
Northumbria Research Link

Citation: Wen, Zhenyu, Qasha, Rawaa, Li, Zequn, Ranjan, Rajiv, Watson, Paul and Romanovsky,
Alexander (2016) Dynamically Partitioning Workflow over Federated Clouds For Optimising the
Monetary Cost and Handling Run-Time Failures. IEEE Transactions on Cloud Computing. p. 1. ISSN
2168-7161 (In Press)

Published by: IEEE

URL: https://doi.org/10.1109/TCC.2016.2603477 <https://doi.org/10.1109/TCC.2016.2603477>

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/27955/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access
the University’s research output. Copyright © and moral rights for items on NRL are retained by the
individual author(s) and/or other copyright owners. Single copies of full items can be reproduced,
displayed or performed, and given to third parties in any format or medium for personal research or
study, educational, or not-for-profit purposes without prior permission or charge, provided the authors,
title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata
page. The content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is available online:
http://nrl.northumbria.ac.uk/pol i cies.html

This document may differ from the final, published version of the research and has been made
available online in accordance with publisher policies. To read and/or cite from the published version
of the research, please visit the publisher’s website (a subscription may be required.)

http://nrl.northumbria.ac.uk/policies.html

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603477, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 1

Dynamically Partitioning Workflow over
Federated Clouds For Optimising the Monetary

Cost and Handling Run-Time Failures
Zhenyu Wen∗,§, Rawaa Qasha∗‡, Zequn Li†, Rajiv Ranjan∗, Paul Watson∗, Alexander Romanovsky∗

Abstract—Several real-world problems in domain of healthcare, large scale scientific simulations, and manufacturing are organised as
workflow applications. Efficiently managing workflow applications on the Cloud computing data-centres is challenging due to the
following problems: (i) they need to perform computation over sensitive data (e.g. Healthcare workflows) hence leading to additional
security and legal risks especially considering public cloud environments and (ii) the dynamism of the cloud environment can lead to
several run-time problems such as data loss and abnormal termination of workflow task due to failures of computing, storage, and
network services. To tackle above challenges, this paper proposes a novel workflow management framework call DoFCF (Deploy on
Federated Cloud Framework) that can dynamically partition scientific workflows across federated cloud (public/private) data-centres for
minimising the financial cost, adhering to security requirements, while gracefully handling run-time failures. The framework is validated
in cloud simulation tool (CloudSim) as well as in a realistic workflow-based cloud platform (e-Science Central). The results showed that
our approach is practical and is successful in meeting users security requirements and reduces overall cost, and dynamically adapts to
the run-time failures.

Index Terms—Cloud Federation, Scientific Workflow Optimisation, Deployment, Security, Monetary Cost, Scheduling.

F

1 INTRODUCTION

S CIENTIFIC workflows have become an increasingly pop-
ular paradigm for enabling and accelerating scientific

data analysis. They consist of a series of computational tasks
that are logically connected by data and controlling flow de-
pendencies. They have been successfully run on traditional
HPC (High Performance Computing) systems and clusters.
However, in recent years many researchers have migrated
workflow systems onto the cloud in order to exploit the
economic and technical benefits of this technology [1].

The Cloud computing provides a computing paradigm
that focuses on the on-demand provisioning of comput-
ing resources, including hardware, software, storage and
network. Furthermore, cloud providers have distributed
several data centres at different geographical locations over
the internet in order to deliver quality services for their
customers around the world [2] [3]. The currently available
cloud platforms distinguish themselves on service type, the
cost, the Quality of Service (QoS) as well as performance [4].
This fact enables cloud customers to freely select their target
architecture from a broad range of cloud platforms.

Although users are interested in the execution of their
workflow applications in the cloud, the current implemen-

∗ The authors are with the School of Computing Sci-
ence, Newcastle University, United Kingdom. E-
mail:{z.wen,r.qasha,Raj.Ranjan,paul.watson,alexander.romanovsky}
@newcastle.ac.uk,

† The author is with the school of mathematics and infor-
mation science, Northumbria university, United Kingdom. E-
mail:{Zequn.li}@northumbria.ac.uk,

‡ The author is with the College of Computer Sciences and Mathematics,
Mosul university, Iraq.

