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Abstract—Empirical mode decomposition (EMD) is a data-

driven method used to decompose data into oscillatory 

components. This paper examines to what extent the defined 

algorithm for EMD might be susceptible to data format.  

Two key issues with EMD are its stability and 

computational speed. This paper shows that for a given 

signal there is no significant difference between results 

obtained with single (binary32) and double (binary64) 

floating points precision. This implies that there is no 

benefit in increasing floating point precision when 

performing EMD on devices optimised for single floating 

point format, such as graphical processing units (GPUs). 

 

Index Terms—Empirical Mode Decomposition, Floating 

Point Arithmetic, Intrinsic Mode Function, Performance 

Test, Signal Decomposition1 

 

I. INTRODUCTION 

Nowadays, computers used for signal processing are so 

powerful, that many researchers do not think about the 

amount of data or its format. Most calculations may be 

performed in very high precision format, like double 

floating point (DFP) precision. This often is unnecessary, 

but since it often has little impact on computational time, 

it is kept for the sake of high precision. For some systems 

changing format, into i.e. single floating point (SFP), can 

greatly reduce the computation time. An example of such 

a device is graphical processing units (GPUs), which are 

reported to work several times faster using SFP precision 

instead of DFP [1]. 

Empirical mode decomposition (EMD) [2] can be 

computational intensive and not suitable for real-time 

analysis [3]. Introduced over 15 years ago it is still under 

constant exploration and development. Due to its 

empirical nature, i.e. being described by an algorithm, the 

method might to be very susceptible to data format. This 

can be seen, for example, in discussion lead by Rilling et 

al. in [4], where the smallest sampling frequency was 

considered in order for EMD to work. 

The aim of this paper is to show whether and how data 

representation affects EMD. This is demonstrated on 

three examples – a sum of harmonic functions and a 

Gaussian noise. Section II introduces EMD algorithm, 

section III describes floating point precisions, section IV 
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provides numerical experiments with conclusions in 

section V. 

II. EMPIRICAL MODE DECOMPOSITION 

Empirical mode decomposition (EMD) is a data-driven 

method for decomposing signals into oscillatory 

components called intrinsic mode functions (IMFs) [2]. 

The algorithm for EMD can be described as follows: 

1) Identify all local extrema (both minima and 

maxima) in a given time series s(t), that is the 

points, at which the derivative is zero,       

      . 

2) If the number of extrema is less or equal than 

two then s(t) is considered as a trend – a low 

frequency modulation – and the algorithm stops 

(trend r(t) = s(t)). 

3) Use local maxima and local minima to compute 

respectively upper (     ) and lower (     ) 

envelopes. Interpolations are performed using 

natural cubic splines. 

4) Calculate the instantaneous mean of the signal, 

defined as an average of both envelopes, 

     
 

 
                   . 

5) Remove computed mean from the input time 

series,                       This step is 

called sifting, because it subtracts the previous 

trend from fast varying components. 

6) If residue       fulfils a given stopping criteria, 

then it is considered to be an IMF (component 

     ) and the procedure is repeated for modified 

time series,                  

As a result, EMD decomposes signal      into a set 

of N oscillatory components       (IMFs) and a trend 

function,       In the original paper, a stopping criterion 

is defined as a moment, when standard deviation of two 

consecutive iterations is below a predefined threshold. 

Each obtained component has an oscillatory form 

                        where      and      are in 

general functions of time. In order to classify a function 

as an IMF, it needs to satisfy two conditions: 1) the 

number of extrema must be even or differ at most by one 

to the number of zero-crossings; 2) at any point, mean of 

top and bottom envelopes must be zero. 

For the purpose of this paper, as originally suggested, 

EMD was used with natural cubic splines as an 

envelope's interpolation method. Local extrema were 
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considered to be vertices of parabolas interpolated on 

potential extrema, as was suggested in [5]. As a stopping 

criterion we have chosen moment, when potential 

component fulfils IMF conditions for ten consecutive 

sifting iterations. 

