

EMD performance comparison:

Single vs Double floating points

Dawid Laszuk, Oswaldo Cadenas, Slawomir J Nasuto
University of Reading, Reading, United Kingdom

Email: d.laszuk@pgr.reading.ac.uk, {o.cadenas, s.j.nasuto}@reading.ac.uk

Abstract—Empirical mode decomposition (EMD) is a data-

driven method used to decompose data into oscillatory

components. This paper examines to what extent the defined

algorithm for EMD might be susceptible to data format.

Two key issues with EMD are its stability and

computational speed. This paper shows that for a given

signal there is no significant difference between results

obtained with single (binary32) and double (binary64)

floating points precision. This implies that there is no

benefit in increasing floating point precision when

performing EMD on devices optimised for single floating

point format, such as graphical processing units (GPUs).

Index Terms—Empirical Mode Decomposition, Floating

Point Arithmetic, Intrinsic Mode Function, Performance

Test, Signal Decomposition1

I. INTRODUCTION

Nowadays, computers used for signal processing are so

powerful, that many researchers do not think about the

amount of data or its format. Most calculations may be

performed in very high precision format, like double

floating point (DFP) precision. This often is unnecessary,

but since it often has little impact on computational time,

it is kept for the sake of high precision. For some systems

changing format, into i.e. single floating point (SFP), can

greatly reduce the computation time. An example of such

a device is graphical processing units (GPUs), which are

reported to work several times faster using SFP precision

instead of DFP [1].

Empirical mode decomposition (EMD) [2] can be

computational intensive and not suitable for real-time

analysis [3]. Introduced over 15 years ago it is still under

constant exploration and development. Due to its

empirical nature, i.e. being described by an algorithm, the

method might to be very susceptible to data format. This

can be seen, for example, in discussion lead by Rilling et

al. in [4], where the smallest sampling frequency was

considered in order for EMD to work.

The aim of this paper is to show whether and how data

representation affects EMD. This is demonstrated on

three examples – a sum of harmonic functions and a

Gaussian noise. Section II introduces EMD algorithm,

section III describes floating point precisions, section IV

Manuscript received April 15, 2015; revised May 4, 2015; accepted

May 12, 2015.

provides numerical experiments with conclusions in

section V.

II. EMPIRICAL MODE DECOMPOSITION

Empirical mode decomposition (EMD) is a data-driven

method for decomposing signals into oscillatory

components called intrinsic mode functions (IMFs) [2].

The algorithm for EMD can be described as follows:

1) Identify all local extrema (both minima and

maxima) in a given time series s(t), that is the

points, at which the derivative is zero,

 .

2) If the number of extrema is less or equal than

two then s(t) is considered as a trend – a low

frequency modulation – and the algorithm stops

(trend r(t) = s(t)).

3) Use local maxima and local minima to compute

respectively upper () and lower ()

envelopes. Interpolations are performed using

natural cubic splines.

4) Calculate the instantaneous mean of the signal,

defined as an average of both envelopes,

 .

5) Remove computed mean from the input time

series, This step is

called sifting, because it subtracts the previous

trend from fast varying components.

6) If residue fulfils a given stopping criteria,

then it is considered to be an IMF (component

) and the procedure is repeated for modified

time series,

As a result, EMD decomposes signal into a set

of N oscillatory components (IMFs) and a trend

function, In the original paper, a stopping criterion

is defined as a moment, when standard deviation of two

consecutive iterations is below a predefined threshold.

Each obtained component has an oscillatory form

 where and are in

general functions of time. In order to classify a function

as an IMF, it needs to satisfy two conditions: 1) the

number of extrema must be even or differ at most by one

to the number of zero-crossings; 2) at any point, mean of

top and bottom envelopes must be zero.

For the purpose of this paper, as originally suggested,

EMD was used with natural cubic splines as an

envelope's interpolation method. Local extrema were

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/46521177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

considered to be vertices of parabolas interpolated on

potential extrema, as was suggested in [5]. As a stopping

criterion we have chosen moment, when potential

component fulfils IMF conditions for ten consecutive

sifting iterations.

III. DOUBLE VS SINGLE FLOATING POINT PRECISION

Floating point precision is related to the number of bits

used to represent a digit in a computer. According to

IEEE 754-2008 standard [6], floating point digits are

represented as

 (1)

where is a sign bit, is a mantissa value and is an

exponent. Depending on the precision format different

numbers of bits are assigned to correspond to mantissa

and to exponent. For single floating point precision

(officially referred as binary32) and double floating point

precision (binary64) standard dedicates 32 and 64 bits

respectively. The exact number of bits for each part is

presented in Table I.