§ The author is with the School of Informatics, University of Edinburgh,
United Kingdom. E-mail:{zwen}@inf.ed.ac.uk

Manuscript received ???; revised ???

tations mainly address a single cloud. In addition, existing
systems are unable to coordinate across different cloud-
based data centres in order to optimally allocate application
services to meet users’ functional (i.e. hardware) or non-
functional (i.e. security) requirements [5]. Further, cloud
providers are subject to failures. For example, an outage
at GoDaddy took down millions of web sites [6] and a 12
hour Amazon EC2 outage [7] raised serious questions about
reliability on a single cloud provider.

Considering these issues, cloud federation has the po-
tential to facilitate just-in-time, opportunistic, and scalable
provisioning of application services, consistently fulfilling
user requirements under variable workload, resource and
network conditions [8]. Using a federated cloud, users
are able to deploy their applications over a set of clouds
from different cloud providers across different geographical
locations, bringing various advantages such as leveraging
unique cloud specific services, higher availability and re-
dundancy, disaster recovery and geo-presences.

Motivated by the above considerations, we propose to
deploy scientific workflow over utility-oriented cloud fed-
erations, in the meantime ensuring that the deployment can
meet users’ security requirements and minimise monetary
cost, while handling changes in cloud availability (including
the existing cloud virtual machines (VMs thereafter) outage
and the new VMs becoming available).

We assume that there is a set of workflow execution
environments running on different data centres which are
owned by different cloud providers. Further, the different
computing resources have different security levels, for ex-
ample, Windows Azure provides private cloud and public
cloud that come with different security levels. Therefore,
the security of a scientific workflow can be improved by

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603477, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 2

deploying sensitive services or data to more secure clouds.
Likewise, the cost can be reduced through distributing the
less sensitive services or data to cheaper clouds with lower
security levels. In addition, we allow for the cloud federa-
tion to be very dynamic, as the availability of clouds may
sometimes change.

According to the above assumptions, the deployment of
scientific workflow on a federated clouds poses a number of
challenges:

• The considerable amount of computation required
for exploring the optimal deployment. We assume
a workflow with S tasks can be deployed over a
federated cloud that includes C clouds. Therefore
the total number of deployments is CS which is
exponential to the number of workflow tasks.

• Tasks in the workflow system and their correspond-
ing security levels are influenced by different aspects,
such as user preference, the task requirements and
inputs/outputs data.

• The cost of the deployment is dependent on several
factors, including data storage cost, data communi-
cation cost and computation cost.

• The trade-off between secure deployment and mon-
etary cost is also a challenge.

• Dynamic handling of cloud environment changes.
This requires to rapidly generate new deployment
solutions when the cloud environments change.

{Few of works have been done to address deploying workflow
over federated cloud. [9] introduces a static algorithm to deploy
workflows over federated clouds that meets security requirements.
However, the dynamic of cloud environments is not considered. In
our previous work [10], we have considered cloud failure during
workflow running, while meeting the security requirements and
minimising the cost. However, the proposed method cannot handle
the large scale workflow and fails to generate a better solution
when a new cloud joins the cloud federation.}

In this paper, we propose DoFCF (Deploy on Federated
Cloud Framework), a framework for deploying workflows
over federated clouds that meets security requirements, and
optimising the monetary cost, while dynamically handling
the availability change of federated clouds.

Our framework provides a set of solutions for work-
flow scheduling, including where to deploy tasks, when to
start each service and how to handle the cloud availability
change. The deployment of the workflow over federated
cloud is based on adhering to a set of specific security
requirements and minimisation procedures. Additionally,
DoFCF offers a dynamic solution to dynamically reschedule
the running workflow to new clouds, in order to complete
the execution of an unfinished workflow or save on costs.

1.1 Paper Contributions
Considering the above challenges and problems, this paper
makes the following core contributions:

• A framework to model the security constraint of
workflow deployment and the situation of cloud
availability change during the workflow execution
time. The framework also quantifies the cost of exe-
cuting workflow over federated clouds.

