
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Sze, Jeeu Fong and Salhi, Said and Wassan, Niaz A. (2016) A hybridisation of adaptive variable
neighbourhood search and large neighbourhood search: Application to the vehicle routing problem.
 Expert Systems with Applications, 65 . pp. 383-397. ISSN 0957-4174.

DOI

https://doi.org/10.1016/j.eswa.2016.08.060

Link to record in KAR

http://kar.kent.ac.uk/57232/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/46521076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A hybridisation of adaptive variable neighbourhood search

and large neighbourhood search: Application to the vehicle

routing problem

Jeeu Fong Sze∗, Said Salhi, Niaz Wassan

Centre of Logistics and Heuristics Optimisation (CLHO)

Kent Business School, University of Kent, Canterbury, CT2 7PE, United Kingdom

Abstract

In this paper, an adaptive variable neighbourhood search (AVNS) algorithm that

incorporates large neighbourhood search (LNS) as a diversification strategy is pro-

posed and applied to the capacitated vehicle routing problem. The AVNS consists

of two stages: a learning phase and a multi-level VNS with guided local search.

The adaptive aspect is integrated in the local search where a set of highly suc-

cessful local searches is selected based on the intelligent selection mechanism. In

addition, the hybridisation of LNS with the AVNS enables the solution to escape

from the local minimum effectively. To make the algorithm more competitive in

terms of the computing time, a simple and flexible data structure and a neighbour-

hood reduction scheme are embedded. Finally, we adapt a new local search move

and an effective removal strategy for the LNS. The proposed AVNS was tested

on the benchmark data sets from the literature and produced very competitive

results.

Keywords: adaptive search, variable neighbourhood, large neighbourhood, data

structure, neighbourhood reduction, hybridisation

∗Corresponding author
Email addresses: J.F.Sze@kent.ac.uk, +44(0)1227 823375 (Jeeu Fong Sze),

S.Salhi@kent.ac.uk (Said Salhi), N.A.Wassan@kent.ac.uk (Niaz Wassan)

Preprint submitted to Expert Systems with Applications September 12, 2016

1. Introduction

The vehicle routing problem (VRP) was first introduced by Dantzig and Ramser

(1959) as the Truck Dispatching Problem, which has been extensively studied

thereafter because of its high practicability in transportation logistics. The VRP is

concerned about the determination of a set of routes for a fleet of vehicles such that5

each vehicle starts and ends at a single depot, while satisfying all the customers’

requirement and operational constraints with the objective of minimising the total

transportation cost.

Due to the limited success of exact methods in handling large size problems, most

research on the VRP have devoted to the use of heuristic approaches. Among10

the most popular metaheuristics include tabu search, simulated annealing, genetic

algorithm, large neighbourhood search and variable neighbourhood search. Since

there is a tremendous amount of work devoted to the classical VRP, we only discuss

some of the research which has proven to show relatively good results in solving the

problem. Toth and Vigo (2003) proposed the granular tabu search strategy based15

on the concept of restricted neighbourhoods. Golden et al. (1998) and Li et al.

(2005) combined the record-to-record travel with variable-length neighbourhood

list and found a number of new best results. Mester and Bräysy (2007) put forward

the active guided evolutionary strategies (AGES) and obtained many best known

results. This is partly due to the use of a good quality initial solution. Other20

methods such as the Greedy Randomized Adaptive Search Procedure (Prins, 2009)

and the threshold accepting algorithm of Tarantilis and Kiranoudis (2002) have

also been successfully applied. Variable neighbourhood search (VNS) has proved

to be one of the most successful metaheuristics for solving different variants of the

VRP (Polacek et al., 2004; Kytöjoki et al., 2007; Fleszar et al., 2009; Imran et al.,25

2009; Chen et al., 2010; Polat et al., 2015). VNS is also known to be competitive at

solving many other combinatorial optimisation problems. For instance among the

very recent studies include the train scheduling and timetabling problem (Samà

et al., 2016; Hassannayebi and Hessameddin, 2016) and a related VRP known as

the swap-body VRP (Todosijević et al., 2016).30

The metaheuristics are capable to provide satisfactory results within a reasonable

time. However, these approaches face the challenges of dealing with premature

convergence. One way to overcome such limitation is by developing hybrid ap-

proaches, which have the added advantage of considering the strengths of more

2

than one metaheuristic. Xiao et al. (2014) proposed an interesting hybridisation35

of the VNS with simulated annealing. Most recently, Akpinar (2016) presented a

hybrid algorithm that combined LNS with ant colony optimisation yielding sat-

isfactory results when tested on some VRP instances. For more details about

hybrid metaheuristics, interested reader can refer to Raidl (2006). With the suc-

cess of such hybridisations in solving many combinatorial opimisation problems,40

this study aims to explore the two metaheuristics, namely VNS and LNS.

The idea of adaptive search in developing algorithms for various combinatorial

problems including the VRP has emerged rather strongly in the past decade. The

important feature is that the parameters of the algorithm are no longer fine-tuned

but adjusted dynamically using the information obtained during the search. Adap-45

tive large neighbourhood search (ALNS) is one of the most popular and successful

adaptive approaches, where the selection of the removal and repair operators is

performed favouring the ones with a higher success rate. Stenger et al. (2013) in-

tegrated a similar selection rule in the shaking phase of VNS. Related research ad-

dressing the ALNS include Ropke and Pisinger (2006), Pisinger and Ropke (2007)50

and Azi et al. (2014). Kritzinger et al. (2015) provided an interesting and informa-

tive review about adaptive search techniques for a variety of VRPs. For the VNS

implementation, the adaptive aspect is usually integrated in the shaking phase.

For instance, in Stenger et al. (2013) and in Li et al. (2015), the neighbourhood

strategy is selected using a roulette wheel method based on the success rate of each55

neighbourhood. This research is different from the others as it focuses on integrat-

ing the adaptive search at the local search phase. In other words, this study is

motivated by the idea of incorporating adaptive strategies to guide the search more

effectively. To reduce the risk of being trapped at the local optima, we develop a

powerful LNS with interesting removal and insertion rules that is integrated with60

the proposed AVNS acting as a strong diversification strategy.

The contributions of this paper are fourfold:

(i) To propose an effective hybridisation of VNS and LNS,

(ii) To develop an efficient AVNS which integrates learning in its local search

phase,65

(iii) To introduce a new and effective data structure and neighbourhood reduction

scheme,

3

(iv) To propose a new local search operator and a removal strategy for LNS that

incorporates a VNS structure.

To the best of our knowledge, this is the first study that addresses the integration of70

VNS and LNS with the latter prescribing to a VNS structure. Moreover, the local

search operators in our algorithm are selected adaptively reflecting their individual

success during the search. In this study, we also adapt a local search operator with a

new feature. Within LNS, several removal strategies including a new one which we

propose are used. In addition, a newly adapted neighbourhood reduction scheme75

which restricts the search to a set of neighbouring customers only is developed

resulting in a significant decrease in computational effort. The data structure

which we introduce is also simple but very effective in expediting the algorithm.

The proposed algorithm is tested on the classical VRP, which is used as a platform

for our experiments. Since this problem is the basis for other related routing80

problems, successful implementations could then be easily adapted and extended

to cater for other related variants with minimal changes.

The rest of the paper is organized as follows. Section 2 presents the proposed

algorithm. The explanation of the mains steps along with their components are

provided in Section 3. The computational results are presented in Section 4. Fi-85

nally, the last section concludes our findings.

2. An Adaptive Variable Neighbourhood Search (AVNS) algorithm

The main idea of VNS is to apply a systematic change of neighbourhoods within a

local search algorithm in order to escape from local optimality. This metaheuris-

tic, originally proposed by Mladenović and Hansen (1997), attempts to visit the90

next ‘larger’ neighbourhood when there is no improvement found and then reverts

back to the first ‘smaller’ one if a better solution is obtained. By returning to

the first neighbourhood, the size of the search space is reduced and therefore the

search could be performed relatively quicker with the aim of getting a better local

optimum. For an overview of heuristic search including VNS, see Salhi (2006) but95

for more details on VNS and its variants, the reader will find the review paper by

Hansen et al. (2010) to be very informative.

In this paper, an adaptive VNS (AVNS) algorithm presented in Figure 1 is devel-

oped. The AVNS consists of two stages: Stage 1 uses the best improvement VNS

4

whereas Stage 2 applies the multi-level kth improvement VNS. The best improve-100

ment VNS in Stage 1 is adapted from the basic VNS of Hansen and Mladenović

(2001) by introducing some extra features such as the addition of an empty route,

use of a special data structure, a guided shaking strategy, the Dijkstra’s post-

optimiser, a diversification step and a learning strategy. In Stage 1, the improve-

ments for all defined operators are found but only the best move is performed. The105

frequency of success of all the operators is recorded and this useful information is

then used in Stage 2 to guide the search more effectively.

Stage 2 of the AVNS combines the idea of the multi-level composite heuristic (Salhi

and Sari, 1997) with the VNS (Hansen and Mladenović, 2001). In other words,

the multi-level kth improvement approach acts as the local search in the VNS. In110

addition, we adopt a scheme that sits between the best and the first improvement

strategies which we define as the kth improvement. The main difference between

the two stages of the AVNS algorithm is in the local search. In Stage 2, a small

number of the local search operators is selected pseudo-randomly at each iteration

based on their respective success rate found in Stage 1.115

2.1. Stage 1 of the AVNS

The AVNS algorithm starts by defining the initial configurations which include

a set of neighbourhood structures Sj, j = 1, ..., pmax, local search operators Lq,

q = 1, ..., qmax, the scores and diversification parameters. An initial solution is

generated and used as the global best, xbest. The data structure is also defined in120

this step.

In Step 1, a dummy empty route is added to allow for more flexibility in the search.

The core steps of the VNS are stated in Step 2 and Step 3. In the shaking step (Step

3a), a random solution x′ is generated from S1(x) using the guided shaking strategy

which will be discussed in Section 3.7, and then improved by the best improvement125

procedures iteratively to obtain x′′ (Step 3b). The local search strategy is applied

until there is no more improvement. If the local minimum x′′ is better than the

incumbent best solution x, we set x = x′′ and the search reverts back to the first

neighbourhood S1, otherwise the search will explore the next neighbourhood (i.e.

p = p+1) where Step 3 is then repeated. This process continues until the number130

of neighbourhood structures reaches pmax. At the end of Step 3b, the score for

each operator is computed using Equation (1), by adding the current score to the

5

Stage 1

Step 0 Initialisation. Define a set of neighbourhood structures Sp, for p = 1, ..., pmax and
a set of local search operators Lq, for q = 1, ..., qmax. Initialise Score(Lq) = 0,
diversification control parameter, κ = κmin and numDiv = 1. Define the maximum
number of diversifications, MaxDiv. Generate an initial solution x, set xbest = x and
define the data structure.

