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Abstract  

Luminal fluid homeostasis in the respiratory system is crucial to maintain the gas-

blood exchange in normal lungs and mucociliary clearance in the airways. Epithelial 

sodium channels (ENaC) govern ~70% of alveolar fluid clearance. Four ENaC subunits 

have been cloned, namely, α, β, γ, and δ ENaC subunits in mammalian cells. This 

critical review focuses on the expression and function of ENaC in human and murine 

lungs, and the post-translational regulation by fibrinolysins. Nebulized urokinase was 

intratracheally delivered for clinical models of lung injury with unknown mechanisms. 

The central hypothesis is that proteolytically cleaved ENaC channels composed of four 

subunits are essential pathways to maintain fluid homeostasis in the airspaces, and that 

fibrinolysins are potential pharmaceutical ENaC activators to resolve edema fluid. This 

hypothesis is strongly supported by our following observations: 1) δ ENaC is expressed 

in the apical membrane of human lung epithelial cells; 2) δ ENaC physically interacts 

with the other three ENaC counterparts; 3) the features of αβγ ENaC channels are 

conferred by δ ENaC; 4) urokinase activates ENaC activity; 5) urokinase deficiency is 

associated with a markedly distressed pulmonary ENaC function in vivo; 6) γ ENaC is 

proteolytically cleaved by urokinase; 7) urokinase augments the density of opening 

channels at the cell surface; and 8) urokinase extends opening time of ENaC channels 

to the most extent. Our integrated publications laid the groundwork for an innovative 

concept of pulmonary transepithelial fluid clearance in both normal and diseased lungs.   
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Figure 1. Polygenetic tree of the ENaC/DEG superfamily. ENaC, epithelial sodium 
channels; ASIC, acid sensing ion channels; NaC, sodium channels; DEG, 
degenerins. 

1. Introduction 

This review explores a central thread in the ideas and publications generated in 

the last two decade by myself and by prolific collaborations with my colleagues. I 

initiated my studies in amiloride-sensitive epithelial sodium transport in 1995 while I was 

trained as a postdoctoral fellow in the University of Georgia at Athens. I extended my 

research to understand the structure-function relationship of α, β, and γ ENaC 

combining mutagenesis and heterologous expression in a well-established 3-D cell 

model, Xenopus oocytes. Subsequently, I cloned three DNA constructs encoding δ 
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ENaC subunits in human lungs (Ji et al., 2006; Zhao et al., 2012), and characterized 

their biophysical and pharmacological features and expression profiles in human lungs 

(Ji et al., 2006; Zhao et al., 2012).  I recently found that fibrinolysins in bronchioalveolar 

lavage are critical regulators of ENaC function. I, for the first time, identified both the 

cleavage sites in human ENaC proteins and the catalytic triad of urokinase (Ji et al., 

2015). This review will summarize the critical findings of these publications.  

The ENaC/DEG super gene family. Human ENaC subunits (α, β, δ, and γ) are 

encoded, respectively, by four genes, namely, scnn1a (sodium channels nonvoltage-

dependent), scnn1b, scnn1d, and scnn1d. These genes are comprised of a branch of 

the super ENaC/DEG gene family with more than a hundred members (Figure 1). The 

name degenerin (DEG) comes from the cellular phenotype induced by mutations of 

deg-1 and other related genes that result in selective degeneration of sensory neurons 

involved in touch sensitivity of C. elegans (Kellenberger & Schild, 2002). ENaC and 

degenerins have substantial sequence homology. The scnn1 genes encoding ENaC 

proteins were first cloned from mouse colon in 1993 (Canessa et al., 1993). Before that, 

there are several names for this type of channels, e.g., amiloride-sensitive sodium 

channels, voltage-independent sodium channels, non-voltage-gated sodium channels, 

amiloride-inhibitable sodium channels, apical sodium channels, etc. to form leaking 

sodium permeation pathway across the apical membrane of polarized epithelium in the 

kidney, the lung, the airways, the colon, the sweat gland, and other tissues. The 

essential function of ENaC is to serve as cation channels with a permeability order: Li+ 

>Na+ >K+ >Cs+. Beside, ENaC as well as other members of the ENaC/DEG family are 

also expressed in non-epithelial cells, including neurons, smooth muscle cells, 
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Figure 2. Gene expression profile of scnn1a, scnn1b, scnn1g, and scnn1d. Expression levels 
are computed from the “GeneAtlas U133A, gcmas” dataset, an atlas of tissue expression 
(GeneAtlas) on an Affymetrix U133A array, using the gcrma algorithm to process the data. 
The y-axes on these graphs represent normalized, background-subtracted, and summarized 
(probes to probeset) intensity of each probe set: 1 kidney, 2 tonsil, 3 lymph node, 4 thymus, 5 
bone marrow, 6 adrenal gland, 7 adrenal cortex, 8 olfactory bulb, 9 trachea, 10 salivary gland, 
11 pituitary, 12 fetal liver, 13 fetal lung, 14 fetal thyroid, 15 uterus, 16 adipocyte, 17 pancreatic 
islet, 18 pancreas, 19 testis seminiferous tubule, 20 testis Leydig cell, 21 testis interstitial, 22 
testis germ cell, 23 testis, 24 colorectal adenocarcinoma, 25 bronchial epithelial cells, 26 
smooth muscle, 27 cardiac myocytes, 28 leukemia lymphoblastic (MOLT-4), 29 leukemia 
chronic myelogenous K-562, 30 lymphoma Burkitts (Daudi), 31 leukemia promyelocytic HL-60, 
32 leukemia Burkitts (Raji), 33 thyroid, 34 prostate, 35 lung, 36 placenta, 37 CD71+ early 
erythroid, 38 small intestine, 39 colon, 40 liver, 41 heart, 42 uterus corpus, 43 appendix, 44 
ovary, 45 dorsal root ganglion, 46 ciliary ganglion, 47 atrioventricular node, 48 skin, 49 
trigeminal ganglion, 50 superior cervical ganglion, 51 tongue, 52 skeletal muscle, 53 retina, 54 
pineal night, 55 pineal day, 56 whole brain, 57 amygdala, 58 prefrontal cortex, 59 spinal cord, 
60 hypothalamus, 61 fetal brain, 62 thalamus, 63 caudate nucleus, 64 parietal lobe, 65 
medulla oblongata, 66 cingulate cortex, 67 occipital lobe, 68 temporal lobe, 69 subthalamic 
nucleus, 70 pons, 71 globus pallidus, 72 cerebellum, 73 cerebellum peduncles, 74 CD34+, 75 
CD105+ endothelial, 76 721 B lymphoblasts, 77 CD19+ B cells (neg._sel.), 78 BDCA4+ 
dendritic cells, 79 CD8+ T cells, 80 CD4+ T cells, 81 CD56+ NK cells, 82 CD33+ myeloid, 83 
CD14+ monocytes, 84 whole blood. The bottom x-axes show the median (M) and the fold 
median level, as indicated by purple lines, and the top x-axes show the relative expression 
level with light gray lines; 176 samples for 84 types of tissues were statistically analyzed. 
These results represent relative expression levels and distribution of four scnn1 genes in 
human tissues. Scnn1a and scnn1b are predominately expressed in the lungs, while the other 
genes are distributed in 84 examined tissues/cells without marked difference. Data are 
adapted from BioGPS with permission (www.BioGPS.org). Adapted from Ji, et al 2012. 

leukocytes, endothelial cells, cardiovascular myocytes, mesothelial cells, and skin  

http://www.biogps.org/
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(Figure 2).  Their function in non-epithelial tissues is proposed to be involved in acid 

sensing, transduction of mechanical stimuli, and nociceptive pain (Ji et al., 2012).  

 
ENaC is a multimeric protein with a proposed heterotrimeric structure (Figure 3) 

(Jasti et al., 2007). However, our understanding of the architecture of the native ENaC 

proteins is incomplete. Based on heterologous expression studies, α and δ ENaC 

subunits are capable of forming electrically detectable channels, which will be amplified 

up to 2 order in the amplitude of current levels by co-expressing with β and γ 

counterparts. In contrast, in the absence of α or δ ENaC subunit, β and γ ENaC cannot 

form functional channels and are considered as regulatory subunits. So far, scnn1 

genes have been cloned from various species, such as rat, human, cow, mouse, and 

Xenopus laevis. For experimental clarity, murine and human ENaC channels are well 

investigated and widely used as research models. The homology between human and 

rat orthologs of ENaC subunit is about 85% to nearly 100%. The exon–intron 

architecture of the four genes encoding the four subunits of ENaC has remained highly 

conserved despite the divergence of their sequences (Kellenberger & Schild, 2002). 

The proteins that belong to the ENaC/DEG family consist of about 510 to 920 amino 

acid residues (Kellenberger & Schild, 2002; Ji et al., 2012). They are made of an 

intracellular N-terminus region followed by a transmembrane domain, a large 

extracellular loop contributing to approximate 60% of protein mass, a second 

transmembrane segment and a cytosolic C-terminal tail (Figure 3) (Ji et al., 2012). Few 

sequences are completely conserved among the ENaC/DEG family. They include a His-
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Figure 3. Heterotrimeric structure of ENaC proteins. α, β, and γ ENaC subunits are 
in red, yellow, and blue color, respectively.  The lipid bilayer of the plasma 
membrane are shown as dark lines in parallel. There are two transmembrane 
domains (M1 and M2), two intracellular terminal tails (N- and C-), and a huge 
extracellular loop. Adapted from Ji et al 2016. 

Glycine motif located in amino-terminal cytoplasmic domain and the extracellular loop 

contains cysteine rich domains II and III (Kellenberger & Schild, 2002).  

ENaC channels are located in the apical membrane of polarized epithelial cells 

particularly in the kidney, the lungs, and the colon where they mediate Na+ transport 

across tight epithelium. ENaC pathway plays a major role in Na+ and K+ ion 

homeostasis of blood, epithelia and luminal fluids by re-absorption of Na+ ions 

(Stockand et al., 2008). The basic functions of ENaC in polarized epithelial cell are to 

allow vectorial transcellular transport of Na+ ions (Figure 4) (Rossier & Stutts, 2009). 

