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Abstract

This paper addresses the beam allocation problem in a switched-beam based massive multiple-

input-multiple-output (MIMO) system working at the millimeter wave (mmWave) frequency band, with

the target of maximizing the sum data rate. This beam allocation problem can be formulated as a

combinatorial optimization problem under two constraints that each user uses at most one beam for its

data transmission and each beam serves at most one user. The brute-force search is a straightforward

method to solve this optimization problem. However, for a massive MIMO system with a large number

of beams N , the brute-force search results in intractable complexity O(NK), where K is the number

of users. In this paper, in order to solve the beam allocation problem with affordable complexity,

a suboptimal low-complexity beam allocation (LBA) algorithm is developed based on submodular

optimization theory, which has been shown to be a powerful tool for solving combinatorial optimization

problems. Simulation results show that our proposed LBA algorithm achieves nearly optimal sum data

This paper was presented in part at the IEEE International Conference on Communications (ICC), London, June 2015.

J. Wang, H. Zhu, N. J. Gomes, and J. Wang are with the School of Engineering and Digital Arts, University of Kent,

Canterbury, Kent, CT2 7NT, UK (email: {jw712, h.zhu, n.j.gomes, j.z.wang}@kent.ac.uk).

L. Dai is with the Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong,

Hong Kong, China (email: lindai@cityu.edu.hk).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/46521338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

rate with complexity O(K logN). Furthermore, the average service ratio, i.e., the ratio of the number

of users being served to the total number of users, is theoretically analyzed and derived as an explicit

function of the ratio N/K.

Index Terms

Switched-beam based systems, beam allocation algorithm, sum data rate, submodular optimization,

service ratio, massive multiple-input-multiple-output (MIMO)

I. INTRODUCTION

The rapid growth of smartphone users and high-data-rate applications such as online-gaming

and streaming high-definition video has imposed ever-increasing high-data-rate requirements on

the fifth-generation (5G) mobile communication systems. In order to meet this challenge, there

has been a great interest in moving to millimeter wave (mmWave) spectrum where a wide range

of bandwidth is available, which also enables deploying a massive number of antennas at the

base-station (BS) [1]–[10].

With a massive number of antenna elements at the BS (popularly known as massive multiple-

input-multiple-output (MIMO)), a few advantages can be harvested, e.g., the random channel

vectors from users to the BS become pairwisely orthogonal, the effect of small-scale fading can

be averaged out, and the transmit power can be reduced significantly [9], [10]. Thanks to the

aforementioned benefits, massive MIMO has been also adopted in wireless sensor networks re-

cently [11], [12]. Moreover, by employing massive MIMO in mmWave communication systems,

narrow and high-gain beams can be formed to overcome the severe propagation loss of mmWave

signals for establishing reliable links. Therefore, massive MIMO beamforming has been seen as

a promising key technology for 5G cellular networks [1].

Generally, beamforming technologies can be divided into two categories: digital beamforming

[13] and analog beamforming [14]. Digital beamforming is often employed in the conventional

communication systems where beams are formed by digitally adjusting the amplitudes and

phases of transmitted signals, which is flexible and programmable. However, performing digital
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beamforming requires individual radio frequency (RF) chain for each antenna element. For the

massive MIMO systems, even though with very good performance, deploying a massive number

of RF chains to enable digital beamforming is of high cost and with high power consumption at

mmWave frequencies. By contrast, analog beamforming is implemented just by using a number

of independent phase shifters on the BS antennas at the RF part, i.e., only one RF chain is

needed for a single data stream, which is much simpler and cheaper. Therefore, more and more

attention has been paid on the hybrid analog-digital beamforming [15]–[20] and pure analog

beamforming [21]–[23].

For analog beamforming based systems, a switched-beam scheme along with beam selection

turned to be a popular technique for data transmission through beams due to its simplicity

[24]–[32]. In this scheme, a fixed number of beams are generated and pointed to different

predetermined directions to cover the whole cell. The Butler method is a representative method

to create fixed beams [25]. In the switched-beam based multiuser systems, each user uses only

one beam to transmit and/or receive its data signal and switches its beam from one time slot

to another according to the strength of the line-of-sight (LOS) signal to achieve efficient beam

switching. As the switched-beam scheme requires LOS, it has been mainly investigated in satellite

communication systems [26]–[28]. For cellular systems, the study was limited in wideband code

division multiple access (WCDMA) mobile networks [29], [30]. Recently, due to the potential

of high capacity by exploiting the mmWave bands, the switched-beam scheme has been also

studied in the mmWave communication systems where LOS often exists [31], [32].

For such a switched-beam based multiuser system, a key challenge is how to assign multiple

beams to multiple users to achieve a high sum data rate. This beam allocation problem shares

similarities to that in the conventional random beamforming based systems [33]–[36]. Specifi-

cally, in a random beamforming based system, to exploit multiuser diversity gain, the number of

users K is assumed to be much larger than the number of beams N , i.e., K � N . By assuming

that all the N beams are used with equal power allocation, each user can calculate the received

signal-to-interference-plus-noise ratios (SINRs) on the N beams and then feeds back the SINRs
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and the corresponding beam indices to the BS. After receiving feedback from all users on all

beams, the BS assigns each beam to the best user with the highest SINR to maximize the sum

data rate [33]–[35]. In this scenario, the beam allocation problem is reduced to N independent

user selection problems, i.e., selecting the proper user for each beam to serve.

However, the beam allocation algorithms in conventional random beamforming based systems

[33]–[35] cannot be directly adopted in switched-beam based massive MIMO systems. The main

reason is that in massive MIMO systems, the number of beams can be much larger than the

number of users, i.e., N � K, and thus some of the beams may not be used for data transmission,

and the beams used for data transmission could vary when the channel condition changes. As

a result, it is impossible for each user to calculate its received SINR on each beam due to the

lack of information of active beams. Moreover, even under the condition N � K, it is shown

in [36] that using all the beams for transmission is not always optimal due to strong inter-beam

interference. Several suboptimal beam selection algorithms were further proposed to maximize

the sum data rate [36], among which the simplest greedy algorithm still has the complexity

O(KN2), which could be very high when the number of beams N is large.