III. DOUBLE VS SINGLE FLOATING POINT PRECISION 

Floating point precision is related to the number of bits 

used to represent a digit in a computer. According to 

IEEE 754-2008 standard [6], floating point digits are 

represented as 

 

                        (1) 

 

where   is a sign bit,   is a mantissa value and   is an 

exponent. Depending on the precision format different 

numbers of bits are assigned to correspond to mantissa 

and to exponent. For single floating point precision 

(officially referred as binary32) and double floating point 

precision (binary64) standard dedicates 32 and 64 bits 

respectively. The exact number of bits for each part is 

presented in Table I. 

TABLE I.   
NUMBER OF BITS DEDICATED FOR DIFFERENT FORMAT 

REPRESENTATIONS. 

name sign exponent mantissa 

binary32 1 8 23 

binary64 1 11 52 

 

Due to a finite number of bits representing a digit, it 

might happen that there is no representation for a given 

real value. If this occurs, then the value will be rounded 

to the nearest possible value. This also means that for 

each precision format a value   exists, below which 

values will not change the result. The smallest positive 

value    which when added to one increases its value, i.e. 

   
                 (2) 

 

is called machine epsilon. For floating point with base   

and precision   the machine epsilon is represented with a 

formula 

              (3) 

 

Formats binary32 and binary64 have actually one bit 

more of precision than it is implied by their mantissa. 

This gives, according to IEEE 754-2008 standards [6], 

machine epsilon                       and     
                  respectively for single (binary32) 

and double (binary64) floating point precision. 

 

IV. EXPERIMENT 

Examples were generated and analysed in Python 

programming language. Numerical manipulations were 

performed using NumPy [7] scientific package. Source 

code of EMD implementation can be obtained from one 

of the authors' web-page [8]. 

It needs to be pointed out, that the interpolation 

techniques depend both on points' values and their 

positions. This means that the difference between two 

sets will be even greater if one compares values at 

different positions. When analysing signals, one is 

advised to scale independent variable appropriately, so 

that it has exact numerical representation. In binary 

floating point precision this means to assign a step value 

to be a multiple of power of 2 (    ). 

Please note, that conducted experiments are meant to 

show whether the difference between two floating points 

formats exists and what is the scale of difference. 

The authors do not intend to comment on the meaning of 

the decomposition as it has already been discussed 

elsewhere in the literature [9], [10], [11]. 

 

A. Example 1 

As a first experiment signal       was generated as a 

sum of cosines with different frequencies and phases, i.e.  

 

           ∑                   

 

   

  (4) 

 

where frequencies and phases are respectively fi = {6.1, 

9.4, 12.7, 16, 19.3} and    = {0, 1, 2, 3, 4}. Moreover, 

value   was assigned such that the             . This 

normalisation was performed for easier comparisons 

between results of presented examples. The particular set 

of frequencies and phases was chosen so that components 

are not harmonic of one another and their initial values 

are different. The signal was generated with time t in the 

range [0, 1] with sampling frequency of 1024 Hz and is 

visualised in Fig. 1. Its EMD decomposition is shown in 

Fig. 2, where solid line and dashed indicate DFP and SFP 

respectively. As it can be seen, two sets are visually 

ideally overlapping each other. In order to visualise the 

difference more clearly, the set obtained with SFP was 

projected onto DFP, since it has higher precision, and 

subtracted from the DFP set. The difference between 

corresponding IMFs is presented in Figure 3. The biggest 

difference is in order of      which, although almost two 

orders of magnitude bigger than the machine epsilon for 

SFP (sec III), is still five orders of magnitude smaller 

than the       signal. Thus, unless such small values are 

expected from analysis of the experiment, it can be 

considered as a negligible noise; they have no meaningful 

effect on the results. 

 

 

 
Fig. 1. Signal used in example 1. It is generated according to 

formula (4). 

 



 

 

 

 
 

B. Example 2 

For the second example we generated random data 

characterised Gaussian noise, i.e. 

 

           ̅          (5) 

 

with zero mean and standard deviation of 1. The 

generated signal, consisting of 1024 points, was then 

normalised so that the biggest amplitude value is one. 

