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Highlights:40

1. Salmon cohort reconstructions (CR) commonly assume fixed, low adult natural mor-41

tality rate.42

2. CR estimate remaining vital rates well unless adult natural mortality rate is approxi-43

mately twice that assumed.44

3. Separable models make adult natural mortality rate identifiable through additive ef-45

fects.46

4. Separable models did not outperform CR and performed worse when assumptions47

violated.48

5. Some separable models estimated adult natural mortality rates with little bias under49

conditions conducive to CR.50

2



Allen et al.: Temporally varying natural mortality September 1, 2016

1 Abstract51

Cohort reconstructions (CR) currently applied in Pacific salmon management estimate tem-52

porally variant exploitation, maturation, and juvenile natural mortality rates but require an53

assumed (typically invariant) adult natural mortality rate (dA), resulting in unknown biases54

in the remaining vital rates. We explored the sensitivity of CR results to misspecification55

of the mean and/or variability of dA, as well as the potential to estimate dA directly using56

models that assumed separable year and age/cohort effects on vital rates (Separable Cohort57

Reconstruction, SCR). For CR, given the commonly assumed dA = 0.2, the error (RMSE)58

in estimated vital rates is generally small (≤ 0.05) when annual values of dA are low to59

moderate (≤ 0.4). The greatest absolute errors are in maturation rates, with large relative60

error in the juvenile survival rate. The ability of CR estimates to track temporal trends61

in the juvenile natural mortality rate is adequate (Pearson’s correlation coefficient > 0.75)62

except for high dA (≥ 0.6) and high variability (CV > 0.35). The alternative SCR models63

allowing estimation of time-varying dA by assuming additive effects in natural mortality,64

fishing mortality, and/or maturation rates did not outperform CR across all simulated sce-65

narios, and are less accurate when additivity assumptions are violated. Nevertheless an SCR66

model assuming additive effects on fishing and natural (juvenile and adult) mortality rates67

led to nearly unbiased estimates of all quantities estimated using CR, along with borderline68

acceptable estimates of the mean dA under multiple sets of conditions conducive to CR.69

Adding an assumption of additive effects on the maturation rates allowed nearly unbiased70

estimates of the mean dA as well. The SCR models performed slightly better than CR when71

the vital rates covaried as assumed. These separable models could serve as a partial check on72

the validity of CR assumptions about the adult natural mortality rate, or even a preferred73

alternative if there is strong reason to believe the vital rates, including juvenile and adult74

natural mortality rates, covary strongly across years or age classes as assumed.75
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2 Introduction76

Fisheries stock assessments use a variety of statistical and mathematical tools in an attempt77

to understand the current abundance and dynamics of fished stocks. While the form of78

model employed in a stock assessment may vary considerably depending on scientific and79

management context, estimates of natural morality are an integral component of stock as-80

sessment. It is known that many results from stock assessments can be heavily influenced81

by the choice of natural mortality (e.g., biological reference points, Goodyear, 1993). Yet,82

owing to the difficulty of directly estimating natural mortality, fixed external estimates or83

assumed values are frequently used. Temporal and/or age-dependent variation in natural84

mortality undoubtedly exists and the assumption of fixed natural mortality likely results in85

assessment errors. However, estimation of temporal variation in natural mortality in stock86

assessments is rare (Brodziak et al., 2011). While this is a topic of ongoing research and87

progress is being made (e.g., Hollowed et al., 2000; Lee et al., 2011; Deroba and Schueller,88

2013), challenges remain (e.g., Maunder and Wong, 2011; Francis, 2012) and incorporation89

of time-varying mortality into stock assessments has been slow and largely limited to a few90

taxa (Deroba and Schueller, 2013).91

Cohort reconstructions or virtual population analyses (Hilborn and Walters, 1992) per-92

formed on tagged cohorts of salmon are the backbone of salmon stock assessment (e.g., Mohr,93

2006; O’Farrell et al., 2012; PSC CTC, 2014). Reconstruction of cohorts from coded wire94

tag recovery data (Nandor et al., 2010) allows estimation of age-specific abundance, harvest95

rates, maturation rates, and other vital rates used for salmon management. An assump-96

tion of known, and typically invariant, natural mortality rates for adult salmon is required97

for statistical identifiability when using current techniques that treat cohorts independently98

(Hankin et al., 2005). Unfortunately, this means that vital rate estimates are biased to an99

unknown extent by assumed and arbitrary values assigned to adult natural mortality rates.100

For example, a real increase in the natural mortality rate between age 2 and age 3 in a par-101

ticular year could be erroneously interpreted instead as unusually high maturation at age 2102
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and low early life survival for the corresponding cohort.103

Biased vital rates are an obvious problem for management models. In addition, such104

biases may impair ecological or evolutionary insights when cohort reconstruction results are105

used, for example, to explore putative drivers of variation in maturation rates (e.g., Hankin106

and Logan, 2010) or juvenile survival (Sharma et al., 2013; Kilduff et al., 2014). In addition, it107

is of course impossible to explore the role of environmental conditions or predators (Hilborn108

et al., 2012) in driving variation in adult natural mortality if such mortality is a priori109

assumed to be constant.110

This paper therefore has two major goals. First, we use simulation studies to thoroughly111

explore the sensitivity of results from traditional cohort reconstructions assuming known,112

temporally invariant adult natural mortality to misspecification of mean mortality rates and113

to variability in mortality rates. Second, we explore the potential for direct estimation of114

time-varying adult natural mortality rates for a range of biological scenarios. The existing115

literature on salmon population dynamics uses the terms “rate”, “fraction”, “probability”,116

and “proportion” in ways that are not always consistent. Unless we make specific reference to117

instantaneous rates when referring to other studies, the word “rate” is used throughout this118

paper, along with a unitless number, to represent the conditional probability or proportion of119

fish making a specified transition over one time step of the model. This is consistent with use120

of the term “rate” in cohort reconstruction models used by the Pacific Salmon Commission121

(e.g., PSC CTC 2014) and Pacific Fishery Management Council (e.g., O’Farrell et al. 2012).122

3 Methods123

Virtual population analysis (or cohort analysis) is applied to catch-at-age data to back cal-124

culate the number of individuals alive prior to a mortality event, with the goal of obtaining125

abundance estimates and mortality rates (e.g., Fry, 1949; Pope, 1972). This method requires126

a known terminal fishing mortality rate for the maximum age and specified natural mortal-127
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ity rates. Classical analyses of this type are deterministic in that the stochastic variation128

inherent in the data is not accounted for, and the accompanying model is fully saturated129

(no degrees of freedom); thus measures of statistical uncertainty are not readily available130

(Megrey, 1989).131

A model resembling the classical virtual population analysis of Pope (1972) is applied132

to the management of Pacific Salmon stocks (e.g., Mohr, 2006; O’Farrell et al., 2012; PSC133

CTC, 2014). This model, termed cohort reconstruction, employs a monthly rather than134

annual time step, but similar to Pope (1972), a pulse fishery occurs at the start of each time135

step followed by natural mortality (Xiao and Wang, 2007). For the cohort reconstruction,136

the final time step in each year includes an additional mortality event, maturation, and a137

terminal maturation rate of 1.0 is required as opposed to a specified terminal fishing mortality138

rate. Additionally, cohort reconstruction methods estimate monthly or annual, rather than139

instantaneous, mortality rates and include an accounting for incidental fishing mortality.140

Since the monthly models simply apportion a constant annual natural mortality rate141

across months, and depend on detailed month-specific harvest data and assumed mortality142

of discards, we chose an annual model for tractability, interpretability, and faster simulation.143

We did not explicitly model incidental fishing mortality, assuming it was incorporated into144

catch estimates. This cohort reconstruction (CR, abbreviations are defined in Table 1) as-145

sumes an annual sequence of discrete mortality events: ocean fishery mortality followed by146

maturation followed by ocean natural mortality. (Fish that mature return to the river where147

they are either caught in river fisheries or spawn and die shortly thereafter.) This recon-148

struction, in common with similar methods, requires a fixed age 2, 3, and 4 (“adult”) natural149

mortality rate specified a priori. It is equivalent to Pope’s (1972) cohort analysis when catch150

also includes escapement and fish are instantaneously removed from the population at the151

beginning of the year (Xiao and Wang, 2007).152

We develop our example based on a subset of the data available on cohorts of hatchery-153

reared salmon tagged in distinct release groups using a coded wire tag (Nandor et al., 2010),154
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specifically yearling releases of Klamath River fall Chinook salmon produced at Iron Gate155

Hatchery, California. We assume that a single cohort of age 1 coded wire tagged fish is156

released annually, that these fish are not subject to the ocean fishery or maturation at157

age 1, and that fish live a maximum of five years (all age 5 fish that survive the ocean158

fishery mature). Fish age increments by one year following the ocean natural mortality159

period. We index cohorts by i, i = 1, 2, . . . , I, for I years of releases, with i equal to the160

birth year of a cohort (i.e., cohort i is released at age 1 in year i + 1). For cohort i, with161

Ri tagged fish released in October, fish first face juvenile mortality risk until April, then162

mortality from fishing, then removals for maturation in September, and then the cycle of163

potential mortality sources repeats annually for adults, with natural mortality now reflecting164

over-winter natural mortality in the ocean. This model structure implies a sequence of165

mortality outcomes at age a: the number caught in the ocean fishery, Cia; the number that166

matured and returned to freshwater, Mia; and the number that died from natural mortality,167

Dia (symbols are defined in Table 2). However, {Cia,Mia, a = 2, 3, 4, 5} are observable,168

whereas {Dia, a = 1, 2, 3, 4} are not; only the total natural mortality across ages is indirectly169

observable as Di+ =
P4

a=1Dia = Ri −
P5

a=2(Cia +Mia). Although observable, the Cia and170

Mia quantities themselves are estimated, denoted by Ĉia and M̂ia, by expanding the observed171

number of tag recoveries in a sampling stratum by the inverse of the sampling fraction and172

summing over the strata involved, respectively. Ĉia can also include an accounting for173

incidental fishing mortality.174

3.1 Cohort reconstruction175

Given the estimates {Ĉia, M̂ia, a = 2, 3, 4, 5} for cohort i, abundance is reconstructed from176

the oldest age to the youngest age by assuming that the adult natural mortality rates at177

age 2, 3, and 4 are known (d̃i2 = d̃i3 = d̃i4 = 0.2), and estimating the number alive at the178
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beginning of age a as179

(1) N̂ia =

8

>

>

<

>

>

:

Ĉia + M̂ia +
N̂i a+1

1− d̃ia
, a = 2, 3, 4

Ĉia + M̂ia a = 5.