This transepithelial Na+ ion transport through a cell basically involves two steps: first, 

the large electrochemical gradient for Na+ ions across the apical membrane provides 

the driving force for the entry of Na+ into the cell and second, active Na+ transport 
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across the basolateral membrane is accomplished by the energy-consuming Na+/K+-

ATPase (Rossier & Stutts, 2009). The apical entry of Na+ is blocked by submicromolar 

concentration of amiloride and analogs, which are used as potassium-sparing diuretics 

clinically. Amiloride directly “plugs in” the pore of ENaC channels to eliminate inward 

sodium flow (Kleyman & Cragoe, 1988; Kleyman et al., 1999). Inhibition of renal ENaC 

activity leads to a loss of sodium retention and subsequently dehydration of the body, 

and even causes hypotension. Amiloride is a competitive antagonist that competes with 

aldosterone for intracellular cytoplasmic receptor sites, or by directly blocking ENaC 

channels. This active transepithelial transport of Na+ ions is important for maintaining 

 
Figure 4. Transepithelial Na+ transport vectorially across apically located ENaC and 
Na+/K+-ATPase at the basolateral membrane. Adapted from Hanukoglu 2016 
(Hanukoglu & Hanukoglu, 2016). 
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the composition and the volume of the fluid on either side of the epithelium. In the 

kidney and the colon, which are the target tissues for aldosterone action, the 

transepithelial sodium transport is crucial for the maintenance of blood Na+ and K+ 

levels and their homeostasis. In the airways and the lungs, active transepithelial 

transport of Na+ ions is a major mechanism to keep the mucociliary beating of the 

ciliated epithelial cells and to prevent flooding of the air spaces. 

Pulmonary fluid homeostasis. The airway epithelia absorb Na+ via an 

amiloride-sensitive electrogenic transport. This active Na+ absorption is important for the 

maintenance of the composition of the airway surface liquid (Figure 4). The expression 

of the ENaC subunits along the respiratory epithelium is complex and varies between 

species. In adult rats and humans, the α, β, and γ ENaC subunits are highly expressed 

in small and medium-sized airways. The α and γ subunits but not the β subunits are 

expressed more distally in the lung, which may well correspond to localization in the 

type II alveolar cells. This heterogeneity of the expression of ENaC subunits along the 

airways suggests differential regulation of liquid absorption by channels of various 

subunit compositions (Matalon & O'Brodovich, 1999). 

At birth, amiloride-sensitive, electrogenic Na+ transport is important to clear the 

liquid that fills the alveoli and the airways of the fetal mouse lung. mRNAs for α, β, and γ 

ENaC were detected in the fetal lung around days 15–17 of gestation. Expression of 

ENaC subunits, mainly α and γ ENaC subunits, sharply increased in the late fetal and 

early postnatal life when the lung turned from a secretory to an absorptive organ 

(Thome et al., 2003). The physiological role of ENaC in lung liquid balance was clearly 
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demonstrated in mice in which the α ENaC gene was inactivated by homologous 

recombination. These α ENaC knockout mice died 48 hours after birth from respiratory 

failure due to a severe defect in the clearance of the fetal liquid filling the lungs. These 

studies suggest that at birth α ENaC in the mouse fetal lung is essential for Na+ 

absorption (Hummler et al., 1996). The disruption of the β and γ ENaC gene loci 

resulted in a slower clearance of the fetal lung liquid at birth but did not severely affect 

the blood gas parameters. The β or γ ENaC knockout mice died slightly later than the α 

knockout from severe electrolyte imbalance, namely, hyperkalemia due to deficient 

renal K+ secretion. In humans, the contribution of α ENaC to the clearance of fetal lung 

liquid at birth is still unclear. Very premature infants with respiratory distress syndrome 

had reduced sodium absorption across the respiratory epithelia, as demonstrated by a 

reduced nasal transepithelial potential difference, likely contributing to the pathogenesis 

of this syndrome. However, pseudohypoaldosteronism type I (PHA-I) patients with 

severe disruption of the α ENaC gene leading to near-complete loss of channel function 

had no report of respiratory distress syndrome at birth but showed a more than twofold 

higher liquid volume in airway epithelia than normal individuals. Thus, ENaC function in 

humans does not seem to be limiting at birth for the liquid clearance in the mature fetal 

lung. Differences between species in maturation of the lung, in mucociliary clearance, or 

in ENaC subunit expression in the respiratory epithelium may account for the 

phenotypic differences between humans and mice.  

Of note, mice do not express δ ENaC because the scnn1d is a pseudogene in 

murine. In sharp contrast to the early death of newborn litters of scnn1a knockout mice, 
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Figure 5. The uPA system. uPA, urokinase; tPA, tissue-type plasminogen activator; 
α2-AP, α2-antiplasmin; α2-M, α2-macroglobulin; PAI, plasminogen activator 
inhibitor. 

infants carrying a loss-of-function mutant of human α ENaC did not display a deadly 

distress syndrome caused by lung oedema (Trautmann & Pfeiffer, 1994; Bonny et al., 

1999), indicating that δ ENaC subunit may be a backup of α ENaC counterpart (Ji et al., 

2012). However, surviving children with the genetic deletion of scnn1d, encoding δ 

ENaC proteins, were predisposed to respiratory oedematous disorders and infection 

(Unique, 2008). In addition, numerous pathogens and pollutants decreased ENaC 

expression and function in vitro and in vivo (Ji et al., 2012). On the other hand, cystic 

fibrosis is a phenotype with hyperactive ENaC activity in the airways and the lungs. 

Genetically engineered mice over-expressing either α, β, γ, or all of three (α+β+γ) ENaC 
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subunits had a COPD as well as cystic fibrosis phenotypes (Mall et al., 2004; Zhou et 

al., 2007; Mall et al., 2008; Zhou et al., 2011).  

The urokinase system. Urokinase-type plasminogen activator (uPA) initiates 

fibrinolysis by converting plasminogen to plasmin (Figure 5). In the respiratory system, 

uPA is expressed in the airway epithelium, alveolar epithelial cells, macrophages, and 

pulmonary capillary endothelial layer (Gross et al., 1990; Marshall et al., 1990; 

Takahashi et al., 1992; Nishiuma et al., 2004; Sisson & Simon, 2007; Shetty et al., 

2008). uPA released from these cells is a single-chain molecule (scuPA), which can be 

further proteolytically cleaved to form active two-chain enzyme (tcuPA). uPA is readily 

detectable in bronchioalveolar lavage and pleural fluid in mammals, and is a primary 

contributor of fibrinolytic activity in lungs (Chapman et al., 1986; Kotani et al., 1995; 

Nishiuma et al., 2004).  Tissue-type plasminogen activator (tPA), however, is not 

expressed in lung epithelial tissues and cannot be detected in luminal fluid lining the 

airways and air sacs.  Both uPA and tPA are endogenous plasminogen activators. To 

maintain fibrinolytic homeostasis, inhibitors of plasminogen activators 1 and 2 (PAI-1 

and PAI-2) and plasmin (α2-antiplasmin and α2-macroglobulin) coordinately fine tune 

the plasminogen activation system.   

The balance between plasminogen activators and their corresponding inhibitors 

is disrupted in oedematous lungs and pleural injuries, including ALI, ARDS, high altitude 

pulmonary oedema, and pleural effusions (Idell, 2008; Shetty et al., 2008; Glas et al., 

2013). Accumulating evidence from clinical studies of premature infants with ARDS and 

animal models of pleural effusions and ALI confirmed a depression in plasminogen 

activation in bronchioalveolar lavage or pleural fluid (Idell et al., 1992a; Idell et al., 
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1992b; Viscardi et al., 1992).  This is primarily attributable to a tremendous elevation in 

PAI-1 level (a prognostic biomarker) and a significant reduction in uPA and plasmin 

(Bertozzi et al., 1990; Idell et al., 1991; Sisson et al., 2002; Prabhakaran et al., 2003; 

Sapru et al., 2010). Concurrently, the balance between fluid turnover and resolution in 

the airways, alveolar spaces, and pleural cavity is lost.  Accumulation of oedematous 

fluid mainly results from fluid re-absorption that cannot be compensated by fluid leakage 

(Matthay et al., 2002; Davis & Matalon, 2007; Eaton et al., 2009). This pathogenic 

scenario can be illustrated with alveolar fluid clearance. Alveolar fluid removal is driven 

by the osmotic sodium gradient as well as electrical potential difference across the 

alveolar epithelium.  Vectorial transalveolar salt transport generates both chemical and 

electrical differences between luminal and interstitial compartments. Epithelial sodium 

channels (ENaC) at the apical membrane and ATP-consuming Na+/K+-ATPase at the 

basolateral membrane coordinately control sodium inward movement and depolarize 

the epithelial layer (Fuller et al., 1996; Ji et al., 2012).  

Reduced ENaC expression and activity were described in both oedematous 

pulmonary diseases and animal models (Matthay et al., 2002; Matthay, 2014).  

Defective lung fluid clearance has been confirmed in mice with deficient scnn1 genes 

(Hummler & Planes, 2010).  uPA and tPA decreased the severity of lung injury and 

pleural effusions (Strange et al., 1995; Stringer et al., 1998; Munster et al., 2000; 

Stringer et al., 2004; Renckens et al., 2008; Huang et al., 2012; Komissarov et al., 

2013).  Whether delivered plasminogen activators evoke ENaC-mediated oedema 

resolution, however, is unknown to date.  

The concurrent oedema formation and suppressed fibrinolysis in injured lungs 
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and pleural cavity, suggest a potential contribution of fibrinolysis to ENaC function.  

Indeed, ENaC activation by plasmin has been recently demonstrated (Passero et al., 

2008; Haerteis et al., 2012).  Intratracheal and intrapleural delivery of uPA (abbokinase) 

and tPA (alteplase) is extensively used for fibrinolytic therapy for embolisms (Wang et 

al., 2010; Marhuenda et al., 2014; Meyer et al., 2014; Piazza et al., 2015), pleural 

effusions, and empyemas (Diacon et al., 2004; Cases Viedma et al., 2006; Thommi et 

al., 2007; Froudarakis et al., 2008; Zuckerman et al., 2009; Rahman et al., 2011; 

Thommi et al., 2012; Aleman et al., 2015; Cao et al., 2015; Saydam et al., 2015).  

However, to the best of our knowledge, the effects and underlying mechanisms of tPA 

and uPA on ENaC function remain obscure. Our studies therefore aim to understand 

the molecular and pharmacological mechanisms by which these serine proteases 

resolve oedema fluid.   
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2. Central Hypothesis that links published 

works 

The central hypothesis that links my previous publications is that δ subunit-containing 

channels are essential to maintain pulmonary fluid homeostasis and fibrinolysins post-

translationally cleave ENaC to regulate transepithelial salt re-absorption. Our published 

data strongly support this hypothesis as described in Section 3. These studies were 

performed in vitro, in vivo and ex vivo with multiple cutting-edge techniques. The main 

goal of our projects is to characterize the major pathway of fluid clearance via ENaC 

and the regulation by fibrinolysis. We thus aim to confirm that 1) a novel δ ENaC 

contributes to pulmonary epithelial sodium transport; 2) fibrinolysis regulates ENaC-

mediated fluid homeostasis under physiological conditions; 3) the uPA pathway 

regulates normal ENaC function; and 4) molecular mechanisms for fibrinolysins to 

activate ENaC.  Our published works strongly support this central hypothesis. Our data 

provide paradigm-shifting information to develop innovative therapeutic strategies for 

combating both “wet” and “dry” lungs.  
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3. Significant Findings and Conclusions 

3.1 Four epithelial sodium channels are expressed in human lung epithelium 

Three ENaC subunits were first identified in mice in 1994 (Canessa et al., 1994). 