• Investigation of the existing state-of-the-art optimisa-
tion algorithms. Further, we extend two classic algo-
rithms and adapt to DoFCF to achieve rapid explo-
ration for a possible deployment solution. In order to
handle the availability change of cloud resources, a
novel dynamic rescheduling algorithm is developed
to resume workflow execution when failures occur or
reduce the monetary cost by redeploying the running
workflow to cheaper clouds.

• Evaluating the implemented framework on
CloudSim [11] which is a Cloud simulator and
e-Science Central [12] (e-SC), a real scientific
workflow based cloud platform.

The rest of this paper is organised as follows. In Section 2
the basic models of the framework are discussed. Next, a
specific security model is adapted to DoFCF, demonstrat-
ing how to deploy a workflow over a federated cloud to
meet security requirements while minimising the cost. Then
the state-of-the-art optimisation algorithms are explored,
extended and adapted to our DoFCF to optimise workflow
partitioning. In Section 5, we evaluate the framework by
using CloudSim, and also develop a tool to schedule the
workflows over a set of e-SC instances. Before drawing
conclusions in Section 7, we discuss the related work.

2 BASIC MODELLING CONSTRUCTS

In this section, we present a system model of deploying
workflow applications over federated clouds. In the fol-
lowing, the general scientific workflow model and security
model are introduced. In addition, a general cost model will
be used to calculate the monetary cost of deployment. More-
over, we present an optimisation model that can guarantee
the deployment solution meets the security constraints as
well as minimising the cost. Finally, a dynamic cost model
is used to help rescheduling the running workflow when
the cloud availability change in a federated clouds. Table 1
shows the notations for the rest of the paper.

2.1 System model
A Cloud Service Broker performs cloud exchange and ne-
gotiates with each available cloud to allocate resources that
meet user’ specific requirements. In this paper, we propose
a Cloud Service Broker which can partition workflow appli-
cations over federated clouds. Fig 1 shows the architecture
of the Cloud Service Broker for workflow application along
with other components as illustrated below:

The Client can be a platform for workflow management
such as e-Science Central or Pegasus [13] which allows users
to describe and submit their workflow application through
platform components. The Workflow Engine delivers the
workflow tasks (or services in this paper) to the underlying
Cloud Service Broker, including execution requirements,
task description, and the desired security requirements.

The Cloud Service Broker enables the functions of resource
allocation, workflow scheduling and software deployment.
Our framework includes a Planner component that per-
forms a matching process to select the target clouds for
deployment, based on the information passed from Global
Cloud Market. Further, the workflow tasks are assigned by

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603477, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 3

Symbol Meaning
Workflow
si ith service in a workflow application
di,j data dependency between si and sj
O the union of data dependencies and services
o one element of set O
ci ith cloud of a set of clouds C
Λ possible deployment solutions
λ one of the deployments of Λ
Selected set of the services that need to be rescheduled
Input set of data that have already been generated
Λ′ possible deployments of the services in Selected
λ′ one of the possible deployments of Λ′

Cost Model
sci service si is deployed on cloud c
Ti,j storage time of data di,j
Storec cost of storing data on cloud c in GB per hour
OUT the outgoing data dependencies of a cloud
Comc′,c cost of transferring 1GB of data between clouds
IN the incoming data dependencies of a cloud
T cj execution time of sj on cloud c
Execc cost of using compute resources on c for one hour
Scost data storage cost
Ccost communication cost
Ecost execution cost
Icost initial cost for setting up a new deployment
Dcost cost of the new deployment
COST total cost of a workflow deployment
Security Model
func1 embeds constraints for each o
func2 represents the constraints for the whole workflow
NWD no-write-down
NRU no-read-up
SIC security in cloud computing

TABLE 1: Notations

Fig. 1: Architecture of Cloud Service Broker for Scientific Work-
flow

the Scheduler, and the Data Manager maintains the data
transfer during workflow execution. The planned tasks are
distributed to the underlying cloud providers via Deploy-
ment APIs. These APIs can also be used to interact with
the underlying clouds to monitor workflow execution and
cloud availability.

