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Abstract

Motivation: The incidence of ageing-related diseases has been constantly increasing in the last

decades, raising the need for creating effective methods to analyze ageing-related protein data.

These methods should have high predictive accuracy and be easily interpretable by ageing experts.

15 To enable this, one needs interpretable classification models (supervised machine learning) and

features with rich biological meaning. In this paper we propose two interpretable feature types

based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and compare them with

traditional feature types in hierarchical classification (a more challenging classification task regard-

ing predictive performance) and binary classification (a classification task producing easier to inter-

20 pret classification models). As far as we know, this work is the first to: (i) explore the potential of

the KEGG pathway data in the hierarchical classification setting, (i) use the graph structure of

KEGG pathways to create a feature type that quantifies the influence of a current protein on another

specific protein within a KEGG pathway graph and (iii) propose a method for interpreting the classi-

fication models induced using KEGG features.

25 Results: We performed tests measuring predictive accuracy considering hierarchical and binary

class labels extracted from the Mouse Phenotype Ontology. One of the KEGG feature types leads

to the highest predictive accuracy among five individual feature types across three hierarchical

classification algorithms. Additionally, the combination of the two KEGG feature types proposed in

this work results in one of the best predictive accuracies when using the binary class version of our

30 datasets, at the same time enabling the extraction of knowledge from ageing-related data using

quantitative influence information.

Availability and Implementation: The datasets created in this paper will be freely available after

publication.

Contact: ff79@kent.ac.uk

35 Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Ageing-related diseases are affecting an increasing number of peo-

ple. At the same time, delaying ageing in humans seems to be more

and more plausible in the not so distant future. Biologists can al-

40 ready extend the lifespan of several animal species such as the fruit

fly and the mouse. The potential economical benefit of investing on

this type of research is clear: it is projected that the economical value

of adding 2.2 extra healthy years to the human population is $7.1

trillion dollars over 50 years in the United States alone (Goldman

45et al., 2013).

One of the aims of ageing-research is to treat ageing as a whole,

reducing the incidence of many different ageing-related diseases at
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the same time, instead of focusing on individual diseases. This ap-

proach promises to be much more effective than the current ap-

proach of treating individual diseases and has the potential of

stopping the trend of increasing costs of treating ageing-related dis-

5 eases (Goldman et al., 2013). One way to study the ageing process

holistically is to use data mining algorithms to find connections be-

tween genes or proteins that are known to be ageing-related and

other genes or proteins that have unknown function using the ever

increasing freely accessible biological data.

10 Two databases of interest for ageing experts are the Kyoto

Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al.,

2016) and the Mouse Phenotype Informatics (MPI) (Eppig et al.,

2015) databases. The MPI database contains, among other data, the

definition of an ontology of ageing-related terms that describe the

15 phenotype of several allele-mutations. The KEGG database also

contains several types of information about genes and proteins,

including pathway information presented in a graphical way that

allows biologists understanding the interactions of proteins in com-

plex biological processes.

20 We address two types of classification (supervised machine

learning) problems: binary classification, where instances (proteins)

are annotated with the presence or absence of a class (indicating if

the protein is ageing related); and hierarchical classification; where

the classes to be predicted (protein functions) are organized into a

25 hierarchy, where more generic functions are ancestors of more spe-

cific functions (Silla Jr. and Freitas, 2011a). Note that this is a more

complex but more rewarding problem than conventional classifica-

tion, since the latter ignores hierarchical relationships among

classes. We address the hierarchical classification task because the

30 terms in the MPI ontology are hierarchical, and address the binary

classification task because it produces classification models easier to

interpret, from an ageing-biology perspective. In both tasks, it is cru-

cial to describe each instance (protein) by a set of features (protein

properties) that has both good predictive power and rich biological

35 meaning.

The contributions of this work are three-fold: (i) the integration

of data from the MPI and KEGG databases to create a new numer-

ical KEGG feature type with rich biological meaning. This new fea-

ture type quantifies how an instance (protein) influences other

40 proteins, the idea being that proteins that influence other proteins in

a similar way have similar function; (i) the new investigation of the

use of the binary KEGG feature type in the context of hierarchical

classification; and (i) proposing a method for interpreting classifica-

tion models generated using KEGG features.

45 The construction of specially tailored, meaningful features for

specific problems is part of the feature engineering process (Forman,

2002; Yepes et al., 2015). The objective is to introduce carefully

crafted features for the type of problem being addressed. In the bio-

informatics field, it has been common to use features that are easily

50 extractable from the protein sequence or from some database con-

taining several protein properties. These features, although valuable,

often lack the preciseness an expert needs to reach a meaningful bio-

logical conclusion. This works differs from current practice by creat-

ing a new KEGG pathway-based feature type that encodes precise

55 and meaningful relations between proteins.