This paper aims to develop a low-complexity beam allocation algorithm to maximize the sum

data rate of a switched-beam based multiuser massive MIMO system where a massive number

of N fixed beams are formed by using the Butler method with a uniform linear array of N

antenna elements to serve K users, i.e., N � K. The beam allocation problem is formulated as

a combinatorial optimization problem with two constraints including that each user can be served

at most by one beam and each beam can serve at most one user. As the brute-force search leads

to the complexity O(NK) to obtain the optimal solution, which is intractable when the number of

beams N is large, in this paper, a suboptimal low-complexity beam allocation (LBA) algorithm

is proposed based on submodular optimization theory, which is a powerful tool for solving

combinatorial optimization problems [37]. Specifically, the original optimization problem is first

reformulated as a non-monotone submodular maximization problem under two partition matroid

constraints, which still has high computational complexity due to the non-monotone objective
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function. To reduce the complexity, the non-monotone submodular maximization problem is

further decoupled into two sub-problems, including a beam-user association sub-problem and a

beam allocation sub-problem which is a monotone submodular maximization problem subject

to a single partition matroid constraint and can be efficiently solved by a greedy algorithm.

The LBA algorithm is then proposed by combining the solutions of these two sub-problems.

Simulation results show that compared with the optimal brute-force search, our LBA algorithm

can achieve nearly the same sum data rate, but only with the complexity O(K logN).

Note that to maximize the sum data rate, some users might not be served, which causes

delay for the unserved users. It is therefore of great importance to study how many users can

be simultaneously served by the system. This performance is indicated in the paper by service

ratio, which is defined as the ratio of the number of served users to the total number of users.

An explicit expression of the average service ratio (i.e., the service ratio averaged over users’

positions) is obtained and shown to be a monotonic increasing function of the ratio of the number

of beams N to the number of users K. Simulation results verify that the analytical result serves

as a good approximation of the average service ratio, which sheds important insights on the

service delay.

The remainder of this paper is organized as follows. Section II introduces the system model

and problem formulation. A low-complexity beam allocation algorithm is proposed in Section III,

followed by the simulation results and discussions provided in Section IV. Concluding remarks

are summarized in Section V.

Throughout this paper, E[·] denotes the expectation operator. x ∼ CN (u, σ2) denotes a complex

Gaussian random variable with mean u and variance σ2. |X| denotes the cardinality of set X .

2X denotes the power set of set X . X ∩ Y and X ∪ Y denote the intersection and union of set

X and set Y , respectively. X \ Y denotes the relative compliment of set Y in set X . ∅ denotes

the empty set.
(
n
k

)
denotes a binomial coefficient, i.e., the number of ways to choose k elements

from a set of n distinct elements.
{
n
k

}
denotes a Stirling number of the second kind, i.e., the

number of ways to partition a set of n distinct elements into k non-empty subsets.
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Fig. 1. Beamforming model. (a) Illustration of massive MIMO system. d denotes the uniform BS antenna elements spacing.

(ρk, θk) is the polar coordinate of user k. “x” represents a user and “•” represents a BS antenna element. (b) Array pattern

generated by using the Butler method. N = 16.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1(a), the downlink transmission is considered for a multiuser switched-beam

based system with K users and a BS with a linear array of N equally spaced identical isotropic

antenna elements to form N fixed beams. It is assumed that K users are uniformly distributed

within a circular cell with unit radius, and each user is equipped with a single antenna.1 The

BS is located at the center of the cell and all the BS antenna elements are equally spaced at

distance d = 0.5λ, where λ is the propagation wavelength. (ρk, θk) denotes the location of user

k.

By applying the Butler method to form the beams with N = 2i (where i ≥ 1 is an integer), the

normalized array factor of any beam n, n = 1, 2, · · · , N , with respect to an angle of departure

(AoD) θ of signal is given by [24]

An(θ) =
sin(0.5Nπ cos θ − βn)

N sin(0.5π cos θ − 1
N
βn)

, (1)

1Note that the following analysis can be also applied to the case where each user is equipped with multiple antennas by

incorporating the receive beam gain into the received signal power model given by (3).
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where

βn =

(
−(N + 1)

2
+ n

)
π. (2)

Fig. 1(b) illustrates the array pattern generated according to (1) and (2) when N = 16, where

the beam index increases from 1 to N from the left-hand side to the right-hand side.

Consider user k as the reference user. By assuming an LOS channel at the mmWave frequen-

cies, the AoD of the received signal at user k is θk and the corresponding received power can

be written as [38]

Pk =
N∑
n=1

ck,n · pn ·Dn(θk) · ρ−αk , (3)

where pn denotes the transmit power allocated on beam n. ρk is the distance from user k to

the cell center and α is the path-loss exponent. Dn(θ) denotes the directivity2 of beam n with

regard to an AoD θ, given by [24]

Dn(θ) =
2 [An(θ)]2∫ π

0
[An(ψ)]2 sin(ψ)dψ

. (4)

Appendix A shows that (4) can be further reduced to (A.5), i.e.,

Dn(θ) = N [An(θ)]2 . (5)

In (3), ck,n ∈ {0, 1} denotes the beam allocation indicator. If beam n is allocated to user k,

ck,n = 1; otherwise, ck,n = 0. With beam switching, each user can only use one beam for its

data transmission, i.e.,
∑N

n=1 ck,n ≤ 1. Moreover, to avoid severe intra-beam interference, each

beam can be used at most by one user, i.e.,
∑K

k=1 ck,n ≤ 1. For a massive MIMO system where

the number of beams N is much larger than the number of users K, only some of the beams

will be used for data transmission, as illustrated in Fig. 2. Let Ns denote the number of allocated

beams, given by

Ns =
K∑
k=1

N∑
n=1

ck,n, (6)

2The directivity is a measure of how directive an individual antenna is relative to an isotropic antenna radiating the same total

power. In other words, the directivity is the ratio of the power density of an anisotropic antenna relative to an isotropic antenna

radiating the same total power [39].
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Fig. 2. Illustration of beam allocation in switched-beam based massive MIMO systems. “x” represents a user. A beam is

allocated to the user in the same color. N = 16, K = 5.

which is no larger than K as each user can only select at most one beam for its data transmission.

