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Abstract
The increasing profusion of commercial automatic speech
recognition technology applications has been driven by big-data
techniques, using high quality labelled speech datasets. Chil-
dren’s speech has greater time and frequency domain variabil-
ity than typical adult speech, lacks good large scale training
data, and presents difficulties relating to capture quality. Each
of these factors reduces the performance of systems that auto-
matically recognise children’s speech. In this paper, children’s
speech recognition is investigated using a hybrid acoustic mod-
elling approach based on deep neural networks and Gaussian
mixture models with hidden Markov model back ends. We ex-
plore the incorporation of mismatched training data to achieve
a better acoustic model and improve performance in the face of
limited training data, as well as training data augmentation us-
ing noise. We also explore two arrangements for vocal tract
length normalisation and a gender-based data selection tech-
nique suitable for training a children’s speech recogniser.
Index Terms: child speech recognition, children’s ASR, vocal
tract length normalisation

1. Introduction
Automatic speech recognition (ASR) for children has attracted
much attention as it is of great significance for many applica-
tion domains including entertainment, education and informa-
tion accessibility tools [?]. Despite the good potential, chil-
dren’s speech ASR has been widely noted to perform poorly
compared to adult ASR. Performance is particularly poor when
models are trained using adult speech data [?], which is typi-
cally attempted because much better adult speech training data
is available than children’s speech training data.

Children’s ASR performance is much worse than adult sys-
tems due to (a) acoustic differences, (b) phonetic differences,
between adult and children’s speech, and (c) limitations of train-
ing data quality and quantity. Children have shorter vocal tracts
and vocal fold lengths and lower mass vocal cords compared
to adults, resulting in higher positions of formants and fun-
damental frequency [?]. Meanwhile younger children in par-
ticular may not have yet learned how to pronounce specific
phonemes [?], hence exhibit greater speaking variability than
adults. Children may not speak clearly, concisely or in accor-
dance with grammatical norms, causing difficulties with lan-
guage modelling. Although their spoken vocabulary may be
smaller (which is beneficial to recognition [?]) they tend to use
words that do not occur in adult speech, which are used inap-
propriately or are incorrectly pronounced. Further exacerbating
the difficulty, children’s speech databases are much smaller than

adult speech databases, so that insufficient training data signifi-
cantly limits the performance of acoustic models [?].

Several techniques have been explored to improve chil-
dren’s ASR: (i) Defining better acoustic features for children’s
speech. The most common features are MFCCs, filter bank and
PLP coefficients [?], with MFCCs achieving best performance
in GMM-based ASR systems [?, ?] and mel filterbank coeffi-
cients most commonly used in DNN-based systems. (ii) Pro-
nunciation modelling, since children use different pronuncia-
tion, there may be substantial age-dependent differences, hence
research to better model the phonemes that children tend to mis-
pronounce [?]. (iii) Vocal tract length normalisation (VTLN), to
account for formant shifts induced by difference in VT length
between speakers. (iv) Model adaptation techniques which are
also used in adult ASR such as maximum a posterior (MAP)
and maximum likelihood linear regression (MLLR).

1.1. Novelty

This paper explores children’s ASR using baseline DNN-HMM
and GMM-HMM systems based on the CMU Kids Corpus. Us-
ing this baseline, (i) we evaluate training data augmentation for
children by adding noise (which is known to work for adult
ASR training [?] but has not yet been evaluated for children),
(ii) we introduce a novel training selection approach based on
gender and (iii) trial the use of VTLN in opposing directions,
since the two directions are currently unexplored for children’s
ASR. Section 2 describes the standard speech corpuses used in
our experiments. Training data augmentation, VTLN and gen-
der selection are discussed in Section 3, Section 4 presents and
discusses details of the various experiments and Section 5 will
conclude the paper.

2. Database
CMU Kids Corpus contains about 9 hours of recordings of ma-
terial read by children. In total, 24 male and 52 female speakers,
ranging in age from 6 to 11 years in the first to third US school
grades (the 11-year-old was in 6th grade). Based on preliminary
experiments, the age 11 child and those of unknown age were
excluded due to the limited number of recordings and speakers.
Instead we focus on the larger amount of data from children
aged 6 to 9 for which utterances have been accompanied by a
transcription. We divide into training data, development data
and test data at a ratio of approximately 4:1:1, leading to the
distribution of data shown at the top of Table 1.