This paper is organized as follows: Section 2 describes how we

built our ageing-related datasets, including the proposed KEGG fea-

tures. Section 3 reports the predictive power of our features across

hierarchical and binary classification algorithms and the interpret-

60 ation of a binary classification model using some of the proposed

features. Finally, in Section 4 we discuss the results of our work and

draw conclusions.

2 Methods

2.1 Creation of the ageing datasets using the mouse

65genome informatics dataset

To study the biological aspects of ageing/longevity using hierarchical

classification algorithms, we have built 7 datasets containing fea-

tures extracted from the proteins encoded by the genes in the

Phenotypes and Mutant Alleles section of the Mouse Genome

70Informatics (MGI) database. The MGI provides the two primary

sources of data of our datasets: (i) the definition of the Mammalian

Phenotype Ontology (MPO), the source of class labels to be pre-

dicted, and (i) a list of genotypes annotated with the phenotypes pre-

sent in the MPO, the source of the features (predictors).

75The MPO is organized as a DAG (Directed Acyclic Graph),

where each node represents a phenotype (an ontology term) and

each edge an ‘IS-A’ relation between phenotypes. Because of the

structured organization of the class labels, this is a hierarchical clas-

sification problem, where the class labels of the instances are organ-

80ized in a graph, usually a DAG or tree. The nodes of the graph

represent class labels and edges are ‘IS-A’ relationships among class

labels. This structural organization means that if an instance is

annotated with a given (specific) class label, it is implicitly annotated

with all ancestor (more generic) class labels.

85The MPO contains 10 907 terms in total, and 113 terms under

the term MP:0010768 (ageing/mortality) part of the hierarchy, our

research focus. We consider only the 113 ageing-related terms as

class labels for our study, and discard the others. Considering all

10 907 terms would generate classification models more focused on

90predicting non-ageing-related terms, generating models with less

interest for the biology of ageing. After further discarding MPO

terms with less than 10 instances, we end up with 81 MPO terms,

the hierarchical class labels to be predicted.

With the class hierarchy defined, we must create our instances.

95In the MGI database, 11 532 genotypes are annotated with at least

one of the 113 mortality/ageing-related ontology terms. Each geno-

type is formed by a list of allele-mutations. Each allele-mutation

contains (among other information) one or more protein-encoding

genes, which in turn are associated with particular mutations.

100Therefore, using the MPO hierarchy we can associate a protein (in-

stance) with one or more phenotypes (hierarchical classes). Figure 1

shows these relations graphically.

Note that our instances are proteins encoded by standard genes,

not gene mutations, because, as discussed later, information about

105proteins is much richer and precise than information about gene

mutations.

However, choosing to use proteins as instances (instead of gene

mutations) has the disadvantage of risking annotating the same pro-

tein with contradictory MPO terms. This may happen because two

110different mutations on the same gene may have contradictory ef-

fects. E.g. one mutation may over-express the protein encoded by a

Fig. 1. Relationships among MPI elements and the instances in our datasets.

Filled edges represent relationships present in the MGI database. The dashed

edge represents the indirect relation that we use for our datasets. Note that

we ignore mutation information
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gene, while some other mutation on the same gene may under-

express that protein, possibly leading to opposite MPO terms being

associated with the same gene with different mutations. Since this

mutation information is not available for the classifier, these appar-

5 ent contradictions (opposite MPO terms annotating the same in-

stance) may reduce classification performance and interpretability.

However, we consider this compromise acceptable since the lack of

information about particular gene mutations makes the use of classi-

fication algorithms considering gene mutations as instances inviable.

10 Following this approach, we merged the annotations associated

with the same gene, keeping all MPO terms that were associated with

the different mutations of that gene. After this step, the 11532 gene-

mutations were reduced to 5045 genes (without mutation information)

keeping all annotations associated with different gene mutations.

15 The next step is to retrieve the Entrez Id (unique gene identifier)

for each one of the 5045 genes associated with the mortality/ageing

phenotypes. Genes without an Entrez Id were discarded, further

reducing the number of instances to 4575. Finally, we retrieved the

UniProt Id associated with each Entrez Id., using the UniProt ID

20 Mapping Tool. This gives us information about the protein product

associated with each gene. Genes having the same UniProt Id were

discarded, leaving us with the final number of 3886 proteins (in-

stances), each instance linked with one protein and a list of mortal-

ity/ageing phenotypes (MPO terms used as class labels).

25 For the list of 3886 proteins, we derive five datasets, each with a

different feature type: numeric features, protein motifs features,

Protein–Protein Interaction (PPI) features and two types of KEGG

pathway features, explained later. We briefly describe next these

features.