Federated cloud is a cloud resource pool that provisions
computation and storage resources, as well as specific non-
functional capabilities (referring to different security levels
in this paper) and functional capabilities such as the ex-
ecution environment of each tasks. For example, Jclouds

[14] provides the API to use portable abstractions or cloud-
specific features.

2.2 Scientific Workflow
A workflow-based application consists of a set of services
and data. It is modelled as a Directed Acyclic Graph (DAG),
G = (S,E), where S is the set of services, and E is a
set of dependencies between those services. Services are
represented by the graph vertices and the edges repre-
sent the dependencies between those services. Although a
workflow-based application can have several different types
of dependency relationships, in this work we only consider
the data dependency (this is the most common dependency
relationship in scientific workflow applications). In this type
of dependency, a data item is generated from a source
service and consumed by a destination service. For example,
ei,j represents a data dependency between service si and
service sj . To represent data dependencies we use a distance
matrix D = [di,j] of size |S| × |S| where a positive value of
di,j indicates a dependency between si and sj as well as
the size of transmitted data. O represents the union of D
and S. Furthermore, C represents a set of clouds which are
available for deployment.

2.3 General Security Model
An application’s security can be improved by two ap-
proaches: firstly, refining the design and implementation
of the application; secondly, deploying the application over
more trustworthy resources, such as shifting the application
to a higher security server. In this paper, we propose to
increase the security of a workflow by adopting the latter
approach. To achieve the enhancement in workflow secu-
rity, we present two functions which are used to provide
a concrete representation for different types of security
requirements. We assume that Λ represents the possible
deployment solutions for given workflow over federated
clouds C and λ is one deployment of Λ, noting Λ = O × C
and λ ∈ Λ.

func1) embeds constraints for d and s. Thus, if λ is a valid
deployment solution, each o ∈ O has its security constraints
and must be deployed on a cloud c ∈ C which can meet the
constraint.

func2) represents the constraints for the whole workflow
deployment. Therefore, a valid deployment solution λ must
meet the security constraint H . Where H is one of the
security requirements.

2.4 Cost Model
The cost model is designed to calculate the cost of deploying
a workflow over a set of available clouds, including data
storage cost, data communication cost and computation
cost. We assume that the clouds are linked in a fully con-
nected topology and the data can be transferred between
clouds without obstructions. Additionally, a cloud c can run
several services s at the same time. Therefore, a set of cost
functions is defined as follows:

The first function is the data storage cost:

Scost(sci) =
∑

di,j∈OUT

di,j × Ti,j × Storec (1)

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603477, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 4

Where sci means that service si is deployed on cloud c.
OUT is a set of data dependencies, representing the data
that are generated by si and transferred to its immediate
successor sj which is not deployed on c (note that if all
immediate successors of si are on c, then OUT = ∅). di,j
represents the amount of data which is generated by si
and consumed by sj . Ti,j denotes storage time of data di,j ,
which is the required time starting from the generation of
data until the completion of workflow execution. Finally,
Storec is the cost of storing 1GB of data for one hour on
cloud c.

In this model, we make an assumption that the data
remains stored only on the source cloud to avoid double-
accounting for the cost. The reason for storing the outputs
of a service even after the generated data has been sent to
another cloud is to handle a failure of the destination cloud.
In this case, the stored data provides a way to resume the
computation on another cloud without the need to restart
the whole workflow execution. This can be adapted to
handle the cloud change problem.

The second function, Ccost, is used to estimate the
communication cost of transferring data between different
services.

Ccost(sci) =
∑

di,j∈IN

di,j × Comc′,c (2)

It is the data transferred from the immediate predeces-
sors of service sj (denoted as IN), which are not in the
same cloud. Comc′,c represents the unit cost of transferring
1GB of data from cloud c′ to c. However, if two services
are deployed on the same cloud, the cost is zero, i.e.
∀c′ = c : Comc′,c = 0.