Such signal is presented in Figure 4. Its EMD 

decomposition is shown in Figure 5 using solid line and 

dashed lines for DFP and SFP, respectively. Again, not 

much difference between two sets is visually noticeable. 

Additional plot (Fig. 6) was generated, where the 

difference for each individual IMF is highlighted. In this 

example the biggest range of the difference has the order 

of magnitude six. However, again, comparing to the input 

signal       it is six orders of magnitude smaller and can 

be considered as a noise.  

  

 

 
 

 
Fig. 2. EMD decomposition of signal from example 1 (Fig. 1). 
Decomposition for DFP and SFP are overlapped respectively with 

solid and dashed lines. 

 

 
 
Fig. 3. Difference between SFP and DFP sets of EMD 

decompositions from example 1. SFP were first projected onto double 

precision and then subtracted from EMD DFP set. 

 
Fig. 4. Generated signal used in example 2. It is made of 1000 

random points drawn from Gaussian distribution with mean 0 and 

standard deviation of 1. 

 

 
 

Fig. 5 EMD decomposition of signal from example 2 (Fig. 4). 
Decomposition for DFP and SFP are overlapped respectively with solid 

and dashed lines. 

 



 

 

 

C.  Example 3 

The final example is presented on a single channel of 

real EEG data. Recordings were obtained during resting 

state, i.e. when person was not involved in any physical, 

nor mental activity. For analysis, a four seconds segment 

of signal, sampled at rate of 128 Hz, were chosen 

randomly. Before the EMD decomposition was 

performed the signal was preprocessed, i.e. the mean 

value was removed and the amplitude was scaled, so that 

the highest amplitude is 1. Also, to decrease the error 

along time axis, values were scaled into range   

          with sampling frequency 256 Hz. Signal used 

for decomposition is presented in Fig 7. 

Set of IMF components obtained from EMD is shown 

in Fig. 8 using solid line and dashed lines for DFP and 

SFP, respectively. The difference between corresponding 

IMFs is displayed in Fig. 9. In this example, as it was also 

shown in the two previous, the difference is very small, 

when compared to the amplitude of input signal. Again, 

the range of difference has the order of magnitude -6 and 

it is similar for all comparisons.  

 

 

 

 
Fig. 6. Difference between SFP and DFP sets of EMD 

decompositions from example 2. SFP were first projected onto 

double precision and then subtracted from EMD DFP set. 

 

 
Fig. 9. Difference between SFP and DFP sets of EMD 
decompositions from example 3. SFP were first projected onto 

double precision and then subtracted from EMD DFP set. 

 
Fig. 7. EMD decomposition of EEG signal from example 3 

(Fig. 7). Decomposition for DFP and SFP are overlapped 
respectively with solid and dashed lines. 

 

 

 
Fig. 8. EEG data used in third example. Processing involve 

removing mean and scaling amplitude, so that the maximum 
deflection is 1. Time scale changed to span from -1 to 1 with 

sampling frequency 256 Hz. 

 



 

 

V. CONCLUSION 

As reported in section IV, there is a difference between 

decomposition obtained for different precision formats, 

namely single and double floating point precisions. These 

differences can be seen clearly in Figures 3, 6 and 9. It 

needs to be pointed out, that both absolute values and 

variance of error are small near t = 0 and increase when 

approaching |t| = 1. This is due to the fact that extrema 

positions are determined with parabolic interpolation, 

thus not necessarily falling onto the exact numerical 

representation grid. Such pronounced effect comes from 

the fact, that binary floating point representation has 

much bigger resolution close to zero and decreases with 

distance [12]. 

In summary, in all three experiments obtained 

differences are very small compared to the average 

amplitude of each component. Corresponding IMFs, 

produced in two different data formats, are visually 

indistinguishable. This means that using systems or 

devices, such as NVIDIA GPU [1], which perform faster 

on a single floating point compared to double floating 

point precision, one should be able to decrease 

computational time without a loss of meaningful content.  
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