We also test using adult speech from the TIMIT corpus for
training. This consists of 16kHz recordings from 630 male (m)
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Table 1: Data distribution in CMU Kids and TIMIT corpuses.
Corpus Data Utterances Speakers Duration
Kids Train 3545 52 6.18h
Kids Dev 778 13 1.47h
Kids Test 713 9 1.12h
Kids Total 5036 74 8.77h
TIMIT Train (m) 2352 325 1.98h
TIMIT Train (f) 1344 137 1.14h
TIMIT Test 1088 168 0.94h
TIMIT Total 4784 630 4.06h

and female (f) speakers of eight American English dialects read-
ing phonetically rich sentences, shown at the bottom of Table 1.

3. Training data adaptation
The legal and ethical difficulties implicit in collecting train-
ing data from minors, coupled with the difficulty of recording
children’s speech, means that there is a lack of training data.
During recordings, children frequently substitute, insert or miss
words, and instead of keeping steady when speaking, they tend
to fiddle with the microphone, wobble their body, or move their
heads. These actions result in poor quality recordings compared
to those of adults. Together, there is thus a lack of both quantity
and quality in children’s speech corpuses suitable for training
ASR systems.

3.1. Vocal tract length normalisation

Vocal tract length (VTL), measured along its midline from the
glottis to the lips, is an important parameter that accounts for
much of the acoustic inter-speaker variability in speech produc-
tion. This structural characteristic influences many aspects of
speech, and varies significantly between speakers.

VTL increases from infancy to adulthood both according to
body size and differently according to gender. In infants, the
larynx is located much higher up in the throat than in adults. A
phenomenon known as larynx descent occurs between the third
month and the third year when the larynx moves closer to the
adult position. Then, as children grow further, VTL increases
steadily with body mass. VTL does not differ significantly be-
tween boys and girls until puberty, when a second larynx de-
scent occurs for males. This is argued to be the main reason
for gender-based variation in VTL [?] in adults. Length varies
from an average of approximately 8 cm at birth, to about 16 cm
in adulthood (with a range from about 13 to 20 cm). Fig. 1
illustrates VTL against age for both children and young adults.

The influence of VTL on speech acoustics has been ex-

Figure 1: Plot of VT length for various age children and adults
using data from [?, ?], with the approximate band of child VT
lengths shown shaded.

plained as part of the filter theory of speech. The VT shape can
be modelled by a uniform lossless acoustic tube with the closed
end represented by the glottis and the open end represented by
the lips [?]. The relationship is explained as follows:

Fk =
c

4L
(2k − 1) where k = 1, 2, 3, ... (1)

where c is the speed of sound and L is the uniform tube length.
Formant positions are thus inversely proportional to VTL. Vo-
cal tract length normalisation (VTLN) is used in ASR to re-
duce mismatch between speakers, and improve system perfor-
mance [?]. VTLN typically seeks a frequency scale transfor-
mation that allows for an optimal comparison between spectral
features. Frequency warping functions including linear, non-
linear and power-based, with piece-wise linear warping being
most common [?].

In general there are two ways to account for the large VTL
difference between adult and child speech; (i) apply VTLN to
adult utterances during training to make the normalised features
more similar to children’s speech and (ii) apply VTLN to chil-
dren’s utterances during training and testing to make them more
similar to adults’ speech. We will evaluate both directions of
normalisation.

3.2. Noise augmentation

CMU Kids corpus is a clean corpus that has been recorded with
the intention of minimising interfering noise. Despite being one
of the largest and best corpuses of children’s speech, it has wide
variability in age, and is too small to train a viable model for
either baseline ASR system. One way around this is to add
acoustic noise to clean utterances to form a larger corpus of
clean recordings augmented with noisy recordings [?].

In this study, 115 noise types are used, including some mu-
sical noise. These 115 noise types include 100 noises recorded
by G. Hu [?] plus 15 other common noise types recorded lo-
cally [?], all of which are readily available for public download.
For training, we separate the whole clean data set into 115 small
parts and add one type of noise to each part using the Filtering
and Noise Adding Tool (FaNT) [?]. Each type of noise is added
at a SNR of 20dB, resulting in the data distribution shown in
Table 2a.

3.3. Use of mismatched training data

Adding adult speech from the TIMIT database to the children’s
speech data for training, leads to the mismatched training re-
source shown in Table 2b. The idea being that benefits gained
from increasing the quantity of training data may override the
known mismatch in age.