Finally, Ecost(sci) indicates the execution cost of service
si on c. It is defined as:

Ecost(sci) = T ci × Execc (3)

Where T c
i is the execution time of si on cloud c, and

Execc represents the cost of using compute resources on c
for one hour.

Based on the three cost functions, we can formulate the
COST (λ) function to define the total cost of a workflow
deployment over a set of clouds:

COST (λ) =
∑
sc
i
∈λ

(Scost(sci) +

Ccost(sci) + Ecost(sci))

(4)

2.5 Deployment Optimisation
As mentioned previously, we propose a model for opti-
mising monetary cost as well as meeting the security re-
quirements. Therefore, the optimisation problem is to find a
deployment λ ∈ Λ with two constraints: i) the deployment
λ must meet the security requirements by belonging to
either func1 or func2. ii) the value of COST (λ) should
be minimised to obtain deployments with a low cost of
execution. We express this problem as:

minimise (COST (λ))

subject to∀ oc ∈ λ : func1(oc) := true OR
func2(λ) := true

∃λ ∈ Λ

In the following, we use func1 as an example to prove
that the optimisation problem is a NP-complete problem.

Theorem: The optimisation is a NP-complete problem.
Proof: we first verify that the problem of deploying a

workflow over a set of clouds to meet security requirements
is a NP problem (noting ∃λ ∈

∑
(Λ,W), where W repre-

sents the security requirements).
The NP-completeness of optimising the cost can be illus-

trated as follows: we start by transforming PARTITION [15]
(one of six core NP-complete problem) to our problem. Let
the instance of PARTITION be a finite Set A = (a1...am) and
a weightw(ai). We want to have two disjoint subsetsA1 and
A2; A1, A2 ⊆ A, where A1 ∪A2 = A and A1 ∩A2 = ∅, such
that

∑
a∈A1 w(a) =

∑
a∈A2 w(a).

In order to reduce our problem to a PARTITION prob-
lem, we assume that a workflow has m numbers of O, and
two clouds are available for deployment. Further, we do
not consider the security issue, which means any o can
be deployed over any of the two clouds. Therefore, we
can have two sets of deployments C1 = (o1....om) and
C2 = (o1....om) over the two available clouds

Regarding our problem, we need to have two disjoint
subsets C ′1 and C ′2, where C ′1 ∪ C ′2 = O and C ′1 ∩ C ′2 = ∅.
This match the conditions of the PARTITION problem.
Furthermore, w(o) represents the cost of deploying o onto
the cloud, so

∑
o∈C′

1
w(o) is the cost of set C ′1. However,

the PARTITION problem is to find two disjoint sets with the
same weight, which has the same complexity as our prob-
lem that is trying to find two disjoint sets while minimising
the total cost, noting min(

∑
o∈C1′ w(o) +

∑
o∈C2′ w(o)).

2.6 Dynamic Cost Model

Dynamic Cloud resources may affect workflow execution.
Situations arise when individual nodes may fail during
the execution, or in some extreme cases the whole cloud
is unreachable for several hours. As a consequence of
their failure, workflow applications may not be executed
to completion. Furthermore, new clouds, possibly attractive
because they are cheaper or more secure etc., may become
available during the execution of workflow applications.
Therefore, to deal with the dynamism of cloud resources,
we develop a new cost model that dynamically calculates
the cost of deploying uncompleted services over the current
available clouds.

We assume a set Selected is composed of the services
that need to be rescheduled, including unfinished services
as well as the services that have been completely processed,
and their outputs are the inputs of unfinished services, but
the outputs have not been stored because of the failure of
the clouds. The details will be illustrated in Section 4.4.

Input is a set of data which have been already generated
from the processed services and required for services in
Selected, and stored in the available clouds. Based on the
definition, we can have the initial cost for setting up a new
deployment, which is the cost of storing the input data of
Selected. It is defined as:

Icost(Selected) =
∑

di,j∈Input

di,j × Ti,j × Storec (5)

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603477, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 5

In addition, Λ′ is the set of possible deployments of the
services in Selected over the available clouds C. Conse-
quently, the cost of the new deployment can be defined as:

Dcost(λ′) = COST (λ′) + Icost(Selected) (6)

Where λ′ ∈ Λ′ represents one of the possible deploy-
ments for the services in Selected.