The {N̂ia} estimates then permit estimation of the age-specific ocean exploitation (cia) and180

maturation (mia) rates for the cohort, along with the juvenile natural mortality rate (di1):181

(2) ĉia =
Ĉia

N̂ia

, m̂ia =
M̂ia

N̂ia − Ĉia

, a = 2, 3, 4, 5

and182

(3) d̂i1 = 1−
N̂i2

Ri

,

respectively. Abundances and vital rates are estimated separately for each cohort, i =183

1, 2, . . . , I.184

We explore the sensitivity of the above CR model estimates to assumptions about adult185

natural mortality using methods described in Section 3.3 and present the results in Sec-186

tion 4.1.187

3.2 Separable cohort reconstruction188

To estimate temporally varying natural mortality, we extend previous work by Hankin and189

Mohr (1993), which was based on band recovery models (e.g., Seber, 1970; Brownie et al.,190

1985) and a separable model decomposing vital rates into year and age effects (Pope, 1974;191

Doubleday, 1976; Kope, 1987). This approach is broadly applicable to any population where192

the recovery of individuals that share vital rates is tracked across a progression of possible193

fates and this progression can be reasonably approximated as a series of conditionally in-194

dependent binomial processes. Through the sharing of certain year and age effects across195
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cohorts, or cohort and age effects across years, it is possible with this stochastic, separable196

cohort reconstruction (SCR) model to estimate adult natural mortality rates in addition to197

the exploitation, maturation, and juvenile natural mortality rates by reducing the number of198

parameters to be estimated. Note that the CR model is normally applied to a single cohort,199

or as in this case, applied independently to multiple cohorts. The SCR models, in contrast,200

link cohorts across years and cannot be applied independently to a single cohort.201

3.2.1 Stochastic basis202

We begin by recasting the CR model for cohort i as a sequence of conditionally independent203

binomial events that results in the {Cia}, {Mia}, {Dia} outcomes given the number alive at204

the beginning of the respective period:205

(4)

Cia ∼ binomial(Nia, cia), a = 2, 3, 4, 5

Mia ∼ binomial(Nia − Cia,mia), a = 2, 3, 4, 5

Dia ∼ binomial(Nia − Cia −Mia, dia), a = 1, 2, 3, 4

with Ni1 = Ri, Ci1 = Mi1 = 0, Ni a+1 = Nia − Cia − Mia − Dia, and mi5 = 1. This is206

equivalent to a multinomial distribution for the overall set of cohort i outcomes given the207

number initially released (Zippin, 1956):208

(5) ({Cia}, {Mia}, {Dia}) ∼ multinomial(Ri; {⇡Cia
}, {⇡Mia

}, {⇡Dia
}), i = 1, 2, . . . , I

with the unconditional rates being defined as209

(6) ⇡Cia
= Si a−1cia, ⇡Mia

= Si a−1 (1− cia)mia, ⇡Dia
= Si a−1 (1− cia) (1−mia) dia,

9
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where Sia is the probability that a cohort i fish survives all events from the time of release210

at age 1 through the end of age a:211

(7) Sia =

8

>

>

<

>

>

:

1− dia, a = 1

Si a−1 (1− cia) (1−mia) (1− dia) , a = 2, 3, 4.

This result leads directly to the distribution for the observable cohort i data:212

(8) ({Cia}, {Mia}, Di+) ∼ multinomial(Ri; {⇡Cia
}, {⇡Mia

}, ⇡Di+
), i = 1, 2, . . . , I

where ⇡Di+
=

P4
a=1 ⇡Dia

= 1 −
P5

a=2(⇡Cia
+ ⇡Mia

). However, because Ri is large (typi-213

cally Ri > 105) and ⇡Di+
is close to one (typically ⇡Di+

> 0.95) this distribution can be214

approximated as a product of independent Poisson distributions having an equivalent set of215

expectations (McDonald, 1980):216

(9) ({Cia}, {Mia}) ∼
5
Y

a=2

Poisson(Ri ⇡Cia
) · Poisson(Ri ⇡Mia

), i = 1, 2, . . . , I,

with Di+ = Ri −
P5

a=2(Cia +Mia). Finally, assuming statistically independent outcomes217

among cohorts, the overall catch and maturation dataset is distributed approximately as218

(10) ({Cia}, {Mia}) ∼
I
Y

i=1

5
Y

a=2

Poisson(Ri ⇡Cia
) · Poisson(Ri ⇡Mia

),

with the {⇡Cia
} and {⇡Mia

} being functions of the {cia}, {mia}, and {dia} vital rates (equa-219

tions (6) and (7)).220

3.2.2 Model identifiability221

For some models, speaking generally, it is not possible to estimate all of the parameters222

due to the structure of the model, and such models are said to be non-identifiable. Non-223
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identifiability can occur if a model is over-parameterized, where the model contains more224

parameters than there are observed variables. In addition, non-identifiability can occur due225

to parameter redundancy, where two or more parameters are confounded (they appear only226

as a product), in which case the model could be rewritten in terms of a smaller number of227

compounded parameters (see e.g. Cole et al., 2010, their example 1).228

Various methods exist for detecting non-identifiability if it is not obvious. A numeric229

method exists that involves examining the rank of the Hessian matrix (Viallefont et al.,230

1998), and it is easily implemented since software packages often find the Hessian matrix231

numerically as part of the process of estimating the standard errors of parameters. However,232

this method can lead to incorrect conclusions, as demonstrated by Cole and Morgan (2010).233

To accurately determine whether or not a model is identifiable, symbolic algebra can be234

used (Cole et al., 2010) but this is complicated for complex models such as the SCR models235

evaluated in this paper. Instead we use a hybrid symbolic-numerical method (Choquet and236

Cole, 2012) to determine identifiability of the SCR models presented in this paper. It is both237

accurate and relatively straightforward to use.238

Even in the absence of over-parameterization or parameter redundancy, non-identifiability239

can be caused by datasets with zero values (Cole et al., 2012). For all of the SCR models240

described in Section 3.2.3 below, we found that as long as the dataset contains no zero values,241

all parameters are identifiable.242

3.2.3 Separable model variants243

The CR model assumes that the vital rates {cia}, {mia}, and {dia} are all cohort-age-specific244

(or year-age-specific), and thus is over-parameterized given that the {Dia} are unobservable.245

The CR estimation approach of treating the {dia} as known is one way of reducing the246

number of parameters to be estimated from the dataset. Alternatively, one might assume247

that certain vital rates are shared among cohorts, years, or ages, or that the vital rates are248

a function of a reduced number of separable effects regarding cohort, year or age. With this249
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additional imposed structure, it is possible to directly estimate the natural mortality rate.250

The separable model form that we adopt presumes that the effects of cohort and age,251

or year and age on a vital rate are additive on the complementary log-log scale (McCullagh252

and Nelder, 1989). That is, for a particular vital rate p we assume that253

(11) g(p) = log(− log(1− p))

is an additive function of these effects. The complementary log-log scale was adopted for254

two reasons. First, its use guarantees that the estimated vital rates will satisfy 0 < p̂ < 1.255

Second, an additive model on this scale corresponds to the standard fishery mortality model256

for a Type 1 fishery (Ricker, 1975): uya = 1− exp(−qafy), where uya is the exploitation rate257

in year y of age a, fy is the fishing effort in year y, and qa is the catchability of age a. Thus,258

g(uya) = log(fy) + log(qa) is an additive function of year and age effects.259

We evaluated four SCR model variants (SCR-1, SCR-2, SCR-3, SCR-4) that imposed260

this additional structure on the {cia}, {mia}, and {dia} rates. All four variants assumed261

that certain vital rates are shared among ages in a given year, or among years at a given262

age, and were based on our experience with Chinook salmon life history and fisheries, and263

the results of previous CR analyses of Chinook salmon. Specifically, we assume that: (1)264

age 4 and age 5 fish are fully vulnerable to the fishery, and experience the same exploitation265

rate in any given year; (2) the age 4 maturation rate is time invariant; and (3) the natural266

mortality rate in any given year is equal among adults (ages 2, 3, 4) but differs from that of267

the juveniles (age 1), letting a0 denote the juvenile (J) and adult (A) age-classes:268

(12) a0 =

8

>

>

<

>

>

:

J, a = 1

A, a = 2, 3, 4.