Thereafter, it has long been accepted that the native ENaC channels are composed of 

α, β, and γ subunits. The expression and function of δ ENaC subunits in the respiratory 

system has not yet been paid enough attention given the fact that α ENaC deficiency 

resulted in death of newborn mice. On the other hand, mice do not express δ ENaC (Ji 

et al., 2012). Furthermore, over expression of β ENaC caused a postnatal death due to 

developmental deficiency of the respiratory system (Mall et al., 2004). We thus 

hypothesize that δ ENaC may be a critical components of human pulmonary ENaC 

channels.   

3.1.1. Expression of δ ENaC protein in lung epithelial cells. H441 is an 

airway epithelial cell line derived originally from human stem cells, Club or Clara 

epithelial cells. It has been used to functionally study amiloride-sensitive sodium 

channels associated with ENaC in several groups, including us (Tucker et al., 1998; 

Kulaksiz et al., 2002; Lazrak & Matalon, 2003; Ji et al., 2006; Nie et al., 2009a; Han et 

al., 2010; Han et al., 2011).  To detect δ ENaC expression at the protein level, H441 

monolayers grown on filters were immunostained with a specific anti- δ ENaC antibody, 

followed by a FITC conjugated secondary antibody. We found the expression of δ ENaC 

in H441 cultures (Ji et al., 2006). α, β, and γ ENaC proteins were also detected in H441 

monolayers, in agreement with other studies (Wodopia et al., 2000; Itani et al., 2002). 
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Cells incubated with non-immune IgG and the secondary antibody did not exhibit 

immunofluorescence. Similar results were seen in A549 cells.  Our results suggest that 

δ ENaC is co-expressed with α, β, and γ ENaC proteins in human lung epithelial cells.  

3.1.2. Co-immunoprecipitation of α and γ ENaC with δ ENaC in H441 cells. 

Co-expression of δ ENaC with α, β, and γ ENaC indicates that these four ENaC 

subunits may associate with each other to form channel complexes. To test this 

hypothesis, we first detected native δ ENaC protein expression in H441 cells. δ, α, and γ 

ENaC proteins were detected as 85~90 Kb for δ and α ENaC, respectively, and 150 Kb 

for γ ENaC.  γ ENaC was found to co-immunoprecipitate with δ and α ENaC (Ji et al., 

2006). Specificity was demonstrated by Western blots with anti- γ ENaC following 

pretreatment of the anti- γ ENaC antibody with excess neutralizing peptide (Ji et al., 

2006). In addition, δ ENaC also precipitated with α ENaC subunit in H441 cells and in 

COS-7 cells following transiently transfection of hemagglutinin (HA)-tagged δ ENaC 

and α ENaC (Ji et al., 2006).  

3.1.3. Identification of a novel splicing variant for δ ENaC. We recently cloned 

a novel variant, namely, δ2 ENaC. δ2 ENaC encodes a full-length proteins comprised of 

802 amino acid residues. In comparison, the aforementioned δ ENaC, termed δ1 ENaC 

here, encodes 638 amino acid residues (Ji et al., 2012). Two genetic variants of δ ENaC 

were analyzed in human alveolar epithelial cells. We found in both alveolar type I and II 

cells, δ2 ENaC is expressed at a lower level than δ1 ENaC (Zhao et al., 2012). In some 

cases, δ1 and δ2 were present in the same alveolar cells. In addition, δ1 ENaC was also 

present in pulmonary leukocytes, in which other ENaC subunits and amiloride-sensitive 
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channels have been detected (Bubien et al., 2001).   

 

3.2 δ ENaC confers the properties of αβγ ENaC channels 

Native amiloride-sensitive Na+ channels exhibit a variety of biophysical 

properties, including variable sensitivity to amiloride, different ion selectivity, and diverse 

unitary conductances. The molecular basis of these differences has not been 

elucidated. We tested the hypothesis that co-expression of δ ENaC underlies the 

multiplicity of amiloride-sensitive Na+ conductances in epithelial cells.  

3.2.1. Cation permeability. In this sets of experiments, we tested the hypothesis 

that co-expression of δ ENaC will alter the ion selectivity of αβγ channel. We found that 

the inward amiloride-sensitive Na+ current was greater than that carried by Li+ ions.  

Much less inward and relative greater outward currents were detected when K+, Cs+, 

Ca2+, and Mg2+ were used as charge carriers.  Meanwhile, the reversal potential shifted 

leftward from depolarization voltages (10 to 20 mV) by approximately 50 to 150 mV. 

Additionally, the resting membrane potentials, which were generally above zero mV 

under current clamp configuration in oocytes perfused with Na+ (or Li+), showed 

hyperpolarization to a variable extent (Ji et al., 2004).  

To calculate the permeability ratios between Na+ and the other cations, 

amiloride-sensitive current-voltage curves were fitted with the Goldman-Hodgkin-Katz 

current equation as described previously (Ji et al., 2001).  The PX/PNa ratios of Na+ /Li+ 

/K+ /Cs+ /Ca2+ /Mg2+ were 1/0.6/0.07/0.2/0.26/0.4 for δβγ ENaC. However, they were 

1/1.2/0.02/0.29/0.31/0.21 for αβγ-ENaC and 1/0.88/0.02/0.14/0.23/0.14 for δαβγ hENaC, 
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respectively. Our results of wild type αβγ and δβγ ENaC are consistent with previously 

published observations (Canessa et al., 1994; Waldmann et al., 1995; Ji & Benos, 

2004). In particular, the normalized permeability to Li+ (PNa is 1.0) for δαβγ ENaC was 

0.88, which was distinguishable from those of αβγ (1.2) and δβγ ENaC (0.6). Significant 

differences in normalized permeabilities to the other monovalent and divalent cations 

was not observed between heterologously expressed αβγ, δβγ, and δαβγ ENaC 

channels. 

3.2.2. Amiloride sensitivity. The Ki of amiloride for δβγ ENaC is in the 

micromolar range (vs <100 nM for αβγ ENaC). Amiloride blocking of δβγ ENaC is much 

more voltage-dependent compared to αβγ channel (Ji & Benos, 2004). To determine 

amiloride sensitivity of δαβγ ENaC, we perfused oocytes with solutions containing 1nM, 

10nM, 100nM, 1µM, 10µM, 100µM, and 1mM amiloride at holding potentials ranging 

from -120 mV to +80 mV. We observed that the dose-response curves shifted rightward 

at depolarized potentials. The Ki of amiloride at -120 mV was 920 ± 185 nM, and 13,746 

± 2805 nM at +80mV, respectively, which significantly differ from those of αβγ ENaC (P 

< 0.05) (Ji et al., 2004).  

To further investigate the voltage dependence of amiloride inhibition for δαβγ 

human ENaC channel, the retrieved values for Ki
amil

 were plotted against the membrane 

potentials (Ji et al., 2004; Ji et al., 2006). The more depolarizing the membrane 

potential, the greater the value of Ki
amil. As we have previously described for αβγ and 

δβγ ENaC, positively charged amiloride interacts with ENaC in a voltage-dependent 

manner (Ji & Benos, 2004). The Ki of amiloride at 0 mV estimated by fitting the voltage-
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dependent plot with the Woodhill equation was 3.79 ± 0.2µM for δαβγ ENaC, whereas it 

was 13.1 µM and 0.33 µM for δβγ and αβγ ENaC, respectively (Ji et al., 2004).  The 

voltage sensitive fractional distance for amiloride was 0.41 (Ji et al., 2004). In 

comparison, it was 0.34 for αβγ ENaC and 0.48 for δβγ ENaC, respectively (Ji et al., 

2004; Ji et al., 2006).  

3.2.3. Unitary conductance. Because the ion permeability ratio (PNa/PLi) and 

apparent equivalent dissociation constant of amiloride for the δαβγ ENaC channel are 

the arithmetic mean of those of αβγ and δβγ ENaC, the question arose whether oocytes 

injected with δαβγ ENaC subunits express two separate populations of ENaC, that is, 

αβγ and δβγ ENaC channels, or one population of δαβγ channels with novel biophysical 

characteristics.  To address this question, on-cell patches were used to measure single 

channel conductances (Ji et al., 2004; Ji et al., 2006). Only one unitary Na+ or Li+ 

current level was observed and the corresponding slope conductances, respectively, 

were 8 ± 0.2 pS for Na+ and 7.5 ± 0.1 pS for Li+ ions. No amiloride-sensitive sub-

conductance was observed (Ji et al., 2004).  

3.2.4. Gating kinetics. We measured the mean open time (MOT) and mean 

closed time (MCT) for δαβγ-ENaC (Ji et al., 2006). We described that the MOT and 

MCT for δαβγ ENaC channels were significantly less than the corresponding values for 

αβγ and δβγ ENaC channels.  The MOT values for αβγ and δβγ ENaC were greater than 

that of δαβγ ENaC (P < 0.05). In addition, the MCT values of αβγ ENaC was almost 10-

fold of that for δαβγ ENaC (P < 0.05).  
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3.2.5. Proton activation. We found that δβγ, but not αβγ ENaC was activated by 

extracellular protons (Ji & Benos, 2004). To test the pH sensitivity of δαβγ ENaC, 

oocytes were perfused with bath solutions with neutral or acidic pH.  Similar to the δβγ 

ENaC channel expressed in oocytes, the inward current of δαβγ ENaC was activated by 

extraoocyte acidic pH in a concentration-dependent pattern (Ji et al., 2006).  The pH 

value required for half activation of the maximal pH-activated current level (EC50) was 

6.5 ± 0.1 (Ji et al., 2004). This differs from pH 6.0 for δβγ ENaC (Ji & Benos, 2004).  

3.2.6. Self-inhibition. Self-inhibition by extracellular Na+ ions is a biophysical 

hallmark of the ENaC channels (Garty & Palmer, 1997). To characterize this inherent 

biophysical property, the self-inhibition time of Na+ for δαβγ ENaC was examined (Ji et 

al., 2006). To calculate self-inhibition time, the currents at -60 mV were digitized while 

switching bath solutions from low Na+ ND96 medium (1 mM Na+ ions) to ND-96 (96 mM 

Na+ ions) medium. The current fraction from the time point for the first time to switch 

bath solution (from 1 mM to 100 mM) to the peak of current (τa) and from the peak of 

current to the time point for the second time to switch bath solution (from 100 mM to 1 

mM, τsi) was fitted with the first-order exponential function for estimating τa (activation 

time) and τsi (inactivation time), respectively (Ji et al., 2006).   