Step 1 Add an empty route in the initial solution.

Step 2 Set p← 1.

Step 3 Repeat the following until p = pmax:

(a) Shaking: Generate a solution x′ at random from the pth neighbourhood of
x(x′ ∈ Sp(x)) using the guided shaking strategy.

(b) Best improvement local search: For each operator Lq, find the gain, Gain(Lq)
using the best improvement strategy. Select the operator with the maximum
gain and perform the move to obtain the best neighbouring solution x′′.

Set

Score(Lq) = Score(Lq) +
Gain(Lq)

max
1≤h≤qmax

Gain(Lh)
(1)

(c) Move or not: If the local minimum x′′ is better than the incumbent x, set
x← x′′ and go to Step 2, otherwise set p← p+ 1.

Step 4 Construct a giant tour and a directed cost network based on the incumbent best
solution x and apply Dijkstra’s algorithm to get x̂. If x̂ is better than the incumbent
x, set x← x̂ and go to Step 2.

Step 5 If the solution x is better than xbest, set xbest ← x and κ ← κmin, else set κ ←
κ+ 0.05N .

Set numDiv ← numDiv + 1. If numDiv > MaxDiv, go to Step 6;

Diversification: Apply the large neighbourhood strategy based on κ to get a new
solution x̃. If x̃ is better than xbest, set xbest ← x̃;

Add/drop the empty route(s) and go to Step 2.

Step 6 Learning: For each operator Lq, compute the probability, Prob(Lq) and cumulative
probability, F (Lq) for q = 1, ..., qmax

Prob(Lq) =
Score(Lq)

qmax
∑

q=1

Score(Lq)

, F (Lq) =
∑

Lq≤Lqmax

Prob(Lq) (2)

Stage 2

Step 7 Initialise κ = κmin and nonImproveDiv = 0. Define lcmin, lcmax and maximum
number of unimproved diversifications, MaxDiv2.

Step 8 Set p← 1.

6

Step 9 Repeat the following until p = pmax:

(a) Operator selection from learning: Generate a random number mmax ∈
[lcmin, lcmax] and set m = 1.
Repeat the following until m = mmax:

(i) Generate α ∈ (0, 1) and compute L̂q = F−1(α) with F defined in Equa-
tion (2).

(ii) Pick the operator based on L̂q, set Rm ← L̂q, and m← m+ 1.

Sort the operator Rm from simpler to complex for m = 1, ...,mmax

(b) Shaking: Generate a solution x′ at random from the kth neighbourhood of
x(x′ ∈ Sp(x)) using the guided shaking strategy.

(c) Multi-level kth improvement local search:

(i) Set m← 1.

(ii) Repeat the following until m = mmax:

Apply Rm to get the solution x′′, if x′′ is better than x′, set x′ ← x′′,
and go to Step 9c(i), otherwise set m← m+ 1.

(d) Move or not: If the local minimum x′ is better than the incumbent x, set x← x′

and go to Step 8, otherwise set p← p+ 1.

Step 10 Construct a giant tour and a directed cost network based on the incumbent best
solution x and apply Dijkstra’s algorithm to get x̂. If x̂ is better than the incumbent
x, set x← x̂ and go to Step 8.

Step 11 If the solution x is better than xbest, set xbest ← x, κ← κmin, and nonImproveDiv =
0, else set κ← κ+ 0.05N and nonImproveDiv ← nonImproveDiv + 1;

If nonImproveDiv > MaxDiv2, stop;

Diversification: Apply the large neighbourhood strategy based on κ to get a new
solution x̃. If x̃ is better than xbest, set xbest ← x̃;

Add/drop the empty route(s) and go to Step 8.

Figure 1: An adaptive VNS algorithm.

marginal relative gain. Other operators, though their corresponding best moves

may not be as good as the overall best move, are also worth considering since

only positive gains are recorded. Therefore, this ratio provides a more appropriate135

measure while not favouring exclusively the best operator only. In addition, a data

structure is embedded in Step 3 to accelerate the search, in which the details are

provided in Section 3.3.

After all the neighbourhoods are evaluated, a post-optimiser using the Dijkstra’s

algorithm is implemented as indicated in Step 4. In this step, the incumbent best140

solution is used to construct a giant tour by combining the obtained routes. Then,

a directed cost network is constructed and Dijkstra’s algorithm is applied to obtain

a new solution x̂. Note that x̂ is either unchanged or better than the incumbent

solution (see Section 3.8). If x̂ is better than the incumbent solution x, we set

7

x = x̂ and the search reverts back again to S1.145

In Step 5, if the incumbent x is better than the global best, xbest, we set xbest =

x and κ = κmin. The diversification control parameter, κ is used to guide the

diversification process. Here, the large neighbourhood search is adopted to create

a new perturbed solution from which the process reverts back to Step 2. The details

of Step 5 will be revisited in Section 3.9. The search terminates when a predefined150

maximum number of diversifications is reached. In Step 6, the probability and

cumulative probability for each operator are computed using Equation (2), in which

the information is used in Stage 2 for the selection of the operators.

2.2. Stage 2 of the AVNS

In Step 7 and Step 8, the parameters are initialized. The number of operators to155

be selected, mmax is chosen in the range of [lcmin, lcmax] in Step 9a. This number

can be critical to the success of the search. The idea is to get a small enough

number that requires a reasonable computational time while retaining the solution

quality. Empirical results show that [lcmin, lcmax] = [3, 5] is appropriate. The AVNS

algorithm is adaptive in the sense that mmax is not fixed beforehand but randomly160

selected in the above range as shown in Step 9a. Besides, the choice of the operator

at any iteration is carried out pseudo-randomly (see Step 9a(i) – Step 9a(ii)). In

other words, the higher the score for an operator is (Equation (1)), the greater the

chance for such an operator to be chosen.

After selecting a set of local search operators, Rm (m = 1, ...,mmax) and sorting165

them based on the complexity of the moves, as defined in Section 3.8, the guided

shaking step with the same neighbourhood structures defined in Step 0 is per-

formed (Step 9b). Next, the multi-level kth improvement local search is applied, as

presented in Step 9c. Initially, we set m = 1 and apply the first level of refinement

with the local search R1. If the solution x′′ found is better than x′, we set x′ = x′′
170

and the search reverts back to m = 1, otherwise we proceed to the next level by

setting m = m + 1. Note that x′′ could be found as the kth improved solution

or the best improved one if k is not reached. The record of information that we

discuss in Section 3.4 is therefore based on this aspect.

The operators are sorted such that the operator in Level 1 is the simplest, followed175

by Level 2 which is the second simplest until Level mmax the most complex one.

Therefore when the solution has changed, it is worth reverting back and applying

8

the search in Level 1 which is relatively less computationally expensive. When the

current level could not improve the solution, we use the operator in the next level

to refine the solution. This process continues until m reaches mmax. Similar to180

Stage 1, the Dijkstra’s post-optimiser is performed in Step 10. The LNS which

will be described in Section 3.9 is used as the diversification strategy in Step 11.

The search stops when there is no improvement on the solution after a maximum

number of consecutive diversifications.

3. Explanation of the main steps185

3.1. Initial solution

The saving method (Clarke and Wright, 1964) is adopted to generate the initial

solution. The initial solution is then refined using 2-opt (Lin, 1965) and 2-opt*

(Potvin and Rousseau, 1995) before proceeding to the AVNS.

3.2. Neighbourhood reduction190

In this study, a neighbourhood reduction scheme is developed and used throughout

the AVNS algorithm with the aim to avoid performing unnecessary calculations.

This is achieved by identifying the customers that could be potentially placed next

to each other in a route hence restricting the search to those customers only (Salhi

and Sari, 1997). There are two types of possible moves for a customer: inserting195

the customer (i) between a pair of customers, or (ii) between a customer and the

depot. We propose two logical matrices, flag1, f lag2 ∈ R
(N+1)×(N+1) for these

two moves respectively. More specifically, flag2 considers a larger set of potential

customers compared to flag1 because some customers are worth considering when

the vehicle is en-route to and from the depot, even they are not in close proximity200

to the depot. In addition, we set flag1(i, j) and flag2(i, j) ‘true’ if customers i

and j are potential customers for local search move (i) and (ii) respectively, and

‘false’ otherwise.

To assign values to these logical matrices, we propose two new criteria and also

adapt the one given in Salhi and Sari (1997). The first criterion is devoted to flag1205

and the last two are designed for flag2. Using these three criteria is necessary

because Criterion 1 is solely based on the distance between the customers and

therefore the percentage of the customers flagged can be relatively small where

9

the customers that are far from the depot are excluded in this case. Criterion 2

and Criterion 3, which consist of a larger sets of potential customers are proposed210

to complement Criterion 1 and they are only used for the evaluation of move (ii).

The percentages of flagged customers using these criteria are shown in Section

4.1.

Criterion 1: Distance between customers

We propose the qth quantile method where for each customer i, the top qth quantile215

nearest customers to i are assigned a ‘true’ value. With this, each customer has

an approximate equal number of flagged neighbours. From a series of experiments

conducted using different q values, it is found that q = 3% is sufficient. An example

of the flagged customers using this criterion is illustrated in Figure 4(a). Note that

flag1(i, j) is ‘false’ using Criterion 1 because customer i and j are distant from220

each other.

Criterion 2: Distance between the depot and customers

When a vehicle is departing from or arriving at the depot, some customers can be

worth assigning, though they may not necessary be located within close proximity

to the depot. This second criterion is based on the insertion of customer j between225

customer i and the depot. This simple mechanism is presented in Figure 2. Figure

4(b) illustrates that flag2(i, j) is ‘true’ based on Criterion 2 because customer j

is worth checking for the insertion between the depot and customer i when the

vehicle is en-route returning to the depot, which may result in a reduced cost.

This shows that Criterion 2 is necessary to be added as such an insertion will have230

been excluded for evaluation using Criterion 1 otherwise.

Criterion 3: Angle between the depot and customers

In addition to Criterion 2, the angle between the customers with respect to the

depot, γ(i, 0, j) is also taken into account when defining flag2 (Salhi and Sari,

1997). If customers i and j are located within a certain angle from the depot,235

they should not be excluded for evaluation in subsequent moves. The steps of

this criterion are displayed in Figure 3 and an illustration is shown in Figure 4(c)

with guaranteed minimum angle θmin and maximum threshold angle θmax. In

the example, Criterion 3 is complementary to Criterion 2 because flag2(i, j) is

already ‘true’ using Criterion 2. Preliminary experiments show that θmin = π/12240

and θmax = π/6 are sufficient for this reduction test to be useful.