All four SCR model variants also include separable age and year effects on {cia}, but differ269

depending on whether separable age and year or cohort effects were imposed on the {mia}270
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and/or {dia}.271

SCR-1272

This model assumes that the maturation rate for age 2 and age 3 fish is a non-separable273

function of age and cohort (the effect of age depends on the cohort), and that the natural274

mortality rate for juveniles and adults is a non-separable function of age-class and year (the275

effect of age-class depends on the year):276

g (cia) = ⌘y + λa, y = i+ a(13)

g (mia) =

8

>

>

<

>

>

:

φia, a = 2, 3

 , a = 4

(14)

g (dia) = ⌧ya0 , y = i+ a,(15)

with λ4 = λ5 = 0 so that ⌘y reflects the fully vulnerable fishing mortality rate in year y.277

For the first cohort, the d11, c12, m12, and d12 rates depend on four effects parameters278

(⌧2J , ⌘3, φ12, ⌧3A) that are unique to those rates and are thus not identifiable given the279

dataset configuration. To make the SCR-1 model identifiable, for the first cohort we instead280

directly estimate the unconditional rates ⇡C12
, ⇡M12

, and S12, on the complementary log-log281

scale, as single parameters rather than factoring them into their constituent vital rates with282

associated cohort and age, or year and age effects. Thus, the overall set of SCR-1 parameters283

to be estimated is284

(16) θ1 = {{⌘y}, {λa}, {φia},  , {⌧ya0}, g (⇡C12
) , g (⇡M12

) , g (S12)}.

SCR-2285

This model is like SCR-1, but the maturation rate for age 2 and age 3 fish is a separable286

13
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function of cohort and age effects:287

(17) g (mia) =

8

>

>

<

>

>

:

⇣i + δa, a = 2, 3

 , a = 4,

with ⇣i defined as the cohort i effect relative to cohort 1 (⇣1 = 0), so that δa reflects the age a288

(a = 2, 3) maturation rate for cohort 1. The SCR-2 model is identifiable as defined, so that289

the overall set of parameters to be estimated is290

(18) θ2 = {{⌘y}, {λa}, {⇣i}, {δa},  , {⌧ya0}}.

SCR-3291

This model is like SCR-1, but the natural mortality rate for juvenile and adult fish is a292

separable function of year and age effects:293

(19) g (dia) = ⇠y + γa0 y = i+ a,

with ⇠y defined as the year y effect relative to year 2 (⇠2 = 0), so that γa0 reflects the age-294

class a0 (a0 = J,A) natural mortality rate for year 2. The SCR-3 model is identifiable as295

defined, so that the overall set of parameters to be estimated is296

(20) θ3 = {{⌘y}, {λa}, {φia},  , {⇠y}, {γa0}}.

SCR-4297

This model assumes that the fishing mortality rate, maturation rate, and natural mor-298

14
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tality rate are all separable functions of year and age, or cohort and age effects:299

g (cia) = ⌘y + λa, y = i+ a(21)

g (mia) =

8

>

>

<

>

>

:

⇣i + δa, a = 2, 3

 , a = 4,

(22)

g (dia) = ⇠y + γa0 , y = i+ a,(23)

with the parameter baseline effects defined as for models SCR-1, SCR-2, and SCR-3. The300

SCR-4 model is identifiable as defined, so that the overall set of parameters to be estimated301

is302

(24) θ4 = {{⌘y}, {λa}, {⇣i}, {δa},  , {⇠y}, {γa0}}.

3.2.4 Maximum likelihood estimation303

Maximum likelihood was used to estimate the SCR model parameters, θ, from which the304

{cia}, {mia}, and {dia} rates were estimated by substitution of θ̂ into equations (13)–(15),305

(17), (19), and (21)–(23), and applying the inverse of g. We took the likelihood to be the306

distribution specified by equation (10) when viewed as a function of the parameters {⇡Cia
}307

and {⇡Mia
} given the estimates {Ĉia}, {M̂ia}. Therefore, the log-likelihood function, `(θ),308

ignoring the constants log(Ĉia!) and log(M̂ia!), was309

(25) `(θ) =
X

i

X

a

n

Ĉia log (Ri⇡Cia
)−Ri⇡Cia

o

+
n

M̂ia log (Ri⇡Mia
)−Ri⇡Mia

o

,

where ⇡Cia
= ⇡Cia

(θ) and ⇡Mia
= ⇡Mia

(θ). We did not explicitly account for the sampling310

error of Ĉia and M̂ia as estimates of Cia and Mia in `(θ). This could be done by weighting311

the two curly-bracketed components of `(θ) by the inverse of the overall sampling fractions312
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associated with Ĉia and M̂ia, respectively. However, we did account for this sampling error313

when evaluating the estimation performance of the models (Sections 3.3 and 3.3.2).314

A small penalty was subtracted from `(θ) whenever any of the {⇡Cia
} or {⇡Mia

} were315

near zero (< 10−10) to prevent numerical instability when taking the log of a very small R⇡316

product. The penalty was equal to317

(26) 0.01
X

i

X

a

ICia

(

10−10 − ⇡Cia

)2
+ IMia

(

10−10 − ⇡Mia

)2
,

where Iz was 1 if ⇡z < 10−10 and 0 otherwise.318

We maximized `(θ) by minimizing −`(θ) via automatic differentiation using AD Model319

Builder (ADMB, Fournier et al., 2012), which requires starting values for all parameters.320

If −`(θ) has many local minima and the starting values are far from the global minimum,321

the resulting θ̂ may be far from that which corresponds to the global minimum. In this322

case, the model may be sensitive to the initial conditions, making it necessary to start the323

minimization from multiple points to increase the chance of finding the global minimum.324

For an individual dataset, we attempted to fit each of the SCR models 100 times, each time325

generating starting values at random from a priori defined distributions (Supplementary326

Appendix A). For some attempts, ADMB stopped the minimization procedure prematurely327

and returned an error message, in which case model estimates were not produced. In other328

instances, estimates were returned but an error message indicated the corresponding Hessian329

may not be positive-definite or the corresponding maximum gradient component exceeded330

our convergence criterion (0.0001). We discarded such estimates but documented their fre-331

quency (Supplementary Appendix A). We note that these occurrences were mostly rare332

and were largely prevented by several techniques used to improve convergence, such as user333

defined boundaries and estimation phases (Supplementary Appendix A).334

We defined a solution as unique if any estimated rate differed by at least 0.001 on the335

proportion scale. Within the parameter space searched, we confirmed the existence of a336
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single global solution (i.e., only one unique solution minimized −`(θ)) and to illustrate the337

complexity of the solution space we also documented the number of runs converging on local338

minima (i.e., unique solutions corresponding to values of −`(θ) greater than the identified339

minimum).340

3.3 Performance evaluation341

Performance of the CR and SCR estimation models was evaluated by simulating datasets us-342

ing alternative sets of specified vital rates (“generating rates”), and then estimating the vital343

rates from these simulated data using the estimation models. The adult natural mortality344

generating rates evaluated included various constant and time varying scenarios. In all cases345

a constant adult natural mortality rate of 0.2 was assumed in the CR estimation model. The346

bias and accuracy of the CR and SCR model vital rate estimates were then assessed and347

examined as a function of the adult natural mortality generating rate specifications.348

3.3.1 Simulation framework349

Demographic stochasticity was simulated in all datasets using the cohort sequential binomial350

mortality model (equation (4)): catch followed by maturation followed by natural mortality.351

To account for the additional variation introduced into the process through the use of {Ĉia}352

and {M̂ia} as estimates of the realized {Cia} and {Mia} (i.e., sampling error), the numbers353

of fish sampled from ocean fisheries and escapement areas were then simulated as additional354

binomial processes given the realized mortality model outcomes, assuming fixed sampling355

rates of 0.2 (Nandor et al., 2010) and 0.34 (Winship et al., 2013) respectively, and then356

expanded by the inverse of the respective sampling rate to simulate the {Ĉia} and {M̂ia}357

estimates used in the model estimation process. For each set of generating rates (described358

below), 100 independent datasets were simulated and fit to allow for assessment of the bias359

and accuracy (described in section 3.3.2) of the respective vital rate estimators.360

Each set of generating rates consisted of values for the {cia}, {mia}, and {di1} rates,361
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along with the adult natural mortality rates. A detailed description of each set of generating362

rates follows, but we note first that in all cases the values for the {cia}, {mia}, and {di1}363

rates were based on an actual set of estimates previously obtained for a series of 28 successive364

cohorts of Klamath River fall Chinook salmon yearlings released annually (one each year)365

from Iron Gate Hatchery (IGH) using the CR model assuming a constant adult natural366

mortality rate of 0.2. Because CR-derived estimates can be undefined when associated367

abundance estimates are zero, and can equal zero or one, we replaced in this set of estimates368

any undefined estimate with the corresponding mean rate, and any estimates equal to zero369

(one) with the next highest (lowest) estimated rate, and used linear interpolation to fill in370

rates for years with missing data. The resulting series of estimates (“IGH rates”) are shown371

in Fig. 1. The simulated datasets were the same length as the IGH dataset (one cohort372

released each year for 28 successive years), and the number of yearling fish released for each373

cohort was 70,000 (the approximate average for the IGH dataset).374

For evaluations involving the CR estimation model only, the time series of IGH rates375

were used as is for the generating rates in combination with both constant and variable376

adult natural mortality rates. Evaluated constant adult natural mortality rates, {dia =377

dA, a = 2, 3, 4}, included dA = 0.02, 0.04, . . . , 0.7, resulting in 35 distinct sets of generating378

rates. To evaluate temporally variable (year-specific) adult natural mortality rates, {dia =379

dyA, y = i + a, a = 2, 3, 4}, we considered two values for the mean rate, µ(dyA) = 0.2, 0.4,380

and coupled each with increasing coefficients of variation, CV(dyA) = 0, 0.1, 0.2, . . . , 0.5. The381

dyA generating rates were drawn at random from a beta distribution, dyA ∼ Beta(α, β), with382

α = (1− µ)CV−2 − µ and β = α(µ−1 − 1), where µ = µ(dyA) and CV = CV(dyA). For each383

of the twelve (µ,CV) combinations, 50 time series of year-specific adult natural mortality384

rates, {dyA}, were drawn to improve the estimates of central tendency of the performance385

metrics described in Section 3.3.2. Together with the IGH rates, this resulted in a total of386

