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Abstract

Hilbert’s and Thompson’s metric spaces on the interior of cones in JB-algebras are important
examples of symmetric Banach-Finsler spaces. In this paper we characterize the Hilbert’s
metric isometries on the interiors of cones in JBW-algebras, and the Thompson’s metric
isometries on the interiors of cones in JB-algebras. These characterizations generalize work
by Bosché on the Hilbert’s and Thompson’s metric isometries on symmetric cones, and work
by Hatori and Molnár on the Thompson’s metric isometries on the cone of positive self-
adjoint elements in a unital C∗-algebra. To obtain the results we develop a variety of new
geometric and Jordan algebraic techniques.

Keywords Hilbert’s metric · Thompson’s metric · Order unit spaces · JB-algebras ·
Isometries · Symmetric Banach–Finsler manifolds

Mathematics Subject Classification Primary 58B20; Secondary 32M15

1 Introduction

On the interior A◦
+ of the cone in an order unit space A there exist two important metrics:

Hilbert’s metric and Thompson’s metric. Hilbert’s metric goes back to Hilbert [20], who
defined a metric δH on an open bounded convex set � in a finite dimensional real vector
space V by
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δH (a, b) := log

(

‖a′ − b‖
‖a′ − a‖

‖b′ − a‖
‖b′ − b‖

)

,

where a′ and b′ are the points of intersection of the line through a and b and ∂� such that a is
between a′ and b, and b is between b′ and a. The Hilbert’s metric spaces (�, δH ) are Finsler
manifolds that generalize Klein’s model of the real hyperbolic space. They play a role in the
solution of Hilbert’s Fourth problem [2], and possess features of nonpositive curvature [4,23].
In recent years there has been increased interest in the geometry of Hilbert’s metric spaces,
see [18] for an overview. In this paper we shall work with a slightly more general version
of Hilbert’s metric, which is a metric between pairs of the rays in the interior of the cone. It
is defined in terms of the partial ordering of the cone and was introduced by Birkhoff [5].
It has found numerous applications in the spectral theory of linear and nonlinear operators,
ergodic theory, and fractal analysis, see [26,27,33,36,41–43] and the references therein.

Thompson’s metric was introduced by Thompson in [47], and is also a useful tool in
the spectral theory of operators on cones. If the order unit space is complete, the resulting
Thompson’s metric space is a prime example of a Banach-Finsler manifold. Moreover, if the
order unit space is a JB-algebra (which is a simultaneous generalization of both a Euclidean
Jordan algebra as well as the selfadjoint elements of a C∗-algebra), then the Banach-Finsler
manifold is symmetric and possesses certain features of nonpositive curvature [3,10,11,24,
25,32,40,42,48]. This is one of the main reasons why Thompson’s metric is of interest in the
study of the geometry of spaces of positive operators.

It appears that understanding the isometries of Hilbert’s and Thompson’s metrics on the
interiors of cones in order unit spaces is closely linked with the theory of JB-algebras.
Evidence for this link was provided by Walsh [49], who showed, among other things, that
for finite dimensional order unit spaces A, the Hilbert’s metric isometry group on A◦

+ is not
equal to the group of projectivities of A◦

+ if and only if A is a Euclidean Jordan algebra whose
cone is not Lorentzian [49, Corollary 1.4]. Moreover, in that case, the group of projectivities
has index 2 in the isometry group, and the additional isometries are obtained by adjoining
the map induced by a ∈ A◦

+ �→ a−1 ∈ A◦
+. At present it is unknown if this result has an

infinite dimensional extension.
The main objective of this paper is to characterize the Hilbert’s metric isometries on

the interiors of cones in JBW-algebras (a subclass of JB-algebras that includes both the
selfadjoint elements of von Neumann algebras as well as Euclidean Jordan algebras), and
the Thompson’s metric isometries on the interiors of cones in JB-algebras. Unfortunately
our methods do not give a characterization of the Hilbert’s metric isometries for general JB-
algebras, as we require the existence of sufficiently many projections. Our results generalize
and complement and number of earlier works. Firstly, the isometries for Thompson’s metric
and Hilbert’s metric between the positive cones of the bounded operators on a Hilbert space
of dimension at least three were characterized by Molnár in [37]. He exploited the geometric
mean to show that these isometries preserve commutativity and applied the characterization
of such maps. In [19], Hatori and Molnár described the isometries for Thompson’s metric
between the positive cones of C*-algebras by showing that these isometries yield linear
isometries on the whole space. As we shall see in Theorem 2.17 the Hilbert’s metric isometries
on cones in JB-algebras induce variation norm preserving isometries on the whole JB-algebra.
For von Neumann algebras without a type I2 summand the variation norm isometries were
characterized by Molnár in [38]. His result was extended to JBW-algebras without a type
I2 summand by Hamhalter in [16]. Finally we should mention the work by Bosché [6],
who characterized the isometries for Thompson’s metric and Hilbert’s metric on cones in
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Euclidean Jordan algebras by making essential use of the fact that the symmetric cones are
finite dimensional.

Our approach is to show that Hilbert’s metric and Thompson’s metric isometries mapping
the identity to the identity induce bijective linear norm isometries; the Thompson’s metric
isometries yield norm isometries of the JB-algebra, whereas the Hilbert’s metric isometries
induce isometries on the quotient of the JB-algebra by the span of the unit, equipped with the
variation norm, see Theorem 2.17. This extends results in [6,19]. By using a characterization
of bijective linear norm isometries of JB-algebras due to Isidro and Rodríguez-Palacios [21]
we then characterize the Thompson’s metric isometries of JB-algebras, extending results of
[6,19]. As for Hilbert’s metric, the variation norm isometries induced by Hilbert’s metric
isometries can be viewed as linear maps preserving the maximal deviation, the quantum
analogue of the maximal standard deviation, see [16,38,39]. These have been character-
ized for JBW-algebras without a type I2 summand as mentioned above. We exploit the fact
that the variation norm isometry is induced by a Hilbert’s metric isometry to obtain the
desired characterization without any restriction on the JBW-algebras. This characterization
also complements our earlier work [29], in which we considered the order unit space C(K )

consisting of all continuous functions on a compact Hausdorff space K . In the same paper
we showed that the group of Hilbert’s metric isometries is equal to the group of projectivities
if the Hilbert’s metric is uniquely geodesic. Other works on Hilbert’s metric isometries and
Thompson’s metric isometries on finite dimensional cones include [12,30,35,44].

The structure of the paper is as follows.
Section 2 is our preliminary section. We first introduce Hilbert’s metric and Thompson’s

metric and JB(W)-algebras. We then investigate some properties that will prove to be very use-
ful in characterizing the isometries for both metrics. In particular, we characterize when there
exist unique geodesics for Hilbert’s metric and Thompson’s metric between two elements of
a JB-algebra, and we study the interplay between geometric means and the isometries for
both metrics. Our findings also generalize earlier work done on Euclidean Jordan algebras
and C∗-algebras. These investigations then result in the crucial Theorem 2.17 mentioned
above.

In Sect. 3 we characterize the isometries for Thompson’s metric, and we exploit this result
to describe the corresponding isometry group of a direct product of simple JB-algebras in
terms of the automorphism groups of the components.

Finally, we consider Hilbert’s metric isometries in Sect. 4. Since the extreme points of the
unit ball in the quotient coincide with the equivalence classes of nontrivial projections, every
Hilbert’s metric isometry induces a bijection on the projections. At this point we restrict
to JBW-algebras as they contain a lot of projections in contrast to JB-algebras. By using
geometric properties of Hilbert’s metric as well as operator algebraic methods, we obtain
that the above bijection on the projections is actually a projection orthoisomorphism: two
projections are orthogonal if and only if their images are orthogonal. Dye’s classical theorem
[13] shows that every projection orthoisomorphism between von Neumann algebras without
a type I2 summand extends to a Jordan isomorphism on the whole algebra. This was extended
by Bunce and Wright [7] to JBW-algebras, and we use this result to extend our projection
orthoisomorphism defined outside the type I2 summand to a Jordan isomorphism. It remains
to take care of the type I2 summand, which we are able to do using a characterization of type
I2 JBW-algebras due to Stacey [45] and the explicit fact that our projection orthoisomorphism
comes from a linear map on the quotient. Thus we are able to extends the whole projection
orthoisomorphism to a Jordan isomorphism, which then easily yields the main result of our
paper, Theorem 4.21, which we repeat below for the reader’s convenience. The set M

◦
+

denotes the set of rays in M◦
+, and Ub denotes the quadratic representation of b.
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Theorem 1.1 If M and N are JBW-algebras, then f : M
◦
+ → N

◦
+ is a bijective Hilbert’s

metric isometry if and only if

f (a) = Ub J (aε) for all a ∈ M
◦
+,

where ε ∈ {−1, 1}, b ∈ N ◦
+, and J : M → N is a Jordan isomorphism. In this case

b ∈ f (e)
1
2 .

Note that Theorem 1.1 follows from [16, Theorem 1.1] if M is a JBW-algebra without a
type I2 summand, since the Hilbert’s metric isometry induces a variation norm isometry by
Theorem 2.17.

We claim that this result extends Molnar’s theorem [37, Theorem 2], reformulated below
using our notation.

Theorem 1.2 (Molnar) Let H be a complex Hilbert space with dim(H) ≥ 3 and let

f : B(H)◦+ → B(H)◦+ be a bijective Hilbert’s metric isometry. Then there is an invert-

ible bounded linear or conjugate linear operator z : H → H and an ε ∈ {±1} such that

f (a) = zaεz∗.

Indeed, [21, Theorem 2.2] states that all Jordan isomorphisms J of B(H) are of the form
Ja = uau∗, where u is a unitary or anti-unitary (i.e., conjugate linear unitary) operator.
Hence

Ub J (aε) = buaεu∗b = (bu)aε(bu)∗.

It remains to show that any invertible (conjugate) linear operator z ∈ B(H) can be written
as bu, with a positive b and (anti-)unitary u. For linear operators this is just the polar decom-
position, and by considering a conjugate linear operator to be a linear operator from H to its
conjugate Hilbert space, we obtain the same decomposition for conjugate linear operators.

In view of [49, Corollary 1.4] mentioned above we make the following contribution in
Proposition 4.23, where we show that the isometry group for Hilbert’s metric on JBW-algebras
is not equal to the group of projectivities if and only if the cone is not a Lorentz cone.

2 Preliminaries

In this section we collect some basic definitions and recall several useful facts concerning
Hilbert’s and Thompson’s metrics and cones in JB-algebras.

2.1 Order unit spaces

Let A be a partially ordered real vector space with cone A+. So, A+ is convex, λA+ ⊆ A+
for all λ ≥ 0, A+ ∩ −A+ = {0}, and the partial ordering ≤ on A is given by a ≤ b if
b − a ∈ A+. Suppose that there exists an order unit u ∈ A+, i.e., for each a ∈ A there exists
λ > 0 such that −λu ≤ a ≤ λu. Furthermore assume that A is Archimedean, that is to say,
if na ≤ u for all n = 1, 2, . . ., then a ≤ 0. In that case A can be equipped with the order

unit norm,

‖a‖u := inf{λ > 0 : − λu ≤ a ≤ λu},

and (A, ‖·‖u) is called an order unit space, see [17]. It is not hard to show, see for example [29],
that A+ has nonempty interior A◦

+ in (A, ‖ · ‖u) and A◦
+ = {a ∈ A : a is an order unit of A}.
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On A◦
+ Hilbert’s metric and Thompson’s metric are defined as follows. For a, b ∈ A◦

+ let

M(a/b) := inf{β > 0 : a ≤ βb}.

Note that as b ∈ A◦
+ is an order unit, M(a/b) < ∞. On A◦

+, Hilbert’s metric is given by

dH (a, b) = log M(a/b)M(b/a), (2.1)

and Thompson’s metric is defined by

dT (a, b) = log max{M(a/b), M(b/a)}. (2.2)

It is well known (cf. [26,41]) that dT is a metric on A◦
+, but dH is not, as dH (λa, μb) =

dH (a, b) for all λ,μ > 0 and a, b ∈ A◦
+. However, dH (a, b) = 0 for a, b ∈ A◦

+ if and only
if a = λb for some λ > 0, so that dH is a metric on the set of rays in A◦

+, which we shall
denote by A

◦
+. Elements of A

◦
+ will be denoted by a, and if � ⊆ A◦

+ the set of rays through
� will be denoted by �.

2.2 JB-algebras

A Jordan algebra (A, ◦) is a commutative, not necessarily associative algebra such that

a ◦ (b ◦ a2) = (a ◦ b) ◦ a2 for all a, b ∈ A.

A JB-algebra A is a normed, complete real Jordan algebra satisfying,

‖a ◦ b‖ ≤ ‖a‖ ‖b‖ ,
∥

∥a2
∥

∥ = ‖a‖2 ,
∥

∥a2
∥

∥ ≤
∥

∥a2 + b2
∥

∥

for all a, b ∈ A. An important example of a JB-algebra is the set of self-adjoint elements of
a C∗-algebra A, equipped with the Jordan product a ◦ b := (ab + ba)/2. By the Gelfand-
Naimark theorem, this JB-algebra is a norm closed Jordan subalgebra of the self-adjoint
bounded operators on a Hilbert space; such an algebra is called a JC-algebra. By [17, Corol-
lary 3.1.7], Euclidean Jordan algebras are another example of JB-algebras. We can think of
JB-algebras as a simultaneous generalization of both the self-adjoint elements of C∗-algebras
as well as Euclidean Jordan algebras.