Our data shows that the inward current reaches its peak in less than 1 s followed 

by a run-down in the presence of constant external Na+ level.  The self-inhibition time 

(τsi) for δαβγ ENaC was 3,427 ± 217 ms, which was significantly greater than that of αβγ 

ENaC (2,584 ± 72 ms, P < 0.05) and but less than that of δβγ-ENaC (8,626 ± 1,541 ms, 

P < 0.01). In contrast, the activation (τa) was not changed significantly.  The αβγ ENaC 
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current displayed a steep run-down (45 % of the peak current in 12.5s) while the δβγ 

ENaC current level decreased to a less extent (12% of peak current in 12.5s) (Ji et al., 

2004). These results are consistent with measurements of rat and mouse αβγ ENaC 

expressed in oocytes (Chraibi & Horisberger, 2002; Sheng et al., 2004).  Therefore, the 

corresponding ratio of the peak and sustained currents was much less for αβγ ENAC 

compared with those of δβγ and δαβγ ENaC (P < 0.01).  

3.2.7. Dependence of PNa/PLi ratio and unitary Na+ conductance on injected 

cRNA concentrations. To determine the expression level of δ ENaC needed to confer 

the biophysical features of αβγ ENaC, we measured the PLi/PNa ratios and unitary Na+ 

conductance in oocytes co-injected various ratios of δ and αβγ ENaC cRNAs (Ji et al., 

2006). The PLi/PNa ratio in oocytes co-injected with an equivalent concentration (1δ:1α) 

of δ and α ENaC cRNAs was significantly lower when compared to that of αβγ ENaC 

(0.7 vs 2.0, P < 0.05). Even with the cRNA ratio of 1δ:10α the relative Li+ permeability 

reduced markedly. Meanwhile, the unitary Na+ conductance increased in 1/3 of patches 

in oocytes expressing 1δ:10α ENaC. A further increase (10δ:1α) in the δ subunit cRNA 

co-injected elevated the conductance closing to the level of δβγ ENaC (Ji et al., 2006). 

In toto, reverse transcription PCR revealed that δ ENaC is co-expressed with αβγ 

subunits in several cultured human epithelial cells, including lung epithelial cells (H441 

and A549), pancreatic cells (CFPAC), and colonic epithelial cells (Caco-2). Indirect 

immunofluorescence microscopy revealed δ ENaC is co-expressed with α, β, and γ 

ENaC in H441 cells at the protein level.  The biophysical and pharmacological features 

between classical αβγ and δαβγ channels are different.  We, therefore, conclude that δ 
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ENaC forms multimeric channels with αβγ subunits with novel biophysical features, 

thereby accounting at least in part, for the observed heterogeneity of biophysical 

properties of native epithelial Na+ channels (Ji et al., 2006).  

 

3.3 Urokinase contributes to fluid homeostasis in pulmonary system 

Concurrent existence of lung oedema and significant depressed fibrinolytic 

activity in oedematous lung injury indicates a link between the uPA/plasmin system and 

transepithelial fluid movement (Idell et al., 1992a; Barazzone et al., 1996; Sebag et al., 

2011; Tucker & Idell, 2013). We reported that plasminogen activator inhibitor (PAI-1) 

altered ENaC activity previously (Lazrak et al., 2009).  We also demonstrated that 

trypsin cleaved ENaC in vitro (Jovov et al., 2002).  uPA is a major contributor to the 

pulmonary fibrinolytic activity. An overwhelmingly elevated PAI-1 level in the BAL lavage 

was supposed to eliminate uPA activity (Idell, 2003; Shetty et al., 2008; Sapru et al., 

2010). However, in normal lungs, uPA is readily detectable (Shetty et al., 2008; Ji et al., 

2015). We thus hypothesize that uPA regulates transalveolar fluid clearance in vivo. To 

test this hypothesis, we utilized a mouse colony with deficient uPA gene, and the 

controls were wild type mice with the same genetic background.  Furthermore, the 

underlying mechanisms were explored in primary cell cultures.  

3.3.1. Characterization of ENaC activity in uPA knockout cells. Benzamil is a 

specific and potent inhibitor of ENaC activity (Kleyman et al., 1999). We examined 

dose-effect relationship of benzamil in mouse tracheal epithelial (MTE) monolayer cells. 

Our results suggest that the level of basal short-circuit current (Isc) in WT cells is 

approximately four fold that in uPA knockout preparations. The Isc values were inhibited 
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by increasing the administered benzamil from 10 nM to 100 µM (Chen et al., 2014).  

However, the Ki values for WT and uPA-/- cells do not differ significantly. 

3.3.2. Reduction of ENaC activity in uPA-deficient MTE cells. Inflammation 

and suppressed uPA activity are known to co-exist in injured lungs (Idell et al., 1992a; 

Barazzone et al., 1996; Sebag et al., 2011; Tucker & Idell, 2013). Based on the marked 

difference in ENaC activity between WT and uPA-/- cells, we postulated that uPA 

regulates ENaC activity in the airway epithelium. To test this hypothesis, we measured 

ENaC function in MTE monolayer cells collected from both WT and uPA-/- mice.  MTE 

cells from age- and gender-matched mice were cultured at the air-liquid interface as 

described (Chen et al., 2009). We found that basal activity in uPA-/- cells was reduced 

compared to that in WT controls.  Amiloride, a widely used inhibitor of ENaC activity, 

reduced the predominant fraction in both WT and uPA-/- cells.  In sharp contrast, the 

transepithelial resistance did not show any difference between these two groups, 

though amiloride increased the value slightly (Chen et al., 2014).  uPA deficiency 

caused a reduction of ~40 % in ENaC function (Chen et al., 2014).   

ENaC activity depends upon its phosphorylation by the cAMP/PKA signaling 

pathway. We therefore examined the effects of uPA on cAMP-activated ENaC activity.  

Cystic fibrosis transmembrane conductance regulator (CFTR) is also a target of the 

cAMP/PKA signaling pathway and functionally inter-regulates ENaC.  CFTRinh-172 was 

used to eliminate CFTR function.  Similar to the basal ENaC activity, a significant 

reduction in the cAMP-elevated ENaC activity was observed in uPA-/- cells (Chen et al., 

2014).  
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3.3.3. uPA deficiency down-regulates ENaC activity in permeabilized cells. 

Na+ ion flow through ENaC channel pore is driven by both Na+ ion gradient across the 

apical plasma membrane and Na+/K+-ATPase at the basolateral membrane.  To 

measure ENaC activity, Na+/K+-ATPase was eliminated functionally in the basolateral 

membrane-permeabilized cells. In addition, electrogenic Cl- flow via CFTR was 

completely blocked by symmetrical Cl- concentration across the apical membrane.  

Under these conditions, we reevaluated ENaC activity with a physiological Na+ ion 

gradient (Chen et al., 2014).  The rate of Na+ influx through ENaC shows a significant 

decrease in uPA-/- cells. These data, combined with those from intact monolayer cells, 

support the concept that ENaC activity in MTE cells is down-regulated in the absence of 

uPA.   

We next asked whether uPA knockout would affect Na+/K+-ATPase and indirectly 

down-regulate ENaC by eliminating the transepithelial Na+ ion gradient.  To answer this 

question, we compared Na+/K+-ATPase activity between WT and uPA-/- cells following 

apical membrane permeabilization (Chen et al., 2014).  Ouabain-inhibitable Isc fraction 

was approximately 50% that of WT cells.  Clearly, depression of the driving force for 

ENaC results in reduced ENaC activity in uPA-deficient cells. 

3.3.4. Phosphorylation of ERK1/2 and Akt by uPA. ERK1/2 and Akt are 

downstream components of the uPA/uPAR signaling pathway (Smith & Marshall, 2010). 

Furthermore, ENaC has been confirmed to be regulated by both phosphorylated 

ERK1/2 and Akt (Arteaga & Canessa, 2005; Lee et al., 2007; Lazrak et al., 2012). We 

reasoned that uPA deficiency regulated ENaC activity via modification of ERK1/2 and 

Akt phosphorylation (Figure 6).  The first set of immunoblot assays was carried out with 
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Figure 6. Diagram of the ERK1/2 and Akt as downstream molecules of the uPA. 
Signal pathway.  

lung tissues.  A significant elevation in the ratio of phosphorylated versus total proteins 

for ERK1/2 was seen in uPA-/- lysates (Chen et al., 2014).  However, alteration in the 

phosphorylation status of Akt was not observed neither in uPA-/- deficient MTE cells or 

lung homogenates.  We then repeated these intriguing observations in cultured primary 

MTE cells.  An incremental change in phosphorylated ERK1/2 proteins was found in 

uPA-deficient MTE cells.  In striking contrast, a slight decline in phosphorylated Akt 

proteins was found. Is phosphorylation of ERK1/2 a mediator for the regulation of ENaC 

activity by uPA? To address this question, we knocked down ERK1/2 using specific 

siRNAs (Chen et al., 2014). ENaC activity was restored up to approximately 90% of that 

in WT cells, indicating that uPA regulates ENaC via ERK1/2 phosphorylation. 

3.3.5. Apoptosis is not involved in the reduction of ENaC activity. It has 

been documented that manipulation of uPA gene influences cellular apoptosis 

(Hildenbrand et al., 2008; Prager et al., 2009). Reduced ENaC activity could simply be 

due to abnormal cell survival.  We addressed this issue by determining the expression 
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of caspase 8, an apoptotic marker in the WT and uPA-/- MTEs (Du et al., 2006). Neither 

full-length nor cleaved caspase protein expression was augmented (Chen et al., 2014).  

These results were supported by the transepithelial resistance measurement and 

demonstrate that the decreased ENaC activity in uPA-/- cells is not attributable to 

apoptotic transformation of the cells.  