Assume that the total transmit power is fixed at Pt, and equally allocated to the beams selected

for data transmission. The transmit power allocated on beam n is then given by

pn =


Pt
Ns
, if

∑K
k=1 ck,n = 1,

0, if
∑K

k=1 ck,n = 0.
(7)

By assuming that the total system bandwidth is normalized to unity, the achievable data rate

of user k can be written as

Rk = log2

(
1 +

Pk
σ2
0 + Ik

)
. (8)

where σ2
0 is the variance of the additive white Gaussian noise (AWGN), and Ik is the inter-beam

interference power received at user k, which is given by

Ik =
K∑

j=1,j 6=k

N∑
n=1

cj,n · pn ·Dn(θk) · ρ−αk . (9)

In this paper, we aim at developing a beam allocation algorithm for maximizing the sum data

rate of switched-beam based massive MIMO systems, which can be formulated as

max
{ck,n: k=1,2,··· ,K; n=1,2,··· ,N}

K∑
k=1

Rk (10a)

s.t.
N∑
n=1

ck,n ≤ 1,∀k ∈ {1, 2, · · · , K}, (10b)

K∑
k=1

ck,n ≤ 1,∀n ∈ {1, 2, · · · , N}, (10c)

ck,n ∈ {0, 1},∀k ∈ {1, 2, · · · , K}, ∀n ∈ {1, 2, · · · , N}, (10d)
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where (10b) and (10c) follow the constraints that each user can select at most one beam to

transmit, and each beam can be used by at most one user to avoid severe intra-beam interference,

respectively.

For the combinatorial optimization problem given by (10a)–(10d), a brute-force search among

all (N+1)K possible beam allocations leads to unaffordably high complexity in massive MIMO

systems with a large number of beams N . In the literature [40]–[44], a widely adopted method

for solving combinatorial optimization problems is to relax the indicator ck,n into a continuous

variable between 0 and 1, and convert the objective function into a convex one, which could

then be efficiently solved by the convex optimization algorithms. In our case, however, there

are N × K indicators to be optimized, which still results in prohibitively high computational

complexity for large N even with relaxation. As a result, in this paper, we resort to submodular

optimization, which has been shown to be a powerful tool for solving combinatorial optimization

problems [37]. In the following section, the beam allocation problem will be reformulated into

a submodular maximization problem subject to matroid constraints.

III. BEAM ALLOCATION DESIGN BASED ON SUBMODULAR OPTIMIZATION

Before reformulating our beam allocation problem into a submodular optimization problem,

let us first present the definitions of submodular functions and matroids given in [37] as follows.

A. Basic Definitions

Definition 1. Let U be a finite ground set, and 2U be the power set of U (i.e., the set of all

subsets of U , including the empty set and U itself). A set function f(S) with the input S ⊆ U

(i.e., S ∈ 2U ) and a real value output, denoted by f : 2U → R, is said to be submodular if

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ), (11)

for any S, T ⊆ U . An equivalent definition of a submodular function is that

f(S ∪ {e})− f(S) ≥ f(T ∪ {e})− f(T ), (12)
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for any S ⊆ T ⊆ U and e ∈ U \T , i.e., the marginal gain of adding an extra element in the set

decreases with the size of the set. Intuitively, if a set function is submodular, its marginal gain

is diminishing when increasing the set size by adding more elements into it.

In particular, a set function f(S) is monotone if

f(S) ≤ f(T ), (13)

for any S ⊆ T ⊆ U .

Definition 2. A matroidM is a pair (U, I), denoted byM = (U, I), where U is a finite ground

set and I ⊆ 2U is a collection of subsets of U with the following properties:

(1) I is nonempty, in particular, ∅ ∈ I;

(2) I is downward closed; i.e., for each X ⊆ Y ∈ I, we have X ∈ I;

(3) If X, Y ∈ I and |X| > |Y |, then there exists an element e ∈ X \ Y such that Y ∪ {e} ∈ I.

Note that I is also called independent sets. Intuitively, for any set X ∈ I, the elements in X

are independent of each other.

Particularly, a partition matroid is a matroid where the ground set U is partitioned into some

disjoint sets, U1, U2, · · · , Ul, and

I = {X ⊆ U : |X ∩ Ui| ≤ wi, for all i = 1, 2, · · · , l}, (14)

for some given parameters w1, w2, · · · , wl.

Based on the above definitions, the original optimization problems given by (10a)–(10d) will

be reformulated in the following subsection.

B. Problem Reformulation

Let us first define the ground set U as

U = {u1,1, u1,2, · · · , u1,N ;u2,1, u2,2, · · · , u2,N ; · · · ;uK,1, uK,2, · · · , uK,N}, (15)

and the beam allocation set S as a subset of U such that uk,n ∈ S if beam n is allocated to user

k, i.e., ck,n = 1,∀k, n; otherwise, uk,n /∈ S. For any beam allocation set S ⊆ U , the objective
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function of (10a) can then be written as

Rs(S) =
∑
uk,n∈S

log2

(
1 +

Pt
|S|Dn(θk)ρ

−α
k

σ2
0 +

∑
uj,l∈S,j 6=k

Pt
|S|Dl(θk)ρ

−α
k

)
, (16)

according to (3) and (6)–(9).