Throughout the paper, we will assume that all JB-algebras are unital with unit e.
The set of invertible elements of A is denoted by Inv(A). The spectrum of a ∈ A, σ(a),

is defined to be the set of λ ∈ R such that a − λe is not invertible in JB(a, e), the JB-algebra
generated by a and e [17, 3.2.3]. There is a continuous functional calculus: JB(a, e) ∼=
C(σ (a)). Both the spectrum and the functional calculus coincide with the usual notions in
both Euclidean Jordan algebras as well as JC-algebras.

The elements a, b ∈ A are said to operator commute if a ◦ (b ◦ c) = b ◦ (a ◦ c) for all
c ∈ A. In a JC-algebra, two elements operator commute if and only if they commute in the
C∗-multiplication [1, Proposition 1.49]. In the sequel we shall write the Jordan product of two
operator commuting elements a, b ∈ A as ab instead of a ◦ b. The center of A consists of all
elements that operator commute with all elements of A, and it is an associative JB-subalgebra
of A. Every associative JB-algebra is isomorphic to C(K ) for some compact Hausdorff space
K [17, Theorem 3.2.2].

The cone of elements with nonnegative spectrum is denoted by A+, and equals the set of
squares by the functional calculus, and its interior A◦

+ consists of all elements with strictly
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positive spectrum, or equivalently, all elements in A+ ∩ Inv(A). This cone turns A into an
order unit space with order unit e, i.e.,

‖a‖ = inf{λ > 0 : −λe ≤ a ≤ λe}.

Note that the JB-norm is not the same as the usual norm in a Euclidean Jordan algebra.
The Jordan triple product {·, ·, ·} is defined as

{a, b, c} := (a ◦ b) ◦ c + (c ◦ b) ◦ a − (a ◦ c) ◦ b,

for a, b, c ∈ A. In a JC-algebra one easily verifies that {a, b, c} = (abc+cba)/2. For a ∈ A,
the linear map Ua : A → A defined by Uab := {a, b, a} will play an important role and is
called the quadratic representation of a.

By the Shirshov-Cohn theorem for JB-algebras [17, Theorem 7.2.5], the unital JB-algebra
generated by two elements is a JC-algebra, which shows all but the fifth of the following
identities for JB-algebras, since Uab = aba in JC-algebras. (For the rest of the paper, the
operator-algebraic reader is encouraged to think of this equality whenever the quadratic
representation appears.)

(Uab)2 = UaUba2 ∀a, b ∈ A.

Uab ∈ A+ ∀a ∈ A,∀b ∈ A+.

U−1
a = Ua−1 ∀a ∈ Inv(A).

(Uab)−1 = Ua−1 b−1 ∀a, b ∈ Inv(A).

UUab = UaUbUa ∀a, b ∈ A.

Uae = a2 ∀a ∈ A.

Uaλaμ = a2λ+μ ∀a ∈ A,∀λ,μ ∈ R.

(2.3)

A proof of the fifth identity can be found in [17, 2.4.18], as well as proofs of the other
identities.

We define aα := aα for α ∈ R. For a ∈ inv(A), the quadratic representation Ua is an
order isomorphism, and induces a well defined map Ua on A

◦
+ by

Ua(b) := Ua(b) for all b ∈ A
◦
+.

When studying Hilbert’s metric on A
◦
+ in JB-algebras, the variation seminorm ‖·‖v on A

given by,

‖a‖v := diam σ(a) = max σ(a) − min σ(a),

will play an important role. The kernel of this seminorm is the span of e, and on the quotient
space [A] := A/ Span(e) it is a norm. To see this we show that if ‖ · ‖q is the quotient
norm of 2‖ · ‖ on [A], then ‖[a]‖q = ‖[a]‖v for all [a] ∈ [A]. Indeed, for [a] ∈ [A], using
infλ∈R max{t − λ, s + λ} = (t + s)/2, we have that
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‖[a]‖q := 2 inf
μ∈R

‖a − μe‖

= 2 inf
μ∈R

max
λ∈σ(a)

|λ − μ|

= 2 inf
μ∈R

max
{

maxλ∈σ(a)(λ − μ), maxλ∈σ(a)(−λ + μ)
}

= max σ(a) + max −σ(a) = max σ(a) − min σ(a)

= ‖[a]‖v .

Note that the map Log : A◦
+ → A given by a �→ log(a) is a bijection, whose inverse Exp

is given by a �→ exp(a). Furthermore, as log(λa) = log(a) + log(λ)e for all a ∈ A◦
+ and

λ > 0, the map Log induces a bijection from A
◦
+ onto [A] given by log a = [log a]. Its

inverse Exp : [A] → A
◦
+ is given by exp([a]) = exp(a) for [a] ∈ [A].

A JBW-algebra is the Jordan analogue of a von Neumann algebra: it is a JB-algebra which
is monotone complete and has a separating set of normal states, or equivalently, a JB-algebra
that is a dual space. In JBW-algebras the spectral theorem holds, which implies in particular
that the linear span of projections is norm dense. If p is a projection, then the complement
e− p will be denoted by p⊥. Every JBW-algebra decomposes into a direct sum of a type I, II,
and III JBW-algebras. A JBW-algebra with trivial center is called a factor. Every Euclidean
Jordan algebra is a JBW-algebra, and a Euclidean Jordan algebra is simple if and only if it is
a factor.

2.3 Order isomorphisms

An important result we use is [21, Theorem 1.4], which we state here for the convenience of
the reader. A symmetry is an element s satisfying s2 = e. Note that s is a symmetry if and
only if p := (s + e)/2 is a projection, and s = p − p⊥.

Theorem 2.1 (Isidro, Rodríguez-Palacios) The bijective linear isometries from A onto B are

the mappings of the form a �→ s Ja, where s is a central symmetry in B and J : A → B a

Jordan isomorphism.

This theorem uses the fact that a bijective unital linear isometry between JB-algebras
is a Jordan isomorphism, which is [50, Theorem 4]. We use this simpler statement in the
following corollary.

Corollary 2.2 Let A and B be order unit spaces, and T : A → B be a unital linear bijection.

Then T is an isometry if and only if T is an order isomorphism. Moreover, if A and B are

JB-algebras, then these statements are equivalent to T being a Jordan isomorphism.

Proof Suppose T is an isometry, and let a ∈ A+, ‖a‖ ≤ 1. Then ‖e − a‖ ≤ 1, and so
‖e − T a‖ ≤ 1, showing that T a is positive. So T is a positive map, and by the same
argument T −1 is a positive map. (This argument is taken from the first part of [50, Theorem
4].)

Conversely, if T is an order isomorphism, then −λe ≤ a ≤ λe if and only if −λe ≤ T a ≤
λe, and so T is an isometry.

Now suppose that A and B are JB-algebras. If T is an isometry, then T is a Jordan
isomorphism by [50, Theorem 4]. Conversely, if T is a Jordan isomorphism, then T preserves
the spectrum, and then also the norm since ‖a‖ = max |σ(a)|. ⊓⊔

This corollary will be used to show the following proposition. For Euclidean Jordan
algebras this proposition has been proved in [14, Theorem III.5.1].
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Proposition 2.3 A map T : A → B is an order isomorphism if and only if T is of the form

T = Ub J , where b ∈ B◦
+ and J is a Jordan isomorphism. Moreover, this decomposition is

unique and b = (T e)
1
2 .

Proof If T is of the above form, then T is an order isomorphism as a composition of two
order isomorphisms. Conversely, if T is an order isomorphism, then T = U

(T e)
1
2

U
(T e)

− 1
2

T ,

and by the above corollary U
(T e)

− 1
2

T is a Jordan isomorphism.

For the uniqueness, if T = Ub J , then T e = Ub Je = Ube = b2 which forces b = (T e)
1
2 .

This implies that J = U
(T e)

− 1
2

T , so J is also unique. ⊓⊔

2.4 Hilbert’s and Thompson’s metrics on cones in JB-algebras

Suppose A is a JB-algebra. For c ∈ A◦
+, the map Uc is an order isomorphism of A, and hence

it preserves M(a/b). Thus, Uc is an isometry under dH and dT . This can be used to derive
the following expressions for dH and dT on cones in JB-algebras.

Proposition 2.4 If A is a JB-algebra and a, b ∈ A◦
+, then

dH (a, b) =
∥

∥

∥
log U

b
− 1

2
a

∥

∥

∥

v
and dT (a, b) =

∥

∥

∥
log U

b
− 1

2
a

∥

∥

∥
.

Proof Since Uc is an order isomorphism of A for c ∈ A◦
+,

inf{λ > 0 : a ≤ λb} = inf
{

λ > 0 : U
b
− 1

2
a ≤ λe

}

= max σ
(

U
b
− 1

2
a
)

,

and hence log M(a/b) = log max σ(U
b
− 1

2
a) = max σ(log U

b
− 1

2
a).

Similarly,

inf{λ > 0 : b ≤ λa} = (sup{μ > 0 : μb ≤ a})−1 =
(

sup
{

μ > 0 : μe ≤ U
b
− 1

2
a
})−1

=
(

min σ
(

U
b
− 1

2
a
))−1

gives log M(b/a) = log(min σ(U
b
− 1

2
a))−1 = − min σ(log U

b
− 1

2
a).

The formula for dH follows immediately. As ‖c‖ = max{max σ(c),− min σ(c)} for
c ∈ A, the identity for dT holds. ⊓⊔

Also note that the inverse map on A◦
+ satisfies M(b−1/a−1) = M(a/b), so this is an

isometry for both metrics as well. Indeed, using (2.3) we see that

M(b−1/a−1) = inf{λ > 0 : b−1 ≤ λa−1}
= inf{λ > 0 : e ≤ λU

b
1
2

a−1}

= inf{λ > 0 : e ≤ λ(U
b
− 1

2
a)−1}

= inf{λ > 0 : U
(U

b
− 1

2
a)

1
2

e ≤ λe}

= inf{λ > 0 : U
b
− 1

2
a ≤ λe}

= M(a/b).
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Given a JB-algebra A we follow Bosché [6, Proposition 2.6] and Hatori and Molnár [19,
Theorem 9], and introduce for n ≥ 1 metrics on [A] and A, respectively, by

d H
n ([a], [b]) := ndH (exp([a]/n), exp([b]/n)) and dT

n (a, b) := ndT (exp(a/n), exp(b/n))

for all a, b ∈ A. Note that d H
n is well defined, because if a1, a2 ∈ [a], then exp(a1/n) =

λ exp(a2/n) for some λ > 0.

Proposition 2.5 If A is a JB-algebra and a, b ∈ A, then

lim
n→∞

d H
n ([a], [b]) = ‖[a] − [b]‖v and lim

n→∞
dT

n (a, b) = ‖a − b‖ .

Proof We start with some preparations. The JB-algebra generated by a, b and e is special,
so we can think of U

exp(b/n)
− 1

2
exp(a/n) as exp(−b/2n) exp(a/n) exp(−b/2n) for some

C∗-algebra multiplication. Writing out the exponentials in power series yields

U
exp(b/n)

− 1
2

exp(a/n) = e + (a − b)/n + o(1/n).

Furthermore, using the power series representation,

log(e + c) =
∞
∑

k=1

(−1)k+1ck

k
,

which is valid for ‖c‖ < 1, we obtain for sufficiently large n that

log

(

U
exp(b/n)

− 1
2

exp(a/n)

)

= (a − b)/n + o(1/n).

So, for all sufficiently large n we have by Proposition 2.4 that
∣

∣

∣
d H

n ([a], [b]) − ‖[a] − [b]‖v

∣

∣

∣
= |ndH (exp(a/n), exp(b/n)) − ‖a − b‖v|

=
∣

∣

∣

∣

n

∥

∥

∥

∥

log

(

U
exp(b/n)

− 1
2

exp(a/n)

)
∥

∥

∥

∥

v

− ‖a − b‖v

∣

∣

∣

∣

= |‖a − b + no(1/n)‖v − ‖a − b‖v|
≤ n‖o(1/n)‖v

≤ 2n‖o(1/n)‖.

As the right hand side converges to 0 for n → ∞, the first limit holds. The second limit can
be derived in the same way. ⊓⊔

We will also need some basic facts concerning the unique geodesics for dT and dH . Recall
that for a metric space (M, d) a map γ : I → M , where I is a possibly unbounded interval in
R, is a geodesic path if there is a k ≥ 0 such that d(γ (s), γ (t)) = k|s − t | for all s, t ∈ I . The
image of a geodesic path is called a geodesic. The following result generalizes [28, Theorems
5.1 and 6.2].

Theorem 2.6 If A is a JB-algebra and a, b ∈ A◦
+ are linearly independent, then there exists

a unique Thompson geodesic between a and b if and only if σ(U
a

− 1
2

b) = {β−1, β} for some

β > 1.
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Proof As the map U
a

− 1
2

is a Thompson’s metric isometry, we may assume without loss

of generality that a = e. First suppose that σ(b) = {β−1, β} for some β > 1, then b =
β−1 p +β p⊥ and the line through b and e intersects ∂ A+ in λp and μp⊥ for some λ,μ > 0.
We wish to apply [28, Theorem 4.3].

Consider the Peirce decomposition A = A1 ⊕ A1/2 ⊕ A0 (cf. [17, 2.6.2]) with respect to
p. We denote the projection onto Ai by Pi , for i = 1, 1/2, 0. Then P1 = Up and P0 = Up⊥ .
From [1, Proposition 1.3.8] we know that if a ∈ A+, then Upa = a if and only if Up⊥a = 0.
Using this result we now prove the following claim.

Claim. Let v ∈ A. If α, δ > 0 and p ∈ A is a projection such that α p + tv ∈ A+ for all
|t | < δ, then v ∈ A1.