10

Step 1 Find the average distance of all customers from the depot, d̄0 =

∑N

i=1
d0i

N
.

Step 2 Determine the set of customers near the depot, as N0 = {i = 1, ..., N | d0i < d̄0}.

Step 3 For each customer i,

(a) compute the insertion of j between i and the depot 0, δ0ij = dij+d0j−d0i, ∀j ∈
N0;

(b) determine the average cost of insertion, δ̂i =

∑

j∈N0
δ0ij

|N0|
.

(c) For all j ∈ N0:

If δ0ij < δ̂i, set flag2 (i, j) = TRUE (i.e. the pair (i, j) cannot be excluded
for possible moves)

Figure 2: Criterion 2 - potential insertion of customer j between customer i and the depot.

Step 1 Compute the angle, γ(i, 0, j)

Step 2 Case 1: If γ(i, 0, j) ≤ θmin

flag2 (i, j) = TRUE

Case 2: else

If γ(i, 0, j) ≤ θmax

If (d0i ≤ d̄0 and d0j ≤ d̄0) or (d0i ≤
d0j

2
or d0j ≤

d0i

2
)

flag2 (i, j) = TRUE

Figure 3: Criterion 3 - angle between the depot and customers.

 0 Flag based on criterion 1

Flag based on criterion 2 Flag based on criterion 3 case 2 (șmax)

Flag based on criterion 3 case 1 (șmin) Depot

Customer

j

i

0

j

i

0

șmin ș
max

j

i

0
(a) Criterion 1 (b) Criterion 2 (c) Criterion 3

R
1

R
2
 R

2

R
1

R
2

R
1

Figure 4: An illustration of the neighbourhood reduction scheme using three criteria.

3.3. A special data structure in AVNS Stage 1 (Step 3 in Figure 1)

To speed up the local search process, a special memory structure that is initially

proposed by Osman and Salhi (1996) is adapted by introducing several new ele-

11

ments. The objective is to make use of the previously computed information and245

update the memory when necessary. A similar idea is also put forward by Zachari-

adis and Kiranoudis (2010) through the use of static move descriptor (SMD) to

reduce the computational complexity of the local search. In their approach, each

operator is represented in a different SMD matrix defined by its move point and

rule. Each time when the best admissible move is performed, the SMD matrices250

are updated. However, one drawback of this method is the requirement of a large

computer memory if a large number of local search operators is used.

The use of data structure is integrated in Step 3 in Figure 1, which is motivated

by the idea that not every route changes when a move is performed, therefore the

subsequent search will only be evaluated based on the affected routes. There are255

two levels of memory structures that need monitoring. In the first level, the cost

of removing each customer, Z ∈ R
N (N being the total number of customers)

is stored. Z is used for all operators when a single customer is removed from a

route, such as the 1-insertion and 1-1 exchange (see Section 3.8). When customer

i has changed its position, the value of Zi and the adjacent customers will also be260

updated.

In the second level, the set of all the best moves are stored in three matrices, namely

the gain matrix, G ∈ R
(r×r), the inter-route information matrix, I ∈ R

(r
2
−r
2

×a),

and the intra-route information matrix, I2 ∈ R
(r×a) (see Figure 5) where r is the

number of routes in the solution and a is the number of attributes. In this study,265

we use a value of ten for a, indicating that ten attributes are to be saved in both

I and I2. The value of a can be easily increased if more information need to be

stored in the matrices. It is worth noting that in the original study of Osman and

Salhi (1996), only the gain matrix and the inter-route information matrix of six

attributes are considered. However, here we introduce three matrices to store the270

information of the moves as compared to Zachariadis and Kiranoudis (2010) where

the number of matrices adopted depends on the number of local search operators

which can be relatively large. While the SMD uses a set of move points and rules

to define the matrices dimension, our information stored in the matrices is route-

based. Each time after performing the best move, there are at most two routes275

that can be changed whereas the other routes remain intact and hence do not need

to be re-evaluated in the subsequent iteration.

In our gain matrix G, the upper triangular matrix (Gjk) records the best gain

12

for each pair of inter-route move, the diagonal matrix (Gjj) for the intra-route

move whereas the lower triangular matrix (Gkj) is assigned a positional index280

that is used to refer to the position in I for any pair of routes j, k = 1, ..., r, as

illustrated in Figure 5(a) and Figure 5(b). The positional index, Gkj is defined as:

Gkj = j + ((k − 1)(k − 2)/2), where j < k. For instance, the gain between route

2 and route 4 is given in G24 which is obtained as the best gain that can be found

based on all the operators (i.e. 1-insertion, 1-1,...). The corresponding positional285

index is G42 = 2 + (3(2)/2) = 5 as shown in Figure 5(a).

For the intra-route move, Gjj does not have the corresponding positional index

assigned to it, therefore I2 (Figure 5(c)) is created to record this information. The

information matrices are used to store all the information needed for the move with

the ten attributes defined as follows: (i) positional index (for I) or route index (for290

I2), (ii) gain, Gjk, (iii) route j, (iv) route k, (v) position s (from route j), (vi)

position t (to route k), (vii) position u (from route k), (viii) position v (to route

j), (ix) type of operator and (x) reverse status. Note that I2 acts exactly the same

like I except that the attributes (i), (iii) and (iv) contain the same value referring

to the route index. In this study, the data structure is enhanced by having an extra295

intra-route information matrix in addition to the recording of more information

that is needed for further evaluating a given move.

The data structure mechanism is given in Figure 6. At the first iteration, all intra

and inter-route moves are evaluated and the best moves are stored in the matrices

G, I and I2 (Step 2 in Figure 6). In Step 4 of Figure 6, the best move with the300

highest gain is selected from the upper triangular (for inter-route moves) or the

diagonal matrix (for intra-route moves) of G. This move is then performed based

on the information recorded in I or I2 (Step 5 in Figure 6). Next, the gains for the

routes that have changed are initialized to zero (Step 6 in Figure 6), resulting in

recomputing the new gains for these routes. When the search returns to Step 2 of305

Figure 6, only 2×(r−1) pairs of inter-route and two pairs of intra-route need to be

updated instead of evaluating all the r(r− 1)/2 pair of routes. The computational

effort saved using the data structure is presented in Section 4.1.

3.4. The record of useful information in AVNS Stage 2 (Step 9 in Figure 1)

The local search used in Stage 2 is the multi-level with the kth improvement strat-310

egy. In any level of the local searches if no better move is found, it means a

13

ێێۏ
ێێێ
11ܩۍ 12ܩ 13ܩ

 1 22ܩ 23ܩ

 2 3 33ܩ

14ܩ 15ܩ 24ܩ 16ܩ 25ܩ 34ܩ 26ܩ 35ܩ 36ܩ

4 5 6

7 ǥǥ
44ܩ 45ܩ 55ܩ 46ܩ ݎ2െݎ 56ܩ

2
ݎݎܩ ۑۑے

ۑۑۑ
ې

ێێۏ
ێێێ
ۍ 1 ǥ

 2

ڭ ڰ
ݎ2െݎ

2
ǥ ۑۑے ڭ

ۑۑۑ
ې

ێێۏ
ێێێ
ۍ 1 ǥ

ڭ2 ݎڰ ڭ
ۑۑے
ۑۑۑ
ې

Positional index

Attributes, a

Positional index

Inter-route gain

Dimension:ሺ࢘ ൈ ࢘ି࢘ሻ Dimension:ሺ࢘ ൈ ሻࢇ
(a) Gain matrix, G (b) Inter-route information matrix, I (c) Intra-route information matrix, I2

Route index

Dimension:ሺ࢘ ൈ ሻࢇ

Attributes, a

Intra-route
gain

Figure 5: Data structure consists of the gain matrix, G and information matrices, I and I2.

Step 1 Initialize Gjj = 0, Gjk = 0 and Gkj = j + ((k − 1)(k − 2)/2) for j = 1, ..., r,
k = j + 1, ..., r. Define v, w = 1, ..., r.

Step 2 For each local search operator, find the gain from the routes if one of the routes
involves v or w and record it in the upper triangular (inter-route) or diagonal matrix
(intra-route) of G. Based on the positional index in the lower triangular matrix of
G, record the attributes of the move in I or I2 (using the positional index as the
row number).

Step 3 Initialize gain = 0.

Step 4 From the upper triangular and diagonal matrix Gjk, j ≤ k, find the maximum gain
and set gain = Gvw, where v and w refer to the route numbers associated with
gain. The corresponding positional index is defined as:

P =

Gwv if v < w (i)

Gvw if v > w (ii)

v otherwise (iii)

Step 5 If gain ≤ 0, stop.
Else, using P as the row index in I (for (i) and (ii)) or I2 (for (iii)), access the
related attributes recorded and perform the move.

Step 6 Initialize the upper triangular and diagonal matrix Gvt = 0 if v ≤ t; Gwt = 0 if
w ≤ t; Gtv = 0 if v ≥ t; Gtw = 0 if w ≥ t for t = 1, ...r

Step 7 Go to Step 2.

Figure 6: Data structure mechanism.

complete search is performed on all routes using that operator. Therefore in the

subsequent iteration, the search only needs to be performed on the routes that

have been modified. With this respect, we record the complete search status for

the operator based on each pair of routes. We use a three-dimensional logical315

matrix, B ∈ R
(mmax×r×r) to represent the status where mmax is the number of

14

operators and r is the number of routes.

Initially, the values of Bmjk are ‘false’ for m = 1, ...,mmax, and j, k = 1, ..., r. There

are three situations that can be encountered when performing the search using an

operator d on a pair of routes e and f :320

(i) an improvement is found but the move is not performed because it is not the

best among all the k improvements,

(ii) an improvement is found and the move is performed, and

(iii) no improvement is found.

For situation (i), the value of Bdef remains ‘false’. In (ii), we set Bmef = ‘false’325

for m = 1, ...,mmax, therefore every operator will re-evaluate the pair of routes

that have been changed in the subsequent iterations. As for (iii), Bdef = ‘true’

which implies that operator d will not have to re-check routes e and f in the next

iteration.