The constraints can be written as an intersection of two partition matroids on the ground set

U . Specifically, let us partition the ground set U into K disjoint subsets, UU
1 , U

U
2 , · · · , UU

K , where

UU
k = {uk,1, uk,2, · · · , uk,N} is the set containing all the possible beam allocations of user k, and

the superscript denotes that the ground set is partitioned according to the user index. Since the

beam allocation indicator ck,n = 1 if uk,n belongs to the beam allocation set S, i.e., uk,n ∈ S,

the constraint given in (10b) can be written as S ∈ IU , where

IU = {X ⊆ U : |X ∩ UU
k | ≤ 1, k = 1, 2, · · · , K}. (17)

According to the definition given by (14), it is clear from (17) that MU = (U, IU) is a partition

matroid. Similarly, by partitioning the ground set U into N disjoint subsets according to the

beam index, i.e., UB
n = {u1,n, u2,n, · · · , uK,n}, n = 1, 2, · · · , N , constraint (10c) can also be

written as a partition matroid constraint, S ∈ IB, with

IB = {X ⊆ U : |X ∩ UB
n | ≤ 1, n = 1, 2, · · · , N}. (18)

MB = (U, IB) denotes the corresponding partition matroid. The optimization problem formu-

lated in (10a)–(10d) can then be rewritten as

max
S⊆U

∑
uk,n∈S

log2

(
1 +

Pt
|S|Dn(θk)ρ

−α
k

σ2
0 +

∑
uj,l∈S,j 6=k

Pt
|S|Dl(θk)ρ

−α
k

)
(19a)

s.t. S ∈ IU , (19b)

S ∈ IB. (19c)

Appendix B shows that the objective function of (19a) is not submodular due to the existence

of the inter-beam interference. By ignoring the inter-beam interference, it can be further relaxed
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into the following form with a submodular objective function:3

max
S⊆U

∑
uk,n∈S

log2

(
Pt
|S|σ2

0

Dn(θk)ρ
−α
k

)
(20a)

s.t. S ∈ IU , (20b)

S ∈ IB. (20c)

The proof of the submodularity of the objective function in (20a) can be found in Appendix B.

For maximization problems with a non-negative submodular objective function and multiple

matroid constraints, a local-search based algorithm has been proposed in [45], which achieves at

least 1
p+2+ 1

p
+ε

of the optimal result, where ε > 0 is a given parameter with small value and p is

the number of matroid constraints. It is also shown in [45] that this algorithm requires at most

O
(
1
ε
pq4 log q

)
local operations, where q is the size of the ground set. In our case, with the size

of the ground set q = |U | = KN and the number of matroid constraints p = 2, the number of

required local operations is O
(
1
ε
(KN)4 log(KN)

)
, which still results in high complexity when

the number of beams N is large. In the following subsection, the beam allocation problem given

by (20a)–(20c) will be decoupled into two sub-problems, based on which a low-complexity beam

allocation algorithm will be proposed.

C. Low-Complexity Beam Allocation (LBA)

1) Problem Decomposition: In this subsection, the beam allocation optimization problem

given by (20a)–(20c) will be decoupled into two sub-problems: (1) beam-user association for

each user, and (2) beam allocation.

For the first sub-problem, let us define SUk as a subset of UU
k = {uk,1, uk,2, · · · , uk,N} of user

k. For each user, we aim at maximizing its achievable data rate by properly choosing SUk . The

3It will be shown in Section IV-A that although the inter-beam interference is neglected in the objective function of (20a),

the algorithm developed based on the relaxed objective function can still achieve nearly optimal sum data rate.
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corresponding optimization problem can be written as

max
SUk ⊆U

U
k

log2

(
Pt
|S|σ2

0

Dn(θk)ρ
−α
k

)
(21a)

s.t. SUk ∈ IU , (21b)

where (21b) follows the constraint given in (20b), i.e., each user can be only associated with

one beam.

In the objective function of (21a), only the directivity Dn(θk) depends on SUk . Therefore, we

have

SUk
∗

= {uk,π(k)}, (22)

where the index of user k’s associated beam, π(k), is given by

π(k) = arg max
n=1,2,··· ,N

Dn(θk). (23)

That is, each user is associated with the beam with the largest directivity.

Based on the solution of the first beam-user association sub-problem, the ground set of possible

beam allocations is reduced to

U
′
=

⋃
k=1,2,··· ,K

SUk
∗
. (24)

Then the second beam allocation sub-problem can be written as

max
S⊆U ′

∑
uk,n∈S

log2

(
Pt
|S|σ2

0

Dn(θk)ρ
−α
k

)
(25a)

s.t. S ∈ I ′ , (25b)

where set I ′ of matroid M′
= (U

′
, I ′) is given by

I ′ = {X ⊆ U
′
: |X ∩ U ′n| ≤ 1, n = 1, 2, · · · , N}, (26)

with U ′n = U
′ ∩ UB

n .

Appendix C shows that the objective function of (25a) is a monotone submodular function on

the ground set U ′ when the transmit signal-to-noise ratio (SNR) Pt/σ2
0 > KN sin2 π

2N

(
K
K−1

)K−1
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Step 1: Each user is associated with the beam with 

the largest directivity. 

Step 2: Each associated beam is allocated to the user with the 

highest received signal power.  

Unserved

Unserved

Unserved

Fig. 3. Illustration of the proposed LBA algorithm. “x” represents a user. N = 16, K = 9.

for largeK,N
≈ 6.707K/N , where N is the number of beams and K is the number of users. For a

massive MIMO system with N � K, the optimization problem given by (25a)–(25b) is a

monotone submodular function maximization problem under a single matroid constraint, which

can be effectively solved by a greedy algorithm that achieves at least 1
2

of the optimal result [46].

Specifically, the algorithm starts with an empty beam allocation set S, and adds one element

with the highest marginal gain at each step to set S while the updated S is still an element of I ′ .