600 (12× 50) distinct sets of generating rates.387

For evaluations involving both the CR and SCR models, four sets of generating rates were388
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used. The first set of rates, “Con.2” (Constant, 0.2 annual adult natural mortality rate), were389

constant across years, with dA = 0.2 and the remaining rates equal to the age-specific means390

of the IGH rates, as shown in Fig. 1. For the three remaining generating rate sets, the adult391

natural mortality rate varied across years. The second set of rates, “Var.2” (Variable, 0.2),392

used the time series of IGH rates as is along with a random sequence of temporally variable393

{dyA} with µ(dyA) = 0.2 and CV(dyA) = 0.46. The third set of rates, “Var.4” (Variable, 0.4),394

was identical to the second, except that µ(dyA) = 0.4 and CV(dyA) = 0.38. The final set of395

generating rates, “Add.2” (Additive, 0.2), adhered to the SCR-4 additive model structure396

(equations (21)–(23)), which satisfies the assumptions of all of the SCR model variants. A397

time varying sequence for each vital rate on the complementary log-log scale was obtained398

by adding a random year or cohort effect (as appropriate) drawn from a uniform(-0.9,0.9)399

distribution to g(p), with p being the age-specific mean of the respective IGH rate (except400

for the age 4 maturation rate which was time invariant), with the same year effect added to401

juvenile and adult natural mortality. The resulting set of generating rates is shown in Fig. 1,402

with µ(dyA) = 0.22 and CV(dyA) = 0.37.403

3.3.2 Performance metrics404

To gauge the performance of the CR and SCR estimation models under the various simulation405

scenarios, we defined for each vital rate pia, p = c,m, d, the error in its estimated value for406

dataset k as p̂ia(k)−pia(k), with pia(k) being the actual, realized rate based on the binomial407

mortality model outcome for dataset k rather than the generating rate. For dataset k,408

we defined the mean error (ME) and root mean square error (RMSE) for age a over the409

i = 1, 2, . . . , I cohorts as410

ME(p̂a; k) =
X

i

h

p̂ia(k)− pia(k)
i.

I,(27)

RMSE(p̂a; k) =

s

X

i

h

p̂ia(k)− pia(k)
i2.

I.(28)
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We then averaged each of these respective quantities over the replicate datasets to provide411

a measure of estimator bias (ME(p̂a)) and accuracy (RMSE(p̂a)), and regarded |ME(p̂a)| ≤412

0.05 and RMSE(p̂a) ≤ 0.05 as acceptable levels of performance. Note that because the413

ME and RMSE metrics involve averages taken over cohorts, they reflect (on average) the414

estimation errors expected in cohort-specific estimates.415

For the CR model we also evaluated the performance of cohort abundance estimation.416

Because abundance at age differs greatly in terms of scale, we used the percent error in417

its estimated value for dataset k as the base metric,
h

N̂ia(k)−Nia(k)
i

/Nia(k), with Nia(k)418

being the actual, realized abundance based on the binomial mortality model outcomes for419

dataset k rather than its expected value. For dataset k, we defined the mean percent error420

(MPE) and mean absolute percent error (MAPE) for age a over the i = 1, 2, . . . , I cohorts421

as422

MPE(N̂a; k) =
X

i

⇣h

N̂ia(k)−Nia(k)
i

/

Nia(k)
⌘.

I,(29)

MAPE(N̂a; k) =
X

i

∣

∣

∣

h

N̂ia(k)−Nia(k)
i

/

Nia(k)
∣

∣

∣

.

I.(30)

We then averaged MPE(N̂a; k) and MAPE(N̂a; k) over the replicate datasets to provide a423

measure of estimator bias (MPE(N̂a)) and accuracy (MAPE(N̂a)), and regarded |MPE(N̂a)|424

≤ 0.2 and MAPE(N̂a) ≤ 0.2 as acceptable levels of performance. Similarly, because the425

MPE and MAPE metrics involve averages taken over cohorts, they reflect (on average) the426

estimation errors expected in cohort-specific estimates.427

Finally, for the CR model we also examined its ability to track temporal trends in the428

juvenile natural mortality rate, irrespective of whether the estimator itself is biased. For429

each dataset k we calculated Pearson’s product-moment correlation coefficient between the430

estimated and the actual, realized set of juvenile natural mortality rates, ρ(d̂1; k), averaged431

this over the replicate datasets to provide a measure of tracking ability (ρ̄(d̂1)), and regarded432

ρ̄(d̂1) ≥ 0.75 as an acceptable level of performance.433
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Although all of these criteria for acceptable performance are somewhat arbitrary, we434

deemed them reasonable based on our experience participating in the management process435

for Pacific salmon fisheries. We note also that interpreting errors in values close to either436

0.0 (i.e., maturation and exploitation rates for the youngest age classes) or 1.0 (i.e., juvenile437

natural mortality rate) can be problematic. For juvenile natural mortality, this problem438

can largely be alleviated by looking instead at percent error in reconstructed abundance439

at age, which is typically of more interest to managers due to its use in forecast models440

(e.g., Winship et al., 2015). Managers typically already regard estimates of maturation and441

exploitation rates for the youngest age classes with caution due to the small numbers of tag442

recoveries driving these estimates, and for exploitation rates there is additional uncertainty443

introduced by the large expansion factors and uncertain mortality rates needed to account444

for the discarding of sublegal-sized fish (e.g., Satterthwaite et al., 2013).445

4 Results446

4.1 CR model performance447

With a constant adult natural mortality rate, estimated age 2 exploitation rates have ac-448

ceptable bias and accuracy over the full range of dA considered (owing in part to the small449

scale of these rates), and bias in exploitation rates for older ages remains acceptable in all450

cases considered except for age 3 if dA > 0.6, while the accuracy is acceptable in all cases451

except for ages 3 and 4 if dA > 0.4 (Fig. 2a). Variation in ME and RMSE over replicate452

datasets is greatest for age 3 and age 4, and this variation increases as dA increases.453

Although estimates of maturation rates at age 2 and age 4 are generally robust (Fig. 2b),454

age 3 rates are sensitive to misspecification of the adult natural mortality rate with ME(m̂3) >455

0.05 for dA > 0.4 and ME(m̂3) > 0.15 for dA > 0.6. Acceptable levels of RMSE(m̂3) occur for456

dA ≤ 0.3. Variation in ME over replicate datasets is minimal for all ages, whereas variation457

in RMSE is apparent for ages 3 and 4 and increases somewhat as dA increases.458
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Juvenile natural mortality rates are estimated well by the CR model over the full range of459

dA considered (Fig. 2c), although small errors in this rate can reflect large relative errors in460

(small) juvenile survival rates. Thus it is instructive to also consider errors in reconstructed461

abundance at age (Fig. 2d), especially for age 2 as this equals the estimated juvenile survival462

rate multiplied by the release group size. For age 2 abundance, the bias and accuracy463

are unacceptable unless 0.1 ≤ dA ≤ 0.3. Sensitivity of reconstructed abundance-at-age to464

misspecification of dA is lower for older age classes, with both bias and accuracy acceptable465

for dA < 0.5 for age 3 and over the full range of dA considered for age 4. Little variation in466

the juvenile natural mortality rate and abundance-at-age bias and accuracy measures over467

replicate datasets was evident, except for age 4 with dA > 0.5.468

Vital rate estimation is less sensitive to variability in the adult natural mortality rate.469

When µ(dyA) matched the value assumed (0.2) in the CR model, all estimators meet the470

accuracy performance criteria over the full range of CV(dyA) explored (Fig. 3, left column),471

and display little sensitivity to the amount of variability (all curves are nearly horizontal472

lines). Accuracy is lowest for the age 4 exploitation rate (due in part to the reduced abun-473

dance at age 4, and to the relatively low magnitude of the rate in contrast to the relatively474

high magnitude of the age 4 maturation rate).475

When the adult natural mortality rate varies around a mean (0.4) which differs from476

the assumed value (Fig. 3, right column), sensitivity to variability increases (curvature is477

more apparent in the plots). Accuracy for age 3 exploitation rates is unacceptable for478

CV(dyA) > 0.4, but for all other rates performance is either acceptable (ĉ2, m̂2, m̂4, d̂1,479

N̂3, N̂4) or unacceptable (ĉ4, m̂3, N̂2) over the full range of variability considered, with480

the m̂3 performance noticeably degrading as CV(dyA) increases. Variation in the respective481

RMSE values over replicate datasets also increased, and in most cases increased further with482

increases in CV(dyA).483

Despite the difficulty in estimating age 2 abundance accurately when µ(dyA) = 0.4484

(Fig. 3d, right column), estimates of the juvenile natural mortality rate did tend to track the485
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simulated variation across years under several different combinations of µ(dyA) and CV(dyA)486

values (Fig. 4). The mean correlation, ρ̄(d̂1), over the range of CV(dyA) examined is very487

high when µ(dyA) is correctly specified (0.2), and remains above 0.9 even when µ(dyA) is 0.4488

versus the specified 0.2, but falls below 0.75 when dyA is both badly misspecified (µ(dyA) =489

0.6) and variable (CV(dyA) > 0.35).490

4.2 SCR model performance491

The performance of the SCR-1 and SCR-2 models (jointly referred to below as SCR-1-2)492

was very similar overall, both in terms of bias (Fig. 5) and accuracy (Fig. 6). Likewise, the493

performance of the SCR-3 and SCR-4 models (jointly referred to below as SCR-3-4) was494

very similar overall (Figs. 5 and 6). And, in general, the SCR-3-4 models outperformed the495