To show the claim, note that 0 ≤ Up⊥(α p+tv) = tUp⊥v for all |t | < δ, so that Up⊥v = 0,
and consequently Up⊥(α p + tv) = tUp⊥v = 0 for all |t | < δ. Let 0 < |t | < δ be arbitrary.
It follows that α p + tv = Up(α p + tv) = α p + tUpv and so v = Upv = P1v, i.e., v ∈ A1.

By applying the claim to λp as well as μp⊥, it follows that if v ∈ A is such that λp + tv ∈
A+ and μp⊥ + tv ∈ A+ for all |t | < δ, then v ∈ A1 ∩ A0 = {0}. Hence, by [28, Theorem
4.3], there is a unique geodesic between b and e.

Conversely, suppose that there is a unique geodesic between b and e. Then this is also a
unique geodesic in JB(b, e) ∼= C(σ (b)). For f , g ∈ C(σ (b)) we have by Proposition 2.4
that

dT ( f , g) =
∥

∥

∥

∥

log U
g

− 1
2

f

∥

∥

∥

∥

= sup
k∈σ(b)

∣

∣

∣

∣

log
f (k)

g(k)

∣

∣

∣

∣

= sup
k∈σ(b)

| log f (k) − log g(k)|

= ‖log f − log g‖ .

So, the pointwise logarithm is an isometry from (C(σ (b)◦+), dT ) onto (C(σ (b)), ‖·‖∞),
which sends e to the zero function and b to the function k �→ log k.

Note that for f ∈ C(σ (b)) the images of both t �→ (t‖ f ‖ ∧ | f |)sgn f and t �→ t f are
geodesics connecting 0 and f , which are different if and only if there is a point k ∈ σ(b)

such that | f (k)| �= ‖ f ‖. Hence k �→ | log(k)| is constant. So, if α, β ∈ σ(b), then | log β| =
| log α|, and hence α = β or α = β−1. This shows that σ(b) ⊆ {β−1, β}, and since b and e

are linearly independent we must have equality. ⊓⊔

From Theorem 2.6 we can derive in the same way as in [28, Theorem 5.2] the following
characterization for Hilbert’s metric.

Theorem 2.7 If A is a JB-algebra and a, b ∈ A◦
+ are linearly independent, then there exists

a unique geodesic between a and b in (A
◦
+, dH ) if and only if σ(U

a
− 1

2
b) = {α, β} for some

β > α > 0.

Recall that the straight line segment {(1 − t)a + tb : 0 ≤ t ≤ 1} is a geodesic in (A
◦
+, dH )

for all a, b ∈ A◦
+.

The following special geodesic paths play an important role.

Definition 2.8 For a, b ∈ A◦
+, define the path γ b

a : [0, 1] → A◦
+ by

γ b
a (t) := U

a
1
2

(

U
a

− 1
2

b
)t

.

Note that γ b
a (0) = U

a
1
2

e = a and γ b
a (1) = U

a
1
2

U
a

− 1
2

b = b. Also note that for λ,μ > 0

and a, b ∈ A◦
+,

γ
μb
λa (t) = γ b

a (t) for all t ∈ [0, 1].
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Thus, we can define for a, b ∈ A
◦
+ a path in A

◦
+ by γ b

a (t) := γ b
a (t) for all t ∈ [0, 1].

We will verify that γ b
a is a geodesic path connecting a and b in (A◦

+, dT ). The argument

to show that γ b
a is a geodesic in (A

◦
+, dH ) is similar and is left to the reader. Using the fact

that Ucλcμ = c2λ+μ in the fourth step, we get that

dT (γ b
a (s), γ b

a (t)) = dT

(

U
a

1
2

(

U
a

− 1
2

b
)s

, U
a

1
2

(

U
a

− 1
2

b
)t
)

= dT

(

(

U
a

− 1
2

b
)s

,
(

U
a

− 1
2

b
)t
)

=

∥

∥

∥

∥

∥

∥

∥

log U(

U
a
− 1

2
b

)− t
2

(

U
a

− 1
2

b
)s

∥

∥

∥

∥

∥

∥

∥

=
∥

∥

∥

∥

log
(

U
a

− 1
2

b
)s−t

∥

∥

∥

∥

= |s − t |
∥

∥

∥
log U

a
− 1

2
b

∥

∥

∥

= |s − t |dT (a, b)

for all s, t ∈ [0, 1].

2.5 Geometric means in JB-algebras

The cone A◦
+ in a JB-algebra is a symmetric space, see Lawson and Lim [25] and Loos [34].

Indeed, for c ∈ A◦
+ one can define maps Sc : A◦

+ → A◦
+ by

Sc(a) := Uca−1 for a ∈ A◦
+.

Clearly Sc(c) = c, and S2
c (a) = Uc(Uca−1)−1 = Uc(Uc−1 a) = a for all a ∈ A◦

+. Moreover,
by the fifth equation in (2.3) we see that

SSc(b)(Sc(a)) = UUcb−1(Uca−1)−1 = UcUb−1Uc(Uc−1 a) = Uc(Uba−1)−1) = Sc(Sb(a))

for all a ∈ A◦
+. The map Sc is called the symmetry around c, see [34].

The equation Sc(a) = b has a unique solution in A◦
+, namely γ b

a (1/2). Indeed, using
(2.3) and taking the unique positive square root in the third step, we obtain the following
equivalent identities:

Uca−1 = b ⇐⇒ U
a

− 1
2

Uca−1 = U
a

− 1
2

b

⇐⇒
(

U
a

− 1
2

c
)2

= U
a

− 1
2

b

⇐⇒ U
a

− 1
2

c =
(

U
a

− 1
2

b
)

1
2

⇐⇒ c = U
a

1
2

(

U
a

− 1
2

b
)

1
2
.

Definition 2.9 For a, b ∈ A◦
+ the unique solution of the equation Sc(a) = b is called the

geometric mean of a and b. It is denoted by a#b, so

a#b := U
a

1
2

(

U
a

− 1
2

b
)

1
2 ∈ A◦

+.
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We remark that the equation Sc(b) = Ucb−1 = a, which has the unique solution c = b#a,
is equivalent to the equation Sc(a) = Uca−1 = b. Thus, a#b = b#a, and hence Sa#b(a) = b

and Sa#b(b) = a. Note also that, as Sc(a) = a implies that c = a#a = a, the map Sc has
a unique fixed point c in A◦

+. Moreover, Sc is an isometry under both Hilbert’s metric and
Thompson’s metric on A◦

+, since it is the composition of two isometries.
The idea is now to show that the geometric means are preserved under bijective Hilbert’s

metric and Thompson’s metric isometries. The proof relies on properties of the maps Sa#b

and the following lemma. This lemma and its proof are similar to [37, lemma p. 3852], the
only difference being that we consider two metric spaces here.

Lemma 2.10 Let M, N be metric spaces. Suppose that for each x, y ∈ M there exists an

element zxy ∈ M, a bijective isometry ψxy : M → M and a constant kxy > 1 such that

(i) ψxy(x) = y, ψxy(y) = x;

(ii) ψxy(zxy) = zxy;

(iii) d(u, ψxy(u)) ≥ kxyd(u, zxy) for all u ∈ M.

Suppose N satisfies the same requirements. If ϕ : M → N is a bijective isometry, then

ϕ(zxy) = zϕ(x)ϕ(y).

Applying this lemma to the maps Sa#b we derive the following proposition for Thompson’s
metric.

Proposition 2.11 If A and B are JB-algebras and f : A◦
+ → B◦

+ is a bijective Thompson’s

metric isometry, then

f (a#b) = f (a)# f (b) for all a, b ∈ A◦
+.

Proof For a, b ∈ A◦
+ or a, b ∈ B◦

+, we already saw that Sa#b is an isometry that satisfies the
first two properties in Lemma 2.10. To show the third property note that by Proposition 2.4,

dT (Sc(a), a) =
∥

∥

∥
log U

a
− 1

2
Uca−1

∥

∥

∥
=
∥

∥

∥

∥

log
(

U
a

− 1
2

c
)2
∥

∥

∥

∥

= 2
∥

∥

∥
log U

a
− 1

2
c

∥

∥

∥
= 2dT (c, a).

So, if we take kab := 2, then all conditions of Lemma 2.10 are satisfied, and its application
yields the proposition. ⊓⊔

To see that the same result holds for Hilbert’s metric isometries on A
◦
+, we need to make

a couple of observations. Firstly for c ∈ A◦
+, the map Sc induces a well defined maps Sc

on A
◦
+ by letting Sc(a) := Sc(a). Furthermore, for a, b ∈ A◦

+ and λ,μ > 0 we have that
the equation Uc(λa) = μb has unique solution c = (λa)#(μb) =

√
λμ(a#b). Thus, the

equation Uca−1 = Uca−1 = b has a unique solution a#b in A
◦
+ for a, b ∈ A

◦
+, and we can

define the projective geometric mean by a#b := a#b in A
◦
+. Note that a#b = γ b

a (1/2). It

is now straightforward to verify that the Hilbert’s metric isometries Sa#b on A
◦
+ satisfy the

requirements of Lemma 2.10 with kab = 2 and derive the following result.

Proposition 2.12 If A and B are JB-algebras and f : A
◦
+ → B

◦
+ is a bijective Hilbert’s

metric isometry, then

f (a#b) = f (a)# f (b) for all a, b ∈ A
◦
+.
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The next proposition will be useful.

Proposition 2.13 For all a, b ∈ A◦
+ and t, s ∈ [0, 1],

γ b
a (t)#γ b

a (s) = γ b
a

(

t + s

2

)

.

Proof Using (2.3), the computation below shows that c = γ ((t + s)/2) is a positive solution
of Ucγ (t)−1 = γ (s), which proves the proposition.

Uγ ( t+s
2 )γ (t)−1 = U

U
a

1
2

(

U
a
− 1

2
b

)
t+s

2

(

U
a

1
2

(

U
a

− 1
2

b
)t
)−1

= U
a

1
2

U(

U
a
− 1

2
b

)
t+s

2
U

a
1
2

U
a

− 1
2

(

U
a

− 1
2

b
)−t

= U
a

1
2

U(

U
a
− 1

2
b

)
t+s

2

(

U
a

− 1
2

b
)−t

= U
a

1
2

(

U
a

− 1
2

b
)s

= γ (s).

⊓⊔

It is straightforward to derive a similar identity for Hilbert’s metric.

Proposition 2.14 For all a, b ∈ A
◦
+ and t, s ∈ [0, 1],

γ b
a (t)#γ b

a (s) = γ b
a

(

t + s

2

)

.

Proof The proof follows from Proposition 2.13 and

γ b
a (t)#γ b

a (s) = γ b
a (t)#γ b

a (s) = γ b
a (t)#γ b

a (s) = γ b
a

(

t + s

2

)

= γ b
a

(

t + s

2

)

.

⊓⊔

By combining Propositions 2.11 and 2.13 we derive the following corollary. The proof
uses the fact that the equation a#c = b has a unique solution c = Uba, which can be easily
shown using (2.3).

Corollary 2.15 Let A and B be JB-algebras. If f : A◦
+ → B◦

+ is a bijective Thompson’s

metric isometry, then

(a) f maps γ b
a (t) to γ

f (b)

f (a)
(t) for all a, b ∈ A◦

+ and t ∈ [0, 1].
(b) If f (e) = e, then f (at ) = f (a)t for all t ∈ [0, 1]. Moreover, we have f (a−1) = f (a)−1

and f (Uba) = U f (b) f (a).

Proof By Propositions 2.13 and 2.11, the first statement holds for all dyadic rationals t ∈
[0, 1]. As the dyadic rationals are dense in [0, 1], it holds for all 0 ≤ t ≤ 1.

Suppose f (e) = e. Since γ a
e (t) = at , the first statement yields that f (at ) = f (a)t for all

0 ≤ t ≤ 1.
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Since

a#a−1 = U
a

1
2

(

U
a

− 1
2

a−1
)

1
2 = U

a
1
2

a−1 = e,

we have that f (a)# f (a−1) = f (a#a−1) = f (e) = e = f (a)# f (a)−1, so by uniqueness of
the solution of f (a)#c = e, we obtain f (a−1) = f (a)−1. Using (2.3) we also get

f (a)−1# f (Uba) = f (a−1#Uba) = f

(

U
a

− 1
2

(

U
a

1
2

Uba
)

1
2
)

= f
(

U
a

− 1
2

U
a

1
2

b
)

= f (b),

so f (b) is a solution to Sc( f (a)−1) = f (Uba), i.e., U f (b) f (a) = f (Uba). ⊓⊔

Again, a similar result holds for Hilbert’s metric. The proof is analogous to the one for
Thompson’s metric in Corollary 2.15 and is left to the reader.

Corollary 2.16 Let A and B be JB-algebras. If f : A
◦
+ → B

◦
+ is a bijective Hilbert’s metric

isometry, then

(a) f maps γ b
a (t) to γ

f (b)

f (a)
(t) for all a, b ∈ A

◦
+ and t ∈ [0, 1].

(b) If f (e) = e, then f (at ) = f (a)t for all t ∈ [0, 1]. Moreover, we have f (a−1) = f (a)−1

and f (Uba) = U f (b) f (a).

Now we can prove an essential ingredient for characterizing bijective Hilbert’s metric and
Thompson’s metric isometries of cones of JB-algebras. Recall that [A] = A/ Span(e).

Theorem 2.17 Let A and B be JB-algebras.

(a) If f : A◦
+ → B◦

+ is a bijective Thompson’s metric isometry with f (e) = e, then S : A →
B given by

Sa := log f (exp(a)),

is a bijective linear ‖·‖-isometry.

(b) If f : A
◦
+ → B

◦
+ is a bijective Hilbert’s isometry with f (e) = e, then S : [A] → [B]

given by

S[a] := log f (exp([a])),

is a bijective linear ‖·‖v-isometry.