3.5. Penalized objective function330

In this study, the algorithm only considers moves that can improve the current

solution. To allow more flexibility, we extend the definition of improvement moves

to both feasible and infeasible moves by using the idea of penalized objective

function. In other words, the algorithm accepts infeasible improvement move but

each violated route is penalized. For each route k (where k = 1, ..., r), let dk be the

route length, qk the total route demand, ηkc the unit penalized cost for capacity and

ηkd the unit penalized cost for distance. The route cost is defined by Equation (3)

whereas the penalized costs are given in Equation (4) and Equation (5) with Q and

D representing the capacity and distance constraint respectively. The penalized

value, ζ is controlled by two user-defined parameters, β and γ. β is defined as

the percentage of the capacity or distance violation from the maximum allowed,

while γ is the maximum percentage of increase allowed in the route cost. Finally,

ζ can be obtained using Equation (7). Note that for instances with no distance

constraint, Equation (7) is stated as ζ ≤ γdk/β. Preliminary experiments show

that β = 0.05 and γ = 0.10 are appropriate. The effect of using the penalized

15

objective function is discussed in Section 4.2.

ck = dk + ηkc + ηkd (3)

ηkc = max(0,
qk −Q

Q
× ζ) qk ≤ (1 + β)Q (4)

ηkd = max(0,
dk −D

D
× ζ) dk ≤ (1 + β)D (5)

dk + ηkc + ηkd ≤ (1 + γ)dk (6)

ζ ≤ γdk/(2β) (7)

3.6. Neighbourhood structures

We examine five inter-route neighbourhood structures that are carried out in the

following order. N1: 2-insertion*; N2: 2-1 interchange; N3: 2-1 interchange*; N4:

2-2 swap and N5: cross exchange. All the moves are conducted by randomly choos-

ing a route (donor route) and the customer(s) and then moving the customer(s) to335

other route(s) (receiver routes) by considering the positions in the receiver routes

systematically until the first feasible move is found.

2-insertion* This neighbourhood involves three routes where two consecutive

customers are taken from a randomly selected donor route, and each of these

customers is inserted into two different receiver routes.340

2-1 exchange and 2-1 interchange* The 2-1 exchange operator attempts to

exchange two consecutive customers from the donor route with one customer from

the receiver route. An extension of this operator is by considering three routes

simultaneously, by exchanging one of the two customers from the donor route with

a customer from the first receiver route and inserting the other customer into the345

second receiver route, leading to the 2-1 interchange*.

2-2 swap In the 2-2 swap, a pair of consecutive customers from the donor route is

swapped with another pair of consecutive customers from the receiver route.

Cross-exchange This neighbourhood is also known as the block exchange where

a segment of m1 customers in the donor route is exchanged with a segment of350

m2 customers from the receiver route. The values of m1 and m2 are randomly

generated between the sizes of 3 and 5.

16

3.7. A guided shaking strategy (Step 3a and Step 9b in Figure 1)

In the basic VNS, the change of neighbourhood is performed based on a randomly

generated point. However, to avoid getting a poor quality solution that can sub-355

sequently lead to a longer time, we propose the following guided shaking based on

the route location. Firstly, the centre of gravity, Gk for route k, is computed as

follows:

Gk = (Xk, Yk) = (

∑

j∈Rk∪{0}
xj

Nk + 1
,

∑

j∈Rk∪{0}
yj

Nk + 1
); k = 1, ..., r

r = number of routes

Rk = set of customers in route k; k = 1, ..., r

Nk = number of customers in route k; k = 1, ..., r (i.e. Nk = |Rk|)

(xj, yj) = coordinate for customer j; j = 0, ..., Nk(j = 0 is the depot)

A customer is randomly selected from one of the routes and its distances to the360

centre of gravity of the routes are computed and sorted in ascending order. Then,

the first nearest route from the sorted list is chosen as the receiver route. This

method is modified from a recent paper by Polat et al. (2015) where the shaking

is performed using the route-first strategy (i.e. choosing the route pair that is in

close proximity to each other). However, our version applies the customer-first365

mechanism where the customer is first selected followed by the route selection

favouring the one nearer to the customer.

3.8. Local search engine

The local search engine consists of six operators, which include: (i) 1-insertion (ii)

1-1 exchange, (iii) 2-insertion, (iv) 2-opt, (v) 2-opt* and (vi) Cross-tail. The oper-370

ators (i) - (iii) are performed for both intra and inter-routes whereas the operators

(iv) - (vi) are for inter-routes. In the local searches, we first evaluate the moves

for each customer to every position systematically and eventually choose the one

with the overall best improvement (for Stage 1 AVNS) or the best value among k

improvements (for Stage 2 AVNS).375

1-insertion In the 1-insertion, we remove a customer from its position and relo-

cate it elsewhere in order to have a better solution.

17

1-1 exchange In the 1-1 exchange intra-route, two customers’ positions are

swapped in the same route. For the inter-route procedure, we remove a customer

from one route and assign it to other route and vice versa. Note that the positions380

of removal and insertion for inter-route 1-1 are not necessarily the same.

2-insertion For the 2-insertion operator, two consecutive customers are removed

from a route and inserted either in the same route or in a different route, following

the original or the inverted sequence of the customers.

2-opt The 2-opt was initially proposed by Lin (1965), where two non-adjacent385

edges are removed and replaced with two new edges in the same route.

2-opt* The 2-opt* is similar to 2-opt except that the operator is applied for a pair

of routes instead of one route. This operator is simple but effective at removing

crossed-edges between the routes.

Cross-tail This operator works by considering all possible sizes of the tails (see390

Figure 7) of a route and exchanging it with the tails that are not necessarily of the

same size from the other route. The size of the tails can be critical. If one tail is

empty and the other tail consists of the entire route, this reduces to a merge if the

move is feasible resulting in a reduced cost due to triangular inequality (see Figure

7(c)). In other words, this scheme has the potential in reducing the total number395

of routes. This local search is originally proposed by Jun and Kim (2012) but in

this study, a new feature is added by considering the original and the reverse order

of the tails. In addition, whenever an iteration is finished (Step 5 and Step 11 in

Figure 1), the solution xbest is copied such that the order of the customers in some

randomly chosen routes is reversed. By doing this, the cross-tail operator has the400

chance to consider the head-tail and head-head exchange between two routes and

vice-versa.

Use of the Dijkstra’s algorithm as a post-optimiser

In Step 4 and Step 10 in Figure 1, the Dijkstra’s algorithm is used as the post-

optimiser to improve the incumbent best solution. To do this, we first construct a

giant tour by connecting all the nearest endpoints of the routes from the incumbent

solution. Then, a directed cost network is constructed such that each arc represents

18

3

4

5
6

9

7 8
0

R1: 0 – 1 – 2 – 3 – 4 – 5 – 6 – 0
R2: 0 – 7 – 8 – 9 – 0

R1: 0 – 1 – 2 – 3 – 4 – 9 – 8 – 0
R2: 0 – 7 – 5 – 6 – 0

R1: 0 – 1 – 2 – 0
R2: 0 – 7 – 8 – 9 – 3 – 4 – 5 – 6 – 0

R1:
R2: 0 – 7 – 8 – 9 – 6 – 5 – 4 – 3 – 2 – 1 – 0

Initial structure

customer

0 depot

route tail

(c) After Cross-tail

3

4

5

6 7 8
0

2

1

9

3

4

5
6 7 8
0

2

1

9

3

4

5

6

9

7 8
0

1

2

(a) After Cross-tail (b) After Cross-tail

2

1

Figure 7: The Cross-tail operator.

a feasible route. The cost of arc ij is expressed as follows:

Cij = d0,i+1 +

j−1
∑

k=i+1

dk,k+1 + dj,0

This is followed by applying the Dijkstra’s algorithm to find the optimal partition

of the giant tour. This special post-optimiser aims to either improve the solution405

or guarantee that the current solution cannot be improved based on the optimal

partitioning of the new constructed directed network. Also this refinement is used

only when the incumbent best solution is obtained. For more details of this ap-

proach, the reader may find the paper by Imran et al. (2009) to be useful and

informative.410

3.9. A LNS diversification strategy with a VNS structure (Step 5 and Step 11 in

Figure 1)

In Step 5 and Step 11 of the AVNS, a diversification strategy is performed after

all the neighbourhoods are explored. Such a strategy is considered as a powerful

shaking procedure which aims to explore other promising regions that may not415

have been visited otherwise. Here, the perturbation intensity needs to be carefully

monitored so that it is effective enough to guide the search toward escaping from

the local optimum but not degrading the solution to a random restart point. To

achieve this compromise, we opt for the large neighbourhood search (LNS) that

follows a VNS structure.420

19

In the LNS diversification, a control parameter, κ that represents the number of

customers to be deleted and reinserted to the routes is used to guide the procedure.

Note that a simple LNS that uses a random removal strategy reduces to 1- and

2-insertion (i.e. κ = 1 and 2). Hence, this procedure can be considered as a strong

insertion by having large values of κ. Here we define κ in the range [κmin, κmax]425

with κmin = max(5, 0.05N) and κmax = min(400, 0.4N). Initially κ = κmin and

is gradually increased if no better solution is obtained so that a stronger diversi-

fication is applied in the next iteration. Once a new best solution is found, it is

initialized again to the minimum value, κmin. This LNS implementation follows

the VNS structure which, to the best of our knowledge, has not been formally430

explored so far. In addition, we propose four removal strategies including a new

one (Removal strategy 4) alongside an effective insertion strategy.

Removal strategy 1: Gain ratio deletion

The first removal strategy adopted is based on the gain ratio obtained in deleting

a particular customer. The ratio in deleting i is calculated as follows:435

ratio(i) = demand(i)/gain(i)

More specifically, the gain(i) is the difference between the cost when customer i

is in the solution and the cost when i is removed. The customers are then sorted

in ascending order based on the ratio, and removed one-by-one starting from the

smallest ratio, until the control value, κ is reached. This rule was initially proposed440

by Li, Golden, and Wasil (2005), which aims to remove the customer that has a

small demand while saving a high profit (i.e reduced cost). The reasoning behind

this choice is that it is a simple look-ahead strategy which allows more freedom at

the insertion stage.

Removal strategy 2: Overlapping deletion445

The Removal strategy 2 is based on the number of overlaps in each route, where

the overlap is defined by the number of intersections between the arcs in one

route and the arcs in all other routes. This strategy, originally introduced by

Jun and Kim (2012) starts by determining the number of overlaps for each route

and sorting them in descending order. By selecting the route with the highest450

overlaps, the following steps are repeated until κ is reached: if the number of

customers in the route is greater than κ, remove all customers and go to the next

route, otherwise partially remove customers based on the gain ratio formula given

20

in Removal strategy 1.

Removal strategy 3: Worst-edge deletion455

This strategy starts by identifying the distance of every arc in all the routes, and

sort them in decreasing order. The customers that are connected by the longest

arcs are removed. This removal scheme is used in Imran et al. (2009) to avoid

considering giant tours with large arc costs.

