and interesting algorithm proposed by Drezner (1984)

thirty years ago to solve the continuous p−centre problem. Opportunities to improve the

algorithm were highlighted, and enhancements were developed, mathematically supported

and empirically tested. The two areas of interest include the way the Z−maximal circles are

27

identified from one iteration to the next, and the proposed adaptive CPLEX scheme to find

a compromise solution at each iteration between the quality of the feasible solution and the

optimal solution when solving the covering problem CP1.

The proposed algorithm was tested on five existing TSP-Library data sets, namely pr439,

rat575, rat783, pr1002 and rl1323 for p = 10, . . . , 100. The results show that the enhanced

optimal method gives a very significant decrease in computational time which sometimes

reaches an average reduction of 96%, yielding an algorithm that is superior, faster and more

efficient meaning that it can be used to optimally solve the continuous p−centre problem for

large data sets for the first time.

One potential research avenue which we believe to be useful would be to incorporate a

fast and good heuristic to generate a feasible solution to the covering problem CP1 instead of

using CPLEX all the time. However, as mentioned earlier, at a certain iteration CPLEX or

equivalent commercial solver needs to be used to prove infeasibility as this task is mandatory

and cannot be performed by a heuristic to guarantee infeasibility. This leads to adopting a

new strategy that could combine the exact method and the heuristic approach to solve CP1

which would identify the appropriate time when the switching from using the heuristic to

CPLEX should take place. This is a challenging but interesting task that deserves a thorough

investigation. Lastly, research issues related to the tightening of the checking area and in

the way the demand points are recorded during the search could also be worth enhancing

even further. These aspects are currently being investigated.

Acknowledgments

The authors would like to thank the referees for their constructive comments that improve

both the content and the presentation of the paper. We are also grateful to Dr Abdalla

Elshaikh for the C++ code of the H2 heuristic, and Professor Frank Plastria for his insightful

comments. The first author would also like to thank EPSRC for her PhD studentship.

References

Brandenberg, R., & Roth, L. (2009). New algorithms for k−center and extensions. Journal

of Combinatorial Optimization, 18, 376-392.

28

Caruso, C., Colorni, A., & Aloi, L. (2003). Dominant, an algorithm for the p−center prob-

lem. European Journal of Operational Research, 149, 53-64.

Chen, R. (1983). Solution of minisum and minimax location-allocation problems with Eu-

clidean distances. Naval Research Logistics Quarterly, 30, 449-459.

Chen, D., & Chen, R. (2009). New Relaxation-based Algorithms for the Optimal Solution

of the Continuous and Discrete Problems. Computers and Operations Research, 36, 1646-

1655.

Chen, D., & Chen, R. (2010). A relaxation based algorithm for solving the conditional

p−center problem. Operations Research Letters, 38, 215-217.

Chen, D., & Chen, R. (2013). Optimal Algorithms for the α−Neighbor P−Center Problem.

European Journal of Operational Research, 225, 36-43.

Chen, R., & Handler, G.Y. (1987). Relaxation Method for the Solution of the Minimax

Location-Allocation Problem in Euclidean Space. Naval Research Logistics, 34, 775-788.

Chen, R., & Handler, G. Y. (1993). The Conditional P−Center Problem in the Plane.

Naval Research Logistics, 40, 117-127.

Centre of Logistics and Heuristic Optimisation. (2015).

http://www.kent.ac.uk/kbs/research/research-centres/clho/datasets.html, Kent Busi-

ness School, The University of Kent.

Cooper, L. (1964). Heuristic Methods for Location-Allocation Problems. SIAM Review, 6,

37-53.

Drezner, Z. (1984). The p−centre Problem - Heuristic and Optimal Algorithms. Journal of

Operational Research Society, 35, 8, 741-748.

Drezner, Z., & Shelah, S. (1987). On the complexity of the Elzinga-Hearn algorithm for the

1−centre problem. Mathematics of Operations Research, 12 (2), 255-261.

Drezner, Z. (2011). Continuous Center Problems, In H. A. Eiselt & V. Marianov (Eds.)

Foundations of Location Analysis (pp. 63-78). New York: Springer.

29

Elloumi, S., Labbe, M., & Pochet, Y. (2004). A new formulation and resolution method for

the p−center problem. INFORMS Journal of Computing, 16, 84-94.

Elshaikh, A., Salhi, S., & Nagy, G. (2015). The continuous p−centre problem: An investi-

gation into variable neighbourhood search with memory. European Journal of Operational

Research, 241, 606-621.

Elzinga, J., & Hearn, D. (1972). Geometric Solutions for some Minimax Location Problems.

Transportation Science, 6, 379-394.

Hakimi, S. L. (1965). Optimum Location of Switching Centers in a Communications Net-

work and some related Graphical Theoretic Problems. Operations Research, 13, 462-475.