A novel method introduced in this paper is inspired by the
observation from Fig. 1, that female adult speech resembles
child speech much more closely than adult male speech does.
Thus, selecting only adult female data from TIMIT to augment
the CMU Kids training corpus may lead to a better trained chil-
dren’s ASR system. This training combination is shown in Ta-
ble 2c.

4. Experimental setup
4.1. Baseline system

MFCCs are used as front-end features, with 13 coefficients from
a 25 ms frame with 10 ms shift between frames and 16 kHz sam-
pling frequency. Delta and delta-delta coefficients are also used



Table 2: Training data arrangements for the remaining three
ASR models that are compared.

(a) Training data for the kids+noise model:
Data Utterances recording length
kids 3545 6.18h
noisy kids 3545 6.18h
Total 7090 12.36h

(b) Training data for the kids+TIMIT model:
Data Utterances recording length
kids 3545 6.18h
TIMIT 3696 3.12h
Total 7241 9.30h

(c) Training data for the kids+TIMIT(female) model:
Data Utterances recording length
kids 3545 6.18h
TIMIT 1088 0.94h
Total 4633 7.12h

Table 3: Performance (WER) of the baseline system.
Dataset GMM-HMM DNN

Dev 32.03% 27.65%
Test 22.32% 19.50%

with a context size of 11 frames (i.e. 5 frames before and 5
after). We use hidden Markov models (HMMs) to represent
each phone using a 5-state HMM, while a 3-state HMM is used
to model silence, noise and short-pauses. The language model
(LM) used by the speech decoder is a trigram model, trained
on the reference transcriptions of training data. Before training,
the texts were cleaned and normalised by removing punctuation
and expanding numbers. Incomplete words were marked.

Context-dependent deep neutral networks (DNN) have
demonstrated gains in many challenging ASR tasks. In this
paper, we explore the performance of DNNs for children’s
ASR. Specifically, an eleven frame context window of filter
bank features (5 frames to each side of the current frame) is
used as input to form a 253 dimensional feature vector. Train-
ing data is used to layer-wise initialise the weights of a deep,
feed-forward network and then back propagation is used to
fine-tune the network weights. The DNN has 4 hidden lay-
ers each with 1024 neurons, thus the resulting architecture is
253− 1024− 1024− 1024− 1024− 1200.

The baseline children’s speech recognition system is trained
and tested using kids speech as described in Table 1 and yields
the performance is shown in Table 3. From the results we can
see that the DNN system exhibits lower WER than the GMM-
HMM system both on development and test sets. Specifically,
the DNN system improves WER over GMM-HMM by 13.7%
relative to the development set and by 12.6% relative to the test
set. Results are consistent with those of other authors [?].

4.2. Models with mixed data

Children’s speech recognition is clearly more challenging than
ASR for adults, not only because of children’s physical imma-
turity but also because of the quality and quantity of the speech
data set, thus we explore how to overcome the training resource
issues using the techniques of Section 3.

Results are plotted in Fig. 2 in terms of word error rate

Figure 2: Word error rate for various types of mixed data mod-
els for four ASR systems.

for the baseline systems, and different combinations of train-
ing data. In each case, testing was conducted using only the
CMU Kid’s corpus test data.

Examination of the results reveals several trends that hold
true for each of the tested systems. These are namely:

• Adding noise to the clean data to multiply the amount of
training data can result in a better acoustic model, yield-
ing improved performance over the baseline system.

• Adding TIMIT adult data to the kids’ dataset improves
performance further than the noisy data enhancement
does, despite resulting in a smaller training set.

• Selecting only TIMIT female speech to add to the kids’
dataset results in even better performance than either of
the above, despite resulting in the smallest training data
set. This is effectively trading off the amount of data
against its relevance, and clearly supports the hypothe-
sis that adult female speech is useful for training a kids’
speech model.

• The training approaches evaluated here achieve greater
improvements for the GMM-based system than for the
DNN-based system.

• The final DNN performance on the test dataset (17.83%)
is a substantial improvement on the equivalent GMM
baseline performance with kids’ data alone (22.32%).