Proof We will prove the second assertion. The same arguments can be used to show the
statements for Thompson’s metric. Using Corollary 2.16,

exp(S[a]/n) = exp(log( f (exp([a])))/n) = exp(log f (exp(a))1/n)

= f (exp(a))1/n = f (exp(a/n)).

Thus,

d H
n (S[a], S[b]) = ndH (exp(S[a]/n), exp(S[b]/n))

= ndH ( f (exp(a/n)), f (exp(b/n)))

= ndH (exp(a/n), exp(b/n))

= d H
n ([a], [b]).
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By Proposition 2.5 the left-hand side of the above equation converges to ‖S[a] − S[b]‖v

and the right-hand side converges to ‖[a] − [b]‖v as n → ∞. Hence S is a bijective ‖·‖v-
isometry. As f (e) = e, we have that S[0] = [0], and hence S is linear by the Mazur-Ulam
theorem. ⊓⊔

Remark 2.18 The map Exp : A → A◦
+ is a bijection. In the associative case, where A = C(K )

for some compact Hausdorff space K , one can show that this bijection induces an isometric
isomorphism between the spaces (A, ‖·‖) and (A◦

+, dT ), see [29]. Likewise, the exponential
map yields an isometric isomorphism between ([A], ‖·‖v) and (A

◦
+, dH ) if A = C(K ). In

the nonassociative case this is no longer true. In fact, it has been shown for finite dimensional
order unit spaces A that (A

◦
+, dH ) is isometric to a normed space if and only if A+ is a

simplicial cone, see [15]. For Thompson’s metric the same result holds, see [28, Theorem
7.7].

3 Thompson’s metric isometries of JB-algebras

The next basic property of Thompson’s metric on products of cones will be useful.

Proposition 3.1 Suppose that A is a product of order unit space Ai for i ∈ I . If d i
T denotes

the Thompson’s metric on A◦
i+ and a = (ai ), b = (bi ) ∈ A◦

+, then

dT (a, b) = sup
i∈I

d i
T (ai , bi ).

Proof The proposition follows immediately from

MA(a/b) = inf{λ > 0 : ai ≤ λbi for all i ∈ I } = sup
i∈I

inf{λ > 0 : ai ≤ λbi } = sup
i∈I

MAi
(ai , bi ).

⊓⊔

With the above preparations we can now obtain the following theorem. The proof, as well
as the statement, is a direct generalization of [6, Section 4] and [37, Theorem 9].

Theorem 3.2 Let A and B be unital JB-algebras. A map f : A◦
+ → B◦

+ is a bijective Thomp-

son’s metric isometry if and only if there exist b ∈ B◦
+, a central projection p ∈ B, and a

Jordan isomorphism J : A → B such that f is of the form

f (a) = Ub(pJa + p⊥ Ja−1) for all a ∈ A◦
+.

In this case b = f (e)
1
2 .

Proof The last statement follows from taking a = e, which yields b2 = f (e).
For the sufficiency, note that the central projection p yields a decomposition B = pB ⊕

p⊥ B, which is left invariant by Ub. This decomposition can be pulled back by J , which yields
the following representation of the map f : (J−1 pB)◦+×(J−1 p⊥ B)◦+ → (pB)◦+×(p⊥ B)◦+:

f (a1, a2) = (Ub Ja1, Ub Ja−1
2 ).

Note that a Jordan isomorphism is an order isomorphism and hence an isometry under
Thompson’s metric. The inversion and the quadratic representations also preserve Thomp-
son’s metric, and so Thompson’s metric is preserved on both parts. By Proposition 3.1
Thompson’s metric is preserved on the product as well.
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Now suppose that f : A◦
+ → B◦

+ is a bijective Thompson’s metric isometry. Defining
g(a) := U

f (e)
− 1

2
f (a), we obtain that g is a Thompson’s metric isometry mapping e to e. By

Theorem 2.17 the map S : A → B defined by

Sa := log g(exp(a))

is a bijective linear ‖·‖-isometry.
From Theorem 2.1 it follows that there is a central projection p ∈ B and a Jordan

isomorphism J : A → B such that Sa = (p − p⊥)Ja. We now have for a ∈ A,

g(exp(a)) = exp(Sa) = exp((p − p⊥)Ja)

=
∞
∑

n=0

(p − p⊥)n(Ja)n

n!

=
∞
∑

n=0

(p + (−1)n p⊥)J (an)

n!

= pJ

( ∞
∑

n=0

an

n!

)

+ p⊥ J

( ∞
∑

n=0

(−a)n

n!

)

= pJ (exp(a)) + p⊥ J (exp(−a)).

It follows that, for a ∈ A◦
+, g(a) = pJa + p⊥ Ja−1. The theorem now follows from

f (a) = U
f (e)

1
2

U
f (e)

− 1
2

f (a) = U
f (e)

1
2

g(a).

⊓⊔

3.1 The Thompson’s metric isometry group of a JB-algebra

In the case where a JB-algebra is the direct product of simple JB-algebras, we can explicitly
compute its Thompson’s metric isometry group in terms of the Jordan automorphism groups
of the simple components. Each Euclidean Jordan algebra satisfies this requirement, and the
automorphism groups of the simple Euclidean Jordan algebras are known, see [14].

Theorem 3.3 Suppose a JB-algebra A can be decomposed as a direct product

A =
∏

i∈I

A
ni

i ,

where I is an index set, the ni are arbitrary cardinals and the Ai are mutually nonisomorphic

simple JB-algebras. Then the Thompson’s metric isometry group of A equals

Isom(A◦
+, dT ) =

∏

i∈I

(Aut(Ai+) ⋊ C2)
ni ⋊ S(ni ),

where Aut(Ai+) denotes the automorphism group of the cone Ai+, i.e., the order isomor-

phisms of Ai into itself, C2 denotes the cyclic group of order 2 generated by the inverse map

ι, and S(ni ) denotes the group of permutations of ni .

Proof By Theorem 3.2 any bijective Thompson’s metric isometry is a composition of a
quadratic representation, a Jordan isomorphism and taking inverses on some components.
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Quadratic representations and taking inverses leave each component invariant, and Jordan
isomorphisms leave the Jordan isomorphism classes invariant. This shows that

Isom(A◦
+, dT ) ⊆

∏

i∈I

Isom((A
ni

i )◦+, dT ),

and the other inclusion follows from Proposition 3.1, so we have equality. We will now
investigate Isom((A

ni

i )◦+, dT ).
A Jordan isomorphism of A

ni

i may permute the components, so it follows that each
Thompson’s metric isometry of (A

ni

i )◦+ is a composition of a permutation of components,
a componentwise possible inversion, a componentwise Jordan isomorphism, and a com-
ponentwise quadratic representation. So, all the operators except the permutation will act
componentwise, and the componentwise operators form a subgroup. It is easy to compute
that a componentwise operator conjugated by a permutation π equals the componentwise
operator permuted by π . This shows that the componentwise operators and the permuta-
tion group form a semidirect product, where the componentwise operators are the normal
subgroup. It remains to examine the componentwise operators.

By Proposition 2.3, any order isomorphism is the product of a quadratic representation
and a Jordan isomorphism. If we denote the inverse map by ι = ι−1, then conjugating an
order isomorphisms with the inverse map gives

(ιUb J ι−1)(a) = (Ub Ja−1)−1 = Ub−1(Ja−1)−1 = Ub−1 Ja, (3.1)

which yields another order isomorphism. So, the product of the group of order isomorphism
and the inversion group C2 is a semidirect product, where the order isomorphisms form the
normal subgroup. We conclude that

Isom(A◦
+, dT ) =

∏

i∈I

Isom((A
ni

i )◦+, dT ) ∼=
∏

i∈I

(Aut(Ai+) ⋊ C2)
ni ⋊ S(ni ).

⊓⊔

Remark 3.4 If A is a JB-algebra as given in the above theorem, then we can use an analogous
argument to show that the automorphism group of the cone A+ equals

Aut(A+) =
∏

i∈I

Aut(A
ni

i+) =
∏

i∈I

Aut(Ai+)ni ⋊ S(ni ).

Furthermore, for any i ∈ I the conjugation action (3.1) on an order isomorphism in Aut(A
ni

i+)

also shows that

Isom((A
ni

i )◦+, dT ) ∼= Aut(A
ni

i+) ⋊ C
ni

2 ,

so we can write the isometry group as

Isom(A◦
+, dT ) ∼=

∏

i∈I

Aut(A
ni

i+) ⋊ C
ni

2 .

It follows that the automorphism group Aut(A+) is normal in Isom(A◦
+, dT ), and its quotient

is isomorphic to
∏

i∈I C
ni

2 . Suppose now that both I and ni are finite (i.e., A is a Euclidean
Jordan algebra). Then the index of the automorphism group in the isometry group for Thomp-
son’s metric is 2m , where m =

∑

i∈I ni is the total number of different components. This is
a correction of [6, Remark 4.9], which has the wrong index.
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4 Hilbert’s metric isometries of JBW-algebras

If A and B are JB-algebras and f : A
◦
+ → B

◦
+ is a bijective Hilbert’s metric isometry mapping

e to e, then by Theorem 2.17 the map S : [A] → [B] defined by, S[a] := log f (exp([a])), is
a bijective linear ‖·‖v-isometry. Every bijective linear isometry maps extreme points of the
unit ball to extreme points of the unit ball, which is what we will exploit here. Let us first
identify these extreme points. For JBW-algebras this is [16, Proposition 2.2].

Lemma 4.1 The extreme points of the unit ball in ([A], ‖·‖v) are the equivalence classes [p],
where p ∈ A is a nontrivial projection.

Proof Let p ∈ A be a nontrivial projection and suppose that [p] = t[a] + (1 − t)[b] for
some 0 < t < 1, and [a], [b] ∈ [A] with ‖[a]‖v = ‖[b]‖v = 1. There exist λ ∈ R, a ∈ [a],
and b ∈ [b] such that p = ta + (1 − t)b + λe and

{0, 1} ⊆ σ(a), σ (b) ⊆ [0, 1].

This implies that

{−λ, 1 − λ} = σ(p) − λ = σ(p − λe) = σ(ta + (1 − t)b)

⊆ [0, ‖ta + (1 − t)b‖] ⊆ [0, 1],

from which we conclude that λ = 0. By the same argument as in [1, Lemma 2.23], the
extreme points of those elements a ∈ A with σ(a) ⊆ [0, 1] are projections. So, p = a = b,
and hence [p] = [a] = [b], which shows that [p] is an extreme point of the unit ball in
([A], ‖ · ‖v).

Conversely, if [a] ∈ [A] with ‖[a]‖v = 1 does not contain a projection, then a
representative a with σ(a) ⊆ [0, 1] must have λ ∈ σ(a) with 0 < λ < 1. Now con-
sider JB(a, e) ∼= C(σ (a)). By elementary topology there exists a nonnegative function
g ∈ C(σ (a)) with g �= 0 such that the ranges of a +g and a −g are contained in [0, 1]. Since
a = 1

2 (a − g) + 1
2 (a + g), it follows that [a] can be written as 1

2 ([b] + [c]) with [b] �= [c]
and ‖[b]‖v = ‖[c]‖v = 1, and hence [a] cannot be an extreme point of the unit ball. ⊓⊔

To be able to exploit the extreme points we will restrict ourselves to cones in JBW-algebras,
as JB-algebras may not have nontrivial projections, e.g. C([0, 1]). For a JBW-algebra M we
will denote its set of projections by P(M).

Let M be a JBW-algebra. By Lemma 4.1 we can define a map θ : P(M) → P(N ) by
letting θ(0) = 0, θ(e) = e, and θ(p) be the unique nontrivial projection in the class S[p],
otherwise. Thus, for each bijective Hilbert’s metric isometry f : M

◦
+ → N

◦
+ with f (e) = e,

we get a bijection θ : P(M) → P(N ). We say that θ is induced by f . Note that its inverse
θ−1 is induced by f −1. The map θ will be the key in understanding f .

We call a bijection θ : P(M) → P(N ) an orthoisomorphism if p, q ∈ P(M) are orthog-
onal if and only if θ(p) and θ(q) are orthogonal. Our goal will be to prove that the map θ

induced by either f or ι◦ f , where ι(a) = a−1 is the inversion, is in fact an orthoisomorphism.
For this we need to investigate certain unique geodesics starting from the unit e.

We introduce the following notation: (a, b) denotes the open line segment {ta + (1− t)b :
0 < t < 1} in M+ for a, b ∈ M+. The segments [a, b] and [a, b) are defined similarly.
Furthermore, we denote the affine span of a set S by aff (S).

Lemma 4.2 If p1, . . . , pk are nontrivial projections in a JBW-algebra M such that p1 +
· · · + pk = e, then the boundary of conv(p1, . . . , pk) is contained in ∂ M+ and so

aff(p1, . . . , pk) ∩ M+ = conv(p1, . . . , pk),
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which is a (k − 1)-dimensional simplex. Moreover, for each a ∈ conv(p1, . . . , pk)∩ M◦
+ the

segment [a, pi ) is a unique geodesic in (M
◦
+, dH ) for all i = 1, . . . , k.

Proof As p1 + · · · + pk = e, it follows from [1, Proposition 2.18] that the pi are pairwise
orthogonal. So,

0 ∈ σ(λ1 p1 + · · · + λk pk) for λ1 + · · · + λk = 1 and 0 ≤ λi ≤ 1 for all i = 1, . . . , k

if and only if
∏k

i=1 λi = 0. Hence the relative boundary of conv(p1, . . . , pk) in
aff(p1, . . . , pk) lies in ∂ M+, which proves the equality.