SCR-1-2 models.496

SCR-1-2 generally underestimated exploitation rates, maturation rates, and the juvenile497

natural mortality rate, and overestimated the adult natural mortality rate. The bias and498

accuracy of m̂3, d̂J , and d̂A, in particular, were unacceptable for most of the generating rate499

sets examined, and accuracy for the remaining estimated rates (ĉ3, ĉ4, m̂4) was unacceptable500

for Var.2 and Var.4. We therefore focus our attention below on the SCR-3-4 and CR model501

results.502

For models SCR-3-4, unlike SCR-1-2, the adult natural mortality rate was not consis-503

tently positively biased across the generating rate sets but, as for SCR-1-2, when d̂A was504

positively biased, the remaining estimated rates were negatively biased, and vice-versa. For505

Add.2 and Var.2, models SCR-3-4 were essentially unbiased for all rates (borderline for d̂A),506

and the accuracy was also mostly acceptable for Add.2 (nearly so for d̂A), but for Var.2 it was507

unacceptable for ĉ4, m̂3, and d̂A. For Con.2 and Var.4, the d̂A bias was unacceptable, and for508

Var.4 this was also the case for m̂3. For Con.2 and Var.4, the accuracy was unacceptable for509

m̂3 and d̂A, and for Var.4 this was also the case for ĉ3 and ĉ4. Variation in ME and RMSE510

over replicate datasets was greater for all rates with Con.2, and greatest for m̂3 and d̂A.511
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Considering the SCR-3-4 rates individually, the estimated exploitation rates had an ac-512

ceptable bias, but the accuracy for ĉ3 was unacceptable for Var.4, and for ĉ4 the accuracy was513

unacceptable for Var.2 and Var.4. Estimated maturation rates had an acceptable bias except514

for m̂3 with Var.4, and an acceptable accuracy except for m̂3 with Con.2, Var.2, and Var.4.515

Variation in ME and RMSE over replicate datasets for m̂3 was relatively high for Con.2.516

The estimated juvenile mortality rate bias and accuracy was acceptable across all generating517

rate sets. For the estimated adult natural mortality rate, the bias was clearly unacceptable518

for Con.2 (biased high) and Var.4 (biased low), and the accuracy was unacceptable for all519

but the Add.2 generating rate set. And for d̂A, as for m̂3, variation in ME and RMSE over520

replicate datasets was relatively high for Con.2.521

By comparison, the CR model was essentially unbiased (Fig. 5) for those generating rate522

sets in which dA or µ(dyA) was equal to, or approximately equal to, the assumed constant523

value of 0.2 (Con.2, Add.2, Var.2), and its accuracy was also acceptable (Fig. 6), except524

in the case of ĉ4 for Add.2. For the µ(dyA) = 0.4 generating rate set (Var.4), some bias525

was evident, most notably in the age 3 estimated rates. The pattern of this bias across526

the various rates was similar to that of the SCR-3-4 models for Var.4, with unacceptable527

performance (bias and accuracy) for m̂3, and borderline unacceptable accuracy for ĉ3 and528

ĉ4. Variation alone in dA about the assumed constant value of 0.2 (Add.2 and Var.2 versus529

Con.2) had relatively little impact on estimator performance. The doubling of µ(dyA) to530

0.4 versus the assumed constant value of 0.2 (Var.4 versus Con.2) resulted in acceptable531

performance except for m̂3 (accuracy of exploitation rates was borderline unacceptable).532

Overall, the CR model performed as well as, or better than, the SCR-3-4 models. How-533

ever, in the case of the Add.2 generating rate set, where the performance was mostly similar534

for the non-dA estimated rates, the SCR-3-4 models were additionally able to estimate dA535

reasonably well (the CR model assumes that dA is known) and provided slightly better536

accuracy for some vital rates.537
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5 Discussion538

5.1 CR model performance539

Our evaluation of the performance of cohort reconstruction techniques across a wide range540

of plausible scenarios for salmon populations can serve to generally increase confidence in541

management applications of CR, and ecological inference using CR to estimate vital rates542

other than adult natural mortality, unless the adult natural mortality rate is at least twice543

as high as commonly assumed. Although the true adult natural mortality rate is unknown544

and surely varies (to an unknown extent), our results suggest only small consequences from545

assuming a known, constant adult natural mortality rate of 0.2 unless the true value exceeds546

approximately 0.4, or variability around an appropriately specified mean value substantially547

exceeds a CV of 0.5.548

CR estimates of the age 2 abundance and age 3 maturation rate display the highest549

sensitivity to the misspecification of adult natural mortality rates, while juvenile natural550

mortality rates were well estimated over the entire range of adult natural mortality rates551

considered. However, it is important to realize that juvenile mortality rates are high and552

so juvenile survival, which is correspondingly small, may be estimated with more substan-553

tial relative error. Nevertheless, relative error in juvenile survival rates, like that of age 2554

abundance, should be acceptably small (≤ 0.2) given adult natural mortality rates between555

0.1 and 0.3. High correlation (≥ 0.75) between estimated and realized juvenile natural mor-556

tality rates suggest that, despite any bias introduced through misspecification of the mean557

adult natural mortality rate, and the difficulty of estimating the age 2 abundance accurately,558

temporal trends in the juvenile survival rate should be reliably detected unless adult natural559

mortality rates are very high (≥ 0.6) and highly variable (CV > 0.35).560

The results of our performance evaluation of the CR model are mostly consistent with561

the conclusions reached by Hankin and Logan (2010) in an analysis of juvenile survival for562

salmon and for all vital rates in similar studies applied to long-lived iteroparous species.563

25



Allen et al.: Temporally varying natural mortality September 1, 2016

Agger et al. (1973) and Ulltang (1977) found that when natural mortality is lower than564

assumed, fishing mortality is generally underestimated, and vice versa. For our analysis, this565

is most evident for the age 3 estimated exploitation rate. Agger et al. (1973) calculated that566

underspecification of the instantaneous natural mortality rate by 0.1 yr-1 results in a mean567

percent error of approximately 0.2 in the age 3 instantaneous fishing mortality rate, whereas568

we found an average percent error of 0.08 in this rate (after converting our exploitation and569

natural mortality rates to the instantaneous scale and assuming dA = 0.2 versus an actual570

value of dA = 0.28). Ulltang (1977) concluded that errors in fishing mortality and abundance571

estimates are likely to be small when the natural mortality rate fluctuates randomly around572

a correctly specified mean, similar to our results. We note however that our specific findings573

may not be broadly applicable outside the range of scenarios considered. For instance,574

Sims (1984) and Sampson (1988) found that the misspecification of natural mortality rates575

creates higher percent errors in estimates of abundance for lightly fished stocks. Indeed,576

when generating exploitation rates were halved in our analysis (not presented), the percent577

error of abundance estimates increased. Similarly, we would expect an increase (decrease)578

in accuracy with an increase (decrease) in the number of tagged fish released as juveniles.579

Our estimation model performance metrics are defined relative to the realized demo-580

graphic model outcomes and rates, and in this sense are conditional metrics. Thus, variation581

in the CR model estimates over replicate datasets, for example, was due primarily to sampling582

error (the use of sample-expanded estimates of catch and escapement) rather than demo-583

graphic stochasticity. Alternative definitions for these performance metrics are of course584

possible. In particular, unconditional metrics could be defined relative to the demographic585

model expectations and generating rates. However, given that the focus of this paper is586

on the reconstruction of realized cohort outcomes and estimation of the associated rates,587

conditional performance metrics seem most appropriate. In addition, our simulated datasets588

were necessarily simplified compared to complications expected in real-world stock dynamics.589

For example, environmental conditions and their effects on vital rates are likely temporally590
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autocorrelated, exploitation rates vary as a function of abundance forecasts which likely cor-591

relate with juvenile survival (e.g., Winship et al., 2015), and changes in fishery minimum592

size limits would be expected to change age effects on fishing mortality rates by changing593

the proportion of fish of legal size at each age. Increases in the number of tagged fish in each594

release group and/or sampling rates would be expected to reduce sensitivity to sampling595

and process error in the data and thereby improve the performance of CR models somewhat,596

but no increase in sample sizes can compensate for biases introduced by unmet assumptions.597

Implications of release group sizes and sampling rates for CR were discussed extensively by598

the PSC CWTWG (2008), so we did not explore sample sizes in further detail here.599

5.2 SCR model performance600

The ability to estimate time-varying natural mortality, maturation and exploitation rates601

simultaneously is expected to improve salmon assessments performed using cohort recon-602

struction methods. With increasing emphasis on determining relationships between envi-603

ronmental drivers and vital rates as well as synchrony in vital rates across release groups604

and populations (e.g., Sharma et al., 2013; Kilduff et al., 2014, 2015), there is also strong605

scientific motivation to ensure that the vital rates entering into these analyses are generated606

in the most rigorous way possible. Most applications of other salmon assessment models such607

as statistical catch-at-age models typically also require the assumption of known, constant608

adult natural mortality rates (e.g., Brenden et al., 2012), so the ability to quantify temporal609

variation in adult survival would have wide-ranging benefits.610

That said, the SCR estimation models explored here all exhibited instances of unaccept-611

able performance in at least some simulated scenarios, and would be ill suited for application612

to empirical datasets with no tag recoveries in particular age/stage categories. In addition,613

we have not (and could not have) rigorously tested all possible scenarios in which the model614

assumption of additive effects of year and age on vital rates might break down. Thus model615

results need to be interpreted with caution. Confidence in SCR model results when applied616
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to an existing (real) dataset might be increased if multiple simulated datasets were gener-617

ated based on the fitted vital rates, and the model did consistently well at estimating these618

generating vital rates across datasets.619

Our results imply that the additive structure assumed for the maturation rates by models620