Note that to maximize the objective function of (25a), elements in U ′ should be included in the

beam allocation set S as far as possible while S still satisfies constraint (25b), i.e., each beam

can only be used at most by one user. Therefore, we can conclude that the greedy algorithm

is equivalent to allocating each associated beam to its best user with the largest received signal

power.

2) LBA Algorithm Design: By combining the solutions of the above two sub-problems, a

two-step beam allocation algorithm is proposed: (1) Each user is associated with its best beam

with the largest directivity; (2) Each associated beam is allocated to its best associated user with

the largest received signal power. The detailed description of this two-step algorithm is presented

in Algorithm 1. As Fig. 3 illustrates, in the first step, each user is associated with the beam with

the highest directivity, which is highlighted in the same color. In the second step, if a beam is

associated with more than one user (such as the blue beam), then it is allocated to the user with

the highest received signal power.

It is clear from Algorithm 1 that in the first step of the proposed LBA algorithm, there are
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Algorithm 1 Low-Complexity Beam Allocation (LBA)
1: Initialization: S∗ = ∅. v = 01×N . a = 01×N .

2: for k = 1 to K do

3: π(k) = arg max
n=1,2,··· ,N

Dn(θk);

4: end for

5: for k = 1 to K do

6: if vπ(k) = 0 then

7: S∗ = S∗ ∪ {uk,π(k)};

8: vπ(k) = Dπ(k)(θk)ρ
−α
k , aπ(k) = k;

9: else

10: k
′
= aπ(k);

11: if Dπ(k)(θk)ρ
−α
k > Dπ(k)(θk′ )ρ

−α
k′

then

12: S∗ = S∗ \ {uk′ ,π(k)} ∪ {uk,π(k)};

13: vπ(k) = Dπ(k)(θk)ρ
−α
k , aπ(k) = k;

14: end if

15: end if

16: end for

17: Output: S∗.

K iterations. In each iteration, the number of comparisons required to find the best beam of

that user is log2N by adopting the binary search. In the second step, as there are K users

in total, at most K − 1 comparisons are needed when all the users are associated with the

same beam. Therefore, the maximum number of comparisons required by our proposed LBA

algorithm is K log2N +K − 1. Compared with the optimal brute-force search, it can be clearly

seen that by relaxing the objective function and decoupling the problem into two sub-problems,

the computational complexity is significantly reduced from O(NK) to O(K logN).
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Fig. 4. Achievable sum data rate Rs under 20 realizations of the users’ positions with both the optimal brute-force search and

the proposed LBA algorithm. α = 2.7, Pt/σ2
0 = 20dB, N = 16.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, simulation results will be presented to demonstrate the performance of the

proposed LBA algorithm. As described in Section II, we assume that K users are uniformly

distributed in a circular cell with unit radius, and a linear antenna array with N identical isotropic

antenna elements is placed at the center of the cell.

A. Sum Data Rate

Fig. 4 presents the simulation results of the achievable sum data rate, Rs ,
∑K

k=1Rk, under 20

random realizations of the users’ positions with the number of beams N = 16, and the number of

users K = 6 and 10, respectively. It can be seen from Fig. 4 that our proposed LBA algorithm can

achieve very close sum data rate to that of the optimal brute-force search under most realizations.

Since the sum data rate closely depends on the locations of users {rk : k = 1, 2, · · · , K} as shown

in Fig. 4, we further focus on the average sum data rate R̄s , E{rk:k=1,2,··· ,K}

[∑K
k=1Rk

]
, in the

following discussion.

Specifically, Fig. 5 presents the simulation results of the average sum data rate R̄s over 1000

realizations of users’ positions for both the proposed LBA algorithm and the optimal brute-force
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Fig. 5. Average sum data rate R̄s with both the optimal brute-force search and the proposed LBA algorithm. α = 2.7, K = 8,

N = 16.

search under varying values of the transmit SNR Pt/σ
2
0 . It can be clearly seen from this figure

that the average sum data rate R̄s first increases with Pt/σ
2
0 , and then becomes saturated for

large Pt/σ2
0 as the system becomes interference-limited. A small gap of the average sum data

rate between the optimal brute-force search and the proposed LBA algorithm can be observed

for smaller values of Pt/σ2
0 , while the gap becomes noticeable when the transmit SNR Pt/σ

2
0 is

higher than 20dB. In this case, as the system operates at the interference-limited region, the rate

gap becomes significant due to ignoring the effect of inter-beam interference in our proposed

LBA algorithm.

Fig. 6 further presents the simulation results of the average sum data rate R̄s with both the

optimal brute-force search and our proposed LBA algorithm under varying values of the number

of users K and the number of beams N when the transmit SNR Pt/σ
2
0 is fixed at 20dB. Note

that as the complexity of the brute-force search algorithm O(NK) sharply increases with K and

N , we only present the optimal average sum data rate for K ≤ 6 in Fig. 6(a), and for N ≤ 128
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Fig. 6. Average sum data rate R̄s with both the optimal brute-force search and the proposed LBA algorithm. α = 2.7,

Pt/σ
2
0 = 20dB.

in Fig. 6(b). It can be seen from Fig. 6(a) that with the number of beams N fixed at 64, the

average sum data rate R̄s increases with the number of users K as more users can be served

for a larger K. With the number of users K fixed at 4 in Fig. 6(b), the average sum data rate

R̄s logarithmically increases with the number of beams N thanks to the enhanced beam gain.

It can be also clearly observed in both Fig. 6(a) and Fig. 6(b) that our proposed LBA algorithm

achieves nearly the same average sum data rate as the optimal brute-force search. The gap is

slightly enlarged when the number of beams N is small in Fig. 6(b) because with a small N ,

the beams are very wide and the overlap of two adjacent beams is large, which results in high

inter-beam interference for each user.