Removal strategy 4: Conflicting sector deletion460

This is a new removal strategy which we propose in this study. We first divide the

route plane into different sectors based on the angle from the depot and identify

the number of routes belongs to each sector. Then, we remove the customers in the

sector that contains the most number of routes in it. The customers who belong

to the same sector, are somehow neighbouring customers and hence are expected465

to be easier to reshuffle.

Initial experiments show that the angle used to define the sector with value π/12

produces good results. Note that when the angle is too large, there would be many

routes lying in the same sector. For the case when there are two or more sectors

having the same number of routes, we randomly select one of those sectors and470

remove the customers from the chosen sector. This method can be extended by

considering the angle from the depot at different starting points clock-wisely and

anti-clock-wisely.

Insertion strategy

In the repair phase, the basic greedy least-cost insertion is adopted. We let ∆fi,k be475

the change of the objective value by inserting customer i into route k at the position

that increases the objective value the least. If customer i cannot be inserted to

route k, then we set ∆fi,k =∞. For each unassigned customer i, we compute the

cost of inserting i at its overall best position when checked over all routes. Finally,

we choose the request that has a minimum cost of insertion and insert it at its480

corresponding best position. We repeat this process until all requests have been

inserted into the route plan.

However, if a feasible insertion is not found for a customer, we proceed with the

following steps:

21

(i) A new perturbation operator that will be discussed next is first applied.485

(ii) If there is no feasible insertion found, we apply the variable neighbourhood

descent (VND) strategy which consists of the 2-opt, 2-opt*, cross-tail and

cross-exchange as the set of local searches to refine the partially constructed

routes.

(iii) Eventually, if there is still no feasible insertion, an empty route is added.490

This generally happens when the routes have very tight constraints.

The new perturbation operator used in step (i) given above is adapted from Salhi

and Rand (1987) where three routes are considered simultaneously. The process

starts by considering a customer which is initially removed from a route and in-

serting it into another route, while withdrawing a customer from the second route495

and trying to put it into the third route. This is continued until a feasible inser-

tion (irrespective of the cost of insertion) is found for both the initial customer

considered and the customer removed from the second route.

4. Computational experiments

In this section, we present the details of the computational experiments carried out500

to test the AVNS algorithm. The proposed AVNS algorithm is coded in C++ and

executed on a Pentium Core i7 3.4 GHz PC with 8 GB RAM. We first empirically

investigate the effects of the data structures and neighbourhood reduction scheme

in our algorithm. Then, we analyse the effectiveness of the penalized objective

function as well as the performance of Stage 2. In addition, the use of learning505

in the selection of the local searches in Stage 2 and the effect of the diversifica-

tion strategy are also evaluated. Finally, we perform a full experiment to assess

the performance of our algorithm when compared to existing methods from the

literature.

We use three benchmark data from the literature, namely small (Christofides and510

Eilon, 1969), medium (Golden et al., 1998) and large (Li et al., 2005) data sets,

which we refer to as Set 1, Set 2 and Set 3 hereinafter. These data sets consist of

14, 20, and 12 instances respectively and they can for simplicity be downloaded

from the website CLHO (2016). The instances in Set 1 are made up of 50–199

customers. Both C1–C5 and C6–C10, C11–C12 and C13–C14 are the same except515

that the first and third groups impose route-length and service time restriction.

22

In addition, the customers are randomly distributed for instances C1–C10, and

clustered otherwise. The size of the instances in Set 2 ranges from 240–483 cus-

tomers, where route-length constraint is found in the first eight instances. Each

problem exhibits a geometric structure: the customers in G1–G8 are located in520

concentric circle around the depot, G9–G12 in concentric square with the depot

in the corner, G13–G16 in concentric square around the depot, and G16–G20 in

a six-pointed star around the depot. For Set 3, there is a range of 560–1200 cus-

tomers with route-length constraint. All instances establish a geometric structure

with customers located in concentric circle around the depot.525

For comparisons purpose, we present the best results found in some of the most

effective VRP algorithms proposed in the literature. For each instance, we compute

the relative percentage deviation as ((CBest − CBKS)/CBKS) × 100, where CBest

and CBKS represent the best cost found using our algorithm and the best known

result in the literature respectively.530

4.1. Effects of the data structure and the neighbourhood reduction scheme

This subsection discusses the effects of using two aspects in the AVNS, namely: (i)

the data structure and (ii) the neighbourhood reduction scheme. For (i), we apply

the data structure (DS) to both stages in the AVNS and compare them against the

ones without the DS. Similarly for (ii), we test the neighbourhood reduction (NR)535

scheme on a number of instances as well as without the scheme. For simplicity,

we call the algorithm with NR and DS as Variant 1, with NR and without DS

as Variant 2, without NR and with DS as Variant 3, and without NR and DS as

Variant 4. The computational time and the objective function values are presented

in Table 1 where three diversifications are used as the termination criterion for540

both Stage 1 and Stage 2. Such criterion is used to avoid the algorithm running

for too long as the main purpose here is to evaluate the effect of the NR and DS.

Preliminary experiments show that the effect of DS and NR is more significant

when N is large, therefore we present the results for a sample of instances from

Set 1 and Set 2 whereas for Set 3, all instances are included.545

By using the neighbourhood reduction scheme, there is about 3.48% of neigh-

bouring customers identified for each customer i (Flag1) and 27.07% of potential

customers that can be inserted next to the depot (Flag2). In other words, only

the neighbouring customers are evaluated for each relevant insertion. In Table 1,

23

it is observed that the computational time for Variant 1 is the lowest comparing550

to other variants, where the effect of NR is more significant than DS. For example,

without the use of DS, the average time for Variant 2 is about 2.7 times longer than

Variant 1, whereas it is 5.2 times longer for Variant 3 if NR is not implemented

in the algorithm. In addition, the effect is very significant when the size of the

instances is large, which can be observed in the largest instance (N = 1200), the555

time spent on the algorithm with NR and DS is approximately 8.5 times shorter

than without. Figure 8 depicts the average time taken for the AVNS with and

without the DS and NR. The figure clearly shows that the use of DS and NR

resulting in a considerable decrease in computational time. On average, the time

is reduced by 35% when applying the data structure in Stage 1 and by 15% when560

the record of information is used in Stage 2.

In terms of the objective function values, the results are not very different for both

with and without the strategies. This is due to the termination criterion used.

When the algorithm is executed without NR and DS, it means that a large portion

of the time is spent on “unnecesary searches”. For example this includes searching565

on customers which are far apart from each other (without NR) and evaluating

unchanged routes that have already been assessed in previous iterations (without

DS). It is worth noting that another way of measuring the effect of the strategies

in terms of the solution quality is by allowing the algorithm to run with the added

strategies of DS and NR, and then recording the corresponding time spent. This570

can then be used as a stopping criterion when running the other algorithm without

the added strategies and then record the objective values at that time.

The computational time for the four variants are plotted in graph as shown in

Figure 8. It is observed that the graphs for Variants 2, 3 and 4 tend to rise sharply

with N . Therefore to further evaluate the effect of DS and NR on the large data575

set, we fit the computational time, T with the problem size, N using two models:

the linear model (T = kN + c) and the power model (T = kN c). For the power

model, we first transform Tavg and N for instances L1–L12 in Table 1 to ln T and ln

N respectively and then regress the equations using simple linear regression. Prior

to that, all assumptions of the linear regression are checked and satisfied. The best580

fits for Variant 1 – Variant 4 are presented in Table 2. The statistical results show

that Variant 1 is best fitted with the linear model as indicated by a high adjusted

R2 value of 0.94, whereas Variants 2, 3 and 4 have very good fits with the power

model with the respective adjusted R2 values 0.98, 0.99 and 0.99. Therefore, it

24

is reasonable to conclude that the computational time increases linearly with the585

problem size when the NR and DS are incorporated. This demonstrates that the

use of the two components makes the search rather fast and stable as N increases,

and hence these methods can be used for large instances.

Table 1: Comparison of the computational time and cost for the data structure and neighbour-
hood reduction scheme.

#(N) Neighbour Tavg (Cavg)

(%) With NR Without NR

Flag1 Flag2 With DS Without DS With DS Without DS

C1(50) 2.92 26.07 0.89 (532.96) 1.56 (533.00) 2.06 (530.60) 3.59 (531.95)
C2(75) 3.50 27.32 1.32 (842.66) 2.04 (837.36) 3.68 (845.28) 5.65 (842.87)
C3(100) 3.96 27.64 1.54 (836.50) 2.99 (836.50) 4.68 (832.74) 6.87 (836.69)
C4(150) 3.46 27.50 2.87 (1037.67) 4.68 (1036.93) 6.25 (1037.60) 10.64 (1042.30)
C5(199) 3.84 27.42 3.04 (1315.44) 7.89 (1314.87) 15.96 (1312.21) 19.87 (1312.77)
G1(240) 3.45 26.69 5.06 (5653.39) 9.91 (5654.45) 23.54 (5652.37) 32.56 (5653.39)
G2(320) 3.23 26.80 7.64 (8485.38) 14.65 (8484.50) 38.65 (8477.20) 54.32 (8477.82)
G3(400) 3.54 27.08 9.98 (11045.80) 23.65 (11049.90) 47.65 (11052.80) 75.62 (11047.40)
G4(480) 3.34 26.98 12.87 (13641.10) 35.64 (13640.30) 70.65 (13639.30) 92.65 (13695.30)
L1(560) 3.57 27.01 14.96 (16248.60) 42.32 (16251.00) 83.21 (16268.80) 115.68 (16260.00)
L2(600) 3.49 26.76 18.65 (14667.10) 47.5 (14676.90) 98.7 (14682.60) 123.67 (14662.50)
L3(640) 3.45 27.09 17.53 (18853.70) 55.65 (18864.50) 105.65 (18833.50) 138.9 (18836.00)
L4(720) 3.40 27.10 22.56 (21440.60) 59.65 (21449.40) 116.73 (21459.40) 159.85 (21488.80)
L5(760) 3.54 26.83 27.98 (17066.40) 63.48 (17180.80) 129.98 (17094.70) 170.65 (17093.70)
L6(800) 3.48 27.10 30.21 (24063.80) 70.52 (24085.80) 145.62 (24053.60) 182.65 (24068.70)
L7(840) 3.42 26.74 36.56 (17690.90) 79.65 (17693.10) 155.38 (17706.30) 199.32 (17709.70)
L8(880) 3.48 27.24 33.05 (26638.60) 85.54 (26668.60) 162.32 (26653.40) 215.65 (26639.40)
L9(960) 3.52 27.24 35.64 (29253.50) 98.54 (29264.60) 182.12 (29305.40) 256.97 (29674.20)
L10(1040) 3.50 27.26 39.06 (31807.00) 121.32 (31899.40) 220.6 (31852.30) 298.64 (31865.40)
L11(1120) 3.45 27.27 42.32 (34465.60) 132.41 (34496.8) 243.65 (34498.50) 330.65 (34387.80)
L12(1200) 3.52 27.34 45.65 (37612.10) 158.92 (37580.00) 287.65 (37595.60) 389.21 (37590.00)

Avg 3.48 27.07 19.49 (15866.61) 53.26 (15880.89) 102.13 (15875.44) 137.31 (15891.27)

Neighbour (%): Average % of neighbour per customer, Tavg : Average computational time in minute, Cavg :
Average cost

Table 2: Best fits of computation time (T) against the problem size (N) for Variant 1 - Variant
4.