SCR-2 and SCR-4 did not lead to improved overall estimation performance versus SCR-1621

and SCR-3, respectively. This may in part stem from the fact that the age 4 maturation622

rate was assumed to be constant for all SCR models. Thus although we considered an623

alternative SCR model formulation with constant maturation rates for each age, we expected624

this might do relatively little to improve model performance, and of course it would sacrifice625

the ability to estimate year-specific maturation rates. Our results also imply that the additive626

structure assumed for the natural mortality rates by model SCR-3 did lead to improved627

overall estimation performance versus SCR-1, regardless of whether the underlying rates628

were additive or not. In this case, since the juvenile mortality rates were well estimated629

under all scenarios (and thereby the year effects), the additive linkage presumably helped to630

resolve the overall adult age effect, scaling mean adult mortality relative to mean juvenile631

mortality but not necessarily tracking annual variation in adult natural mortality.632

The performance of the SCR-3-4 estimation models when the adult natural mortality633

rate was a constant equal to 0.2 (Con.2), or was relatively high with a mean value of 0.4634

(Var.4), was unacceptable for several rates. However, the performance was acceptable for all635

rates when the underlying natural mortality rates were variable with a mean of 0.2 and all636

vital rates were additive on the complementary log-log scale. Estimates were also essentially637

unbiased (in terms of the mean across cohorts/years) for all rates when the adult natural638

mortality rates were independently variable with a mean of 0.2 but the accuracy for several639

parameters, including the adult natural mortality rate, was unacceptable.640

Overall, the alternative SCR models for estimating adult natural mortality rates directly641

did not clearly outperform the CR model in any of the scenarios we examined and proved642

sensitive to violations of functional assumptions and/or sampling variation. Although in643

28



Allen et al.: Temporally varying natural mortality September 1, 2016

some scenarios most parameter estimates from models SCR-3-4 were relatively robust to644

sampling variation, both models assume covariation between juvenile and adult natural645

mortality rates, and tracked juvenile natural mortality rates closely. Therefore even if they646

can unbiasedly estimate the mean adult natural mortality rate by fitting an appropriate age647

effect, the annual variation in adult natural mortality rate estimates will likely be driven648

by variation in juvenile natural mortality rates and thus may not provide real insight into649

true variation in adult natural mortality rates. As with the CR model, increases in the650

number of tagged fish in each release group and/or sampling rates would be expected to651

reduce sensitivity to sampling and process error in the data, but could not compensate652

for violation of model assumptions. Temporally autocorrelated environmental drivers likely653

lead to temporal autocorrelation in vital rates, with unknown implications for partitioning654

variation into year- versus age-effects. Future research could explore the implications of655

temporal autocorrelation, and the degree of correlation between juvenile and adult mortality,656

for the performance of the SCR approach described here. SCR model performance might be657

improved through approaches that incorporate autocorrelation into the estimation process658

(e.g., Johnson et al., 2016), or by developing a hierarchical approach to share information659

across release groups or stocks sharing a common ocean environment (e.g., Thorson et al.,660

2013).661

5.3 Conclusions and recommendations662

Taken together, our results suggest that CR methods are fairly robust in their applications to663

Pacific salmon unless common assumptions about adult natural mortality rates are seriously664

wrong. Because separable models SCR-3-4 were able to unbiasedly estimate the mean adult665

natural mortality rate under multiple sets of conditions conducive to CR, confidence in CR666

results might be increased if application of a model similar to SCR-3-4 yielded a mean adult667

natural mortality rate similar to that assumed in the CR, and that estimate might be used as668

the assumed natural mortality rate in a subsequent CR for the same or similar stocks. Given669
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the apparent negative bias in adult natural mortality rate estimates from models SCR-3-4670

when adult natural mortality rates are high and do not covary with juvenile natural mortality671

rates (Var.4), an acceptably low adult natural mortality rate estimate does not assure that672

CR results are reliable, but a high adult natural mortality rate estimate would be a definite673

cause for concern (although it should be noted that SCR-3-4 overestimated the adult natural674

mortality rate in the constant scenario, Con.2). Due to the limited accuracy of the SCR-3-4675

models when the additivity assumptions are not met, these models may be less informative676

on whether adult natural mortality rates are unacceptably variable, unless there is strong677

reason to believe juvenile and adult natural mortality rates should covary.678

In cases where SCR adult natural mortality rate estimates suggest application of typical679

CR may be problematic, managers and scientists would be wise to evaluate the sensitivity680

of key results and metrics to higher adult natural mortality rates and/or variable rates,681

as appropriate. It would also be advisable to consider all possible alternative sources of682

information on the adult natural mortality rate and the extent to which it might covary683

with the juvenile natural mortality rate (e.g., due to similarities or differences in feeding684

ecologies and spatial locations). Unless there is reason to believe the adult natural mortality685

rate has increased as a result of recent changes in the environment, one might also consider686

whether high estimates of adult natural mortality rates are consistent with expectations687

from life history theory if accompanied by low maturation rates (Mangel and Satterthwaite,688

2008).689

Direct estimation of adult natural mortality rates for salmon through other means has not690

received substantial attention in the published literature, but according to Hankin and Healey691

(1986), two empirical studies estimated an annual adult natural mortality rate of around 0.35692

for Chinook salmon although maturation and mortality were confounded, suggesting actual693

mortality rates may have been lower. Thus, confidence in CR results could be improved694

in the future by field studies directly estimating adult natural mortality such as through695

adult tagging studies (Walters and Martell, 2004) which, if repeated over multiple years,696
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could also yield insight into the degree of temporal variability in adult natural mortality and697

possibly insights into drivers of this variation. Such studies would be costly and logistically698

challenging, but the resulting insights could be highly worthwhile.699
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Table 1 Abbreviations used and their definition.

Abbreviation Definition

IGH Iron Gate Hatchery

ME Mean error

RMSE Root mean square error

MPE Mean percent error

MAPE Mean absolute percent error

CR Cohort reconstruction

SCR Separable cohort reconstruction

SCR-1 SCR model variant 1: Rates on complementary log-log scale: fishing
mortality separable (age + year); maturation non-separable (age * co-
hort) for age 2 and 3, constant for age 4; natural mortality non-separable
(age-class * year).

SCR-2 SCR model variant 2: Rates on complementary log-log scale: fishing
mortality separable (age + year); maturation separable (age + cohort)
for age 2 and 3, constant for age 4; natural mortality non-separable
(age-class * year).

SCR-3 SCR model variant 3: Rates on complementary log-log scale: fishing
mortality separable (age + year); maturation non-separable (age * co-
hort) for age 2 and 3, constant for age 4; natural mortality separable
(age-class + year).

SCR-4 SCR model variant 4: Rates on complementary log-log scale: fishing
mortality separable (age + year); maturation separable (age + cohort)
for age 2 and 3, constant for age 4; natural mortality separable (age-class
+ year).

Con.2 Constant generating rates with an adult natural mortality rate of 0.2.

Var.2 Time varying generating rates with an adult natural mortality rate mean
value of 0.2.

Var.4 Time varying generating rates with an adult natural mortality rate mean
value of 0.4.

Add.2 Time varying generating rates with additive year and age or cohort and
age effects on the complementary log-log scale and an adult natural
mortality rate mean value of 0.22.
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Table 2 Symbols used and their definition.

Symbol Definition

ˆ Estimated quantity (overscript)

˜ Assumed quantity (overscript)

¯ Average quantity (overscript)

i Cohort (brood year), i = 1, 2, . . . , I

a Age, a = 1, 2, . . . , 5

a0 Age class: J (a = 1) or A (a = 2, 3, 4)

y Calendar year, y = i+ a

k Simulated dataset index, k = 1, 2, . . .

R Number of tagged fish released

N Abundance

C Ocean catch

M River escapement

D Natural mortality (deaths)

c Exploitation rate

m Maturation rate

d Natural mortality rate

p Conditional mortality rate (c, m, or d)

π Unconditional mortality rate

S Survival rate (from release)

g() Complementary log-log function

l() Log-likelihood function

θ Parameter set (SCR models)

η g(c) year effect

λ g(c) age effect

φ g(m) cohort-age effect

ζ g(m) cohort effect

δ g(m) age effect (a = 2, 3)

ψ g(m) age effect (a = 4)

τ g(d) year-age-class effect

ξ g(d) year effect

γ g(d) age-class effect

µ Mean value

ρ Correlation coefficient

CV Coefficient of variation
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Fig. 1. Generating rates used for performance evaluation. Left column: IGH rates with mean
values indicated on right vertical axis. Right column: additive (on complementary log-log scale)
rates derived from IGH mean rates assuming SCR-4 model structure. Adult natural mortality is
assumed fixed at 0.2 for the IGH rates (dashed line). The additive scenario is parameterized to
yield mean and variability in vital rates comparable to IGH but with independently drawn random
effects of years/cohorts.
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Fig. 2. CR estimation model performance when the underlying adult natural mortality rate is
constant (dA), but misspecified (assumed equal to 0.2). Solid lines indicate bias (left column) and
accuracy (right column) as a function of the actual dA value. Shaded regions about lines depict
central 68% quantiles of respective metrics over replicate datasets. Dotted lines reference acceptable
performance levels. Note scale of y-axis differs for abundance panels.
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Fig. 3. CR estimation model accuracy measures when the underlying adult natural mortality rate
is variable ({dyA}), but assumed constant (equal to 0.2). Solid lines indicate accuracy as a function
of the coefficient of variation when the mean rate is equal to the assumed constant (left column),
and twice that of the assumed constant (right column). Shaded regions about lines depict central
68% quantiles of respective metrics over replicated datasets. Dotted lines reference acceptable
performance levels. Note scale of y-axis differs for abundance panels.
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Fig. 5. SCR and CR estimation model bias for one constant (Con.2) and three variable (Add.2,
Var.2, Var.4) generating rate scenarios (Figure 1): Con.2 rates are the IGH mean values with
dA = 0.2; Add.2 rates are additive on the complementary log-log scale with µ(dyA) = 0.22; Var.2
rates are the IGH rates with µ(dyA) = 0.2; Var.4 rates are the IGH rates with µ(dyA) = 0.4.
In all cases, the CR model assumes the adult natural mortality rate is a constant equal to 0.2.
Dots indicate bias, and vertical bars depict central 68% quantiles of the ME metric over replicate
datasets. Dotted lines reference acceptable performance level. Note scale of y-axis differs for adult
natural mortality rate panel.
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Fig. 6. SCR and CR estimation model accuracy for one constant (Con.2) and three variable
(Add.2, Var.2, Var.4) generating rate scenarios (Figure 1): Con.2 rates are the IGH mean values
with dA = 0.2; Add.2 rates are additive on the complementary log-log scale with µ(dyA) = 0.22;
Var.2 rates are the IGH rates with µ(dyA) = 0.2; Var.4 rates are the IGH rates with µ(dyA) = 0.4.
In all cases, the CR model assumes the adult natural mortality rate is a constant equal to 0.2.
Dots indicate accuracy, and vertical lines depict central 68% quantiles of the RMSE metric over
replicate datasets. Dotted line references acceptable performance level. Note scale of y-axis differs
for adult natural mortality rate panel.
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Appendix A SCR model fitting and optimization858