B. Service Ratio

It should be noted that with the proposed LBA algorithm, as shown in Fig. 3, some users

might not be served, since multiple users might be associated with the same beam, and only one

of them can be served. In this section, how many users can be served simultaneously by using

our LBA algorithm will be evaluated.

Specifically, let us first define the service ratio, Ps, as the ratio of the number of served users
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Fig. 7. Average service ratio P̄s with the proposed LBA algorithm. α = 2.7.

to the total number of users K, which is given by

Ps ,
Ns

K
. (27)

Here Ns is also the number of beams allocated for data transmission, which is given in (6). As

the beam allocation result closely depends on the positions of users, similar to the average sum

data rate, we further define the average service ratio as

P̄s , E{rk|k=1,2,··· ,K} [Ps] . (28)

Note that P̄s sheds important light on the service delay performance as well. A larger P̄s indicates

that more users can be simultaneously served by the system, and thus shorter average service

delay can be expected for each user.

Appendix D shows that by approximating the beam allocation problem as a ball-dropping

problem, the average service ratio P̄s can be obtained as

P̄s =
K∑
m=1

m

K
·
(
N
m

)
NK

m∑
j=1

(−1)m−j
(
m

j

)
mK , (29)
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and for a large number of beams N , we have

P̄s
for large N
≈ N

K

(
1− e−

K
N

)
. (30)

(30) indicates that the average service ratio P̄s is solely determined by the ratio of the number of

beams N to the number of users K. As Fig. 7 illustrates, the average service ratio P̄s increases

as the ratio N/K increases. Intuitively, with a larger N/K, the average number of beams that

could be used by each user increases, leading to a higher P̄s. Specifically, for a small N/K � 1,

it can be easily obtained from (30) that P̄s≈N/K. As N/K → ∞, the average service ratio

P̄s→ 1. We can clearly see from Fig. 7 that the average service ratio is above 0.9 when N/K

is larger than 5, which indicates that over 90% of the users can be simultaneously served. The

analysis is verified by the simulation results in Fig. 7.

Recall that it is shown in Fig. 6(b) that the average sum data rate R̄s increases as the number

of beams N increases. Therefore, with the number of users K fixed, both the sum data rate

and the service ratio can be improved by increasing the number of beams N . By contrast, for

a given number of beams N , although the average sum data rate R̄s increases with the number
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of users K as shown in Fig. 6(a), the average service ratio P̄s decreases as K increases. In this

case, the number of users K determines a trade-off between the sum data rate and the service

ratio, which can be clearly observed from Fig. 8.

V. CONCLUSION

In this paper, the beam allocation problem in switched-beam based massive MIMO systems

has been studied to maximize the sum data rate. Based on submodular optimization theory, a

low-complexity suboptimal beam allocation algorithm has been proposed, which achieves nearly

optimal sum data rate with complexity O(K logN) with respect to the number of users K and

the number of beams N . As some users might not be served for the sake of maximizing the

sum data rate, the average service ratio, i.e., the average percentage of users that can be served

simultaneously, is further evaluated. The analysis shows that the average service ratio is solely

determined by the ratio of the number of beams N to the number of users K. Simulation results

corroborate that the average service ratio can be greatly improved by increasing the ratio N/K,

which is above 90% when N/K exceeds 5.

Note that in this paper, as we aim at maximizing the sum data rate from the system’s

perspective, not all the users can be simultaneously served. For practical systems, however,

it is equally important to serve as many users as possible and consider the fairness issue among

users. To balance the sum data rate and service ratio, and ensure fairness among users with

varying locations, some service ratio constraint and individual data rate requirements for the

users can be added into the beam allocation problem, which deserves much attention and should

be carefully investigated in the future work.

APPENDIX A

DERIVATION OF (5)

From (1), the denominator of (4) can be written as∫ π

0

sin2(0.5Nπ cosψ − βn)

N2 sin2
(
0.5π cosψ − βn

N

) sinψdψ
φ=0.5π cosψ−βn

N=
2

π

∫ π
2
−βn
N

−π
2
−βn
N

sin2(Nφ)

N2 sin2 φ
dφ. (A.1)
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As N is a power of 2 and sin(2x) = 2 sinx cosx, we have∫ π
2
−βn
N

−π
2
−βn
N

sin2(Nφ)

N2 sin2 φ
dφ =

∫ π
2
−βn
N

−π
2
−βn
N

log2N−1∏
k=0

cos2(2kφ)dφ, (A.2)

which can be further expanded by substituting cos2
(
2kφ
)

=
cos(2k+1φ)+1

2
into it as follows∫ π

2
−βn
N

−π
2
−βn
N

sin2(Nφ)

N2 sin2 φ
dφ =

∫ π
2
−βn
N

−π
2
−βn
N

1

N

log2N∏
k=1

[
cos(2kφ) + 1

]
dφ

=
1

N

∫ π
2
−βn
N

−π
2
−βn
N

(
1 +

log2N−1∑
k=1

cos
(
2kφ
)
·
log2N∏
i=k+1

[
1 + cos

(
2iφ
)])

dφ

=
1

N

(
π +

log2N−1∑
k=1

∫ π
2
−βn
N

−π
2
−βn
N

cos
(
2kφ
)
·
log2N∏
i=k+1

[
1 + cos

(
2iφ
)]
dφ

)
. (A.3)

As
∫ π

2
−βn
N

−π
2
−βn
N

cos
(
2kφ
)
·
∏log2N

i=k+1 [1 + cos (2iφ)] dφ = 0 for any k ≥ 1, it is easily obtained from

(A.3) that ∫ π
2
−βn
N

−π
2
−βn
N

sin2(Nφ)

N2 sin2 φ
dφ =

π

N
. (A.4)

By combining (4), (A.1) and (A.4), we have

Dn(θ) = N [An(θ)]2 . (A.5)

APPENDIX B

PROOF OF NON-SUBMODULARITY OF OBJECTIVE FUNCTION IN (19A) AND

SUBMODULARITY OF OBJECTIVE FUNCTION IN (20A) ON GROUND SET U

A. Proof of Non-submodularity of Objective Function in (19a) on Ground Set U

Proof: Recall that the objective function of (19a) is given by

Rs(S) =
∑
uk,n∈S

log2

(
1 +

Pt
|S|Dn(θk)ρ

−α
k

σ2
0 +

∑
uj,l∈S,j 6=k

Pt
|S|Dl(θk)ρ

−α
k

)
. (B.1)

To prove that Rs(S) is not submodular, we only need to find a counter example where (11) does

not hold.