TABLE I.
NUMBER OF BITS DEDICATED FOR DIFFERENT FORMAT

REPRESENTATIONS.

name sign exponent mantissa

binary32 1 8 23

binary64 1 11 52

Due to a finite number of bits representing a digit, it

might happen that there is no representation for a given

real value. If this occurs, then the value will be rounded

to the nearest possible value. This also means that for

each precision format a value exists, below which

values will not change the result. The smallest positive

value which when added to one increases its value, i.e.

 (2)

is called machine epsilon. For floating point with base

and precision the machine epsilon is represented with a

formula

 (3)

Formats binary32 and binary64 have actually one bit

more of precision than it is implied by their mantissa.

This gives, according to IEEE 754-2008 standards [6],

machine epsilon and
 respectively for single (binary32)

and double (binary64) floating point precision.

IV. EXPERIMENT

Examples were generated and analysed in Python

programming language. Numerical manipulations were

performed using NumPy [7] scientific package. Source

code of EMD implementation can be obtained from one

of the authors' web-page [8].

It needs to be pointed out, that the interpolation

techniques depend both on points' values and their

positions. This means that the difference between two

sets will be even greater if one compares values at

different positions. When analysing signals, one is

advised to scale independent variable appropriately, so

that it has exact numerical representation. In binary

floating point precision this means to assign a step value

to be a multiple of power of 2 ().

Please note, that conducted experiments are meant to

show whether the difference between two floating points

formats exists and what is the scale of difference.

The authors do not intend to comment on the meaning of

the decomposition as it has already been discussed

elsewhere in the literature [9], [10], [11].

A. Example 1

As a first experiment signal was generated as a

sum of cosines with different frequencies and phases, i.e.

 ∑

 (4)

where frequencies and phases are respectively fi = {6.1,

9.4, 12.7, 16, 19.3} and = {0, 1, 2, 3, 4}. Moreover,

value was assigned such that the . This

normalisation was performed for easier comparisons

between results of presented examples. The particular set

of frequencies and phases was chosen so that components

are not harmonic of one another and their initial values

are different. The signal was generated with time t in the

range [0, 1] with sampling frequency of 1024 Hz and is

visualised in Fig. 1. Its EMD decomposition is shown in

Fig. 2, where solid line and dashed indicate DFP and SFP

respectively. As it can be seen, two sets are visually

ideally overlapping each other. In order to visualise the

difference more clearly, the set obtained with SFP was

projected onto DFP, since it has higher precision, and

subtracted from the DFP set. The difference between

corresponding IMFs is presented in Figure 3. The biggest

difference is in order of which, although almost two

orders of magnitude bigger than the machine epsilon for

SFP (sec III), is still five orders of magnitude smaller

than the signal. Thus, unless such small values are

expected from analysis of the experiment, it can be

considered as a negligible noise; they have no meaningful

effect on the results.

Fig. 1. Signal used in example 1. It is generated according to

formula (4).

B. Example 2

For the second example we generated random data

characterised Gaussian noise, i.e.

 ̅ (5)

with zero mean and standard deviation of 1. The

generated signal, consisting of 1024 points, was then

normalised so that the biggest amplitude value is one.

Such signal is presented in Figure 4. Its EMD

decomposition is shown in Figure 5 using solid line and

dashed lines for DFP and SFP, respectively. Again, not

much difference between two sets is visually noticeable.

Additional plot (Fig. 6) was generated, where the

difference for each individual IMF is highlighted. In this

example the biggest range of the difference has the order

of magnitude six. However, again, comparing to the input

signal it is six orders of magnitude smaller and can

be considered as a noise.

Fig. 2. EMD decomposition of signal from example 1 (Fig. 1).
Decomposition for DFP and SFP are overlapped respectively with

solid and dashed lines.

Fig. 3. Difference between SFP and DFP sets of EMD

decompositions from example 1. SFP were first projected onto double

precision and then subtracted from EMD DFP set.

Fig. 4. Generated signal used in example 2. It is made of 1000

random points drawn from Gaussian distribution with mean 0 and

standard deviation of 1.

Fig. 5 EMD decomposition of signal from example 2 (Fig. 4).
Decomposition for DFP and SFP are overlapped respectively with solid

and dashed lines.

C. Example 3

The final example is presented on a single channel of

real EEG data. Recordings were obtained during resting

state, i.e. when person was not involved in any physical,

nor mental activity. For analysis, a four seconds segment

of signal, sampled at rate of 128 Hz, were chosen

randomly. Before the EMD decomposition was

performed the signal was preprocessed, i.e. the mean

value was removed and the amplitude was scaled, so that

the highest amplitude is 1. Also, to decrease the error

along time axis, values were scaled into range

 with sampling frequency 256 Hz. Signal used

for decomposition is presented in Fig 7.