30 2.1.1 Numeric dataset

We extracted the following numeric features from the amino acid se-

quence of the proteins, described by Salama and Freitas (2013); Silla

Jr. and Freitas (2011b): ‘Amino Acid Composition’ (21 features, 20

from standard amino acids and one for Selenocysteine),

35 ‘Composition’ (3 features), ‘Transition’ (3 features), ‘Distribution’

(15 features), and ‘Z-Values’ (15 features), ‘Sequence Length’, and

‘Molecular Weight’, totalling 59 features.

2.1.2 Protein motif dataset

The binary motif features represent the presence or absence of a

40 motif in the amino acid sequence of the protein. A motif is a tem-

plate describing sequences of amino acids that occur recurrently in

proteins. Motifs serve as a high-level representation of a protein and

it is expected that proteins sharing some specific motifs share similar

functions. We have used the same motif features studied in Silla Jr.

45 and Freitas (2011b): Interpro, Pfam, Prosite and PRINTS. We have

considered the motifs occurring in at least 1% of proteins (instances)

in the dataset, to avoid classifier overfitting, resulting in a total of 95

motif features.

2.1.3 Protein-protein interaction (PPI) dataset

50 This type of binary feature indicates whether or not an ageing-

related protein interacts with each of a set of other proteins (which

may or may not be ageing-related proteins). Interacting partners of

one protein often give away hints of its function (Sharan et al.,

2007). We have used the BioGrid (http://thebiogrid.org) database to

55 extract PPIs and have only considered features representing interact-

ing partners occurring in 1% or more instances in the dataset, to

avoid classifier over-fitting. This resulted in a total of 13 PPI

features.

2.1.4 KEGG pertinence (KEGGP) pathway dataset

60KEGG pathways are directed-graph representations of interactions

between several types of biological products (e.g. genes or proteins).

To build our KEGG pathway features we have parsed the KGML

representations of the mouse KEGG pathways under the condition

that at least 1% of our instances must be present in the pathway in

65other for the pathway to be considered. This generated a total of

221 KEGGP features.

We have created two pathway feature datasets. The first, simi-

larly to the PPI and motif datasets, contains binary features inform-

ing the pertinence of each instance (protein) into several KEGG

70pathways. We call this dataset KEGGP (KEGG Pertinence) from

now on. Pertinence features based on KEGG pathways have already

been explored in other works involving data mining, e.g. (Jungjit

et al., 2014; Keerthikumar et al., 2009).

2.1.5 KEGG influence (KEGGI) pathway dataset

75In this dataset, the KEGG pathway features represent the relative in-

fluence of an instance (the reference protein) on the other proteins

that are downstream in relation to the instance in some KEGG path-

way. This feature quantifies an influence that an instance (reference

protein) has on the downstream proteins of a KEGG pathway, the

80idea being that proteins that have a common influence on a set of

downstream proteins share similar function. Consider that one

ageing-related protein affects a set of downstream proteins in a given

way. If another protein affects the downstream proteins in a similar

way, then it is likely that that protein is also ageing-related.

85The use of complex KEGG-based pathway features for data min-

ing has been proposed in other works: Zhang and Wiemann (2009)

proposed a software tool to construct a graph-based model of

KEGG pathways. Xia and Wishart (2010) used graph-based KEGG

features for metabolomics analysis. Chen et al. (2010) used charac-

90teristics extracted from the KEGG pathway graph to classify the

pathways into ‘biologically meaningful’ or not. Breitkreutz et al.

(2012) correlated the complexity of cancer-related KEGG pathways

to patient survivability. Despite being previously used for different

goals, as far as we know, this paper is the first work proposing com-

95plex KEGG-based features for the classification of protein functions.

The influence score for a given protein p has the minimum value

of 0.0 when the reference protein (Pref) does not influence p at all,

because p is not ‘downstream’ of (i.e. cannot be reached from) Pref.

Figure 2 shows an example of the calculation of the proposed ‘in-

100fluence’ score for a hypothetical instance (reference protein) and a

set of downstream proteins. Proteins P1, P2 and P6 have a score of

0.0, since they are not downstream of Pref.

Fig. 2. Example of score values (s) for five downstream proteins

(P3;P4;P5;P7;P8) in relation to a reference protein Pref. Diamond-shaped

nodes represent proteins that are parent of some downstream protein but are

not downstream protein themselves

New KEGG pathway-based interpretable features for classifying ageing-related mouse proteins 3
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The score of a given protein p that is downstream of Pref has the

maximum value of 1.0 if, when Pref is removed from the pathway,

the downstream protein p becomes unreachable from the proteins

that are not downstream proteins of Pref. The biological meaning

5 that we want to capture is that a knockout on Pref would nullify the

standard behaviour of the downstream protein p. Proteins P3 and

P7, in Figure 2, have a score of 1.0 since if Pref is removed from the

pathway, proteins P3 and P7 will be disconnected from the KEGG

pathway graph defined by the set of proteins that are not down-

10 stream proteins.