Let us consider a special case: for any two sets S, T ⊂ U with |S| ≥ 2 and |T | ≥ 2, their

intersection S ∩ T = {uk∗,n∗}, and the transmit SNR Pt/σ
2
0 → ∞. In this case, the inter-beam
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interference suffered by each user would be much larger than the noise for both set S and set

T . Then the achievable sum data rate with respect to S and T can be obtained as

Rs(S)
Pt/σ2

0→∞→
∑
uk,n∈S

log2

(
1 +

Dn(θk)∑
uj,l∈S,j 6=kDl(θk)

)
, (B.2)

and

Rs(T )
Pt/σ2

0→∞→
∑
uk,n∈T

log2

(
1 +

Dn(θk)∑
uj,l∈T,j 6=kDl(θk)

)
, (B.3)

respectively, both of which have finite values. In contrast, for the intersection S ∩T = {uk∗,n∗},

as only beam n∗ is used by user k∗ in the whole system, there is no inter-beam interference.

Therefore, we have

Rs(S ∩ T ) = log2

(
1 +

Pt
σ2
0

Dn∗(θk∗)ρ
−α
k∗

)
Pt/σ2

0→∞→ ∞. (B.4)

Since the sum of Rs(S) and Rs(T ) is finite, it is obvious that

Rs(S) +Rs(T ) < Rs(S ∩ T ) ≤ Rs(S ∩ T ) +Rs(S ∪ T ). (B.5)

According to (11), we can conclude that the objective function of (19a) is not a submodular

function on the ground set U .

B. Proof of Submodularity of Objective Function in (20a) on Ground Set U

Proof: Let Rap
s (S) denote the objective function of (20a) as

Rap
s (S) =

∑
uk,n∈S

log2

(
Pt
|S|σ2

0

Dn(θk)ρ
−α
k

)
. (B.6)

Then for any S ⊆ T ⊆ U , and uj,l ∈ U \ T , we have

Rap
s (S ∪ {uj,l})−Rap

s (S) =
∑
uk,n∈S

log2

(
Pt

(|S|+ 1)σ2
0

Dn(θk)ρ
−α
k

)
+ log2

(
Pt

(|S|+ 1)σ2
0

Dl(θj)ρ
−α
j

)

−
∑
uk,n∈S

log2

(
Pt
|S|σ2

0

Dn(θk)ρ
−α
k

)

= log2

((
|S|
|S|+ 1

)|S|
· Pt

(|S|+ 1)σ2
0

Dl(θj)ρ
−α
j

)
. (B.7)
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Similarly,

Rap
s (T ∪ {uj,l})−Rap

s (T ) = log2

((
|T |
|T |+ 1

)|T |
· Pt

(|T |+ 1)σ2
0

Dl(θj)ρ
−α
j

)
. (B.8)

To show that the objective function of (20a), i.e., Rap
s (S), is submodular, according to (12), we

only need to show that (B.7) is larger than (B.8), i.e,

|S||S|

(|S|+ 1)|S|+1
≥ |T ||T |

(|T |+ 1)|T |+1
, (B.9)

which holds as |S| ≤ |T |.

APPENDIX C

PROOF OF MONOTONE SUBMODULARITY OF OBJECTIVE FUNCTION IN (25A) ON GROUND

SET U
′

Proposition 1. The objective function of (25a) is a monotone submodular function on Ground

Set U
′

if

Pt
σ2
0

> KN sin2 π

2N

(
K

K − 1

)K−1
. (C.1)

Proof: Denote the objective function of (25a) as Rap
s (S). Since Rap

s (S) is shown to be a

submodular function on the ground set U in Appendix B and U
′ is a subset of U , Rap

s (S) is

also submodular on the ground set U ′.

Moreover, for any S ⊂ T ⊆ U
′ , we have

Rap
s (S)−Rap

s (T ) =
∑
uk,n∈S

log2

(
P

|S|σ2
0

Dn(θk)ρ
−α
k

)
−
∑
uk,n∈T

log2

(
P

|T |σ2
0

Dn(θk)ρ
−α
k

)

= |S| log2

(
|T |
|S|

)
−

∑
uk,n∈T\S

log2

(
P

|T |σ2
0

Dn(θk)ρ
−α
k

)
. (C.2)

Let uk′ ,n′ = arg minuk,n∈T\S log2

(
P
|T |σ2

0
Dn(θk)ρ

−α
k

)
, we can obtain that∑

uk,n∈T\S

log2

(
P

|T |σ2
0

Dn(θk)ρ
−α
k

)
≥ (|T | − |S|) log2

(
P

|T |σ2
0

Dn′ (θk′ )ρ
−α
k′

)
. (C.3)

By substituting (C.3) to (C.2), we have

Rap
s (S)−Rap

s (T ) ≤ |S| log2

(
|T |
|S|

)
− (|T | − |S|) log2

(
P

|T |σ2
0

Dn′ (θk′ )ρ
−α
k′

)
. (C.4)
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For uk′ ,n′ ∈ U
′ , beam n

′ is the best beam with the largest directivity of user k′ , i.e., Dn′ (θk′ ) ≥

Dn(θk′ ),∀n 6= n
′
, n = 1, 2, · · · , N . It is clear from Fig. 1(b) that the minimum value of Dn′ (θk′ )

is achieved at the crosspoint of two adjacent beams. Let l and l + 1 denote the indices of any

two adjacent beams, and φ denote the AoD measured at the crosspoint. Then we have