Note that if a = μ1 p1 + · · · + μk pk with μ1 + · · · + μk = 1 and 0 < μi < 1 for all

i = 1, . . . , k, then a− 1
2 = μ

− 1
2

1 p1 + · · · + μ
− 1

2
k pk . Now let bi := 1

2 (a + pi ). Then

U
a

− 1
2

bi =
1

2

(

U
a

− 1
2

a + U
a

− 1
2

pi

)

=
1

2
(e + μ−1

i pi ),

and hence σ(U
a

− 1
2

bi ) = { 1
2 ,

1+μ−1
i

2 }. So, it follows from Theorem 2.7 that [a, pi ) is a unique

geodesic in (M
◦
+, dH ) for all i = 1, . . . , k. ⊓⊔

Lemma 4.3 Let M and N be JBW-algebras and f : M
◦
+ → N

◦
+ be a bijective Hilbert’s

metric isometry with f (e) = e. Let p ∈ P(M) be nontrivial. The geodesic segment [e, p) is

mapped to the geodesic segment [e, q) by f for some q ∈ P(N ). Moreover, S[p] = [q] and

so θ(p) = q.

Proof The geodesic segments [e, p) is unique by Lemma 4.2. Thus, f ([e, p)) is also a unique
geodesic segments starting at e, since f (e) = e.

Now fix 0 < t < 1 and let b ∈ f (tp + (1 − t)e). By Theorem 2.7, σ(b) = {α, β} with
β > α > 0. Note that b′ := b − αe ∈ ∂ N+ \ {0}. Clearly, σ(b′) = {0, β − α}, and hence
b′ ∈ [r ] for some nontrivial projection r ∈ P(N ). Note also that

b = (1 + α)
(

(1 + α)−1b′ + (1 − (1 + α)−1)e
)

,

and hence the image of the [e, p) under f is [e, r).
If q is a nontrivial projection and 0 < t < 1, then by using Proposition 2.4 it is easy to

verify that dH (tq + (1 − t)e, e) = − log(1 − t). As f is an isometry that fixes e, we find that

f (tp + (1 − t)e) = tr + (1 − t)e (4.1)

for all 0 ≤ t < 1. Using the spectral decomposition p = 1p + 0p⊥, we now deduce that

S[p] = log f (exp(1)p + exp(0)p⊥) = log f (exp(−1)e + (1 − exp(−1))p)

= log(exp(−1)e + (1 − exp(−1))r) = [log(r + exp(−1)r⊥)]
= [−r⊥] = [r ],

and hence q := θ(p) = r . ⊓⊔

We can now show that θ preserves operator commuting projections.

Proposition 4.4 If p, q ∈ P(M) operator commute, then θ(p), θ(q) ∈ P(N ) operator

commute.

123



B. Lemmens et al.

Proof If p and q operator commute, then e + p and e + q operator commute. It follows that
U(e+p)1/2(e + q) = U(e+q)1/2(e + p), so U

e+p
1/2 e + q = U

e+q
1/2 e + p. By Corollary 2.16

and Eq. (4.1) in the proof of Lemma 4.3,

U
e+θ(p)

1/2 e + θ(q) = U f (e+p)1/2 f (e + q)

= f (U
e+p

1/2 e + q) = f (U
e+q

1/2 e + p) = U f (e+q)1/2 f (e + p)

= U
e+θ(q)

1/2 e + θ(p). (4.2)

The JB-algebra generated by e + θ(p), e + θ(q), and e is a JC-algebra by [17, Theorem
7.2.5]. So, we can think of U(e+θ(p))1/2(e + θ(q)) and U

(e+θ(q))
1
2
(e + θ(p)) as

(e + θ(p))
1
2 (e + θ(q))(e + θ(p))

1
2 and (e + θ(q))

1
2 (e + θ(p))(e + θ(q))

1
2

respectively, for some C*-algebra multiplication. The equality in (4.2) implies that

(e + θ(p))
1
2 (e + θ(q))(e + θ(p))

1
2 = λ(e + θ(q))

1
2 (e + θ(p))(e + θ(q))

1
2

for some λ > 0. Since

σ((e + θ(p))
1
2 (e + θ(q))(e + θ(p))

1
2 ) = σ((e + θ(q))

1
2 (e + θ(p))(e + θ(q))

1
2 ) ⊆ (0,∞),

we must have λ = 1. Let a := (e + θ(p))
1
2 (e + θ(q))

1
2 . This element satisfies the identity

a(e + θ(p))
1
2 = (e + θ(p))

1
2 a∗, so by the Fuglede-Putnam theorem [9, Theorem IX.6.7],

we find that a∗(e + θ(p))
1
2 = (e + θ(p))

1
2 a. This implies that

(e + θ(p))(e + θ(q)) = ((e + θ(p))(e + θ(q))
1
2 )(e + θ(q))

1
2

= (e + θ(q))
1
2 ((e + θ(p))(e + θ(q))

1
2 )

= (e + θ(q))
1
2 ((e + θ(q))

1
2 (e + θ(p))) = (e + θ(q))(e + θ(p));

hence θ(p)θ(q) = θ(q)θ(p). So, θ(p) and θ(q) operator commute in JB(θ(p), θ(q), e)

by [1, Proposition 1.49], and therefore θ(p) and θ(q) generate an associative algebra. We
conclude that θ(p) and θ(q) must operator commute in N by [1, Proposition 1.47]. ⊓⊔

This allows us to show that θ preserves orthogonal complements.

Lemma 4.5 θ(p⊥) = θ(p)⊥ for all p ∈ P(M).

Proof We may assume that p is nontrivial by definition of θ . Since S[p] + S[p⊥] = S[e] =
[e], we obtain θ(p) + θ(p⊥) = λe for some λ ∈ R. As p and p⊥ operator commute, the
projections θ(p) and θ(p⊥) operator commute by Proposition 4.4. By [1, Proposition 1.47],
θ(p) and θ(p⊥) are contained in an associative subalgebra, which is isomorphic to a C(K )-
space. In a C(K )-space it is obvious that λ = 1 or λ = 2. Now note that λ = 2 implies that
θ(p) = θ(p⊥) = e which contradicts the injectivity of S, and hence θ(p) + θ(p⊥) = e,
which shows that θ(p⊥) = θ(p)⊥. ⊓⊔

We will proceed to show that if f : M
◦
+ → N

◦
+ is a bijective Hilbert’s metric isometry with

f (e) = e, then for either f or ι ◦ f , the induced map θ maps orthogonal noncomplementary
projections to orthogonal projections. For this we need to look at special simplices in the
cone M+.
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4.1 Orthogonal simplices

Given nontrivial projections p1, p2, p3 in a JBW-algebra M with p1 + p2 + p3 = e, we call

�(p1, p2, p3) := conv (p1, p2, p3) ∩ M◦
+

an orthogonal simplex in M
◦
+. The next lemma shows that a bijective Hilbert’s metric isometry

f maps orthogonal simplices onto orthogonal simplices.

Lemma 4.6 Let f : M
◦
+ → N

◦
+ be a bijective Hilbert’s metric isometry with f (e) = e. If

�(p1, p2, p3) is an orthogonal simplex and qi = θ(pi ) for i = 1, 2, 3, then

(i) q1 + q2 + q3 = e, and then f (�(p1, p2, p3)) = �(q1, q2, q3), or

(ii) q⊥
1 + q⊥

2 + q⊥
3 = e, and then f (�(p1, p2, p3)) = �(q⊥

1 , q⊥
2 , q⊥

3 ).

In case (i), θ preserves the orthogonality of p1, p2, p3. Moreover, if the map θ induced by f

satisfies the assumptions of case (i i), then the map θ induced by the isometry ι ◦ f satisfies

the conditions of case (i).

Proof First remark that, as p1 + p2 + p3 = e and S is linear, S[p1] + S[p2] + S[p3] =
S[e] = [e], and hence

q1 + q2 + q3 = θ(p1) + θ(p2) + θ(p3) = λe for some λ ∈ R. (4.3)

As p1 + p2 < e, we know that p1 and p2 are orthogonal by [1, Proposition 2.18], and
hence p1 and p2 operator commute by [1, Proposition 1.47]. We also know from Proposition
4.4 that q1 = θ(p1) and q2 = θ(p2) operator commute. By [1, Proposition 1.47], q1 and q2

are contained in an associative subalgebra, which is isomorphic to a C(K )-space. Note that
this subalgebra also contains λe and hence also q3 by (4.3). In a C(K )-space it is obvious
that λ ∈ {1, 2} in (4.3). In fact, the case λ = 1 corresponds with the pairwise orthogonality
of q1, q2 and q3, whereas the case λ = 2 corresponds to pairwise orthogonality of q⊥

1 , q⊥
2

and q⊥
3 , and q⊥

1 + q⊥
2 + q⊥

3 = e.
We will now show that f maps �(p1, p2, p3) onto �(q1, q2, q3) in case q1 +q2 +q3 = e.

Let a ∈ conv(p1, p2, p3)∩ M◦
+ be a point not lying on any (pi , p⊥

i ) for i = 1, 2, 3. We know
that [a, pi ) is a unique geodesic by Lemma 4.2. Let (a′, p1) be the line segment through p1
and a with a′ in the boundary of conv(p1, p2, p3). This unique geodesic intersects (p2, p⊥

2 )

and (p3, p⊥
3 ) in 2 distinct points, say b2 and b3 respectively, see Fig. 1.

Fig. 1 Orthogonal simplex

p2

p1

p3

p⊥

2

p⊥

1

p⊥

3
e

•

a

a •

b3
•

b2

•
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Since it must be mapped to a line segment, it follows that f (a) lies on the line segment
through f (b2) and f (b3), which is contained in �(q1, q2, q3). By the invertibility of f , we
conclude that f (�(p1, p2, p3)) = �(q1, q2, q3). The same argument can be used to show
that f (�(p1, p2, p3)) = �(q⊥

1 , q⊥
2 , q⊥

3 ) if q⊥
1 + q⊥

2 + q⊥
3 = e.

To prove the final statement remark that if we compose f with the inversion ι, we obtain

S[pi ] = log ι( f (exp([pi ]))) = log f (exp([pi ]))−1 = − log f (exp([pi ])) = −[qi ] = [q⊥
i ].

So, the map θ induced by ι ◦ f satisfies θ(p1) + θ(p2) + θ(p3) = q⊥
1 + q⊥

2 + q⊥
3 = e, as

the q⊥
i are pairwise orthogonal in case (i i). ⊓⊔

It follows from Lemma 4.6 that if �(p1, p2, p3) is an orthogonal simplex, then the restric-
tion of f to �(p1, p2, p3) is a Hilbert’s metric isometry onto either �(θ(p1), θ(p2), θ(p3))

or �(θ(p1)
⊥, θ(p2)

⊥, θ(p3)
⊥). The Hilbert’s metric isometries between simplices have been

characterized, see [12] or [30], and yields the following dichotomy, as f (e) = e. The isom-
etry f maps �(p1, p2, p3) onto �(θ(p1), θ(p2), θ(p3)) in Lemma 4.6 if and only if the
restriction of f to �(p1, p2, p3) is of the form,

λ1 p1 + λ2 p2 + λ3 p3 �→ λ1θ(p1) + λ2θ(p2) + λ3θ(p3),

which is equivalent to saying that the restriction of f to �(p1, p2, p3) is projectively linear.
On the other hand, the isometry f maps �(p1, p2, p3) onto �(θ(p1)

⊥, θ(p2)
⊥, θ(p3)

⊥) in
Lemma 4.6 if and only if the restriction of f to �(p1, p2, p3) is of the form,

λ1 p1 + λ2 p2 + λ3 p3 �→ λ−1
1 θ(p1) + λ−1

2 θ(p2) + λ−1
3 θ(p3),

which is equivalent to saying that the restriction of ι ◦ f to �(p1, p2, p3) is projectively
linear. The above discussion yields the following corollary.

Corollary 4.7 Let f : M
◦
+ → N

◦
+ be a bijective Hilbert’s metric isometry with f (e) = e and

let �(p1, p2, p3) be an orthogonal simplex in M
◦
+. Then either f or ι ◦ f is projectively

linear on �(p1, p2, p3), and its induced map θ preserves the orthogonality of p1, p2 and

p3.

Our next proposition states that if two orthogonal simplices have a line in common, then
f is projectively linear on one simplex if and only if it projectively linear on the other one.
The proof uses, among other things, the following well known fact. If a, b ∈ M◦

+ are such
that the line through a and b intersect ∂ M+ in a′ and b′ such that a is between b and a′, b is
between a and b′, then

M(a/b) =
‖a − b′‖
‖b − b′‖

and M(b/a) =
‖b − a′‖
‖a − a′‖

. (4.4)

A proof can be found in [26, Chapter 2].

Proposition 4.8 Let f : M
◦
+ → N

◦
+ be a bijective Hilbert’s metric isometry with f (e) = e.

Let �(p1, p2, p3) and �(p4, p5, p6) be two distinct orthogonal simplices in M
◦
+ such that

either p3 = p6 or p3 = p⊥
6 , so they share the segment (p3, p⊥

3 ). Then f is projectively

linear on �(p1, p2, p3) if and only if it is projectively linear on �(p4, p5, p6).