3.3.6. Proteolysis of ENaC by uPA. Urokinase belongs to the S1 family of 

serine proteases.  The active triad is composed of histidine, aspartic acid, and serine 

residues.  Heterologously expressed human and murine ENaC proteins have been 

confirmed to be proteolytically modified by plasmin (Passero et al., 2008; Haerteis et al., 

2012).  We postulate that uPA cleaves ENaC under physiological conditions, and that 

uPA deficiency depresses proteolysis of ENaC.  To characterize a new polyclonal 

antibody against the C-terminal peptide of rat γ ENaC, proteins in Western blots loaded 

with both total and plasma membrane proteins from cells expressing mouse γ ENaC 

served as positive controls.  The construct was tagged at the N-terminal with FLAG@ 

(trademark) epitope that can be specifically recognized by a monoclonal antibody 

against FLAG epitope.  There are two specific bands (95 and 86 kDa) with anti-FLAG 

antibody, which was loaded with total proteins of cells expressing mouse γ ENaC with 

FLAG epitope.  Similarly, the polyclonal ENaC antibody raised with the C-terminal 

peptide of rat γ ENaC recognized the same signals, which were loaded with total and 

plasma membrane protein, respectively.  Importantly, this polyclonal antibody detected 

a cleaved C-terminal fragment with a size of approximately 74 kDa in wild type mouse 

lung tissues.  Furthermore, we quantitated the cleavage of γ ENaC in uPA deficient 
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lungs using β-actin as a loading control (Chen et al., 2014).  Indeed, catalysis of γ ENaC 

was significantly reduced in the lungs of uPA disrupted mice. 

3.3.7. Contribution of uPA to airway luminal fluid homeostasis. Homeostasis 

of respiratory luminal fluid is mainly regulated by ENaC (Mall et al., 2008; Mall et al., 

2010; Lazrak et al., 2011).  We postulated that uPA-mediated ENaC activity in the 

airway epithelial cells may affect fluid re-absorption.  To test this hypothesis, we 

measured fluid height at the apical surface of MTE (mouse tracheal epithelial) cultures 

using a well-characterized visualization approach (Tarran et al., 2005; Hobbs et al., 

2013). We demonstrated that the depth of apical fluid above the uPA-deficient cells was 

much greater than that of WT controls (P < 0.05) (Chen et al., 2014).   

In summary, this set of studies provides novel evidence that uPA regulates ENaC 

activity via multifaceted mechanisms that relate to clearance of airway fluids in injured 

lungs. uPA exerts its effects on proteolysis of ENaC, regulation of Na+/K+-ATPase, and 

modification of ERK1/2 signaling. This work links alterations in the expression of uPA 

activity to altered ENaC functionality in injured lungs.  

 

3.4 Urokinase plasminogen activator proteolytically cleaves γ ENaC subunits 

There are at least four ENaC subunits (α, β, δ, γ) expressed in human respiratory 

epithelial cells. The question raised from above in vivo studies is what ENaC subunit is 

catalyzed by urokinase? To date, all of three subunits have been reported to be 

proteolytically cleaved, in particular α and γ ENaC proteins (Andreasen et al., 2006; 

Planes & Caughey, 2007; Kleyman et al., 2009). δ ENaC is not believed to be cleaved 

(Haerteis et al., 2009; Giraldez et al., 2012; Ji et al., 2012). Our immunoblotting assay 
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suggests that at least fragments of native γ ENaC proteins in uPA deficient cells are 

altered (Chen et al., 2014). To further identify the target subunit for uPA, we incubated 

Xenopus oocytes heterologously expressing various combinations of human αβγ ENaC 

subunits with two-chain uPA (tcuPA).  Single chain uPA proteins were generally cleaved 

to form tcuPA with catalytic activity under physiological conditions. The cleavage of 

ENaC proteins was detected by combining functional analysis of ion channel activity 

with immunoblotting assays of catalyzed peptides. 

3.4.1. γ ENaC is cleaved by uPA. To identify what subunits are cleaved by 

tcuPA, a well-established measurement of amiloride-sensitive sodium ion flow was 

applied (Ji et al., 1998a; Ji et al., 1998b, 1999; Ji et al., 2000; Ji et al., 2001; Ji et al., 

2002a; Ji et al., 2002b). We expressed α alone, α + β, and α + γ in oocytes.  tcuPA 

slightly stimulated current level in cells expressing α ENaC alone (P > 0.05).  The 

change in cells co-expressing α + β ENaC subunits was not significant.  In sharp 

contrast, the activity of channels composed of α + γ ENaC subunits was increased 

approximately three-fold (P < 0.05).  These results indicate that the γ subunit could be a 

target for tcuPA.   

3.4.2. Identification of cleavage regions in ENaC. As proposed and confirmed 

by several groups, there are three putative cleavage domains (Rossier, 2004; Planes & 

Caughey, 2007; Kleyman et al., 2009; Rossier & Stutts, 2009).  To narrow down the 

search range for uPA cleavage sites, we constructed three deletion mutants for both α 

(α∆131-138, α∆178-193, and α∆410-422) and γ ENaC subunits (γ∆131-138, γ∆178-193, 

and γ∆410-422), and expressed them in oocytes.  We reasoned that removal of tcuPA 
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cleavage sites from these ENaC subunits, channel activity associated with these 

cleavage site-missing mutants should not be altered by tcuPA.  Intriguingly, four 

mutants, one of α ENaC and all three deletion mutants of γ ENaC subunit did not 

respond to tcuPA (Ji et al., 2015). Because the current levels between each construct 

vary before application of uPA, we thus computed fold increased in the ENaC activity, 

suggesting that uPA-specific cleavage motif may be located within these four deleted 

ectodomains.   

We then constructed V5 (C-terminal) and HA (N-terminal) tagged α (HAαV5) and γ 

ENaC (HAγV5) to examine tcuPA-mediated proteolysis combining biotinylation and 

Western blots.  What we observed is that three bands of α ENaC were recognized by 

anti-V5 monoclonal antibody.  One small fragment at 25 kDa in addition to a full-length 

signal was identified by anti-HA antibody (Ji et al., 2015).  Furthermore, three small 

bands could be visualized on 16.5% Tris-Tricine gels by anti-HA antibody.  The same 

signal patterns of α ENaC were found in the absence and presence of tcuPA, either with 

anti-carboxyl terminus (-COOH) or anti-amino terminus (-NH2) antibody.  These results 

exclude the cleavage of α ENaC proteins by tcuPA, further substantiating the functional 

analysis. 

In strict contrast to α ENaC, two peptides of γ ENaC were visualized by anti-V5 

antibody for full-length proteins (86 kDa) and endogenous furin-cleaved C-terminal 

fragments (70 kDa) in the absence of tcuPA (Ji et al., 2015).  By comparison, in the 

presence of tcuPA, C-terminal fragments with a smaller size (65 kDa) than that of furin-

cut fragments along with the full-length proteins were seen.  Strikingly different from 

anti-V5 antibody-recognized signals, proteins detected by anti-HA monoclonal antibody 
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displayed a similar pattern, either on 7.5 % SDS-PAGE gels or 16.5% Tris-Tricine gels. 

The same pattern for ENaC expression was found between controls and tcuPA-treated 

groups, indicating that the furin sites may precede the cleavage domains for tcuPA.  

Thus, the subsequent Western blots were done with anti-V5 antibody to examine uPA-

cleaved C-terminal peptides as well as full-length translations (Ji et al., 2015). 

3.4.3. An uPA substrate in γ ENaC. Several serine proteases, including 

prostasin (RKRK178), human neutrophil elastase (V182, V193), and plasmin (K189) 

trimmed the second consensus proteolysis motif (Rossier, 2004; Planes & Caughey, 

2007; Kleyman et al., 2009; Rossier & Stutts, 2009).  It is conceivable that all these 

residues are targeted by tcuPA.  This is at least the scenario for substrate-less specific 

plasmin to cleave human γ ENaC (Haerteis et al., 2012).  Indeed, the plasmin cleavage 

site composed of five amino acid residues for prostasin and one for murine plasmin 

(178RKRK181 + K189), when substituted with alanine (termed γ5A, 178AAAA181 + A189) 

was not stimulated by tcuPA even after 24 h (Ji et al., 2015).  Moreover, the tcuPA-

cleaved band disappeared compared with that of wild type channels (Ji et al., 2015).  

A series of classic studies on the specificity of uPA substrates revealed a 

consensus cleavage motif, GR↓(S>N/K/R)(A>>S) from P2 to P2’ (Ke et al., 1997a; Ke 

et al., 1997b).  We further combined in silico prediction and immunoblotting assays to 

narrow down the cleavage site.  Using the SitePrediction server (Verspurten et al., 

2009), only one hit was predicted: 177GR↓KR within the ectodomain of human γ ENaC 

with a specificity above 99%.  In strict contrast, no specific cleavage sites in human γ 

ENaC were found for tPA with its cleavage motif, (F/Y/R)GR↓R(A/G) from P3 to P2’ 

amino acid residues.  In addition, there are no predicted cleavage sites in human α, β, 
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and δ ENaC proteins for uPA to meet the prediction criteria.  Does uPA cut γ ENaC 

proteins into two fragments between Arg178 and Lys179?  We validated this prediction 

combining mutagenesis, functional measurements, biotinylation, and immunoblotting 

assays.  Neither γR178A nor γK179A could be activated by tcuPA in 24 h significantly 

(Ji et al., 2015).  We anticipated that the uPA-cleaved band of R178A and K179A 

should migrate slower than that wild type if any. Intriguingly, it is the case for K179M, 

and probably K179A but not R178A.  This phenomenon is consistent with the functional 

data measured as amiloride-sensitive sodium currents (Ji et al., 2015). Combined with 

the blot for the deletion mutant, we believe that amino acid residues from P2-P2’ 

(177GRKR180) coordinately interact with uPA to serve as a catalytic triad. Of them, both 

R178 and K179 amino acid residues are critical for uPA-mediated proteolysis. 

Combined with in silico prediction, mutagenesis, electrophysiological 

measurements, and immunoblotting assays, for the first time, we demonstrate human γ 

ENaC is a new substrate for uPA. Furthermore, we identified a specific motif with 

identical sequence to the proven substrate for uPA. These novel results provide 

molecular basis for the underlying mechanisms for uPA to activate ENaC. Genetic 

variance of the cleavage sites in γ ENaC may lead to uPA-deficient like dysfunctional 

fluid clearance in the airways and lungs. 

3.5 Localization of “cutting edge” of urokinase to catalyze ENaC 

3.5.1. uPA but not tPA activates ENaC. Fibrinolytic activity is depressed in 

injured organs (e.g. in acute lung injury and pleural effusion) (Bertozzi et al., 1990; Idell 

et al., 1991; Sisson et al., 2002; Prabhakaran et al., 2003; Sapru et al., 2010). These 

organ injuries are characterized by fluid accumulation in the luminal cavities, where 



 36 

ENaC is critical for fluid resolution (Matthay et al., 2002; Matthay et al., 2005; Eaton et 

al., 2009; Ji et al., 2012). Both uPA and tPA initiate fibrinolysis by converting 

plasminogen to plasmin. To examine the specificity of uPA on ENaC activity, we 

compared the effects of uPA and tPA (Ji et al., 2015). tcuPA stimulated ENaC activity in 

a dose-dependent manner. A linear relationship was seen between tcuPA concentration 

above 5 µg/ml (100 nM) and ENaC currents (Ji et al., 2015). Furthermore, we 

characterized the time course for the activation of ENaC function by tcuPA. ENaC 

activity was quickly elevated at 2 h, followed by a slow increment, finally reaching 

maximal activity at 8 h post-treatment. The ENaC currents subsequently declined 

slightly but were still significantly greater than the control (P < 0.05) at 24 h. The uPA 

enzyme activity was 80 and 20% of the initial level, at 8 and 24 h, respectively. 