Dn′ (θk′ ) ≥ Dl(φ), (C.5)

and

Dl(φ) = Dl+1(φ). (C.6)

According to (1), (2), and (5), Dl(φ) can be obtained as

Dl(φ) =
sin2

(
0.5Nπ cosφ−

(
−N+1

2
+ l
)
π
)

N sin2
(
0.5π cosφ− 1

N

(
−N+1

2
+ l
)
π
) . (C.7)

It can be then obtained from (C.6) and (C.7) that

0.5π cosφ− 1

N

(
−N + 1

2
+ l

)
π + 0.5π cosφ− 1

N

(
−N + 1

2
+ l + 1

)
π = 0, (C.8)

i.e.,

cosφ =
2l −N
N

. (C.9)

By substituting (C.9) into (C.7), Dl(φ) is obtained as

Dl(φ) =
1

N sin2 π
2N

. (C.10)

By combining (C.5) and (C.10), we further have

Dn′ (θk′ ) ≥
1

N sin2 π
2N

. (C.11)

With the distance from user k′ to the cell center ρk′ ≤ 1, by combining (C.1), (C.4) and

(C.11), we have

Rap
s (S)−Rap

s (T ) < |S| log2

(
|T |
|S|

)
− (|T | − |S|) log2

(
K

|T |

(
K

K − 1

)K−1)

= (|T | − |S|) log2

((
|T |
|S|

) |S|
|T |−|S|

· |T | · 1

K

(
K − 1

K

)K−1)
. (C.12)
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As 1 ≤ |S| < |T | ≤ K, we can easily obtain that(
|T |
|S|

) |S|
|T |−|S|

· |T | ≤ K

(
K

K − 1

)K−1
, (C.13)

where “=” holds when |S| = K − 1 and |T | = K. By substituting (C.13) into (C.12), it is clear

that

Rap
s (S)−Rap

s (T ) < 0. (C.14)

According to the definition of a monotone set function presented in Section III-A, we can

conclude that Rap
s (S), i.e., the objective function of (25a), is a monotone submodular function

on the ground set U ′ .

APPENDIX D

DERIVATION OF (29) AND (30)

A. Derivation of (29)

For given total number of users K, the average service ratio P̄s can be written as

P̄s =
K∑
m=1

m

K
Pr{Ns = m}. (D.1)

To find the probability mass function of the number of allocated beams Ns, let us first consider

the following ball-dropping problem: Assume that each ball is dropped into N distinct boxes

with equal probability 1/N . What is the probability that there are Ns non-empty boxes after

dropping K balls? The ball-dropping problem shares similarities to our beam allocation problem

because by regarding beams as boxes and users as balls, associating each user with a beam is

equivalent to dropping each ball into a box. The probability that Ns beams are used is then the

probability that Ns boxes are non-empty. Note that here an implicit assumption is that each user

has equal probability 1/N to be associated with any beam, which is a good approximation only

when the number of beams is large, i.e., each beam approximately has equal width.

For the ball-dropping problem, the total number of possible combinations by dropping K

distinct balls into N distinct boxes is NK . Note that a Stirling number of the second kind
{
K
Ns

}
denotes the number of ways to partition a set of K distinct objects into Ns non-empty subsets
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[47]. Then the number of combinations that Ns boxes are non-empty is given by
(
N
Ns

)
Ns!
{
K
Ns

}
.

Therefore, the corresponding probability that there are Ns non-empty boxes after dropping K

balls can be obtained as

Pr{Ns = m} =

(
N
m

)
m!
{
K
m

}
NK

, (D.2)

where the Stirling number of the second kind,
{
K
m

}
, is given by [47]{

K

m

}
=

1

m!

m∑
j=1

(−1)m−j
(
m

j

)
mK . (D.3)

(29) can be then obtained by combining (D.1)–(D.3).

B. Derivation of (30)

Note that a Stirling number of the second kind
{
K
m

}
obeys the recurrence relation [47]{

K + 1

m

}
= m

{
K

m

}
+

{
K

m− 1

}
. (D.4)

Then we have {
K

m

}
=

1

m

({
K + 1

m

}
−
{

K

m− 1

})
. (D.5)

By combining (D.1), (D.2) and (D.5), the average service ratio P̄s can be obtained as

P̄s =
1

KNK

(
K∑
m=1

(
N

m

)
m!

{
K + 1

m

}
−

K∑
m=1

(
N

m

)
m!

{
K

m− 1

})

=
1

KNK

(
K+1∑
m=1

(
N

m

)
m!

{
K + 1

m

}
−
(

N

K + 1

)
(K + 1)!−N

K∑
m=1

(
N − 1

m− 1

)
(m− 1)!

{
K

m− 1

})

=
1

KNK

[
K+1∑
m=1

(
N

m

)
m!

{
K + 1

m

}
−
(

N

K + 1

)
(K + 1)!−N

(
K∑
i=1

(
N − 1

i

)
i!

{
K

i

}
−
(
N − 1

K

)
K!

)]

=
1

KNK

[
K+1∑
m=1

(
N

m

)
m!

{
K + 1

m

}
−N

K∑
i=1

(
N − 1

i

)
i!

{
K

i

}]
. (D.6)

Note that for the probability mass function Pr{Ns = m}, we have
K∑
m=1

Pr{Ns = m} = 1. (D.7)
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By substituting (D.2) into (D.7), it is clear that
K∑
m=1

(
N

m

)
m!

{
K

m

}
= NK . (D.8)

The average service ratio P̄s can be then obtained by combining (D.6) and (D.8) as

P̄s =
1

KNK

(
NK+1 −N(N − 1)K

)
=
N

K
− N

K

(
1− 1

N

)K
for large N
≈ N

K
− N

K
e−

K
N . (D.9)
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