Proof Suppose for the sake of contradiction that f is projectively linear �(p1, p2, p3), but
not on �(p4, p5, p6). Denote the image of �(p1, p2, p3) by �(q1, q2, q3), and the image of
�(p4, p5, p6) by �(q⊥

4 , q⊥
5 , q⊥

6 ) as in Lemma 4.6. There are 2 cases to consider: p3 = p6

and p3 = p⊥
6 . Let us first assume that p3 = p6.
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In that case the orthogonal simplices �(p1, p2, p3) and �(p4, p5, p6) are configured as
in Fig. 2. We will show that

aff(p1, p2, p3, p4, p5) ∩ M+ = conv(p1, p2, p3, p4, p5). (4.5)

However, before we do that we consider the situation for the orthogonal simplices
�(q1, q2, q3) and �(q⊥

4 , q⊥
5 , q⊥

3 ), which are configured as in Fig. 3. Note that as q1+q2 = q⊥
3

and q⊥
4 + q⊥

5 = q3 we get that q1 + q2 + q⊥
4 + q⊥

5 = e. So, it follows from Lemma 4.2 that

aff(q1, q2, q⊥
4 , q⊥

5 ) ∩ N+ = conv(q1, q2, q⊥
4 , q⊥

5 ).

We will now show equality (4.5). Note that 1
2 p⊥

2 , 1
2 p⊥

5 and 1
3 e are in conv(p1, p2, p3, p4,

p5). Suppose, for the sake of contradiction, that 1
2 ( 1

2 p⊥
2 + 1

2 p⊥
5 ) /∈ ∂ M+. We know from

[23, Theorem 5.2] that if we have sequences

b2(tn) := (1 − tn) 1
3 e + tn

1
2 p⊥

2 and b5(sn) := (1 − sn) 1
3 e + sn

1
2 p⊥

5 ,

with sn, tn ∈ [0, 1) such that tn → 1 and sn → 1 as n → ∞, then the Gromov product

(b2(tn) | b5(sn))e :=
1

2

(

dH (b2(tn), e) + dH (b5(sn), e) − dH (b2(tn), b5(sn))
)

Fig. 2 Pyramid p3

p1

p5

p4

p2p⊥

3

Fig. 3 3-simplex

q
1

q⊥

4

q
2

q⊥

5

q
3

q⊥

3
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Fig. 4 Parallel segments
c

1

3
q⊥

2 q⊥

5

a
n b

n

1

4
e

1

3
q5

a
n

b
n

• •

•

satisfies
lim sup

n→∞
(b2(tn) | b5(sn))e < ∞. (4.6)

Note that (p2, p⊥
2 ) and (p5, p⊥

5 ) are unique geodesics in (M
◦
+, dH ). So, the image of [e, p⊥

2 )

under f is the segment [e, q2), and the image of [e, p⊥
5 ) is [e, q⊥

5 ). Let us now consider
representations of these segments in conv(q1, q2, q⊥

4 , q⊥
5 ). It is easy to verify that 1

4 e, 1
3 q⊥

2
and 1

3 q5 lie inside conv(q1, q2, q⊥
4 , q⊥

5 ). Now for n ≥ 1 select an from the segment [ 1
4 e, 1

3 q⊥
2 )

and bn from the segment [ 1
4 e, q⊥

5 ) such that an → 1
3 q⊥

2 , bn → q⊥
5 , and the segment [an, bn]

is parallel to the segment [ 1
3 q⊥

2 , q⊥
5 ].

Let c, a′
n , and b′

n be in the boundary of conv(q1, q2, q⊥
4 , q⊥

5 ) as in Fig. 4. Then the triangles
with vertices bn , b′

n and q⊥
5 are similar for all n ≥ 1. Hence there exists a constant C > 0

such that

‖bn − b′
n‖

‖bn − q⊥
5 ‖

= C for all n ≥ 1.

Now using (4.4) we deduce that

dH (bn, e) − dH (an, bn) = dH (bn, 1
4 e) − dH (an, bn)

= log

(

‖bn − 1
3 q5‖

‖ 1
4 e − 1

3 q5‖
‖ 1

4 e − q⊥
5 ‖

‖bn − q⊥
5 ‖

)

− log

(

‖a′
n − bn‖

‖a′
n − an‖

‖an − b′
n‖

‖bn − b′
n‖

)

→ C + log

(

‖q⊥
5 − 1

3 q5‖‖ 1
4 e − q⊥

5 ‖
‖ 1

4 e − 1
3 q5‖

)

− log

(

‖c − q⊥
5 ‖‖ 1

3 q⊥
2 − q⊥

5 ‖
‖c − 1

3 q⊥
2 ‖

)

.

Thus, there exists a constant C ′ > 0 such that

2(an | bn)e ≥ dH (an, e) + C ′ for all n ≥ 1,

which shows that

lim sup
n→∞

(an | bn)e = ∞.

As f −1 is an isometry and f (e) = e, we get that

lim sup
n→∞

( f −1(an) | f −1(bn))e = lim sup
n→∞

(an | bn)e = lim sup
n→∞

(an | bn)e = ∞.

By construction, however, f −1(an) = b2(tn) and f −1(bn) = b5(sn) for some sequences
(tn) and (sn) in [0, 1) with tn, sn → 1, which contradicts (4.6).
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Fig. 5 Intersections

q1

q⊥

4

q2

q⊥

5

c

b a γ1

γ2

•

•

•

Thus, 1
2 (p⊥

2 + p⊥
5 ) ∈ ∂ M+ and hence conv(p1, p3, p4) ⊆ ∂ M+. The same argument

works for the other faces containing p3. The square face is also contained in ∂ M+, as it
contains 1

2 p⊥
3 . This proves (4.5).

Next, we will show that the pre-image of the simplex conv(q1, q2, q⊥
4 , q⊥

5 ) lies inside
the pyramid conv(p1, p2, p3, p4, p5). Suppose that c is a point on the segment (q2, q⊥

5 ).
The triangle conv(c, q1, q⊥

4 ) intersects the triangles conv(q1, q2, q3) and conv(q⊥
3 , q⊥

4 , q⊥
5 )

in a line segment, say γ1 and γ2 respectively, see Figure 5. Now suppose that a ∈
conv(c, q1, q⊥

4 ) ∩ N ◦
+ and let b be the point of intersection of the line segment from c

through a with conv(q⊥
3 , q⊥

4 , q⊥
5 ).

The segment (c, b) is a unique geodesic by Lemma 4.2. So, its pre-image is projectively a
line segment, as f −1 is an isometry. Now suppose that (c, b) intersectsγ1 andγ2 in two distinct
points. In that case it follows that the pre-image of (c, b) lies inside conv(p1, p2, p3, p4, p5).
The collection of the points a for which we obtain such a pre-image forms a dense set of

conv(c, q1, q⊥
4 ). So, by continuity of f −1 we conclude that

f −1(conv(q1, q2, q⊥
4 , q⊥

5 )) ⊆ conv(p1, p2, p3, p4, p5).

It turns out that this situation yields the desired contradiction to prove our assertion in this
case. Let ρ be in the relative interior of conv(q1, q2, q⊥

5 ). Then (ρ, q⊥
4 ) is a unique geodesic

by Lemma 4.2. Moreover, we have that the segment (ρ, q⊥
4 ) is parallel to (q4, q⊥

4 ), that is to
say

lim sup
t→0

dH ((1 − t)q⊥
4 + tρ, (1 − t)q⊥

4 + tq4) < ∞ and

lim sup
t→1

dH ((1 − t)q⊥
4 + tρ, (1 − t)q⊥

4 + tq4) < ∞.

This implies that pre-images of (ρ, q⊥
4 ) must also be parallel segments. As the pre-image

of (q4, q⊥
4 ) is (p4, p⊥

4 ) we find the pre-image of (ρ, q⊥
4 ) is of the form (p4, σ ), with σ

on the segment (p3, p5). Since ρ was chosen arbitrarily, this shows that the pre-image of

conv(q1, q2, q⊥
4 , q⊥

5 ) lies in �(p3, p4, p5), which is absurd. We therefore conclude that f

is projectively linear on �(p4, p5, p6) as well.
In case p3 = p⊥

6 and f is not projectively linear on �(p4, p5, p6), then anal-
ogously we find that conv(p1, p2, p3, p4, p5, p6) is the interior of a 3-simplex and
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conv(q1, q2, q3, q⊥
4 , q⊥

5 , q⊥
6 ) is the interior of a pyramid. Now applying the same arguments

above to f −1 yields the desired contradiction, which completes the proof. ⊓⊔

Theorem 4.9 Let �(p1, p2, p3) and �(p4, p5, p6) be orthogonal simplices in M
◦
+. A bijec-

tive Hilbert’s metric isometry f : M
◦
+ → N

◦
+ with f (e) = e is projectively linear on

�(p1, p2, p3) if and only if it is projectively linear on �(p4, p5, p6).

Theorem 4.9 is a simple consequence from the following lemma, which uses the following
concept. If p and q are nonmaximal nontrivial projections, then by p ≈ q we mean that there
exists a sequence of nonmaximal projections p = p1, . . . , pn = q such that pi ⊥ pi+1

and pi + pi+1 < e for 1 ≤ i < n. This defines an equivalence relation on the nonmaximal
nontrivial projections in P(M).

Lemma 4.10 If p and q are nonmaximal nontrivial projections in a JBW-algebra M, then

p ≈ q.

If we assume Lemma 4.10 for the moment, the proof of Theorem 4.9 goes as follows.

Proof of Theorem 4.9 By Proposition 4.8, if two orthogonal simplices have a projection in
common, then f is projectively linear on one of them if and only if it is projectively on the
other. So, it suffices to connect any two orthogonal simplices with a chain of orthogonal sim-
plices each having one projection in common. Note that orthogonal simplices are determined
by two nonmaximal nontrivial projections p1 and p2 such that p1 ⊥ p2 and p1 + p2 < e:
the third projection is then (p1 + p2)

⊥. Hence a chain of orthogonal simplices having one
projection in common, connecting the projections p and q , corresponds to a sequence of non-
maximal nontrivial projections p = p1, . . . , pn = q such that pi ⊥ pi+1 and pi + pi+1 < e

for 1 ≤ i < n. By Lemma 4.10 we know that such a sequence always exist, and hence we
are done. ⊓⊔

The proof of Lemma 4.10 is quite technical and will be given in the next section. However,
for particular JB-algebras such as B(H)sa and Euclidean Jordan algebras, it is fairly easy to
show that Lemma 4.10 holds. To do this we make the following basic observation.

Lemma 4.11 Let M be a JBW-algebra and p, q ∈ P(M) be nonmaximal and nontrivial.

(i) If p ⊥ q, then p ≈ q.

(ii) If p ≤ q, then p ≈ q.

(iii) If p and q operator commute, then p ≈ q.

Proof For the first assertion, note that if q �= p⊥ we are done. Also, if q = p⊥, then by
nonmaximality of q and p, there exist projections 0 < p0 < p and 0 < q0 < q , so that
p ≈ q0 ≈ p0 ≈ q . The second assertion follows from (i), as p ≈ q⊥ ≈ q . To prove the
last one recall that the JBW-algebra generated by p and q is associative by [1, Proposition
1.47], and hence it is isomorphic to C(K ) for some compact Hausdorff space K . By part (i)

we may assume pq �= 0, and then p ≈ pq ≈ q by part (i i). ⊓⊔

Let us now show that Lemma 4.10 holds in case M = B(H)sa. If dim H ≤ 2, then all
projections in P(M) are maximal. So, assume dim H ≥ 3. In that case, any two distinct rank
1 projections p and q are equivalent, because the orthogonal complements of the ranges of p

and q have codimension 1, and hence their intersection is nonempty. Let r be the orthogonal
projection on the intersection. Note that r is nonmaximal, as the range of r has codimension
at least 2. Then p ⊥ r and r ⊥ q and hence p ≈ r ≈ q by Lemma 4.11(i). To compete
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the proof we remark that any nonmaximal projection p with rank at least 2 is equivalent to a
rank 1 projection. Simply take x ∈ H in the range of p. Then the orthogonal projection px

on the span of x satisfies px ≤ p, and hence px ≈ p by Lemma 4.11(i i).
We see from Lemma 4.11(i i i) that if the center Z(M) is nontrivial, then any nontrivial

projection z ∈ Z(M) yields p ≈ z ≈ q . Indeed, in this case z⊥ also operator commutes
with p and q , and we are done if either z or z⊥ is nonmaximal. Suppose that they are both
maximal. Then they are also both minimal, and therefore pz ≤ z, forcing pz ∈ {0, z}, and
pz⊥ ≤ z⊥, forcing pz⊥ ∈ {0, z⊥}. Combining these identities yields

p = pz + pz⊥ ∈ {0, z, z⊥, e}

which contradicts the nonmaximality of p. So, we may assume that Z(M) is trivial, i.e., M

is a factor. Thus, the verify that Lemma 4.10 holds for Euclidean Jordan algebras, we only
need to check the simple ones.

Lemma 4.12 If M is a simple Euclidean Jordan algebra of rank at least 3 and p, q ∈ P(M)

are nonmaximal and nontrivial, then p ≈ q.

Proof Using the classification of simple Euclidean Jordan algebras we know that M = Hn(R)

where n ≥ 3 and R = R, C or H, or M = H3(O).
By Lemma 4.11(i i) we may assume that p and q are primitive. It suffices to show the

existence of a nontrivial nonmaximal z ∈ P(M) that operator commutes with p and q by
the above remarks. We know from [14, Corollary IV.2.4] that there exists w ∈ M such that
w2 = e and Uw(p) = e11. Note that Uwe = w2 = e, and hence it is a Jordan isomorphism
by Corollary 2.2. So, we may also assume that p = e11. The Jordan algebra generated by p

and q is isomorphic to H2(R) by [14, Proposition 1.6] and the isomorphism in the proof of
[14, Proposition 1.6] sends e11 ∈ H2(R) to p = e11 ∈ M .