Variant Equation Fitting Adjusted R2 p-value

1 T = kN + c T = 0.0479N − 10.0721 0.94 2.23× 10−7

2 T = kNc T = 0.0009N1.6894 0.98 2.03× 10−10

3 T = kNc T = 0.0048N1.5444 0.99 2.58× 10−11

4 T = kNc T = 0.0047N1.5880 0.99 2.17× 10−11

4.2. Effects of Stage 2 and the penalized objective function in the AVNS

To evaluate the effect of Stage 2, we first run Stage 1 of the algorithm and record590

the computational time and cost, and then continue with Stage 2. The termina-

tion criterion for Stage 1 is set at four diversifications, whereas for Stage 2, four

consecutive non-improved diversifications are used. The reason for this is the solu-

tions tend to be stagnant after four diversifications in Stage 1, therefore we intend

25

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0 200 400 600 800 1000 1200

C
o

m
p

u
ta

ti
o

n
a

l
T

im
e

 (
m

in
)

Size (N)

1.With NR, With DS

2.With NR, Without DS

3.Without NR, With DS

4.Without NR, Without DS

(Variant)

Figure 8: Comparison of computational time for AVNS with and without the DS and NR.

to proceed with Stage 2 which is relatively faster due to the selection of a group595

of local search operators only. In addition, the algorithm is executed with and

without the use of penalized objective function in both stages.

It is worth noting that to assess the performance of the AVNS without Stage 2,

we also conduct preliminary experiments by running Stage 1 only using the same

amount of total time spent when running both stages. It is observed that there is an600

average of 0.5% gap in the cost comparing with the results obtained from running

two stages. Therefore in this section, we present the results of the deviation in

terms of cost and time from the initial solution to Stage 1, and from Stage 1 to

Stage 2, as shown in Table 3.

On average, the cost is reduced by 3.53% after Stage 1 (without penalized function)605

and 3.80% (with penalized function) from the initial solution. With the use of

about 61% of the total computational time, the cost decreases approximately 0.59%

and 0.53% after Stage 2 without and with the penalized function respectively. The

rate of decrease in Stage 2 is expected to be lower than Stage 1 because the solution

is more stagnated and harder to improve in the latter stage.610

It is observed that the use of the penalized objective function can generally improve

the solution further. For example in Stage 1, the solution gap with the penalized

function is 0.28% lower than those without, with an 11.84% increase in the com-

26

putational time. In Stage 2, there is about 10.79% additional time spent with the

used of penalized function but the solution is 0.23% better than the one with no615

penalized function. We also evaluate the gap of the best solution obtained using

both with and without the penalized function comparing against the best known

result published in the literature and found a smaller deviation (0.33%) for the

former. This means that the use of penalized objective function is able to obtain

better results with a reasonable amount of extra time.620

Table 3: Average solution gap and time gap after Stage 1 and Stage 2 with and without penalized
objective function (in %).

Data After Stage 1 After Stage 2

Without P With P Without P With P

gapn (I) gapp (I) gapn (S) CPUn (S) gapp (S) CPUp (S)

Set 1 3.39 3.82 0.69 64.71 0.45 63.22
Set 2 4.11 4.36 0.63 61.68 0.63 61.43
Set 3 2.74 2.86 0.40 58.89 0.45 58.92

Average 3.53 3.80 0.59 61.87 0.53 61.32

gapS1,S2 (Pen) 0.28 0.23
CPUS1,S2 (Pen) 11.84 10.79

gapn,p (BKS) 0.43 0.33

n: without penalized objective function, p: with penalized objective function,
S1: after Stage 1, S2: after Stage 2,
Let k = {n, p} and m = {S1, S2}, C: Cost, T : Time,
gapk (I) = (CInitial − Ck

S1
)/Ck

Initial
× 100,

gapk (S) = (Ck
S1

− Ck
S2

)/Ck
S1

× 100, CPUk (S) = (Tk
S2

− Tk
S1

)/Tk
S2

× 100,

gapk (BKS) = (Ck
Best − CBKS)/CBKS × 100,

gapm (Pen) = (Cn
m − Cp

m)/Cn
m × 100, gapm (CPU) = (T p

m − Tn
m)/T p

m × 100.

4.3. Effects of the learning phase and the diversification strategy in the AVNS

To test the effect of learning in Stage 2, we compare the solutions obtained for Stage

2 using two variants: (i) with learning, and (ii) without learning, with the same

termination criterion specified in Section 4.2. In the case of (i), a number of local

search operators are selected based on the information recorded whereas for (ii),625

all operators are applied iteratively. Figure 9 depicts the evolution of the average

solution value and number of local search moves over all instances for (i) and

(ii). The graph shows that the learning mechanism leads to a better convergence

behavior and the overall solution quality. More specifically, the number of local

searches required to reach a prescribed solution using (i) is about 1.5 times smaller630

than (ii). For example, to obtain an average solution value smaller than 8670, (i)

needs less than 10,000 (on average 4.13 minutes) local search moves, whereas (ii)

requires about 15,000 (on average 6.38 minutes). In other words, the integration of

27

learning in Stage 2 improves the convergence rate of the solution as the intelligent

selection mechanism only selects the operators that could potentially improve the635

solution.

The statistical t-test is conducted to test the difference between the mean of (i)

and (ii) and the results are presented in Table 4. Before carrying out the t-test,

the normality assumption is checked using the Kolmogorov-Smirnov test and a

p-value < 0.01 is obtained which indicates the normality assumption is satisfied.640

It is shown in the t-test that there is a highly significant difference between the

average solution for (i) and (ii) with a p-value < 0.001 (see Table 4).

The results of our computational studies show the high performance of the pro-

posed AVNS. We also analyse here the effect of the diversification strategy used in

our algorithm in both stages. With this, a number of instances are solved using645

the AVNS with diversification strategy as well as without the diversification. For

consistency, we first record the time spent by the AVNS with diversification, and

then allow the same time for the algorithm without diversification. Table 5 shows

that our AVNS works very well with the diversification strategy in which the aver-

age solution obtained for the algorithm with diversification strategy is better than650

those without. The average deviation for the former (0.37%) is approximately 7.5

times lower than the latter (2.80%).

8620

8640

8660

8680

8700

8720

8740

8760

0 5000 10000 15000 20000 25000

A
v

e
ra

g
e

 s
o

lu
ti

o
n

 v
a

lu
e

,
C

a
v

g

Number of local search moves

(Average time in min, Tavg)

With Learning

Without Learning

(6.38) (8.18) (1.98) (4.13) (10.52)

Figure 9: Comparison of the average objective function values and number of moves in the AVNS
Stage 2 (with learning and without learning).

4.4. Comparisons with existing algorithms

This subsection presents the results of the AVNS algorithm against the other ex-

isting algorithms from the literature. In our AVNS, the number of diversifications655

28

Table 4: t-test comparison for the average objective function values for the AVNS Stage 2 (with
learning and without learning).

With learning Without learning

Mean 8669.61 8693.88
Observations 41 41
Hypothesized mean difference 0
P(T<=t) one-tail 4.06× 10−5

Kolmogorov-Smirnov P-value < 0.01 < 0.01

Table 5: Average solution obtained for the AVNS with diversification vs. without diversification
strategy.

#(N) Cavg Cavg Tavg

(No Diversification) (Diversification)

C1(50) 527.98 524.61 1.09
C2(75) 843.92 835.26 1.65
C3(100) 831.98 828.65 1.96
C4(150) 1065.37 1032.64 3.12
C5(199) 1344.34 1305.30 3.67
G1(240) 5864.51 5645.90 8.05
G2(320) 8512.65 8465.45 9.68
G3(400) 11364.50 11038.60 11.23
G4(480) 14147.50 13639.30 15.65
L1(560) 16585.40 16232.40 18.69
L3(640) 19241.00 18820.30 23.65
L6(800) 25370.20 24032.50 33.69
L9(960) 29687.50 29192.30 42.65
L12(1200) 38465.40 37410.70 58.93

Average (overall) 12418.02 12071.71
Average dev (%) 2.80 0.37

as specified in Section 4.2 is used as the termination criterion. The algorithm

is run for four diversifications in Stage 1 whereas in Stage 2, it is run until no

improvement is obtained after four consecutive diversifications.

Tables 6, 7 and 8 report the best results obtained by the AVNS algorithm under

10 runs for each instance, comparing against the best published results from the660

literature for Set 1, Set 2 and Set 3 respectively. Our results are presented in the

last four columns in the tables under AVNS. First, we present our best solution

obtained in 10 runs and the individual percentage deviation with the CBKS for

each instance. To assess the robustness of our algorithm, the average solution and

its deviation from the best solution are also presented. Those results that match665

with the best known solutions are given in boldfaced. In addition, the average

percentage deviations, CPU times and computer specifications are also provided.

It is worth noting that the best known results are extremely good which serve as

a reliable guide for comparison purpose demonstrating the efficiency of any new

proposed algorithm in this area.670

29

For Set 1, we found 9 out of 14 solutions that are as good as the best known

results. Other solutions are very close to the best values from the literature with

a tiny average deviation of 0.08%. To the best of our knowledge, the optimal

solution is reported only for 5 instances of Set 1 (C1–C3 and C11–C12) in the

literature (Mingozzi et al., 2013), where these instances are marked by a ‘*’ sign675

in Table 6. Our algorithm found optimal solution for all these five instances. The

average running time of our algorithm in Set 1 is approximately 2.37 minutes

which is reasonably competitive with other algorithms in the literature. As seen

in Table 6, the AVNS has shown adequate stability, as indicated by a small gap

of 0.21% between the average solution values obtained over the 10 runs with the680

best values.