Insufficient enzyme, altered endocytosis of channel proteins, and time-dependent 

expression of exogenous ENaC channels may contribute to the slight decline of current 

level after the 8 h time point.  

Surprisingly, neither single-chain tPA (sctPA) nor two-chain tPA (tctPA) at a dose 

of 10 ug/ml altered ENaC activity (Ji et al., 2015). Tenecteplase was tested next to 

determine whether exosite interactions contribute to a sharp difference in the effects of 

tPA and uPA on ENaC activity. Tenecteplase is a mutant variant 

(T103N/N117Q/K296A/ H297A/R298A/R299A) of tPA, which has higher than WT tPA 

fibrin specificity, and almost 2 orders of magnitude lower affinity for PAI-1 due to the 

elimination of positive charges in the 37-loop (57–59). However, neither sctPA nor tctPA 

nor tenecteplase in doses as high as 25 ug/ml affected ENaC activity (Ji et al., 2015), 

whereas enzymatic amidolytic activity toward LMW substrates and plasminogen-
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activating activity remained intact. Our study hereby adds a novel endogenous target to 

the uPA substrate pool.  

3.5.2. Catalytic triad of uPA to cleave ENaC. The two polypeptide chains of an 

uPA molecule (amino-terminal fragment (ATF) and protease domain) are connected by 

a single disulfide bond between two cysteine residues. To evaluate the contribution of 

uPA catalytic and ATF domains to activation of ENaC, a catalytically inactive S195A 

(chymotrypsin numbering) tcuPA and three uPA domain-deletion mutants, ∆kringle 

(deletion of Kringle domain), ∆CPD (deletion of Connecting Peptide Domain), and 

∆GFD (deletion of Growth Factor Domain) uPA, were compared with WT tcuPA. 

Oocytes expressing ENaC cRNA cultured in medium without uPA or its mutants were 

used as a negative control (Ji et al., 2015). Whereas inactive S195A tcuPA did not 

elevate ENaC current, all three mutant variants, which include the catalytic domain and 

possess enzymatic activity, activated ENaC. Therefore, there is only minimal (if any) 

contribution of ATF to ENaC activation by uPA (Ji et al., 2015).  

To further confirm these intriguing observations and to exclude the bias 

associated with enzymatic activity of each preparation of wild type and mutated uPA, we 

repeated these experiments by incubating oocytes with both wild type and mutant tcuPA 

preparations that, except for the S195A mutant, have equivalent enzymatic activity (Ji et 

al., 2015). Consistent with the above experiment, the S195A tcuPA (negative control for 

this set experiments) did not affect ENaC activity. These three domain-deletion mutants 

of uPA, namely, ∆kringle, ∆CPD, and ∆GFD, stimulated ENaC currents to an extent 

similar to WT tcuPA. These data demonstrate that the amino-terminal fragment is not 
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involved in the activation of ENaC by tcuPA. Moreover, the same level of enzymatic 

activity associated with both wild type and mutant tcuPA, instead of identical mass, 

determined the amplitude of ENaC currents. We pooled experimental paired data for 

WT and mutated uPA as well as tPA constructs to compute the Pearson correlation. A 

correlation co-efficient of 0.93 was derived with a P value of 3.5E-6 between tcuPA and 

ENaC activity (Ji et al., 2015). In sharp contrast, tPA enzyme activity showed no 

correlation with ENaC function. These results suggest a possible correlation between 

activated ENaC current levels and uPA enzyme activity, demonstrating that S195 is 

required for uPA to cleave ENaC. 

3.5.3. Structural interactions between catalytic sites of uPA and cleavage 

sites of γ ENaC.  The cleavage sites in the γ ENaC (R178 and K179) are located 

between α1 and α2 domains of the finger, a hypervariate region. The confident docking 

of the uPA specific cleavage site into the enzyme active center of uPA substantiates 

their protein-protein interactions (Ji et al., 2015).  A network of hydrogen bonds within 

the catalytic triad of uPA was visualized (Figure 7).  Importantly, hydrogen bonding pairs 

are detected between His57 (uPA) and Lys179/Arg180 (ENaC), and Ser195 (uPA) and 

Arg178/Lys179 (ENaC).  Beside, Thr176 (ENaC) interacts with His99 (uPA).  Arg178 

(ENaC) protrudes down into a deep cavity and interacts with other residues in the 

bottom of the cavity.  Proteolysis of ENaC by uPA could be divided into two steps: 

acylation and deacylation (Neitzel, 2010). The Ser195 of uPA, together with His and 

Asp, serves as a nucleophilic “edge” to separate the Arg178 from Lys179 of γ ENaC, 

generating two fragments: the C-terminal peptide and the N-terminal peptide.   
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Figure 7. Structural interactions between uPA and human γ ENaC. A, surface view of the 
catalytic triad of uPA (Protein Data Bank code 1W12). The triad residues (Asp-102, His-57, 
and Ser-195) along with His-99 line the back of the enzyme active center. Inset, measures 
of hydrogen (green and white dashed lines) bonds among amino acid residues composed 
of the catalytic triad. B, docking of the cleavage site (P3–P2’) of γ ENaC to the enzyme 
active pore of uPA. C, uPA-induced cleavage of the γ ENaC. Arg-178 and Lys-179 are 
located between the α1 and α2 domains. Domain coloration is as follows: transmembrane 
domains 1 and 2 (TM1 and TM2) (red), wrist (red), palm (blue), knuckle (cyan), finger 
(purple), thumb (green), and β (orange). The three-dimensional uPA-cleaved sites from P3 
to P2’ in human  ENaC (TGR↓KR) was generated by using “Tools>Build and Edit 
Protein” in Discovery Studio Visualizer version 4.0. Following removal of the ligand from 
uPA, docking of the cleavage site in ENaC to uPA was performed with Autodock Vina 
version 1.1.1 in a Pyrx (version 0.85) environment. The top-ranking pose with minimal 
energy in the docking results was selected and saved as a Protein Data Bank file. Final 
presentation was accomplished with Discovery Studio Visualizer version 4.0 by inserting the 
selected docking pose of the cleavage sites into the catalytic triad of uPA protein. The 
docking structure of uPA and cleavage site was further energy-minimized by “clean 
geometry.” The uPA-ENaC interactions between the enzymatic domain and cleavage sites 
were visualized by a “non-bond interaction monitor” for a ligand-receptor mode. Adapted 

     

3.6 Urokinase augments opening channel density and opening time of channels 
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3.6.1. uPA strengthens the open conformation of ENaC. A two-state model 

(closed-open) has been proposed to analyze the gating kinetics of ENaC channels 

(Chraibi & Horisberger, 2002). We postulated that tcuPA opens closed channels and 

facilitates maintenance of activated ENaC in the open state.  To analyze this, the gating 

kinetics is computed by measuring self-inhibition of external Na+ ions (Ji et al., 2015).  In 

addition to stable channel activity (reflected by sustained current level), the maximal 

channel activity (measured as peak current) was significantly greater than in control 

cells.  The ratio of sustained over maximal current levels is approximately 0.5 for ENaC 

channels in control cells, which is consistent with previous observations (Sheng et al., 

2004; Sheng et al., 2007; Molina et al., 2011).  By comparison, our results showed that 

the value was close to 1.0 following exposure to tcuPA.  These studies suggest that 

self-inhibition is diminished by tcuPA.  There are two components of self-inhibition: a 

fast phase followed by a slow phase (Garty & Benos, 1988; Ji et al., 2015). The rate of 

activation process after incubation with tcuPA was almost an order of magnitude faster 

than that for untreated cells (1.17 and 11.9 s-1 for control and tcuPA treatment, 

respectively). Moreover, treatment with tcuPA completely eliminated inactivation 

(inactivation rate was reduced by tcuPA from 0.56 s-1 to 0.0 s-1).  In addition, even with 

switched gating rates between control and tcuPA-treated cells, the simulated maximal 

current level at the full open state for controls was still much lower than the sustained 

current magnitude of tcuPA-challenged cells.  These observations could not simply be 

explained by full opening of activated channels in untreated cells.  On the other hand, 

irreversibility of the effect of tcuPA on ENaC gates most likely reflects cleavage of ENaC 

by tcuPA resulting in transition to the “open” conformation of the channel.  
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3.6.2. uPA activates “silent” channels. Channel activity recorded in whole-cell 

mode is the product of single channel activity and unitary conductance.  The latter was 

not altered during self-inhibition, as has been demonstrated by self-inhibition mutations 

(Sheng et al., 2004; Molina et al., 2011).  Single channel activity is the product of open 

probability and electrically detectable channel density.  The simulation leads us to ask 

whether there is a potential increment in functional channel density.  The functional 

channel density was computed as we described recently (Ji et al., 2015).  Our 

calculation found that the channel number that could be detected per unit area was 410 

channels /μm2 post uPA exposure.  It is five-fold greater than that in control cells (82 

channels/μm2).  It appears that uPA increases functional channel density at the plasma 

membrane.  This is supported by studies of other serine proteases (Caldwell et al., 

2004, 2005; Diakov et al., 2008).  

3.6.3. uPA optimally increases opening time. MTSET is a thiol-modifying 

reagent that activates αβS520Cγ channels almost completely as evidenced by an open 

probability of nearly 1.0 (Goldfarb et al., 2006).  If uPA activates ENaC activity via an 

increment in opening time, with a mechanism similar to that mediated by MTSET, then 

uPA should not alter ENaC whole-cell currents in MTSET-pretreated cells expressing 

αβS520Cγ channels. Our results indicate that while MTSET does increase channel 

activity in untreated cells to a level similar to that in uPA-incubated cells (Ji et al., 2015), 

it does not affect uPA-activated ENaC activity. These observations provide direct 

evidence for uPA maintenance of ENaC channels in the fully open state, with a resultant 

effect equivalent to that of MTSET.  
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3.7 Proteolysis is the mechanism to elevate ENaC activity to the utmost level vs 

self-inhibition releasing agents 

Cpt-cAMP, as a cell permeable specific PKA activator has long been used for 

studying epithelial Na+ channels.  Chraibi and colleagues found that the compound 

specifically activated guinea pig but not rat ENaC in oocytes (Chraibi et al., 2001).  