If I2 ∈ H2(R) corresponds to a nontrivial projection z under this isomorphism, then z

operator commutes with p and q and we are done. We will show that it is impossible that
I2 ∈ H2(R) corresponds to e ∈ M . In that case, the element s = e12 + e21 ∈ H2(R) is in
the Peirce 1/2 eigenspace of e11 and satisfies s2 = I2. However, in Hn(R), elements in the
Peirce 1/2 eigenspace of p are of the form

A =

⎛

⎜

⎜

⎜

⎝

0 a12 . . . a1n

a∗
12 0 . . . 0
...

...
. . .

...

a∗
1n 0 . . . 0

⎞

⎟

⎟

⎟

⎠

.

The diagonal of A2 has entries A2
11 =

∑n
i=2 |a1i |2 and A2

i i = |a1i |2 for i = 2, . . . , n, which
is not equal to e = In for any choice of a12, . . . , a1n ∈ R, as n ≥ 3. ⊓⊔

4.2 Proof of Lemma 4.10

The proof of Lemma 4.10 requires a number of steps. First note that by Lemma 4.11(i i i), it
suffices to find a nontrivial projection z ∈ P(M) that operator commutes with both p and q .
Hence we may assume that

p ∧ q = p ∧ q⊥ = p⊥ ∧ q = p⊥ ∧ q⊥ = 0. (4.7)

Indeed, suppose one of them is nonzero, then it operator commutes with p or p⊥ and q or
q⊥, and hence it operator commutes with p and q .
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The idea of the rest of the proof is to use the theory of von Neumann algebras, and so we
would like to view M as the set of self-adjoint elements of a von Neumann algebra. Note that
if M is of type I2, then [17, Theorem 6.1.8] implies that M is a spin factor H ⊕ R. However,
in a spin factor all nonzero projections are maximal, so M is not of type I2. As mentioned,
the procedure will be divided into several steps. In the case where M is the self-adjoint part
of a von Neumann algebra, the proof of this lemma is given in Step 2.

Step 1: We can assume that M is not isomorphic to H3(O) by Lemma 4.12. Then by [17,
Theorem 7.2.7] we have that M is a J W -algebra, that is, it can be represented as a σ -weakly
closed Jordan subalgebra of the self-adjoint operators on a complex Hilbert space. By [17,
Theorem 7.3.3], it follows that

M = W ∗(M)αsa = {x ∈ W ∗(M) : α(x) = x = x∗}

for some von Neumann algebra W ∗(M) and a ∗-anti-automorphism α of W ∗(M) of order 2.
Now M is a subset of a von Neumann algebra, but the ∗-anti-automorphism α is a problem,
which we will eliminate.

Let R := {x ∈ W ∗(M) : α(x) = x∗}. Then M = Rsa , and by [17, Theorem 7.3.2] we
have that R is a σ -weakly closed real ∗-algebra and W ∗(M) = R ⊕ i R. It follows from [31,
Definition 6.1.1] that R is a real W ∗-algebra. By [31, Proposition 6.1.2], R is isomorphic
to a real von Neumann algebra, that is, a σ -weakly closed ∗-subalgebra of B(H), where H

is a real Hilbert space. Or equivalently, a ∗-subalgebra of B(H) which has a pre-dual. So,
we have succeeded at viewing M as the self-adjoint elements of a von Neumann algebra.
Unfortunately, it is a real von Neumann algebra instead of a complex one, which will pose
some additional difficulties.

Step 2: Let N ⊆ R be the real von Neumann algebra generated by p and q . In the case
where M is the self-adjoint part of a von Neumann algebra, the reader can regard N as the
von Neumann algebra generated by p and q , and R = M ⊕ i M here. We denote by N ′ the
commutant of N . That is,

N ′ := {x ∈ B(H) : xy = yx for all y ∈ N } .

It suffices to find a nontrivial projection z ∈ N ′ ∩ R, because then both z and z⊥ commute
with p and q , and hence operator commute with p and q by [1, Proposition 1.49]. Similarly
to the discussion preceding Step 1, we can conclude that either z or z⊥ is nonmaximal. So,
we may assume that N ′ ∩ N contains no nontrivial projections. We will now generalize the
proof of [46, Theorem V.1.41], so that it will also be applicable to the real von Neumann
algebra case. From equation (4.7), we obtain that p⊥qp maps pH injectively onto a dense
subspace of p⊥ H . Let uh be the polar decomposition of p⊥qp. By [31, Proposition 4.3.4]
we have that u, h ∈ N . Then u is a partial isometry with initial space pH and final space
p⊥ H , and so u∗u = p and uu∗ = p⊥. We will use this partial isometry u to make a matrix
unit {e11, e12, e21, e22}. That is, the set of elements {e11, e12, e21, e22} satisfies the properties

e11 + e22 = e, e∗
i j = e j i , and ei j ekl = δ jkeil for 1 ≤ i, j, k, l ≤ 2.

Let

e11 := p, e21 := u, e12 := u∗, e22 := p⊥,

We will use the following notation. If M is an algebra with projection p ∈ M , then we denote
the subalgebra pMp by Mp . Furthermore, by M2(Mp) we mean the 2 × 2 matrices whose
entries are elements of Mp .
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Lemma 4.13 If M is a (real) von Neumann algebra with a matrix unit {e11, e12, e21, e22},
then M ∼= M2(Me11).

Proof The reader can easily verify that the map ϕ : M → M2(Me11) given by ϕ(x)i j :=
e1i xe j1 is a ∗-homomorphism with inverse θ : M2(Me11) → M defined by θ(yi j ) :=
∑2

i, j=1 ei1 yi j e1 j . ⊓⊔

We now apply Lemma 4.13 for M = N and M = R, which yields that N ∼= M2(Np)

and R ∼= M2(Rp). Moreover, since we used the same matrix unit, the inclusion N ⊆ R

corresponds to the natural embedding M2(Np) ⊆ M2(Rp). It is straightforward to verify
that

N ′ ∩ R =
{(

x 0
0 x

)

: x ∈ N ′
p ∩ Rp

}

. (4.8)

The projection p = e11 is nonmaximal, so there exists a nontrivial projection in R which
dominates p, and has to be of the form

(

p 0
0 z

)

for some nontrivial projection z ∈ P(Rp).
We claim that it now suffices to show that Np is a trivial von Neumann algebra. Indeed,

in that case N ′
p ∩ Rp = Rp , and so by (4.8),

(

z 0
0 z

)

∈ N ′ ∩ R

is a nontrivial projection, as desired. In the case where M is the self-adjoint part of a von
Neumann algebra, we can apply [46, Theorem V.1.41(ii)] to conclude that N is of type I2,
and since N ′ ∩ N contains no nontrivial projections, the spectral theorem implies that N ′ ∩ N

is trivial and hence N is a factor. Therefore, we must have N ∼= M2(C). Since we also have
that N ∼= M2(Np), it follows that Np

∼= C. In the case where N ⊆ R in a real von Neumann
algebra, we have to do some more work to show that Np

∼= R.

Step 3: We will need the following lemma.

Lemma 4.14 Np is generated by p and pqp.

Proof Taking products of p and q repeatedly yields expressions of the form · · · pqpqpq · · · .
For r , s ∈ {p, q}, let Q(r , s) be the set of such expressions that start with r and end with
s. It follows that N is the closed linear span of Q(p, p) ∪ Q(p, q) ∪ Q(q, p) ∪ Q(q, q).
Hence Np is the closed linear span of Q(p, p). Since (pqp)n = (pq)n−1(pqp), it follows
that Q(p, p) = {p} ∪ {(pqp)n : n ≥ 1}. ⊓⊔

By the above lemma, Np is generated by p and pqp. Since p is the identity on Np , it is
commutative and contains CR(σ (pqp)), the continuous real-valued functions on σ(pqp), by
the continuous functional calculus for real von Neumann algebras [31, Proposition 5.1.6(2)].
Therefore, we have that Np ⊆ N ′

p , and so

N ∩ N ′ ∼=
{(

x 0
0 x

)

: x ∈ Np ∩ N ′
p

}

=
{(

x 0
0 x

)

: x ∈ Np

}

.

Since N ∩N ′ contains no trivial projections, we obtain that Np contains no trivial projections.
However, unlike the case of a von Neumann algebra, a real von Neumann algebra without
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any nontrivial projections need not be trivial (i.e., C, H). But by [31, Proposition 4.3.4(3)],
the linear span of the projections is dense in (Np)sa , and so (Np)sa must be trivial. Since
CR(σ (pqp)) ⊆ (Np)sa , this can only happen if σ(pqp) consists of a single element, which
implies that Np

∼= R, as desired. This completes the proof of Lemma 4.10.

4.3 Characterization of Hilbert isometries on JBW-algebras

Using Theorem 4.9 we can now deduce the desired result.

Corollary 4.15 If M and N are JBW-algebras and f : M
◦
+ → N

◦
+ is a bijective Hilbert’s

metric isometry with f (e) = e, then either for f or for ι ◦ f the induced map θ : P(M) →
P(N ) is an orthoisomorphism.

Proof Suppose that p1, p2 ∈ P(M) are orthogonal projections. By Lemma 4.5 we may
assume that p1 + p2 < e. Let p3 := (p1 + p2)

⊥. After possibly composing f with the
inversion ιwe may assume that f is projectively linear on�(p1, p2, p3) and so θ preserves the
orthogonality of p1, p2 and p3 by Corollary 4.7. Hence θ(p1) and θ(p2) are orthogonal. By
Theorem 4.9, f is projectively linear on all other orthogonal simplices as well, so θ preserves
the orthogonality of all noncomplementary orthogonal projections in P(M). Applying the
same argument to f −1 shows that θ−1 also preserves orthogonality.

By the proof of [13, Lemma 1], θ is an order isomorphism and preserves products of
operator commuting projections. Our next goal is to show that θ extends to a Jordan isomor-
phism. If M and N are Euclidean Jordan algebras, this can be done with a similar argument
as used in [6], see Remark 4.20. We will now explain how to proceed in the general case of
JBW-algebras. The reader only interested in the von Neumann algebra case should follow
this argument, but instead of the representations (4.9), each type I2 von Neumann algebra is
isomorphic to L∞(�, M2(C)).

We can write M = M2 ⊕ M̃ and N = N2 ⊕ Ñ where M2 and N2 are type I2 direct
summands, and M̃ and Ñ are JBW-algebras without type I2 direct summands. See [17,
Theorem 5.1.5, Theorem 5.3.5]. Suppose p̃ ∈ P(M) and q̃ ∈ P(N ) are the central projec-
tions such that p̃M = M̃ and q̃ N = Ñ . Since θ is an order isomorphism, the restriction
θ |

P(M̃)
: P(M̃) → P(θ( p̃)N ) is an orthoisomorphism. As M̃ has no type I2 direct summand,

we can use the following result.

Theorem 4.16 (Bunce, Wright) Let M and N be JBW-algebras such that M has no type I2

direct summand. If θ : P(M) → P(N ) is an orthoisomorphism, then θ extends to a Jordan

isomorphism J : M → N.

Proof The theorem is exactly [7, Corollary 2] but for JBW-algebras instead of JW-algebras.
This corollary follows from [7, Proposition p. 91], and the crucial ingredient here is that
any quantum measure on the projection lattice of a JW-algebra extends to a state. But this
statement is also true for JBW-algebras by [8, Theorem 2.1]. ⊓⊔

So θ |
P(M̃)

extends to a Jordan isomorphism J̃ : p̃M → θ( p̃)N . Moreover, θ( p̃) = q̃.

Indeed, the image of p̃M under J̃ in N contains no type I2 direct summand, hence J̃ ( p̃M) ⊆
q̃ N . This implies that θ( p̃) ≤ q̃ . Applying the same argument to θ−1 shows that θ−1(q̃) ≤ p̃,
so p̃ = q̃.
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Our next goal is to show that the orthoisomorphism θ |P(M2) : P(M2) → P(N2) extends
to a Jordan isomorphism as well. By [45, Theorem 2] we can represent

M2 ∼=
⊕

k

L∞(�k, Vk) and N2 ∼=
⊕

l

L∞(�l , Vl) (4.9)

where k, l are cardinals, �k, �l are measure spaces, Vi = Hi ⊕ R are spin factors with
dim Hi = i . We denote the unit in each Vk by u. Let � :=

⊔

k �k be the disjoint union of the
�k’s. By identifying f ∈ L∞(�) with ω �→ f (ω)u, we can view L∞(�) as lying inside M2.
It follows that Z(M2) = L∞(�) and if p := 1A ∈ Z(M2), then Z(pM2) = L∞(A). Since
θ preserves operator commutativity, it preserves the center, and it is straightforward to see
that θ |P(Z(M2)) : P(Z(M2)) → P(Z(N2)) extends to a Jordan isomorphism T : Z(M2) →
Z(N2).

Let a ∈ M2. For almost all ω ∈ � the element a(ω) has rank 1 or rank 2, so modulo null
sets we can write � as � = �1 ⊔ �2 where

�i := {ω ∈ � : #σ(a(ω)) = i} .

If we write qi := 1�i for i = 1, 2, then there exist unique α ∈ Z(q1 M2), β, γ ∈ Z(q2 M2),
and 0 �= p ∈ P(q2 M2) with p(ω) of rank 1 a.e. such that

a(ω) :=
{

α(ω)u if ω ∈ �1

β(ω)p(ω) + γ (ω)p(ω)⊥ if ω ∈ �2

which yields a = α + β p + γ p⊥ as a unique representation. Define J2 : M2 → N2 by

J2(a) := T α + T βθ(p) + T γ θ(p)⊥.

Lemma 4.17 p ∈ P(M2) is a.e. rank 1 if and only if qp �= 0 and qp⊥ �= 0 for all nonzero

central projections q ∈ P(M2).