If the score of a given protein p that is downstream of Pref has a

value of 0.5, it means that Pref accounts for half of the influence that

the downstream protein p receives. Removal of Pref would not nul-

lify completely the standard behaviour of the downstream protein p,

15 because there would be one more protein (which is not downstream

in relation to Pref) that also affects p, therefore the influence of Pref

on p is 50%. Protein P5, in Figure 2, has a score of 0.5 because if

one removes protein Pref from the graph, protein P5 would still be

reachable from protein P2, which is not a downstream protein.

20 In practice, to calculate the value of the features for each in-

stance, we need to build two sets of proteins: the first, the down-

stream proteins, comprises the proteins that are downstream of the

current instance, Pref. The second set, the non-downstream parent

proteins, contains the proteins that are not downstream of Pref but

25 are the parents of a protein that is downstream of Pref—e.g. proteins

P2 and P6 in Figure 2. Finally, for each downstream protein, the in-

fluence score is equal to 1=ð1þ peffectÞ, where peffect is the number of

non-downstream parent proteins that have an effect (direct or indir-

ect) on the downstream protein. We consider that a non-

30 downstream protein has an effect on the downstream protein if the

non-downstream proteins can reach the downstream protein.

To illustrate these concepts in detail lets us consider protein P8

(see Figure 2), which is in the set of downstream proteins of Pref.

Because both non-downstream parent proteins affect P8 (both P2

35 and P6 can reach P8) the value of the influence score for P8 is

1=ð1þ 2Þ ¼ 0:3.

This gives us a set of downstream protein scores for the instance.

We repeat this procedure for every available KEGG pathway. If the

same downstream protein occurs more once in the same pathway,

40 we keep the highest score. We discard the features (downstream pro-

teins) with value>0.0 in less than 1% of the instances, totalling

1331 features. We call this KEGG pathway dataset KEGGI (KEGG

Influence) from now on.

2.1.6 Combined datasets

45 We have created two datasets by combining some feature types. The

first dataset was created by joining all five feature types into a single

dataset. We call it the ‘ALL’ dataset. The goal of creating this data-

set is to investigate if joining feature types from different domains

increases the overall predictive performance of the classifiers.

50 We have also joined the KEGGI and KEGGP datasets to create a

new dataset called ‘KEGGPI’. The KEGGPI dataset combines two

similar feature types with complementary characteristics: while the

KEGGP feature type provides the coarse-grained information about

the pertinence of a protein in a KEGG pathway, the KEGGPI feature

55 type encodes the fine-grained information of the influence of a pro-

tein in a KEGG pathway. We expect that by combining these two

feature types, with different strengths, will result in models with su-

perior predictive performance.

2.2 Hierarchical classification algorithms

60Interpretability is a desirable characteristic when designing features

for classification (Freitas, 2013) as long as predictive power is not

sacrificed. In order to check if our newly proposed KEGG features

have at least comparable predictive power in relation to the other

three types of features (numeric, PPI and motifs) used in (Fabris and

65Freitas, 2014), we use the following hierarchical classification

algorithms.

2.2.1 The predictive clustering tree (PCT) algorithm

The PCT algorithm (Struyf et al., 2005) creates a decision tree by

finding binary splits that recursively divide the training data in two

70disjoint clusters until a given threshold that measures the quality of

the split is not met. In the testing phase, the algorithm finds which

cluster (leaf node of the tree) the instance belongs to using the tree

induced in the training phase and then returns a class probability

vector that represents the probability of the instance belonging to

75each one of the hierarchical classes. This class probability vector is

calculated by first creating a binary vector for each instance in the

cluster. The i-th position of this binary vector has the value ‘1’ if the

instance is annotated with the i-th class label and ‘0’ otherwise. The

PCT’s final class probability vector is the average of the binary vec-

80tors of the instances in the cluster. Note that the class probability

vectors are guaranteed to be consistent with the class hierarchy (the

computed probability of each child class is always smaller than or

equal to the probability of its parent classes).

2.2.2 The hierarchical dependence network using non-structural

85relationships (HDN-NSR) algorithm

A dependence network is a Probabilistic Graphical Model (PGM)

where nodes represent random variables (features or classes) and

directed edges represent dependencies among variables (Heckerman

et al., 2001).

90The Hierarchical Dependence Network (HDN) algorithm

(Fabris and Freitas, 2014) is a type of PGM that uses the Gibbs

Sampling algorithm to predict the probability of a protein belonging

to each one of the hierarchical classes. The HDN algorithm uses the

relationship given by the class hierarchy to create the edges of the

95Dependency Network. The main advantage of the HDN algorithm

is that, contrary to most PGMs (e.g. Bayesian Networks), it allows

for loops in the graph-representation of the dependencies among the

random variables.