Furthermore, a key responsive domain in guinea pig α subunit (Ile481) was identified 

(Renauld et al., 2008).  Human ENaC responded to cpt-cAMP in a dose-dependent, 

time-independent, and reversible manner.  In addition to these heterologous channels, 

amiloride-sensitive, cpt-cAMP activated cation channels were also reported in human 

Clara cells (H441) and human lymphocytes in a similar manner (Bubien et al., 1996; 

Bubien et al., 1998; Bubien et al., 2001; Chen et al., 2009).  To date, the interpretation 

for the acute activation of both native and heterologous human ENaC activity by cpt-

cAMP is still limited to the mediation of the cAMP/PKA pathway.  A number of critical 

amino acid residues are involved in governing self-inhibition.  External sodium self-

inhibition is an intrinsic feature of ENaC. A rapidly increase in extracellular sodium ions 

to a physiological concentration (150 mM for mammals and 100 mM for amphibians) 

generates a maximal peak current in seconds, and then the permeability of ENaC to 

Na+ ions is gradually reduced to a relatively stable level with a current level of 

approximately half of the maximal value. This phenomenon is called extracellular 

sodium self-inhibition of ENaC activity.  It differs from the down-regulation of ENaC 

activity by slowly accumulating intracellular Na+ content in a feedback manner.  External 

Na+ self-inhibition is a crucial mechanism to limit overwhelming salt absorption to 

prevent a quick raise in epithelial cell volume and blood pressure.  Sheng and co-
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workers identified the cysteine and histidine residues in α and γ subunits were critical 

(Sheng et al., 2002; Sheng et al., 2007).  Very recently, this group provided strong 

evidence that αGly481 and γMet438 resided in the thumb domain were functional 

determinants of self-inhibition (Maarouf et al., 2009).  In addition to the relief of self-

inhibition, the external ligand-like compounds activated ENaC channels analog to serine 

proteases (Planes & Caughey, 2007; Kleyman et al., 2009; Rossier & Stutts, 2009). 

3.7.1. cpt-cAMP cannot activate cleaved ENaC by fibrinolysin. We 

hypothesize that uPA and cpt-cAMP activate ENaC with variant mechanisms and to a 

different extent.  We tested the effects of cpt-cAMP on fully opened channels in cells 

exposed to protease-plasmin (Passero et al., 2008; Svenningsen et al., 2009a; 

Svenningsen et al., 2009b). Our previous studies showed that external cpt-cAMP 

stimulated human, but not rat and murine, αβγ ENaC in a dose-dependent and external 

sodium concentration-dependent fashion (Molina et al., 2011). ENaC mutations that 

abolished self-inhibition (βΔV348 and γH233R) almost completely eliminated cpt-cAMP 

mediated activation. In contrast, mutations that both enhanced self-inhibition and 

elevated cpt-cAMP sensitivity increased the stimulating effects of the compound. Our 

above data confirmed that cpt-cAMP acts as a ligand to regulate heterologous ENaC by 

relieving self-inhibition. Edelheit et al studied alanine mutations in 17 conserved 

charged residues of ENaC and found that these residues are involved in conformational 

changes that lead to channel constriction and to the sodium self-inhibition response 

upon sodium ion flooding (Edelheit et al., 2014). Similarly, our recent data showed that 

elimination of self-inhibition of αβγ ENaC may be a novel mechanism for CPT-cGMP to 

stimulate salt reabsorption in the human epithelium (Han et al., 2011). 
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3.7.2. Cleavage abolishes cpt-cAMP-mediated ENaC activation in human 

lung epithelial cells. To corroborate the findings in oocytes, we evaluated the effects of 

cpt-cAMP on native ENaC in human lung epithelial cells (H441 monolayers), in which 

biochemically and physiologically detectable ENaCs were evoked by cpt-cAMP (Chen 

et al., 2009).  cpt-cAMP activated amiloride-inhibitable Isc levels by approximately 8% 

(Molina et al., 2011), which was much less than that for cloned ENaC in oocytes (2 

fold).  It is possible that ENaC proteins in carcinomatous H441 cells probably have been 

cleaved by overexpressed proteases (McMahon & Kwaan, 2008; Shetty et al., 2008).  

We thus incubated cells with protease inhibitors for 12 h.  As anticipated, cpt-cAMP 

increased Isc level up to 2-fold in cells pretreated with protease inhibitors (Molina et al., 

2011). 

 

3.7.3. CPT-cGMP ligand docking to different ENaC domains. In our previous 

experiment, we constructed mutants abolishing (βV348 and γH233R), or augmenting 

(αY458A and γM432G), ENaC self-inhibition (Han et al., 2011; Molina et al., 2011). The 

mutations eliminating self-inhibition resulted in a loss of response to CPT-cGMP, 

whereas those enhancing self-inhibition facilitated the stimulatory effects of this 

compound. Our analysis shows the potential binding sites for the CPT-cGMP ligand in 

ENaC domains that are crucial for self-inhibition. βV348 is located in the center of the 

palm region of the subunit, and γH233 is located in the vicinity of the putative binding 

site for protons. These domains potentially directly or allosterically interact with CPT-

cGMP.  
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3.7.4. CPT-cGMP and self-inhibition. Human serum cGMP level is 6 nM and 3-

time greater in human bronchioalveolar lavage (Arias-Diaz et al., 1994).  It appears that 

cGMP may serve as an autocrine and paracrine to regulate ENaC function.  However, 

the effective dose for CPT-cGMP and CPT-cAMP to blunt self-inhibition is micromolar, 

suggesting an uncertain physiological role for cGMP and analogs. A large dose of 

cGMP compound (1 mg/kg, i.v.) was administered to pigs as reported by a pre-clinical 

trial (Sandera et al., 2000), and numerous preclinical studies (from 100 mM to 2 mM) 

(Jain et al., 1998; Kemp et al., 2001; Chen et al., 2008).  It is therefore feasible to apply 

aerosolized nucleotides to mitigate oedematous lung injury.  We have demonstrated 

that CPT-cGMP up-regulates ENaC via two mechanisms: release self-inhibition 

externally and activates ENaC through the cGMP/cGKII pathway intracellularly (Han et 

al., 2011).  Thus, these compounds could regulate sodium absorption via either or both 

mechanisms in a cell permeability-dependent manner.  Administration of cAMP could be 

a potent pharmaceutical treatment for oedematous lung injury (Chen et al., 2009), and 

cGMP may have similar potential. cGMP increased in murine and rat lungs both in vivo 

and in vitro following nitric oxide (NO) application (Hardiman et al., 2004), and increased 

cGMP may augment the cGMP-sensitive pathway for lung fluid removal from alveolar 

sacs (Sakuma et al., 2004). Our previous study demonstrated for the first time that 

PKGII is an ENaC activator in non-ciliated bronchial secretory cells (Nie et al., 2009b). 

Accordingly, upregulation of the rate-limiting ENaCs in respiratory epithelial cells by 

specific PKGII activators may be a potent clinicopharmaceutical strategy for alleviating 

airspace flooding in fatal oedematous lung diseases. The observation of our previous 

study that specific moieties of 8-pCPT-cGMP are required for activating ENaC may 
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provide pivotal information for developing potential ENaC channel openers structurally 

related to 8-pCPT-cGMP, which would be extremely useful for treating diseases 

associated with lower ENaC function. We postulate that when the tight epithelial layer is 

damaged, for example, in injured lungs, even though the mixture of extracellular matrix 

proteins, including collagens, albumin, and fibrins, will seal the epithelial cell-free 

alveolar surface, the potency of ENaC stimulator will be limited significantly.  Therefore, 

the integrity of the tight alveolar epithelium should be a key factor to be considered for 

the usage of ENaC agonists.  The anticipated restore of alveolar fluid clearance may be 

seen at the earlier stage of ALI and lung oedema mainly caused by injured pulmonary 

vasculature or post regeneration of alveolar epithelium by stem cells/progenitors. 

3.7.5. Specific self-inhibition domains differ from uPA cleavage sites. 

His(88) and Asp(516) of the γ subunit play a role in the Zn2+ regulating sodium self-

inhibition mentioned above. Recent studies showed that palmitoylation of the γ subunit 

activates ENaC by increasing the open probability of the channels (Mukherjee et al., 

2014). ENaC mutants with the mutations γC33A, γC41A, or γC33A/C41A have 

significantly enhanced sodium self-inhibition and reduced open probability compared 

with wild type ENaCs, suggesting that ENaC palmitoylation is an important post-

translational mechanism of channel regulation. Exon 11 within the human α, β, and γ 

ENaC genes encodes structurally homologous yet functionally diverse domains, and 

exon 11 in the α-subunit encodes a module that regulates channel gating (Chen et al., 

2014). In contrast to the other mutations, γL511Q largely eliminated the sodium self-

inhibition response, reflecting a down-regulation of ENaC open probability by 

extracellular sodium (Chen et al., 2013). γL511Q is a gain-of-function human ENaC 
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variant and it enhances ENaC activity by increasing channel open probability and 

dampens channel regulation by extracellular sodium and proteases (Chen et al., 2013). 

3.7.6. Self-Inhibition as an alternative approach to fibrinolysins. Divergent 

targeting subunits and critical domains indicate that self-inhibition releasing reagents 

and fibrinolysins can be used as potential therapeutic strategies complementarily. 

Distressed transapical sodium transport occurs in injured lungs, for example, acute lung 

injury (ALI) and acute respiratory distress syndrome (ARDS) (please see classical 

reviews (Matalon et al., 2002; Matthay et al., 2002; Berthiaume & Matthay, 2007; Eaton 

et al., 2009; Matalon et al., 2015)).  Apical ENaC contributes to up to 70% of 

transepithelial sodium transport in mammalian lungs under physiological conditions.  