Proof Let A ⊆ � be measurable and suppose that p(ω) = 0 a.e. on A. Then 1A ∈ P(M2) is
a central projection and 1A p = 0. Similarly, if B ⊆ � is a measurable set such that p(ω) = u

a.e. on B, then 1B p⊥ = 0.
Conversely, if p ∈ P(M2) is a.e. rank 1, then neither 1A p = 0 nor 1A p⊥ = 0 for all

nonzero measurable A ⊆ �, which are precisely the nonzero central projections of P(M2).
⊓⊔

Since θ preserves central projections and orthogonality, it maps a.e. rank 1 projections to
a.e. rank 1 projections. Now a ∈ P(M2) if and only if α, β, γ ∈ P(Z(M2)), and in this case,
since T extends θ |P(Z(M2)),

J2(a) = T α + T βθ(p) + T γ θ(p)⊥ = θ(α) + θ(β)θ(p) + θ(γ )θ(p)⊥

= θ(α) + θ(β p) + θ(γ p⊥) = θ(a)

as θ preserves products of operator commuting projections. Therefore J2(a) = θ(a) and so
J2 extends θ .

For μ ∈ R and the unit e2 ∈ M2 we have that J2(a + μe2) = J2(a) + μe2, so J2

induces the quotient map J 2 : [M2] → [N2] defined by J 2([a]) := [J2a]. We claim that J 2

coincides with S on [M2]. To that end, let a ∈ M2 be such that a = α + β p + γ p⊥ where
α =

∑

i αi 1Ai
, β =

∑

j β j 1B j
, and γ =

∑

k γk1Ck
are step functions. Since θ preserves
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products of operator commuting projections and the fact that T maps step functions to step
functions,

J 2([a]) = [J2(a)] = [T α + T βθ(p) + T γ θ(p)⊥]

=
∑

i

αi [θ(1Ai
)] +

∑

j

β j [θ(1B j
p)] +

∑

k

γk[θ(1Ck
p⊥)]

=
∑

i

αi S1Ai
+
∑

j

β j S1B j
p +

∑

k

γk S1Ck
p⊥

= S[a].

Now, for general a = α+β p+γ p⊥ ∈ M2 let α′, β ′, and γ ′ be approximating step functions
for α, β, and γ . If we put b := α′ + β ′ p + γ ′ p⊥, then

‖a − b‖ ≤ ‖α − α′‖ + ‖β − β ′‖ + ‖γ − γ ′‖

and

‖J2(a) − J2(b)‖ ≤ ‖α − α′‖ + ‖β − β ′‖ + ‖γ − γ ′‖

as T is an isometry, so both norms can be made arbitrarily small. This implies that

‖J 2([a]) − S[a]‖v ≤ ‖J 2([a]) − J 2([b])‖v + ‖J 2([b]) − S[b]‖v + ‖S[b] − S[a]‖v

= ‖J 2([a]) − J 2([b])‖v + ‖S([b] − [a])‖v

≤ ‖[J2(a) − J2(b)]‖v + ‖[b − a]‖v

≤ 2‖J2(a) − J2(b)‖ + 2‖b − a‖

can be made arbitrarily small, and we conclude that J 2 = S on [M2].
Having this, we will now proceed to show that J2 is linear. Let � :=

⊔

l �l be the
disjoint union of the �l ’s, and let ϕ be a state on Z(N2) = L∞(�). Then T ∗ϕ is a state on
Z(M2) = L∞(�), and define the functionals tr ⊗ T ∗ϕ ∈ M∗

2 and tr ⊗ ϕ ∈ N∗
2 by

(tr ⊗ T ∗ϕ)(a) := T ∗ϕ(ω �→ tr(a(ω))) and (tr ⊗ ϕ)(b) := ϕ(ξ �→ tr(b(ξ))).

Put M0 := ker tr⊗T ∗ϕ and N0 := ker tr⊗ϕ. Since e2 /∈ M0 and e2 /∈ N0, the corresponding
quotient maps π1 : M0 → [M2] and π2 : N0 → [N2] are linear isomorphisms. Furthermore,
we have that J2(M0) ⊆ N0. Indeed, if x ∈ M2, then since θ(p) is a.e. rank 1,

(tr ⊗ ϕ)(J2(a)) = (tr ⊗ ϕ)(T α + T βθ(p) + T γ θ(p)⊥) = ϕ(2T α + T β + T γ ).

Therefore, for a ∈ M0 it follows that

(tr ⊗ ϕ)(J2(a)) = ϕ(2T α + T β + T γ ) = ϕ(T (2α + β + γ ))

= T ∗ϕ(2α + β + γ ) = (tr ⊗ T ∗ϕ)(a)

= 0.

Now, if a ∈ M0, then J2(a) ∈ N0 which shows the last equality of the equation

π−1
2 ◦ J 2 ◦ π1(a) = π−1

2 J 2[a] = π−1
2 [J2(a)] = J2(a), (4.10)

hence J2|M0 is linear. As M2 = M0 ⊕Re2 and N2 = N0 ⊕Re2, and we have J2(a +μe2) =
J2(a) + μe2 for all μ ∈ R, it follows that J2 = J2|M0 ⊕ IdRe2 is linear.
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Moreover, we have

‖a‖ = ess supω∈� ‖a(ω)‖ = max{‖α‖∞, ‖β‖∞, ‖γ ‖∞}
= max{‖T α‖∞, ‖T β‖∞, ‖T γ ‖∞}
= ess supξ∈� ‖J2(a)(ξ)‖
= ‖J2(a)‖,

so J2 is an isometry and therefore a Jordan isomorphism by Corollary 2.2 that extends
θ |P(M2). The above discussion yields

Corollary 4.18 If f : M
◦
+ → N

◦
+ is a bijective Hilbert’s metric isometry with f (e) = e such

that its induced map θ : P(M) → P(N ) is an orthoisomorphism, then θ extends to a Jordan

isomorphism J : M → N.

We will now show that the quotient map induced by the Jordan isomorphism J above
coincides with S.

Lemma 4.19 Let J : M → N be a Jordan isomorphism that extends θ . Then J induces the

quotient map J : [M] → [N ] defined by J ([a]) := [J (a)], which satisfies J = S.

Proof Let b =
∑n

i=1 λi pi , where λ1, . . . , λn ∈ R and p1, . . . , pn ∈ P(M) are orthogonal
projections. Then

J [b] = [Jb] =
[

n
∑

i=1

λiθ(pi )

]

=
n
∑

i=1

λi [θ(pi )] =
n
∑

i=1

λi S[pi ] = S[b]. (4.11)

Now let a ∈ M and ε > 0. By the spectral theorem, let b be as above such that ‖a − b‖ < ε.
Then ‖Ja − Jb‖ < ε, and since S is a ‖·‖v-isometry and ‖·‖v ≤ 2 ‖·‖,

‖J [a] − S[a]‖v ≤ ‖J [a] − J [b]‖v + ‖J [b] − S[b]‖v + ‖S[b] − S[a]‖v

= ‖[Ja − Jb]‖v + ‖[b − a]‖v

≤ 2 ‖Ja − Jb‖ + 2 ‖b − a‖
< 4ε.

Hence J [a] = S[a] for all [a] ∈ [M]. ⊓⊔

Remark 4.20 If M and N are Euclidean Jordan algebras and θ : P(M) → P(N ) is an orthoi-
somorphism, then an easier argument shows that θ extends to a Jordan isomorphism. Indeed,
every a ∈ M has a unique spectral decomposition a = λ1 p1 + . . . + λn pn , and so we can
define J (a) := λ1θ(p1) + . . . λnθ(pn). Then J (a + μe) = J (a) + μe, so J induces a map
J : [M] → [N ] by J ([a]) := [J (a)]. By (4.11), J = S is linear. Let M0 and N0 be the
kernels of the traces in M and N respectively, then [M] ∼= M0 and [N ] ∼= N0. It is clear from
the definition of J that it maps M0 into N0, and so (4.10) implies that J ∼= J |M0 is linear,
thus J = J |M0 ⊕ IdRe is linear. Since the spectrum and hence the norm is preserved, J is a
Jordan isomorphism by Corollary 2.2.

We can now prove the following characterization of the Hilbert’s metric isometries on
cones in JBW-algebras.
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Theorem 4.21 If M and N are JBW-algebras, then f : M
◦
+ → N

◦
+ is a bijective Hilbert’s

metric isometry if and only if

f (a) = Ub J (aε) for all a ∈ M
◦
+, (4.12)

where ε ∈ {−1, 1}, b ∈ N ◦
+, and J : M → N is a Jordan isomorphism. In this case

b ∈ f (e)
1
2 .

Proof Let f : M
◦
+ → N

◦
+ be a bijective Hilbert’s metric isometry. Then we can define a new

bijective isometry g : M
◦
+ → N

◦
+ by

g(a) = U
f (e)

− 1
2

f (a) for all a ∈ M
◦
+.

Note that g(e) = e and hence it follows from Corollary 4.15 that either g or ι ◦ g has the
property that the induced map θ : P(M) → P(N ) is an orthoisomorphism. Let h ∈ {g, ι◦ g}
be the map with this property and J be the Jordan isomorphism from Corollary 4.18. Note
that J induces a map from M

◦
+ to N

◦
+. Let a ∈ M◦

+, then a = exp(c) for some c ∈ M , and
so by Lemma 4.19,

h(a) = exp(S log(exp(c))) = exp(J [c]) = exp([Jc]) = exp(Jc) = J (exp(c)) = Ja = Ja.

Thus, h coincides with J on M
◦
+. Since h ∈ {g, ι ◦ g}, for either ε = 1 or ε = −1 we have

that
(

U
f (e)

− 1
2

f (a)

)ε

= Ja for al a ∈ M
◦
+,

hence

f (a) = U
f (e)

1
2
(Ja)ε = U

f (e)
1
2
(Ja)ε = U

f (e)
1
2

J (aε) = Ub J (aε)

for some b ∈ f (e)
1
2 . To complete the proof note that any map of the form (4.12) is a bijective

Hilbert’s metric isometry. ⊓⊔

Theorem 4.21 has the following direct consequence.

Corollary 4.22 Let M and N be JBW-algebras. The metric spaces (M
◦
+, dH ) and (N

◦
+, dH )

are isometric if and only if M and N are Jordan isomorphic.

Next, we will describe the isometry group Isom(M
◦
+) consisting of all bijective Hilbert’s

metric isometries on M
◦
+. Consider the subgroup Proj(M+) of projectivities consisting of

maps τ : M
◦
+ → M

◦
+ of the form τ(a) = T a, where T ∈ Aut(M+). Note that by Proposition

2.3 elements τ in Proj(M+) can be written as τ(a) = Ub Ja with b ∈ M◦
+ and J a Jordan

isomorphism. So, if we let ι0 : a ∈ M
◦
+ �→ a−1 ∈ N

◦
+, then

(ι0 ◦ τ ◦ ι−1
0 )(a) = (Ub Ja−1)−1 = Ub−1 Ja,

which shows that ι0 ◦ τ ◦ ι−1
0 ∈ Proj(M+), and hence Proj(M+) is a normal subgroup of

Isom(M
◦
+). Moreover, the group C2 of order 2 generated by ι0 has trivial intersection with

Proj(M+) if M
◦
+ contains an orthogonal simplex. On the other hand, if M

◦
+ does not contain

an orthogonal simplex, then ι0 belongs to Proj(M+). Indeed, if M contains no nontrivial
projections, then M = R and ι0 is clearly projectively linear here. If M contains a nontrivial
projection, then it is minimal and maximal. So, if p ∈ M is a nontrivial central projection,
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then M = Mp⊕Mp⊥ . Since both Mp and Mp⊥ are JBW-algebras which contain no nontrivial
projections, we conclude that Mp

∼= Mp⊥ ∼= R and M ∼= R
2. On (R2

+)◦ the inversion map
satisfies ι(x, y) = (x−1, y−1) = (xy)−1(y, x), which shows that ι0 belongs to Proj(M+).
Finally, suppose that all nontrivial projections in M are not central. Then M is a factor,
and for any nontrivial projection p, it follows that Mp

∼= R by the minimality of p. This
means that all nontrivial projections in M are abelian and their maximality implies that they
have central cover e. Since we can write e = p + p⊥, we find that M is of type I2. By
[17, Theorem 6.1.8] we have that M is a spin factor, so M+ is strictly convex. For an order
unit space with strictly convex cone there always exists a strictly positive state, thus by [29,
Remark 3.5] all bijective Thompson’s metric isometries on M◦

+ are projective linear order
isomorphisms. This implies that ι0 ∈ Proj(M+). We have shown that if M is a JBW-algebra
such that M◦

+ does not contain an orthogonal simplex, then M+ must be a Lorentz cone (i.e.,
the cone of a spin factor or R

2
+). To summarize we have the following result.

Proposition 4.23 Let M be a JBW-algebra. If M
◦
+ contains an orthogonal simplex, then the

group of bijective Hilbert’s metric isometries Isom(M
◦
+, dH ) satisfies

Isom(M
◦
+, dH ) ∼= Proj(M+) ⋊ C2.

If M
◦
+ does not contain an orthogonal simplex, then Isom(M

◦
+, dH ) ∼= Proj(M+). Moreover,

we have that Isom(M
◦
+, dH ) ∼= Proj(M+) if and only if M+ is a Lorentz cone.

We believe that the results in this section could be extended to general JB-algebras. How-
ever, our arguments rely in a crucial way on the existence of nontrivial projections, which
may not be present in a JB-algebra. It would also be interesting to know whether it is true
that if the Hilbert’s metric isometry group of a cone C in a complete order unit space is not
equal to the group of projectivities of C , then the order unit space is a JB-algebra. To date no
counter example to this statement is known.
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License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
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