This work uses the HDN-NSR variation of the HDN algorithm

100(Fabris and Freitas, 2015), which uses a more sophisticated proced-

ure to find the relationships between the classes of the hierarchy. It

has been shown that HDN-NSR has overall better predictive per-

formance than HDN and greater potential for finding relations that

were not initially present in the class hierarchy, possibly useful for

105biologists studying the ageing process.

The HDN-NSR algorithm uses a standard classification algo-

rithm with probabilistic outputs to estimate the probability of each

hierarchical class. We have chosen to use the SVM (Support Vector

Machine) classifier due to its high predictive power, and we applied

110the F-test feature selection method (Hall, 1999) to reduce the feature

space. To train the classifier for each class ci we consider as positive

examples the instances annotated with class ci or any of its descend-

ants, and as negative examples the complementary set of instances.

After we run the HDN-NSR classifier we limit the value of the

115probability of each class to the minimum probability of its parents,

to maintain the classification consistence across the class hierarchy.
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2.2.3 The local hierarchical classifier (LHC) algorithm

The LHC algorithm is a collection of flat binary classification algo-

rithms trained to predict independently each one of the classes in the

hierarchy. We have again used the SVM algorithm as a base classi-

5 fier applying the F-test feature selection algorithm prior to training

the algorithms. We have also used the same strategy to define the

positive and negative examples that we used for the HDN-NSR

algorithm.

Usually, when using the LHC approach in the testing phase, the

10 top-down strategy is applied: first, the highest-level classes (exclud-

ing the root node) are predicted. Then, the algorithm recurses to the

children of each positively predicted class, until no positive predic-

tions are made or a leaf node is reached. As we are dealing with

probabilistic classifications instead of crisp classifications, we apply

15 the same procedure to guarantee prediction consistence used in the

HDN-NSR algorithm, limiting the probability of each class to the

probability of its parents.

2.3 Measures estimating the predictive performance of

hierarchical classification algorithms
20 We have used three measures of predictive accuracy (AUðPRCÞ,

AUPRCw and AUPRC (Vens et al., 2008)) based on the Area Under

the Precision Recall Curve (AUPRC). In the flat classification con-

text this measure works by constructing a PR curve (a plot of the

classifier’s precision as a function of its recall) thresholding the out-

25 put (class probability) of the classifier. Each threshold is associated

with a value of precision and recall, corresponding to a point in the

PR space. To obtain a single performance measure from the curve,

we calculate the area under the curve using a trapezoidal approxi-

mation (Boyd et al., 2013). A perfect classifier would have an

30 AUPRC of 1.0. For more detail on how this measure is calculated,

see (Vens et al., 2008).

2.4 Interpreting the classification model induced using

the KEGG pathway features

Initially we generated a classification model using the KEGG fea-

35 tures and all the 81 hierarchical classes in the MPO dataset.

However, this led to results that were difficult to interpret, because

the ageing-related proteins are much less common (85 out of 3886)

than the mortality-related proteins. For this reason, the classification

models focused on discriminating the mortality-related classes much

40 more than the ageing-related classes.

The high class imbalance of the original hierarchical class dataset

(only 2% of instances belong to the ‘ageing’ class) is detrimental for

classifiers predicting the ‘ageing’ class, and consequently for inter-

preting the models. To tackle this problem, in another experiment,

45 we have introduced two simplifications for generating interpretable

models: (i) we have joined all ageing-related classes into a single

ageing-related class and all mortality-related classes into a single

non-ageing-related class, transforming the hierarchical classification

problem into a binary classification problem and (ii) we have under-

50 sampled the mortality-related proteins to a 1/1 ratio of instances be-

tween the two classes in the training set.

Also, instead of using the PCT algorithm for generating the clas-

sification models, we used conventional algorithms for binary classi-

fication that generate interpretable models. Namely, we have used

55 the J48 algorithm, which generates a decision tree, the Decision

Table (DT) algorithm, which generates a table with a set of condi-

tions that must be satisfied for an instance to be classified as ageing-

related, the PART algorithm, that builds several C4.5 decision trees,

extracting rules from the ‘best’ leafs and the JRip algorithm, which

60builds a rule list by incrementally growing and pruning the model

until a given stopping criterion is met. All four binary classification

algorithms are available in the Weka data mining tool (Hall et al.,

2009).

3 Results

653.1 Predictive accuracy results for hierarchical

classification (with 81 classes)

Table 1 shows the predictive accuracy results of the three algorithms

we have tested in the seven hierarchical datasets (5 different feature

types and 2 combined feature types). Note that in this work we are

70interested mainly in comparing datasets (feature types), not algo-

rithms. So, Table 1 shows, for each accuracy measure, the average

rank of each dataset. The average rank is calculated by first assign-

ing a rank varying from 1 (highest predictive accuracy) to 7 (lowest

accuracy) to each dataset for each combination of classification al-

75gorithm and measure. Next, for each measure, the values displayed

in the ‘Avg. Rank’ rows of Table 1 are calculated by averaging the

ranks of each dataset across algorithms. The best (smaller) average

rank for each accuracy measure is highlighted in boldface.