Kavah, A., & Nasr, H. (2011). Solving the conditional and unconditional p−centre problem

with modified harmony search: A real case study. Scientia Iranica, 4, 867-877.

Lu, C. (2013). Robust weighted vertex p−center model considering uncertain data: An

application to emergency management. European Journal of Operational Research, 230,

113-121.

Megiddo, N., & Supowit, K. (1984). On the Complexity of some common geometric location

problems. Society for Industrial and Applied Mathematics, 13 (1), 182-196.

Minieka, E. (1970). The m−centre problem. SIAM Review, 12, 138-139.

Pacheco, J. A., & Casado, S. (2004). Solving two location models with few facilities by

using a hybrid heuristic: a real health resources case. Computers and Operations Research,

32, 3075-3091.

Plastria, F. (2002). Continuous Covering Location Problems. In Z. Drezner, & H. W.

Hamacher (Eds.), Facility Location: Applications and Theory (pp. 37-72). Springer, New

York.

Richard, D., Beguin, H., & Peeters, D. (1990). The location of fire stations in a rural

environment: a case study. Environment and Planning, 22, 39-52.

Travelling Salesman Problem Library. (2015), http://www.iwr.uni-

heidelberg.de/groups/comopt/software/TSPLIB95/tsp/

30

Wei, H., Murray., A. T., & Xiao, N. (2006). Solving the continuous space p−center problem:

planning application issues. IMA Journal of Management Mathematics, 17 (4), 413-425.

Welzl, E. (1991). Smallest enclosing disks (balls and ellipsoids). In H.Maurer (Ed), New

Results and New Trends in Computer Science (pp.359-370). Springer.

31

Appendix

(a) n = 439 (b) n = 575

Figure A.1: Comparing time spent to calculate Z−maximal circles, the cplex solution and other

H2 Heuristic Optimal Solution

p Z CPU Time Z∗ Loop
CPU
Time
(secs)a

Loops Maxi
Circles
(secs)

CPLEX
(secs)

Maxi
Circles
(%)

CPLEX
(%)

10 1716.510 96.88 1716.510 6252.72 2 6154.93 36.39 98.44 0.58
20 1169.540 170.28 1029.715 56753.00 36 54203.60 297.90 95.51 0.52
30 975.000 205.36 739.193 37017.10 49 35024.50 222.96 94.62 0.60
40 874.271 218.90 580.005 31355.00 67 29986.40 209.61 95.64 0.67
50 580.005 235.61 468.542 4939.25 38 4781.67 59.91 96.81 1.21
60 570.088 246.86 400.195 4956.45 47 4794.88 57.77 96.74 1.17
70 503.271 256.30 357.946 3170.89 46 3076.31 39.04 97.02 1.23
80 467.039 300.01 312.500 2186.27 53 2109.08 37.33 96.47 1.71
90 391.511 276.20 280.903 1258.22 48 1214.45 23.80 96.52 1.89
100 315.486 332.53 256.680 462.30 32 437.38 13.93 94.61 3.01

Average 756.272 233.89 614.218 14835.12 42 14178.32 99.87 96.24 1.26

Table A.2: Optimal Results using the original Drezner’s Algorithm n = 439 TSP-Lib with the CP1

formulation at each iteration
a This excludes computational time for the H2 heuristic.

32

H2 Heuristic Optimal Solution

p Z CPU Time Z∗ Loop
CPU
Time
(secs) a

Loops Maxi
Circles
(secs)

CPLEX
(secs)

Maxi
Circles
(%)

CPLEX
(%)

10 69.426 98.34 67.926 83898.60 10 78805.90 351.59 93.93 0.42
20 48.107 175.62 45.475 19087.06 11 17513.80 519.37 91.75 2.72
30 39.655 238.26 35.556 9743.91 14 8698.37 577.51 89.27 5.93
40 33.365 296.90 30.063 41733.00 11 3240.15 38342.30 7.76 91.88
50 30.336 403.76 25.826 9612.61 15 2515.16 6985.51 26.17 72.67
60 27.951 422.18 23.163 28344.00 18 1938.64 26327.70 6.84 92.89
70 25.578 558.86 20.858 40256.90 20 1449.39 38756.30 3.60 96.27
80 24.135 535.90 19.026 40181.70 17 892.371 39247.90 2.22 97.68
90 21.932 743.20 17.460 4260.10 18 696.769 3532.50 16.36 82.92
100 20.402 795.13 16.420 33694.00 15 405.90 33262.20 1.20 98.72

Average 34.089 426.81 30.177 31081.242 14.9 11615.65 18790.29 33.91 64.21

Table A.3: Optimal Results using the original Drezner’s Algorithm for n = 575 TSP-Lib with the CP1

formulation at each iteration
a This excludes computational time for the H2 heuristic.

33