Starting values859

ADMB, like many other nonlinear optimization routines, cannot exit from local minima,860

making it necessary to repeatedly fit the models starting from a wide range of initial values861

as opposed to only one set of values. We chose distributions of starting values with the goal862

of encompassing a wide, yet biologically plausible range. These ranges were either set to the863

parameter estimation boundary constraints (see below), or were narrowed slightly to increase864

the potential for convergence. Starting values for parameters on the complementary log-log865

scale were time invariant and drawn from normal distributions centered on the generating866

rates (averaged over years), but had relatively large variances. Randomly drawn values867

outside of the specified permissible range were truncated to the nearest range endpoint, and868

adjusted if necessary to satisfy any additional specified constraints among the parameters.869

Starting value distribution means and coefficients of variation, as well as the permissible870

ranges and additional specified constraints, are presented in Tables A.1, A.2, A.3, and A.4,871

for the SCR-1, SCR-2, SCR-3, and SCR-4 model variants, respectively. For reference, we also872

include in these tables the translation of these specifications to the vital rate (proportion)873

scale.874

Boundaries and phase estimation875

To increase the potential for convergence, we specified boundary constraints and the phase of876

estimation for each of the parameters to be estimated (Tables A.1, A.2, A.3, A.4). Bound-877

ary constraints ensured that the estimated parameters fell within a reasonable range and878

restricted the solution space. Phase estimation allowed us to specify when to initiate opti-879

mization for a given parameter within the overall search. This enabled difficult parameters880

to be estimated after other, less difficult to estimate parameters were at or near their opti-881

mal values. In each phase, the parameters activated in the current or previous phase were882
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optimized using their estimated values in the previous phase as initial values.883

Convergence performance884

For each attempted fitting of an SCR model to a dataset using a randomly drawn set of start-885

ing values, we documented whether ADMB (a) failed to produce an estimate because the886

minimization procedure was terminated prematurely (“failed”), (b) produced an estimate887

but reported that the Hessian may not be positive-definite (“non-positive-definite Hessian”),888

(c) produced an estimate with a positive-definite Hessian, but the maximum gradient com-889

ponent exceeded our convergence criterion of 0.0001 (“convergence criterion not met”), or890

(d) produced an estimate with a positive-definite Hessian, and the maximum gradient com-891

ponent was less than or equal to our convergence criterion of 0.0001 (“convergence criterion892

met”). Over the 100 attempted fittings to the dataset, where the convergence criterion was893

met, we determined which estimate minimized the negative of the log-likelihood function894

(the maximum likelihood estimate), and also recorded the number of local minima (unique895

solutions in which at least one estimated vital rate differed by at least 0.001 from the maxi-896

mum likelihood estimate). The frequency of the above outcomes for each of the SCR models897

and generating rate sets is shown in Table A.5, where the frequencies are over the 100 fitting898

attempts (averaged across the 100 independent datasets).899

Overall, starting values leading to failure or non-positive-definite Hessian matrices oc-900

curred less than 1.6% of the time. And, other than for the SCR-4 model and Add.2 gener-901

ating rate set, greater than 97.3% of the starting value sets led to the convergence criterion902

being met. For the Add.2 generating set, the convergence success rate was much lower:903

43.9–77.7%. However, based on limited testing, we suspect that a slight increase in our904

convergence criterion (e.g., from 0.0001 to 0.001) would have resulted in a much higher con-905

vergence success rate for the Add.2 generating set, and few additional local minima. While906

the convergence rate for the SCR-4 model in particular was only 43.9% for this generating907

rate set, the SCR-4 convergence rate was 88.5–95.2% for the other generating rate sets. Note908
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that in these cases of a lower convergence success rate, it was not primarily due to failure909

or a non-positive-definite Hessian, and multiple minima occurred less than 0.2% of the time.910

We also note that, anecdotally, in many instances in which the convergence criterion was911

not met, the estimate was in fact very close to the maximum likelihood estimate, but the912

minimization routine was terminated “early” relative to our criterion because it met one of913

the other ADMB built-in convergence criteria (Fournier, 2015). In general, the SCR models914

were not particularly difficult to fit once the user defined boundaries and estimation phases915

were appropriately set up, and we suspect that in an application consisting of a single, real916

dataset, the boundaries, phases, and convergence criterion could be fine-tuned to yield a917

high convergence success rate.918
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Table A.1 Model SCR-1 parameter starting values and estimation specifications (upper portion), and
translation of specifications to vital rate scale (lower portion).

Starting Value Estimation

Parameter Mean CV Range Additional constraints Bounds Phase

ηy g(c̄4) 0.4 [−7.0, 0.5] η4 = η5 = . . . = ηI+5 = η∗ [−7.0, 0.5] 1

λ2 g(c̄2)− η∗ 0.4 [−6.5,−2.2] λ2 ≥ −9− η∗ [−7.5,−2.0] 1

λ3 g(c̄3)− η∗ 0.4 [−6.5,−0.4] λ3 ≥ −8− η∗, λ3 ≥ λ2 [−7.5,−0.1] 2

φi2 g(m̄2) 0.4 [−7.9,−1.2] φ22 = φ32 = . . . = φI2 = φ∗
2 [−8.0,−1.0] 3

φi3 g(m̄3) 0.4 [−7.8, 1.9] φ13 = φ23 = . . . = φI3 = φ∗
3, φ

∗
3 ≥ φ∗

2 [−7.8, 2.0] 3

ψ g(m̄4) 0.4 [ 0.0, 1.9] ψ ≥ φ∗
3 [ 0.0, 2.0] 1

τyJ g(d̄J) 0.4 [−0.3, 1.8] τ3J = τ4J = . . . = τI+1 J = τ∗J [−0.4, 2.0] 3

τyA g(d̄A) 0.5 [−3.7, 0.1] τ4A = τ5A = . . . = τI+4 A = τ∗A, τ
∗
A ≤ τ∗J [−5.4, 1.0] 3

g(πC12
) g(C12/R1) 0.0 [−7.2,−0.6] [−8.0,−0.5] 4

g(πM12
) g(M12/R1) 0.0 [−7.2,−0.6] [−8.0,−0.5] 4

g(S12) g(C13/c̄3
R1

) 0.0 [−7.2,−0.6] [−8.0,−0.5] 4

ci2 (0.00, 0.17] c22 = c32 = . . . = cI2 = c∗2 (0.00, 0.20]

ci3 (0.00, 0.67] c13 = c23 = . . . = cI3 = c∗3, c
∗
3 ≥ c∗2 (0.00, 0.76]

ci4 (0.00, 0.81] c14 = c24 = . . . = cI4 = c∗4 (0.00, 0.81]

ci5 (0.00, 0.81] c15 = c25 = . . . = cI5 = c∗4 (0.00, 0.81]

mi2 (0.00, 0.26] m22 = m32 = . . . = mI2 = m∗
2 (0.00, 0.31]

mi3 (0.00, 1.00) m13 = m23 = . . . = mI3 = m∗
3, m

∗
3 ≥ m∗

2 (0.00, 1.00)

mi4 [0.63, 1.00) m14 = m24 = . . . = mI4 = m∗
4, m

∗
4 ≥ m∗

3 [0.63, 1.00)

di1 [0.52, 1.00) d21 = d31 = . . . = dI1 = d∗J [0.50, 1.00)

di2 [0.03, 0.65] d22 = d32 = . . . = dI2 = d∗A, d
∗
A ≤ d∗J [0.01, 0.93]

dia, a≥3 [0.03, 0.65] d1a = d2a = . . . = dIa = d∗A [0.01, 0.93]

πC12
(0.00, 0.42] (0.00, 0.46]

πM12
(0.00, 0.42] (0.00, 0.46]

S12 (0.00, 0.42] (0.00, 0.46]
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Table A.2 Model SCR-2 parameter starting values and estimation specifications (upper portion), and
translation of specifications to vital rate scale (lower portion).