For each combination of hierarchical algorithm and accuracy

80measure in Table 1, we have applied the paired t-test with the

Hochberg correction (Demsar, 2006) for multiple comparisons

(using the individual results on the 10 folds of the cross-validation

process) to check if the predictive accuracy of the model induced

using the best dataset in the row is statistically significantly different

85from the accuracy of the model induced by the same classification

algorithm using the other dataset. Statistically significant results are

marked with a dagger (†).

Note that the ‘ALL’ dataset is statistically significantly better

than all other 6 datasets when using LHC and HDN-NSR. When

90using the PCT algorithm, the best dataset is KEGGP. Overall, con-

sidering all 3 algorithms, the best (smallest) average rank was ob-

tained by the ‘ALL’ dataset for the AUðPRCÞ and AUPRCw

measures, while the combined KEGGPI dataset had the best rank

for the AUPRC measure.

95We can also observe that the rank of the KEGGPI feature type

was better than the rank of the KEGGP feature type only when using

the AUPRC measure. We can explain this behavior by analysing the

bias of the AUPRC measure. This measure weighs all hierarchical

classes equally, including those with relatively few proteins. So, clas-

100sification models that use a wider range of features types (that can

better predict more classes) are favored in relation to models which

are better at predicting hierarchical classes with more instances

using more general feature types.

To find out which individual feature representation is the best,

105we removed the combined datasets and performed a second statis-

tical analysis. In this second study, the KEGGP feature type is al-

ways either statistically significantly better than all other feature

types or is in the group of statistically equivalent feature types that

include the best feature type.

110It is also import to note that although the KEGGI feature type

carries more complex information than the KEGGP feature type

overall, the latter produces more accurate models. In fact, we have

observed that PCT models generated using the KEGGP feature type

have substantially more splits than the ones generated using KEGGI

115features. This is due to the smaller number of non-zero feature val-

ues present in the KEGGI dataset, which culminates in hierarchical

classes with too few instances with non-zero feature values for a

good classifier to be induced.

New KEGG pathway-based interpretable features for classifying ageing-related mouse proteins 5



3.2 Results for binary classification

3.2.1 Predictive accuracy analysis

We tested 4 well-known algorithms that generate interpretable clas-

sification models from binary class datasets: J48, Decision Table

5 (DT), JRip and PART; all available in the Weka data mining tool

(Hall et al., 2009). Table 2 shows the Area Under the ROC

(Receiver Operating Characteristic) curve (AUROC) measure results

obtained by the four classification algorithms for the seven used

datasets. The rankings of the feature types are calculated in the same

10 way as described in Section 3.1.

The AUROC measure informs us the quality of the probabilities’

ranking given by the classification model. That is, the AUROC

measure has the maximum value of 1.0 if, for all ageing-related class

instances, this class’ probability estimated by the model is higher

15 than the estimated probabilities assigned to the non-ageing-related

instances. A random classifier is expected to have an AUROC meas-

ure of 0.5.

By analysing Table 2 we can conclude that few feature types

have AUROC values statistically significantly worse (a ¼ 0:05) than

20 the best performing feature type. This happened in three cases

(shown by a dagger (†)), all when using the PART algorithm: when

comparing the ‘ALL’ dataset against the Motif, PPI and KEGGI

datasets.

The combined KEGGPI and KEGGP feature types had the best

25 (smallest) joint predictive accuracy rank across the four classifica-

tion algorithms in Table 2. If one is interested only in predictive

accuracy, one could use just the KEGGP feature type instead of

the combined KEGGPI feature type. However, when model

interpretation is important (as it is the case here) using the KEGGPI

30feature type has the advantage of providing additional, more precise

information, while maintaining predictive accuracy. Therefore, the

KEGGPI feature type is useful for the binary classification problem

we are studying.

3.2.2 Interpreting results for binary classification

35We have interpreted the model generated for the KEGGPI feature

type induced by the DT (Decision Table) algorithm from the binary

class dataset described in Section 2.4. This choice of classification al-

gorithm/dataset was made for three reasons: the KEGGPI and

KEGGP datasets were tied as the best dataset in Table 2; the

40KEGGPI dataset comprises the KEGGP and KEGGI feature types,

so we can interpret both at the same time; and the DT algorithm

had the best predictive performance across the seven feature types

(winning in 4 out of 7 feature types).