This critical process is sensitive to aspirated pollutants, allergens, pathogens, and 

bacterial endotoxins.  In addition to increased leaking through alveolar microvascular 

endothelium (indirect ALI), lung oedema ususally results from reduced oedema fluid 

resolution via ENaC (direct ALI).  ENaC is a promising target for developing new 

therapeutical strategies to alleviate lung oedema, at least for the phenotype of direct ALI 

(Giraldez et al., 2013; Czikora et al., 2014). 
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4. Theoretical Framework  

4.1. How and in what respect the work has made a significant and 

coherent contribution to knowledge. It is widely accepted that apical ENaC is 

composed of αβγ three subunits, given the fact that mice with deficient α ENaC (scnn1a 

gene) died after birth (Hummler et al., 1996; Hummler & Vallon, 2005). The current 

concept is that pulmonary α ENaC function is amplified by βγ counterparts. Based on 

these earlier observations, it has been assumed that the fourth ENaC, that is, δ ENaC 

may not have a role in human lungs. Of note, the scnn1d gene is a pseudogene in 

murine but expressed in humans. On the other hand, infants carrying “loss-of-function” 

genetic mutants of scnn1a did not have respiratory distress syndrome. One explanation 

is scnn1a may have unknown functions that cause death. An alternative possibility is 

that δ ENaC may compensate the salt transport function in scnn1a deficient infants. The 

contributions of δ ENaC has long puzzled ENaC researchers due to lack of animal 

models.  Our publications systematically characterized the expression and function of δ 

ENaC in pulmonary epithelium with complimentary techniques and models. Our studies 

clearly demonstrate that δ ENaC is approximately expressed in alveolar epithelial cells 

and function in a way similar to α ENaC. Our results for the first time outline the role of δ 

ENaC in pulmonary epithelial cells and shift the current concept about the components 

of apical ENaC channels. 

Albeit fibrinolysins have been applied to pulmonary diseases, their mechanisms 

remain obscure, in particular for urokinase and plasmin. Our innovative studies for the 

first time demonstrate: 1) urokinase deficiency reduced ENaC function via a reduction in 
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Na+/K+-ATPase, ERK1/2 phosphorylation, and cleavage of γ ENaC subunit in vivo; 2) 

urokinase but not tissue-type plasminogen activator (tPA) up regulates human ENaC 

function in a dose-, time- and catalytic activity-dependent manner; 3) urokinase 

proteolytically cleaves γ ENaC subunit (R178↓K179) into two fragments; 4) urokinase 

augments activation rate and eliminates “silent” channels; 5) plasmin stimulates ENaC 

in a way similar to urokinase; and 5) a nucleotide (cpt-cAMP and CPT-cGMP) activates 

ENaC by releasing external sodium inhibition, differing from aforementioned 

mechanisms for fibrinolysins.  

 

4.2. Impact. Abnormal fluid regulation in the respiratory system is the major 

pathological characteristics of both “dry” and “wet” lungs.  Dehydration of the airways 

and the airspaces is associated with cystic fibrosis, chronic obstructive pulmonary 

disease (COPD), and genetic diseases with gain-of-function mutants of ENaC (Boucher, 

2007; Mall et al., 2010; Zhao et al., 2014; Mall, 2016).  Pulmonary oedema is a life-

threatening clinical disorder. Cardiogenic pulmonary oedema (hydrostatic oedema) is 

caused by cardiovascular diseases, in particular heart failure.  Noncardiogenic oedema 

results from systemic or pulmonary infection, brain trauma (neurogenic), side-effects of 

medicines, and high altitude (HAPE). ENaC contributes to ~70 % of alveolar fluid 

clearance and re-absorption of airway surface fluid. Our studies shift the current 

concept of the pulmonary epithelial sodium transport pathway. Our data improve our 

understanding in the pathogenesis of pulmonary oedema, and our knowledge in the 

physiological functions and pathogenic role of fibrinolysin-regulated ENaC in pulmonary 
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oedema. Our novel results provide cellular and molecular basis for the use of 

fibrinolysins to oedematous lung diseases.  

 

4.3. Methodologies. We combined state-of-the-art electrophysiological (the 

voltage clamping, Ussing chamber, and patch clamping assays), contemporary 

biochemical (biotinylation, immunoblotting, ELISA, and immunofluorescent scoping), 

molecular biological approaches (mutagenesis, RT-PCR, in silico prediction, and in vitro 

cRNA), preclinical tests (alveolar fluid clearance, ventilation, in vivo intratracheal 

instillation, and histology), and leading edge techniques of gene modification (knockout, 

shRNA knock down, transgenic) to study the pharmaceutical mechanisms of 

nucleotides and fibrinolysins-mediated regulation of ENaC activity.  The genetically 

engineered animals were used for in vivo studies, human lungs for ex vivo and in situ, 

primary cultures for in vitro, and expression system (Xenopus oocyte) for advanced 

mechanistic studies.  
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Figure 8.  Graphical abstract to summarize key findings. tcuPA, two-chain urokinase 
plasminogen activator; PKGII, protein kinase G isoform 2; ENaC, epithelial sodium 
channels; HBE, human bronchial epithelial cells; ATI, alveolar type I cells; ATII, alveolar 
type II cells; N, ENaC channel density; Po, open probability; ASF, airway surface fluid.  

5. Summary/Conclusions 

In summary, our results for the first time demonstrate that 1) δ ENaC is crucial to 

maintain fluid homeostasis in the airways and the airspaces; 2) pulmonary fibrinolytic 

activity regulates fluid homeostasis by proteolytically cleaves apical located ENaC 

proteins. Our data explain the species differences in the scnn1a deficiency-associated 

respiratory distress syndrome between human and mice, and in the pharmaceutical 

efficiency and tissue dependence between tPA and uPA.  In ENaC-expressing epithelial 

and mesothelial tissues, e.g., the airways, lungs, pleural cavity, kidney, and distal colon, 
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it should be kept in mind that either endogenous or administered uPA may dehydrate 

the lumen through excessive activation of ENaC-mediated salt/fluid retention (Figure 8). 

For the first time, we demonstrate that cpt-cAMP and CPT-cGMP activate pulmonary 

ENaC by eliminating self-inhibition. Conclusively, our publications suggest that uPA, 

cpt-cAMP, and CPT-cGMP may be a novel generation of ENaC activators to mitigate 

lung oedema and other oedematous pulmonary diseases.  
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6. Contributions made by the candidate 

 By collaborating with a group of investigators on campus and worldwide, the first 

set of experiments was designed to characterize the expression and function of δ ENaC 

as well as a splicing variant in human lung epithelial cells (Ji et al., 2006; Ji et al., 2012; 

Zhao et al., 2012). Furthermore, I found that δ ENaC conferred the biophysical and 

pharmacological properties of “classical” αβγ ENaC channels when four ENaC subunits 

are co-expressed in Xenopus oocytes heterologously (Ji et al., 2006). These 

experiments were completed by collaborating with Drs. Zhao, Nie, Su, Han, Chang, 

Matalon, Kedar, Barbry, Smith, and Benos. 

 

The second set of experiments was set out to examine the regulation of ENaC by 

uPA in primary mouse tracheal epithelial cells (MTE).  The central hypothesis is that 

urokinase-like plasminogen activator (uPA) regulates ENaC function in airway epithelial 

cells. We found that both basal and cAMP-activated Na+ flows through ENaC were 

significantly reduced in uPA-deficient cells.  The reduction in ENaC activity was further 

confirmed in basolateral membrane permeabilized cells.  A decrease in the Na+/K+-

ATPase activity could contribute to the attenuation of ENaC function in intact monolayer 

cells. Dysfunctional fluid resolution was seen in uPA-disrupted cells. Administration of 

uPA and plasmin partially restores ENaC activity and fluid re-absorption by MTE cells.  

ERK1/2, but not Akt phosphorylation was observed in the cells and lungs of uPA-

deficient mice.  On the other hand, cleavage of γ ENaC is significantly depressed in the 

lungs of uPA knockout mice. Expression of caspase 8, an apoptosis molecule, however, 
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did not differ between wild type and uPA-/- mice.  In addition, uPA deficiency did not alter 

transepithelial resistance.  This is the first report demonstrating that urokinase up-

regulates ENaC activity in vivo and in vitro (Chen et al., 2014). These experiments were 

completed by collaborating with Drs. Chen, Zhao, Bhattarai, Dhiman, Shetty, and Idell. 

 

The third set of experiments was to explore the underlying pharmacological 

mechanisms for uPA to up regulate ENaC.  The hypothesis is that uPA may activate 

ENaC through proteolysis.  My results show that two-chain urokinase (tcuPA) strongly 

stimulates heterologous human αβγ ENaC activity in a dose- and time-dependent 

manner.  This activity of tcuPA was completely ablated by PAI-1. Furthermore, a 

mutation (S195A) of the active site of the enzyme also prevented ENaC activation.  By 

comparison, three truncation mutants of the amino terminal fragment of tcuPA still 

activated ENaC. uPA enzymatic activity was positively correlated with ENaC current 

amplitude prior to reaching the maximal level.  In sharp contrast to uPA, neither single-

chain tPA nor derivatives, including tctPA and tenecteplase, affected ENaC activity.  

Furthermore, γ but not α ENaC subunit was proteolytically cleaved (177GR↓KR180) by 

tcuPA.  In summary, the underlying mechanisms of urokinase-mediated activation of 

ENaC include release of self-inhibition, proteolysis of γ ENaC, incremental increase in 

opening rate, and activation of closed (electrically “silent”) channels.  In addition, 

plasmin activated ENaC in a similar way. These studies for the first time demonstrate 

multifaceted mechanisms for fibrinolysin-mediated up-regulation of ENaC (Ji et al., 

2015), which form the cellular and molecular rationale for the beneficial effects of 

urokinase and plasmin in mitigating pulmonary oedema and pleural effusions.  These 
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experiments were completed by collaborating with Drs. Zhao, Komissarov, Chang, Liu, 

and Matthay.  

Finally, I characterized the potential mechanisms for the interactions between 

proteolysis and other external ligands, including inhibitory peptides, CPT-cGMP and cpt-

cAMP (Nie et al., 2010; Han et al., 2011; Molina et al., 2011). I hypothesized that serine 

proteases fully open the gate of ENaC channels, while other ENaC activators or 

external ligands partially stimulate channel activity.  Our results show that CPT-cGMP 

and cpt-cAMP activate ENaC function through release of external sodium self-inhibition. 

In contrast, serine proteases cleave the extracellular loop of ENaC proteins and remove 

“inhibitory peptides”, which is located closely to the first transmembrane domain. ENaC 

channels treated with serine proteins were on longer activated by these external 

ligands.  In strict contrast, in the presence of CPT-cGMP or cpt-cAMP, serine proteases 

were able to activate ENaC activity to a maximal extent.  Clearly, our studies 

demonstrate that proteases are the most potent ENaC activators.  These experiments 

were completed by collaborating with Drs. Zhao, Komissarov, Chang, Liu, and Matthay. 
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Contributions to 4 of 105 publications 

1. Ji HL, Zhao R, Komissarov AA, Chang Y, Liu Y, Matthay MA. Proteolytic 

regulation of epithelial sodium channels by urokinase plasminogen activator: 

cutting edge and cleavage sites. Journal of Biological Chemistry. 2015 Feb 27; 

290(9): 5241-55. PMID: 25555911. 

Word count: 11,526. 

My contribution: 80%. 

The nature (role) of contributions: I initiated the concept, organized and 
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