Set of IMF components obtained from EMD is shown

in Fig. 8 using solid line and dashed lines for DFP and

SFP, respectively. The difference between corresponding

IMFs is displayed in Fig. 9. In this example, as it was also

shown in the two previous, the difference is very small,

when compared to the amplitude of input signal. Again,

the range of difference has the order of magnitude -6 and

it is similar for all comparisons.

Fig. 6. Difference between SFP and DFP sets of EMD

decompositions from example 2. SFP were first projected onto

double precision and then subtracted from EMD DFP set.

Fig. 9. Difference between SFP and DFP sets of EMD
decompositions from example 3. SFP were first projected onto

double precision and then subtracted from EMD DFP set.

Fig. 7. EMD decomposition of EEG signal from example 3

(Fig. 7). Decomposition for DFP and SFP are overlapped
respectively with solid and dashed lines.

Fig. 8. EEG data used in third example. Processing involve

removing mean and scaling amplitude, so that the maximum
deflection is 1. Time scale changed to span from -1 to 1 with

sampling frequency 256 Hz.

V. CONCLUSION

As reported in section IV, there is a difference between

decomposition obtained for different precision formats,

namely single and double floating point precisions. These

differences can be seen clearly in Figures 3, 6 and 9. It

needs to be pointed out, that both absolute values and

variance of error are small near t = 0 and increase when

approaching |t| = 1. This is due to the fact that extrema

positions are determined with parabolic interpolation,

thus not necessarily falling onto the exact numerical

representation grid. Such pronounced effect comes from

the fact, that binary floating point representation has

much bigger resolution close to zero and decreases with

distance [12].

In summary, in all three experiments obtained

differences are very small compared to the average

amplitude of each component. Corresponding IMFs,

produced in two different data formats, are visually

indistinguishable. This means that using systems or

devices, such as NVIDIA GPU [1], which perform faster

on a single floating point compared to double floating

point precision, one should be able to decrease

computational time without a loss of meaningful content.

REFERENCES

[1] NVIDIA, NVIDIA CUDA Toolkit Release Notes, 2015 (accessed
April 1, 2015). [Online]. Available: http://docs.nvidia.com/cuda.

[2] N. E. Huang et al., “The empirical mode decomposition and the

Hilbert spectrum for nonlinear and non-stationary time series
analysis,” Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences, vol. 454, no. 1971, pp. 903–

995, Mar. 1998.

[3] N. E. Huang and Z. Wu, “A review on Hilbert-Huang transform:

Method and its applications to geophysical studies,” Reviews of

Geophysics, vol. 46, no. 2, p. RG2006, Jun. 2008.
[4] G. Rilling and P. Flandrin, “On the Influence of Sampling on the

Empirical Mode Decomposition”, 2006 IEEE International

Conference on Acoustics Speech and Signal Processing
Proceedings.

[5] R. Rato, M. Ortigueira, and A. Batista, “On the HHT, its

problems, and some solutions,” Mechanical Systems and Signal
Processing, vol. 22, no. 6, pp. 1374–1394, Aug. 2008.

[6] IEEE, “IEEE Standard for Floating-Point Arithmetic,” pp. 1–70,

2008.
[7] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source

scientific tools for Python,” 2001–. [Online]. Available:

http://www.scipy.org/
[8] D. Laszuk, “Python implemention of Empirical Mode

Decomposition algorithm,” 2014–. [Online]. Available:

http://www.laszukdawid.com/codes
[9] K. Coughlin and K. Tung, “11-Year solar cycle in the stratosphere

extracted by the empirical mode decomposition method,”

Advances in Space Research, vol. 34, no. 2, pp. 323–329, Jan.
2004.

[10] P. Flandrin and P. Gonc¸alv´es, “Empirical mode decompositions

as data-driven wavelet-like expansions,” International Journal of
Wavelets Multiresolution and Information Processing, vol. 2, no.

4, pp. 1–20, 2004.
[11] N. Tsakalozos, K. Drakakis, and S. Rickard, “A formal study of

the nonlinearity and consistency of the Empirical Mode

Decomposition,”Signal Processing, vol. 92, no. 9, pp. 1961–1969,
Sep. 2012.

[12] D. Goldberg, “What every computer scientist should know about

floating point arithmetic,” ACM Computing Surveys, vol. 23, no.
1, pp. 5–48, 1991.