In Table 3 we show the classification rules created by the DT al-

45gorithm for predicting ageing-related protein functions. A rule is a

set of feature values that a protein must have to be classified as ei-

ther ageing related or non-ageing related. The first rule of Table 3

means: if a protein is not present in the KEGG pathways in columns

2–8; and the protein influences protein P11440 (Cyclin-dependent

50kinase 1), present in pathway mmu04110 (Cell cycle); then the pro-

tein is likely to be ageing related. The last two columns of this table

show the coverage (number of instances classified by the rule) and

the accuracy (percentage of correctly classified instances) of each

row (rule). Note that the rule containing the ‘yes’ condition for the

55KEGGI feature type (first row) had the best accuracy (28%) with

Table 1. Predictive accuracies of the three hierarchical classification algorithms over the seven used datasets. Due to lack of space, the

HDN-NSR algorithm is referred to simply as ‘HDN’

Dataset (feature type)

Mea. Alg. KEGGP KEGGI KEGGPI PPI Motifs Num. ALL

AUðPRCÞ PCT 0.715 0.706† 0.714 0.709† 0.710† 0.711 0.714

LHC 0.716† 0.709† 0.714† 0.709† 0.710† 0.718† 0.722

HDN 0.718† 0.710† 0.715† 0.710† 0.711† 0.718† 0.721

Avg. Rank 2.3 6.7 3.3 6.3 5.0 2.7 1.7

AUPRCw PCT 0.556 0.547 0.556 0.544† 0.545† 0.537† 0.545†

LHC 0.551† 0.536† 0.541† 0.541† 0.539† 0.551† 0.566

HDN 0.546† 0.526† 0.544† 0.529† 0.536† 0.552† 0.563

Avg. Rank 2.7 5.7 3.0 5.7 5.3 3.7 2.0

AUPRC PCT 0.146 0.141† 0.144† 0.136† 0.136† 0.128† 0.135†

LHC 0.141† 0.141† 0.143† 0.130† 0.134† 0.134† 0.147

HDN 0.138† 0.129† 0.139† 0.124† 0.131† 0.134† 0.147

Avg. Rank 2.3 4.3 2.0 6.3 4.7 5.7 2.7

Numbers in boldface represent the top result in the row. Boldfaced ranks represent the best (smaller) ranks. Daggers (†) denote t-tests results rejecting the null

hypothesis of equivalence between the best feature type (in boldface) and the current feature type, concluding that the models generated using the best feature

type are statistically superior (a ¼ 0:025). Due to lack of space, the HDN-NSR algorithm is referred to simply as ‘HDN’.

Table 2. AUROC measure results for the classification algorithms on the binary class dataset described in Section 2.4

Alg. Dataset (feature type)

KEGGP KEGGI KEGGPI PPI Motifs Numeric ALL

J48 0.584 0.505 0.584 0.508 0.507 0.495 0.566

DT 0.605 0.533 0.593 0.518 0.518 0.484 0.541

JRip 0.556 0.523 0.563 0.520 0.505 0.514 0.461

PART 0.581 0.499 † 0.583 0.504 † 0.485 † 0.543 0.585

Avg. Rank 1.8 4.8 1.8 4.5 6.0 5.8 3.5

Boldface numbers highlight the best result. Daggers (†) next to a result indicate statistically worse results than the best result for the algorithm in the row, ac-

cording to a paired t-test using the Hochberg step-up correction (Demsar, 2006) (a ¼ 0:05). The rank in boldface indicates the best (smallest) rank.
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good coverage (21 instances). At first glance, an accuracy of 28%

seems small, but recall that only 2% of instances are ageing-related,

so an accuracy of 28% is actually a 14-fold increase in relation to

the prior probability of the ‘ageing-related’ class.

5 In Figure 3 we show how we can use the information given in

column 1 (from the KEGGI feature type) to interpret the rules cre-

ated by the DT. This figure shows part of the KEGG pathway

mmu04110 and highlights the influence of several proteins on the

protein P11440 (CDK1). Our results suggest that if a reference pro-

10 tein Pref has any influence in CDK1 (feature value>0), then Pref is

more likely to be ageing-related.

Note that the highlighted proteins are, at the same time, in-

stances and features for other proteins. For example, the instance

representing protein ‘Chk1,2’ (reference protein) influences protein

15 CDK1 (feature) according to our score. Therefore, this instance

(‘Chk1,2’) has a non-zero value in the feature associated with influ-

ence on protein CDK1. At the same time, CDK1 is also an instance,

having features with a non-zero value in the set of proteins it influ-

ences. Note that not all proteins in the KEGG pathway are instances

20 in our ageing-dataset, i.e. not every protein associated with a feature

is an instance.

In contrast, the KEGGP feature type provides a different type of

information; the conditions involving this feature merely inform the

user if a protein (an instance) is present in a KEGG pathway or not.

25 E.g. the seventh row of Table 3 (second most accurate rule) informs

us that if a protein is in the KEGG pathway mmu04917 (Prolactin

signaling pathway), is not present in the other selected pathways

and has no influence on protein P11440 in pathway mmu04110, it

is likely ageing-related. This suggests that proteins in the ‘Prolactin

30 signaling pathway’ may have some influence on the ageing process,

so some other proteins present in the same pathway could be candi-

dates for further investigation.