In Table 7, it is shown that the average percentage deviation achieved by our al-

gorithm for Set 2 is limited to 0.58%. Four of our results match the best known

values whereas the rest are fairly close to the best results. Considering the individ-

ual relative deviations showing that the results obtained for instances G1–G8 are685

below 0.40%. However, the gap for instances G9–G20 is slightly higher, but still

below 1% (about 0.91%). Among the three data sets, the AVNS seems to have the

worst performance in Set 2, especially for G9–G20. This is probably due to the

geometric structure established in these test instances. In terms of the computa-

tional time, our AVNS is very competitive with the others. With the incorporation690

of the neighbourhood reduction and the data structure mechanism, the CPU time

for the relatively large instances (for example G4) is still within 15 minutes. In

addition, the AVNS is fairly robust as the average gap reported between the best

and the average solution is just 0.26%.

Table 8 displays the results for Set 3 where the average deviation of the AVNS695

is restricted to a satisfactory 0.19%. Our algorithm has obtained two best known

solutions with one new result (L5) reported. In addition, the AVNS reaches nearly

most of the best solutions with less than 0.04% deviation for each individual in-

stance. The worst performance is recorded for test instance L12 with a 1.18%

deviation from the best known solution. In terms of robustness, our AVNS yields700

satisfactory performance as indicated by a tiny gap of 0.21% between the average

solution and the best solution values. In addition, the CPU time required for the

large data set when NR and DS are used exhibits a linear pattern with the problem

size N which demonstrates the efficiency of these mechanisms.

30

5. Conclusion705

In this paper, we propose a novel and effective AVNS algorithm incorporating a

LNS diversification strategy. The hybridisation of AVNS and LNS combines the

good features of the two heuristics, hence making our algorithm very competitive.

While most existing adaptive VNS published in the literature address the adaptive

aspect on the change of neighbourhoods, our algorithm focuses on the adaptive710

selection in the local search engine instead. It is shown that the selection of local

search operators using the intelligent selection mechanism yields very promising

result when tested on the well-known VRP data sets. Besides, the incorporation

of VNS structure within LNS is also novel.

In addition, the data structure and the neighbourhood reduction schemes which we715

introduce in the AVNS enable competitive computational time for the algorithm

while retaining the solution quality. They are particularly efficient in tackling the

very large scale test problems. Simple rules and structures are used when defining

both of these schemes, making them easily adaptable for other VRP variants.

Moreover, we also present a new local search operator and a new removal strategy720

for the LNS which have positive impact on the overall results.

The proposed AVNS could be extended to solve other variants of the VRP as well as

other combinatorial optimisation problems such as the scheduling and timetabling

problems as discussed in the introduction. Furthermore, the integration of adaptive

aspects in the search which include the neighbourhood selection and the diversi-725

fication strategy could be worthwhile exploring further to guide the search even

more effectively.

Acknowledgements

We would like to thank the editor and both reviewers for their useful comments and

suggestions that improved the presentation as well as the content of the paper. The730

first author would also like to thank the Ministry of Higher Education Malaysia

for the PhD scholarship.

31

Table 6: Results for Set 1 (Christofides and Eilon, 1969) instances.

#(N) CBKS TK02 T05 MB07 P09 CHD10 AVNS

CBest %BKS Cavg %avg

C1(50) *524.61 524.61 524.61 524.61 524.61 524.61 524.61 0.00 524.61 0.00
C2(75) *835.26 835.26 835.26 835.26 835.26 835.26 835.26 0.00 835.26 0.00
C3(100) *826.14 826.14 826.14 826.14 826.14 826.14 826.14 0.00 828.65 0.30
C4(150) 1028.42 1030.88 1028.42 1028.42 1029.48 1028.42 1031.07 0.26 1032.64 0.15
C5(199) 1291.29 1314.11 1311.48 1291.29 1294.09 1898.20 1291.45 0.01 1305.30 1.07
C6(50) 555.43 555.43 555.43 555.43 555.43 555.43 555.43 0.00 556.89 0.26
C7(75) 909.68 909.68 909.68 909.68 909.68 909.68 909.68 0.00 910.54 0.09
C8(100) 865.94 865.94 865.94 865.94 865.94 865.94 865.94 0.00 867.35 0.16
C9(150) 1162.55 1163.19 1162.55 1162.55 1162.55 1639.20 1164.89 0.20 1169.01 0.35
C10(199) 1395.85 1408.82 1407.21 1401.12 1401.46 2442.74 1402.32 0.46 1406.57 0.30
C11(120) *1042.11 1042.11 1042.11 1042.11 1042.11 1042.11 1042.11 0.00 1042.11 0.00
C12(100) *819.56 819.56 819.56 819.56 819.56 819.56 819.56 0.00 820.48 0.11
C13(120) 1541.14 1544.01 1544.01 1541.14 1545.43 1726.08 1543.16 0.13 1546.08 0.19
C14(100) 866.37 866.37 866.37 866.37 866.37 866.37 866.37 0.00 866.37 0.00

Best sol 9 11 13 10 10 9
Avg dev (%) 0.23 0.18 0.03 0.07 0.13 0.08 0.21
Avg CPU (min) 5.22 6.96 2.71 0.27 10.9 2.37
Comp spec 0.40G 0.40G 2.80G 2.80G 2.93G 3.40G

*optimal solution (Mingozzi et al., 2013)
CBKS : Best known solution, TK02 by Tarantilis and Kiranoudis (2002), T05: Tarantilis (2005), MB07: Mester and
Bräysy (2007), P09: Prins (2009), CHD10: Chen et al. (2010)
%BKS = (CBest − CBKS)/CBKS × 100, %avg = (Cavg − CBest)/CBest × 100

Table 7: Results for Set 2 (Golden et al., 1998) instances.

#(N) CBKS MB07 N07 P09 CHD10 XZKM14 AVNS

CBest %BKS Cavg %avg

G1(240) 5626.81 5627.54 – 5644.52 5658.88 5626.81 5626.81 0.00 5645.90 0.34
G2(320) 8447.92 8447.92 – 8447.92 8464.82 8452.71 8460.93 0.15 8465.45 0.05
G3(400) 11036.22 11036.22 – 11036.22 11059.40 11036.22 11036.22 0.00 11038.60 0.02
G4(480) 13624.52 13624.52 – 13624.52 13624.52 13626.92 13628.10 0.03 13639.30 0.08
G5(200) 6460.98 6460.98 – 6460.98 6460.98 6460.98 6460.98 0.00 6460.98 0.00
G6(280) 8412.90 8412.90 – 8412.90 8412.90 8412.90 8412.90 0.00 8413.81 0.01
G7(360) 10181.75 10195.56 – 10195.59 10267.28 10195.59 10195.60 0.14 10198.40 0.03
G8(440) 11643.90 11663.55 – 11643.90 11756.85 11663.55 11688.90 0.39 11705.70 0.14
G9(255) 580.46 583.39 580.60 586.23 585.10 580.46 588.79 1.44 590.78 0.34
G10(323) 738.92 741.56 738.92 744.36 745.57 739.98 745.45 0.88 749.35 0.52
G11(399) 917.17 918.45 917.17 922.40 923.13 916.35 927.01 1.07 936.54 1.03
G12(483) 1107.19 1107.19 1108.48 1116.12 1117.93 1109.10 1118.36 1.01 1122.43 0.36
G13(252) 857.19 859.11 857.19 862.32 861.65 859.28 866.03 1.03 870.32 0.50
G14(320) 1080.55 1081.31 1080.55 1089.35 1088.87 1080.55 1087.58 0.65 1089.32 0.16
G15(396) 1340.24 1345.23 1340.24 1352.39 1356.32 1345.11 1356.18 1.19 1358.38 0.16
G16(480) 1622.69 1622.69 2171.30 1634.27 1637.13 1622.05 1638.48 0.97 1646.53 0.49
G17(240) 707.79 707.79 707.76 708.85 708.92 708.99 708.78 0.14 710.56 0.25
G18(300) 995.39 998.73 995.39 1002.15 1010.52 1000.58 1007.06 1.17 1010.83 0.37
G19(360) 1366.86 1366.86 1366.14 1371.67 1383.40 1369.41 1375.98 0.67 1378.32 0.17
G20(420) 1820.09 1820.09 1820.54 1830.98 1839.93 1823.75 1833.17 0.72 1837.09 0.21

Best sol. 10 8 6 3 6 4
Avg dev (%) 0.12 2.83 0.42 0.58 0.11 0.58 0.26
Avg CPU (min) 24.35 413.68 7.27 284.4 30.00 11.17
Comp spec 2.80G 3.20G 2.80G 2.93G 1.60G 3.40G

N07 b: Nagata (2007), XZKM14: Xiao et al. (2014)

32

Table 8: Results for Set 3 (Li et al., 2005) instances.

#(N) CBKS K07 V K07 G MB07 PR07 XZKM14 AVNS

CBest %BKS Cavg %avg

L1(560) 16212.74 16602.99 16221.22 16212.74 16224.81 16214.03 16214.00 0.01 16232.40 0.11
L2(600) 14597.18 14651.27 14654.87 14597.18 14631.08 14618.18 14624.50 0.19 14658.60 0.23
L3(640) 18801.12 19005.37 18810.72 18801.12 18837.49 18801.86 18802.30 0.01 18820.30 0.10
L4(720) 21389.33 21784.43 21401.41 21389.33 21522.48 21391.83 21389.33 0.00 21432.00 0.20
L5(760) 16892.70 17151.43 17358.18 17095.27 16902.16 17012.86 16892.70 0.00 16979.10 0.49
L6(800) 23971.74 24189.66 23996.86 23971.74 24014.09 23981.33 23980.10 0.03 24032.50 0.22
L7(840) 17432.85 17823.40 18233.93 17488.74 17613.22 17432.85 17576.10 0.82 17686.30 0.63
L8(880) 26565.92 26606.11 26592.05 26565.92 26791.72 26567.24 26568.40 0.01 26594.60 0.10
L9(960) 29156.73 29181.21 29166.32 29160.33 29405.60 29156.73 29162.70 0.02 29192.30 0.10
L10(1040) 31742.51 31976.73 31805.28 31742.51 31968.33 31742.64 31754.60 0.04 31789.50 0.11
L11(1120) 34330.84 35369.17 34352.48 34330.84 34770.34 34332.14 34335.70 0.01 34366.60 0.09
L12(1200) 36928.70 37421.44 37025.37 36928.70 37377.35 37204.05 37363.20 1.18 37410.70 0.13

Best sol. 0 0 9 0 2 2
Avg dev (%) 0.85 0.72 0.13 0.61 0.14 0.19 0.21
Avg CPU (min) 0.04 0.13 104.29 497.9 150.30 36.81
Comp spec 3.00G 3.00G 2.8G 3.00G 1.60G 3.40G

K07 V and K07 G: Kytöjoki et al. (2007), PR07: Pisinger and Ropke (2007)

References

Akpinar, S., 2016. Hybrid large neighbourhood search algorithm for capacitated

vehicle routing problem. Expert Systems With Applications 61, 28–38.735

Azi, N., Gendreau, M., Potvin, J.-Y., 2014. An adaptive large neighborhood search

for a vehicle routing problem with multiple routes. Computers & Operations

Research 41, 167–173.