Starting Value Estimation

Parameter Mean CV Range Additional constraints Bounds Phase

ηy g(c̄4) 0.4 [−7.0, 0.5] η3 = η4 = . . . = ηI+5 = η∗ [−7.0, 0.5] 1

λ2 g(c̄2)− η∗ 0.4 [−6.4,−2.8] λ2 ≥ −9− η∗ [−7.5,−2.0] 1

λ3 g(c̄3)− η∗ 0.4 [−6.4,−0.5] λ3 ≥ −8− η∗, λ3 ≥ λ2 [−7.5,−0.1] 2

ζi 0 0.0 [ 0.0, 0.0] [−7.0, 7.0] 3

δ2 g(m̄2) 0.4 [−7.9,−1.5] [−8.0,−1.0] 3

δ3 g(m̄3)− δ2 0.4 [ 0.7, 9.0] δ3 ≤ 2− δ2 [ 0.2, 9.0] 3

ψ g(m̄4) 0.4 [ 0.0, 1.7] ψ ≥ δ2 + δ3 [ 0.0, 2.0] 1

τyJ g(d̄J) 0.4 [−0.3, 1.8] τ2J = τ3J = . . . = τI+1 J = τ∗J [−0.4, 2.0] 3

τyA g(d̄A) 0.5 [−3.7, 0.1] τ3A = τ4A = . . . = τI+4 A = τ∗A, τ
∗
A ≤ τ∗J [−5.4, 1.0] 3

ci2 (0.00, 0.10] c12 = c22 = . . . = cI2 = c∗2 (0.00, 0.20]

ci3 (0.00, 0.63] c13 = c23 = . . . = cI3 = c∗3, c
∗
3 ≥ c∗2 (0.00, 0.76]

ci4 (0.00, 0.81] c14 = c24 = . . . = cI4 = c∗4 (0.00, 0.81]

ci5 (0.00, 0.81] c15 = c25 = . . . = cI5 = c∗4 (0.00, 0.81]

m12 (0.00, 0.20] m12 = m∗
2 (0.00, 0.31]

mi2, i≥2 (0.00, 0.20] m22 = m32 = . . . = mI2 = m∗
2 (0.00, 1.00)

m13 (0.00, 1.00) m13 = m∗
3 (0.00, 1.00)

mi3, i≥2 (0.00, 1.00) m23 = m33 = . . . = mI3 = m∗
3 (0.00, 1.00)

mi4 [0.63, 1.00) m14 = m24 = . . . = mI4 = m∗
4, m

∗
4 ≥ m∗

3 [0.63, 1.00)

di1 [0.52, 1.00) d11 = d21 = . . . = dI1 = d∗J [0.50, 1.00)

dia, a≥2 [0.03, 0.65] d1a = d2a = . . . = dIa = d∗A, d
∗
A ≤ d∗J [0.01, 0.93]
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Table A.3 Model SCR-3 parameter starting values and estimation specifications (upper portion), and
translation of specifications to vital rate scale (lower portion).

Starting Value Estimation

Parameter Mean CV Range Additional constraints Bounds Phase

ηy g(c̄4) 0.4 [−7.0, 0.5] η3 = η4 = . . . = ηI+5 = η∗ [−7.0, 0.5] 1

λ2 g(c̄2)− η∗ 0.4 [−7.0,−2.6] λ2 ≥ −9− η∗ [−7.5,−2.0] 1

λ3 g(c̄3)− η∗ 0.4 [−7.0,−0.4] λ3 ≥ −8− η∗, λ3 ≥ λ2 [−7.5,−0.1] 1

φi2 g(m̄2) 0.4 [−7.9,−1.3] φ12 = φ22 = . . . = φI2 = φ∗
2 [−8.0,−1.0] 2

φi3 g(m̄3) 0.4 [−7.8, 1.6] φ13 = φ23 = . . . = φI3 = φ∗
3, φ

∗
3 ≥ φ∗

2 [−7.8, 2.0] 2

ψ g(m̄4) 0.4 [ 0.0, 1.6] ψ ≥ φ∗
3 [ 0.0, 2.0] 1

ξy, y≤I+3 0 0.0 [ 0.0, 0.0] [−5.0, 5.0] 2

ξI+4 0 0.0 [ 0.0, 0.0] [−2.0, 2.0] 2

γJ g(d̄J) 0.4 [−0.3, 1.7] [−0.4, 2.0] 2

γA g(d̄A)− γJ 0.5 [−4.9,−1.5] −3.7− γJ ≤ γA ≤ 0.1− γJ [−5.0,−1.0] 2

ci2 (0.00, 0.12] c12 = c22 = . . . = cI2 = c∗2 (0.00, 0.20]

ci3 (0.00, 0.67] c13 = c23 = . . . = cI3 = c∗3, c
∗
3 ≥ c∗2 (0.00, 0.76]

ci4 (0.00, 0.81] c14 = c24 = . . . = cI4 = c∗4 (0.00, 0.81]

ci5 (0.00, 0.81] c15 = c25 = . . . = cI5 = c∗4 (0.00, 0.81]

mi2 (0.00, 0.24] m12 = m22 = . . . = mI2 = m∗
2 (0.00, 0.31]

mi3 (0.00, 0.99] m13 = m23 = . . . = mI3 = m∗
3, m

∗
3 ≥ m∗

2 (0.00, 1.00)

mi4 [0.63, 0.99] m14 = m24 = . . . = mI4 = m∗
4, m

∗
4 ≥ m∗

3 [0.63, 1.00)

d11 [0.52, 1.00) d11 = d∗J [0.50, 1.00)

di1, i≥2 [0.52, 1.00) d21 = d31 = . . . = dI1 = d∗J [0.01, 1.00)

d1a, a≥2 [0.03, 0.65] d1a = d∗A [0.01, 0.93]

dia, i≥2, a≥2 [0.03, 0.65] d2a = d3a = . . . = dIa = d∗A (0.00, 1.00)
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Table A.4 Model SCR-4 parameter starting values and estimation specifications (upper portion), and
translation of specifications to vital rate scale (lower portion).

Starting Value Estimation

Parameter Mean CV Range Additional constraints Bounds Phase

ηy g(c̄4) 0.4 [−7.0, 0.5] η3 = η4 = . . . = ηI+5 = η∗ [−7.0, 0.5] 1

λ2 g(c̄2)− η∗ 0.4 [−6.7,−2.2] λ2 ≥ −9− η∗ [−7.5,−2.0] 1

λ3 g(c̄3)− η∗ 0.4 [−6.7,−0.4] λ3 ≥ −8− η∗, λ3 ≥ λ2 [−7.5,−0.1] 1

ζi 0 0.0 [ 0.0, 0.0] [−7.0, 7.0] 2

δ2 g(m̄2) 0.4 [−7.9,−1.4] [−8.0,−1.0] 2

δ3 g(m̄3)− δ2 0.4 [ 0.5, 9.0] δ3 ≤ 2− δ2 [ 0.2, 9.0] 2

ψ g(m̄4) 0.4 [ 0.0, 1.6] ψ ≥ δ2 + δ3 [ 0.0, 2.0] 1

ξy, y≤I+3 0 0.0 [ 0.0, 0.0] [−5.0, 5.0] 4

ξI+4 0 0.0 [ 0.0, 0.0] [−2.0, 2.0] 4

γJ g(d̄J) 0.4 [−0.3, 1.9] [−0.4, 2.0] 3

γA g(d̄A)− γJ 0.5 [−4.9,−1.1] −3.7− γJ ≤ γA ≤ 0.1− γJ [−5.0,−1.0] 3

ci2 (0.00, 0.17] c12 = c22 = . . . = cI2 = c∗2 (0.00, 0.20]

ci3 (0.00, 0.67] c13 = c23 = . . . = cI3 = c∗3, c
∗
3 ≥ c∗2 (0.00, 0.76]

ci4 (0.00, 0.81] c14 = c24 = . . . = cI4 = c∗4 (0.00, 0.81]

ci5 (0.00, 0.81] c15 = c25 = . . . = cI5 = c∗4 (0.00, 0.81]

m12 (0.00, 0.22] m12 = m∗
2 (0.00, 0.31]

mi2, i≥2 (0.00, 0.22] m22 = m32 = . . . = mI2 = m∗
2 (0.00, 1.00)

m13 (0.00, 1.00) m13 = m∗
3 (0.00, 1.00)

mi3, i≥2 (0.00, 1.00) m23 = m33 = . . . = mI3 = m∗
3 (0.00, 1.00)

mi4 [0.63, 1.00) m14 = m24 = . . . = mI4 = m∗
4, m

∗
4 ≥ m∗

3 [0.63, 1.00)

d11 [0.52, 1.00) d11 = d∗J [0.50, 1.00)

di1, i≥2 [0.52, 1.00) d21 = d31 = . . . = dI1 = d∗J [0.01, 1.00)

d1a, a≥2 [0.03, 0.65] d1a = d∗A [0.01, 0.93]

dia, i≥2, a≥2 [0.03, 0.65] d2a = d3a = . . . = dIa = d∗A (0.00, 1.00)
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Table A.5 Convergence performance of SCR models. For each model and
generating rate set, the frequency of outcomes over the 100 attempted fit-
tings to a dataset (averaged across the 100 independent datasets) is listed.
“Convergence criterion met” outcome includes both global and local min-
ima. For further definition of outcomes see text.

Generating rate set

Model Outcome Con.2 Add.2 Var.2 Var.4

SCR-1 Failed 0.00 0.05 0.01 0.00

Non-positive-definite Hessian 0.02 0.00 0.00 0.00

Convergence criterion not met 1.12 24.48 1.38 0.64

Convergence criterion met 98.86 75.47 98.61 99.36

Local minima 0.03 0.00 0.00 0.00

SCR-2 Failed 0.00 0.20 0.04 0.08

Non-positive-definite Hessian 0.01 0.09 0.14 0.01

Convergence criterion not met 2.45 35.49 2.47 1.67

Convergence criterion met 97.54 64.22 97.35 98.24

Local minima 0.01 0.01 0.00 0.01

SCR-3 Failed 0.06 0.12 0.35 0.39

Non-positive-definite Hessian 0.05 0.03 0.01 0.00

Convergence criterion not met 0.53 22.11 1.27 0.29

Convergence criterion met 99.36 77.74 98.37 99.32

Local minima 0.20 0.15 0.39 0.38

SCR-4 Failed 0.00 0.00 0.12 0.67

Non-positive-definite Hessian 0.00 0.00 0.00 0.92

Convergence criterion not met 4.82 56.13 11.38 3.73

Convergence criterion met 95.18 43.87 88.50 94.68

Local minima 0.01 0.00 0.01 0.04
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