4.3. VTLN normalized features

Considering the VT variability among children and adults, we
investigate whether VTLN is effective at mitigating against
that variability. Since the kids+TIMIT model has better per-
formance than the baseline model, yet includes a much wider
range of VT lengths, we aim to demonstrate improved results
by employing VTLN on this data set. In total, we consider
a set of 9 warping factors which are evenly distributed in the
range of 0.8 to 1.2, with a step size of 0.05. As mentioned
in Section 3, we evaluate two alternative methods of apply-
ing VTLN: (i) normalise adults’ utterances to make the fea-
tures more similar to children’s speech during training and (ii)
normalise children’s utterances to make them more similar to
adults’ speech during training and testing. These systems are
denoted ‘kids+TIMIT(VTLN)’ and ‘TIMIT+kids(VTLN)’ re-
spectively.



Figure 3: Error rate for kids+TIMIT(VTLN) model.

Figure 4: Error rate for TIMIT+kids(VTLN) model.

To build the former, a linear feature transform correspond-
ing to each VTLN warp factor is implemented. These warp-
ing factors are then used in feature extraction from TIMIT
by changing the spacing and width of the filters in the
mel filterbank while maintaining the frequency axis of the
speech power spectrum unchanged. The process to build the
TIMIT+kids(VTLN) system is similar, except that in this case,
VTLN is applied to the kids corpus rather than to the TIMIT
speech.

The results are shown in Fig. 3, revealing that performance
increases slightly for all systems when the warp increases,
which is unsurprising since larger warps move the effective
TIMIT VTLs closer to those in the kids’ corpus. By con-
trast, in Fig. 4, when the warp is smaller, the performance of
TIMIT+kids(VTLN) improves, since this causes the kids VTL
to become more similar to that of the adults speech. The best
result for each model is shown in Table 4, where we can see
that;

• The improvement in moving from GMM to DNN
is slightly larger for kids+TIMIT(VTLN) than for
TIMIT+kids(VTLN), when evaluated on both devel-
opment and test sets, by a relative WER reduction
of 10.1% on the former and 12.9% on the latter for
kids+TIMIT(VTLN) against 8.0% and 9.9% respec-
tively for TIMIT+kids(VTLN).

Table 4: Best performance (in %WER) for each ASR system
when employing VTLN for training with kids’ and TIMIT data.

System:evaluation V1 V2
GMM-HMM:dev 23.15 22.84

DNN:dev 20.82 21.02
GMM-HMM:test 19.43 19.06

DNN:test 16.92 17.17
V1: kids+TIMIT(VTLN) training
V2: TIMIT+kids(VTLN) training

• When considering the GMM systems, both the de-
velopment set and the test set perform better with
TIMIT+kids(VTLN) training data. Interestingly, the op-
posite is true for the DNN systems. Evidently the DNN
system outperforms GMM-HMM for all evaluations.

A 2-pass decoding strategy was also tested based on [?],
where we use the result from the first-pass decoding as super-
vision to obtain a maximum likelihood estimate of the warp-
ing factor. While this is a logical strategy, the results from
this method slightly under performed the GMM-HMM system
(23.20% and 22.93% respectively for the development set for
systems V1 and V2 respectively), and thus are not explored fur-
ther. The warping factor which is estimated to be best in the
first pass does not perform best in the second pass.

5. Conclusion
Augmenting the children’s speech training database with adult
speech is an attractive idea given the potentially vast amounts of
adult speech data available for training. In this paper it has been
shown that the resulting mismatched training set is slightly ben-
eficial when considering CMU Kids corpus and TIMIT. How-
ever this paper also introduced the novel idea of gender selec-
tion on the basis that adult female speech is more similar to child
speech than adult male speech is, due to female speakers not
having undergone the second larynx descent. Gender-selected
adult training data is demonstrated to be much more beneficial
to results, despite the obvious halving of the additional training
resources that this entails.

Adding noise to effectively augment the training data has
also been shown to provide some benefits, but not to the same
extent as adding adult female speech, since this is evidently
more relevant in nature to the target speech of children than
additional noise would be.

VTLN has been shown effective at dealing with the vari-
ability between children’s and adults’ speech, however whether
to apply VTLN on adults’ speech (training data) or children’s
speech (testing and training data) is a question that needs to be
considered when using different training arrangements. This
paper has evaluated both approaches and shown that which
method is best depends to some extent on the nature of the data,
with both DNN and GMM-based recognition systems being in
agreement concerning which is the optimal choice for each con-
dition. In future work, we would like to further explore how
vocal tract length variability affects ASR performance for chil-
dren’s speech, and use this knowledge to better exploit ways to
track variability in training data in order to build a better recog-
nition system for children’s speech.
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