Chen, P., Huang, H.-K., Dong, X.-Y., 2010. Iterated variable neighborhood descent

algorithm for the capacitated vehicle routing problem. Expert Systems with740

Applications 37 (2), 1620–1627.

Christofides, N., Eilon, S., 1969. An algorithm for the vehicle dispatching problems.

Operational Research Quarterly 20 (3), 309–318.

Clarke, G., Wright, J. W., 1964. Scheduling of Vehicles from a Central Depot to a

Number of Delivery Points. Operations Research 12 (4), 568–581.745

CLHO, 2016. Data sets - Routing Data Sets - VRP, Centre for Logistics and

Heuristic Optimisation, Kent Business School, University of Kent.

URL http://www.kent.ac.uk/kbs/research/research-centres/clho/

datasets.html

Dantzig, G. B., Ramser, J. H., 1959. The Truck Dispatching Problem. Management750

Science 6 (1), 80–91.

33

http://www.kent.ac.uk/kbs/research/research-centres/clho/datasets.html
http://www.kent.ac.uk/kbs/research/research-centres/clho/datasets.html
http://www.kent.ac.uk/kbs/research/research-centres/clho/datasets.html

Fleszar, K., Osman, I. H., Hindi, K. S., 2009. A variable neighbourhood search

algorithm for the open vehicle routing problem. European Journal of Operational

Research 195 (3), 803–809.

Golden, B., Wasil, E., Kelly, J., Chao, I., 1998. The Impact of Metaheuristics on755

Solving the Vehicle Routing Problem: Algorithms, Problem Sets, and Compu-

tational Results. In: Crainic, T. G., Laporte, G. (Eds.), Fleet management and

logistics. Springer US, Boston, MA, pp. 33–56.

Hansen, P., Mladenović, N., 2001. Variable neighborhood search: Principles and

applications. European Journal of Operational Research 130 (3), 449–467.760

Hansen, P., Mladenović, N., Moreno Pérez, J. A., 2010. Variable neighbourhood

search: methods and applications. Annals of Operations Research 175 (1), 367–

407.

Hassannayebi, E., Hessameddin, S., 2016. Variable and adaptive neighbourhood

search algorithms for rail rapid transit timetabling problem. Computers & Op-765

erations Research.

URL http://dx.doi.org/10.1016/j.cor.2015.12.011

Imran, A., Salhi, S., Wassan, N. A., 2009. A variable neighborhood-based heuristic

for the heterogeneous fleet vehicle routing problem. European Journal of Oper-

ational Research 197 (2), 509–518.770

Jun, Y., Kim, B.-I., 2012. New best solutions to VRPSPD benchmark problems

by a perturbation based algorithm. Expert Systems with Applications 39 (5),

5641–5648.

Kritzinger, S., Doerner, K. F., Tricoire, F., Hartl, R. F., 2015. Adaptive search

techniques for problems in vehicle routing, Part I: A survey. Yugoslav Journal775

of Operations Research ISSN: 0354-0243 EISSN: 2334-6043 25 (1), 3–31.

Kytöjoki, J., Nuortio, T., Bräysy, O., Gendreau, M., 2007. An efficient variable

neighborhood search heuristic for very large scale vehicle routing problems. Com-

puters & Operations Research 34 (9), 2743–2757.

Li, F., Golden, B., Wasil, E., 2005. Very large-scale vehicle routing: new test780

problems, algorithms, and results. Computers & Operations Research 32 (5),

1165–1179.

34

http://dx.doi.org/10.1016/j.cor.2015.12.011

Li, J., Pardalos, P. M., Sun, H., Pei, J., Zhang, Y., 2015. Iterated local search

embedded adaptive neighborhood selection approach for the multi-depot vehicle

routing problem with simultaneous deliveries and pickups. Expert Systems with785

Applications 42 (7), 3551–3561.

Lin, S., 1965. Computer Solutions of the Traveling Salesman Problem. Bell System

Technical Journal 44 (10), 2245–2269.

Mester, D., Bräysy, O., 2007. Active-guided evolution strategies for large-scale

capacitated vehicle routing problems. Computers & Operations Research 34 (10),790

2964–2975.

Mingozzi, A., Roberti, R., Toth, P., 2013. An exact algorithm for the multitrip

vehicle routing problem. INFORMS Journal on Computing 25 (2), 193–207.

Mladenović, N., Hansen, P., 1997. Variable neighborhood search. Computers &

Operations Research 24 (11), 1097–1100.795

Nagata, Y., 2007. Edge assembly crossover for the capacitated vehicle routing

problem. Evolutionary Computational in Combinatorial Optimization, LNCS

4446, 142–153.

Osman, I., Salhi, S., 1996. Local search strategies for the vehicle fleet mix prob-

lem. In: Rayward-Smith, V., Osman, I., Reeves, C., Smith, G. (Eds.), Modern800

Heuristic Search Methods. Wiley, pp. 131–154.

Pisinger, D., Ropke, S., 2007. A general heuristic for vehicle routing problems.

Computers & Operations Research 34 (8), 2403–2435.

Polacek, M., Hartl, R. F., Doerner, K., Reimann, M., 2004. A Variable Neighbor-

hood Search for the Multi Depot Vehicle Routing Problem with Time Windows.805

Journal of Heuristics 10 (6), 613–627.

Polat, O., Kalayci, C. B., Kulak, O., Günther, H.-O., 2015. A perturbation based

variable neighborhood search heuristic for solving the Vehicle Routing Problem

with Simultaneous Pickup and Delivery with Time Limit. European Journal of

Operational Research 242 (2), 369–382.810

Potvin, J.-Y., Rousseau, J.-M., 1995. An Exchange Heuristic for Routeing Prob-

lems with Time Windows. Journal of the Operational Research Society 46 (12),

1433–1446.

35

Prins, C., 2009. A GRASP × evolutionary local search hybrid for the vehicle

routing problem. In: Pereira, F. B., Tavares, J. (Eds.), Bio-inspired Algorithms815

for the Vehicle Routing Problem. Springer Berlin Heidelberg, Berlin, Heidelberg,

pp. 35–53.

Raidl, G. R., 2006. A Unified View on Hybrid Metaheuristics. In: Almeida, F.,

Aguilera, M., Blum, C., Moreno-Vega, J., Pérez, M., Roli, A., Sampels, M.

(Eds.), Lecture notes in computer science, vol. 4030. Springer, Berlin, Heidel-820

berg, pp. 1–12.

Ropke, S., Pisinger, D., 2006. An Adaptive Large Neighborhood Search Heuris-

tic for the Pickup and Delivery Problem with Time Windows. Transportation

Science 40 (4), 455–472.

Salhi, S., 2006. Heuristic search in action: the science of tomorrow. In: Salhi, S.825

(Ed.), OR 48 Keynote Papers. Operational Research Society, pp. 39 – 58.

Salhi, S., Rand, G. K., 1987. Improvements to Vehicle Routeing Heuristics. Journal

of the Operational Research Society 38 (3), 293– 295.

Salhi, S., Sari, M., 1997. A multi-level composite heuristic for the multi-depot

vehicle fleet mix problem. European Journal of Operational Research 103, 95–830

112.

Samà, M., Ariano, A. D., Corman, F., Pacciarelli, D., 2016. A variable neighbour-

hood search for fast train scheduling and routing during disturbed railway traf

fi c situations. Computers & Operations Research.

URL http://dx.doi.org/10.1016/j.cor.2016.02.008835

Stenger, A., Vigo, D., Enz, S., Schwind, M., 2013. An Adaptive Variable Neighbor-

hood Search Algorithm for a Vehicle Routing Problem Arising in Small Package

Shipping. Transportation Science 47 (1), 64–80.

Tarantilis, C., 2005. Solving the vehicle routing problem with adaptive memory

programming methodology. Computers & Operations Research 32 (9), 2309–840

2327.

Tarantilis, C., Kiranoudis, C., 2002. BoneRoute: An Adaptive Memory-Based

Method for Effective Fleet Management. Annals of Operations Research 115 (1-

4), 227–241.

36

http://dx.doi.org/10.1016/j.cor.2016.02.008

Todosijević, R., Hanafi, S., Urošević, D., Jarboui, B., Gendron, B., 2016. A gen-845

eral variable neighborhood search for the swap-body vehicle routing problem.

Computers & Operations Research.

URL http://dx.doi.org/10.1016/j.cor.2016.01.016

Toth, P., Vigo, D., 2003. The Granular Tabu Search and Its Application to the

Vehicle-Routing Problem. INFORMS Journal on Computing 15, 333–346.850

Xiao, Y., Zhao, Q., Kaku, I., Mladenovic, N., 2014. Variable neighbourhood simu-

lated annealing algorithm for capacitated vehicle routing problems. Engineering

Optimization 46 (4), 562–579.

Zachariadis, E. E., Kiranoudis, C. T., 2010. A strategy for reducing the computa-

tional complexity of local search-based methods for the vehicle routing problem.855

Computers & Operations Research 37 (12), 2089–2105.

37

http://dx.doi.org/10.1016/j.cor.2016.01.016

	Introduction
	An Adaptive Variable Neighbourhood Search (AVNS) algorithm
	Stage 1 of the AVNS
	Stage 2 of the AVNS

	Explanation of the main steps
	Initial solution
	Neighbourhood reduction
	A special data structure in AVNS Stage 1 (Step 3 in Figure 1)
	The record of useful information in AVNS Stage 2 (Step 9 in Figure 1)
	Penalized objective function
	Neighbourhood structures
	A guided shaking strategy (Step 3a and Step 9b in Figure 1)
	Local search engine
	A LNS diversification strategy with a VNS structure (Step 5 and Step 11 in Figure 1)

	Computational experiments
	Effects of the data structure and the neighbourhood reduction scheme
	Effects of Stage 2 and the penalized objective function in the AVNS
	Effects of the learning phase and the diversification strategy in the AVNS
	Comparisons with existing algorithms

	Conclusion