4 Discussion

We have presented the construction of two KEGG feature types for

35 the classification of ageing-related protein functions engineered

specifically with the goal of predicting protein function using inter-

pretable features.

The advantages of using the KEGG-derived features types are

two-fold: (i) the good predictive performance of the models induced

40using these two features together and (ii) the improved interpret-

ation potential of using richer features to represent the instances. In

fact, the KEGG pathway seems to be a very appropriate database to

use when interpretation is required, since it is focused on integrating

not only biological data from several sources, but also concepts

45about the data (Kanehisa et al., 2011).

The downside of relying on such rich source of data is that, in

order to compute values of the KEGGP and KEGGI features for an

instance, the corresponding gene or protein must first be character-

ized into some KEGG pathway, which involves laborious wet-lab

50experimentation. So, an uncharacterized protein represented only by

its amino acid sequence cannot be classified using KEGGP and

KEGGI features (nor using PPI and Motif features). In fact, in this

scenario, out of the five feature types used in this work, only the

‘Numeric’ feature type could be used, which is arguably the most

55difficult to interpret due to its low level of abstraction.

The KEGG Pertinence (KEGGP) feature type, used for the first

time for hierarchical classification in this work, had the best per-

formance according to our statistical analysis compared to three

other feature types and the KEEGI feature type, a new KEGG fea-

60ture type proposed here.

The combined KEGGPI dataset (using both KEGGP and KEGGI

features) had the best mean rank on the binary class dataset, tied

with the KEGGP feature type. Although the KEGGP feature type

has a simpler interpretation, if a richer, more precise model

Table 3. Classification rules that predict the ‘ageing’ class, gener-

ated by the DT algorithm using the KEGGPI dataset

P11440_04110 4151 5168 4660 4380 4350 4917 3420 Cov. %Ac.

> 0 No No No No No No No 21 28

¼ 0 Yes No No No No No No 139 6

¼ 0 No Yes No No No No No 59 12

¼ 0 No No Yes No No No No 27 15

¼ 0 No No No Yes No No No 21 10

¼ 0 No No No No Yes No No 49 10

¼ 0 No No No No No Yes No 13 23

¼ 0 No No No No No No Yes 20 20

The first column presents a KEGGI feature; its name shows the Uniprot Id

of the protein that is being potentially influenced by an instance and (after the

‘_’) the Id of the KEGG pathway where the influence can occur. The next 7

columns show binary KEGGP features, indicating whether or not an instance

belongs to the corresponding KEGG pathway. The last two columns show the

coverage and the % accuracy of each rule. Due to lack of space, we have sup-

pressed the ‘mmu0’ prefix in the KEGG pathways ids. Each row shows the

conditions that must be satisfied for a protein to be predicted as ’ageing-

related’. The selected KEGG pathways are: mmu04110 (Cell cycle),

mmu04151 (PI3K-Akt signaling pathway), mmu05168 (Herpes simplex infec-

tion), mmu04660 (T cell receptor signaling pathway), mmu04380 (Osteoclast

differentiation), mmu04350 (TGF-beta signaling pathway), mmu04917

(Prolactin signaling pathway) and mmu03420 (Nucleotide excision repair).
Fig. 3. Graphical representation of the KEGG pathway mmu04110 (Cell cycle)

with highlighted interesting proteins and interactions. The protein complex

highlighted with a solid black line contains the protein ‘Cyclin-dependent kin-

ase 1’ (CDK1), which occurs in the feature selected by the DT algorithm (see

Table 3). The highlighted dashed grey proteins represent ageing-related pro-

teins that influence CDK1. The highlighted solid grey proteins represent non-

ageing-related proteins that influence CDK1. Solid grey edges represent all

possible influence paths from a solid grey protein to CDK1. Dashed grey

edges represent all possible influence paths from the dashed grey protein to

CDK1
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interpretation is desired (as it is the case here), the combined

KEGGPI feature type is more suitable, as it contains both the easier

to interpret KEGGP feature type (at a higher level of abstraction)

and the KEGGI feature type (with finer-grain information). To illus-

5 trate this point, we have shown how the KEGGPI feature type can

be used for generating biological knowledge using the Decision

Table algorithm, which generates interpretable classification

models.

We have also contrasted the interpretation of the KEGGI feature

10 type with the interpretation of the simpler KEGGP feature type and

concluded that the complementary nature of these two feature types

provides a good range of biological information: the KEGGI feature

type presents more precise information to the user, enabling a richer

interpretation of the classification model: it quantifies the influence

15 of a current (reference) protein on another specific protein in a given

KEGG pathway. On the other hand, the KEGGP feature type tells

the user the higher-level information of which KEGG pathways are

important for discriminating between ageing and non-ageing related

proteins.
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