3 SECURE DEPLOYMENT

In this section, we apply our previous work [16], based on
the Bell-LaPadula [17] Multi-Level Security model [18], to
demonstrate how to adapt the security model to DoFCF.
This incorporates the security levels of the clouds, data and
services to achieve a secure deployment for the workflow
over a federated cloud.

In our security model, each service S has two security
levels: “Clearance” and “Location”. “Clearance” represents
the services’ highest security level, and “Location” is the
required operation security level of the service in a specific
application. The data D and cloud C only have “Location”.
l(o) and c(o) represent the security of location of o and the
clearance of o respectively.

W represents the security constants, including three
rules:

• NWD “no-write-down”: denotes that a service can-
not write data which has a lower security level
(required security level) than its own. This can be for-
malised as: NWD(di,j , sj) = c(sj) ≥ l(di,j) ? true :
false

• NRU “no-read-up”: means a service cannot read
data if the data’s location security is higher than the
service’s clearance security, noting: NRU(si, di,j) =
l(di,j) ≥ l(si) ? true : false

• SIC “security in cloud computing” (SIC): defines
the location security level of a cloud that should be
greater than or equal to the location security level
of any service or data that are hosted on this cloud–
SIC(dci,j , s

c
j) = l(c) ≥ l(si)&l(c) ≥ l(di,j) ? true :

false. Where dci,j and scj represent data di,j and
service si to be deployed on cloud c.

In APPENDIX, available in the online supplemental
material, we run a deployment example to show how to
apply the above security rules to a workflow application.

4 DEPLOYMENT OPTIMISATION ALGORITHMS

In this section, we investigate and analyse some state-of-
the-art optimisation algorithms and then extend the Genetic
Algorithm (named adaGA) and Greedy Algorithm (named
NCF) to adapt to our framework. The architecture of our
new framework DoFCF is depicted in Figure 2.

4.1 Branch and Bound Algorithm
As discussed above, we need to find a λ ∈ Λ which min-
imises the deployment cost. The most common approach is
B&B (branch and bound algorithm) [19]. Generally, this type
of algorithms require ranking all of the secure deployment
solutions and then choose the cheapest one. However, we

Fig. 2: The Architecture of DoFCF

have proved our problem is a NP-Complete problem, there-
fore it is very difficult to design an algorithm using B&B in
polynomial time as a generic framework.

Although this method gives the optimal solution and
guarantees that the result is the cheapest deployment, it is
not very scalable. In our paper [20], we demonstrated that
when the number of services increased to 12, a version of
B&B that we have implemented, required approximately 15
minutes to generate a solution. Thus, this type of algorithms
are not considered in our framework.

4.2 Genetic Algorithm
A Genetic Algorithm (GA) can efficiently find a solution
to a problem in a large space of candidate solutions [21].
It is a search heuristic that mimics the process of natural
selection to find the optimal solution, yet in our case the
heuristic function will not constantly produce the optimal
(or cheapest) solution. Moreover, the design or method of
application of GA can also have a significant impact on the
quality of the solution [22].

In the following, we extend and adapt GA to our frame-
work to find an acceptable solution in polynomial time.

4.2.1 Security Candidate List
In this paper, we are aiming to find an optimised solu-
tion that meets the security requirements while minimising
the monetary cost. Therefore, this can be considered a bi-
objective optimisation problem. As mentioned in Section 3,
each object of the workflow has its security requirements for
deploying over clouds. Therefore, we firstly list the satisfied
clouds for each object of the workflow in “Candidate List”.

The security requirements for each object can be hard
constraints (noting it must be met), and the valid clouds that
meet these constraints will be maintained in the “Candidate
List”. Consequently, our problem is reduced to a single
objective optimisation which is minimising the monetary
cost of the deployment.

4.2.2 Elitist Prevention and Diversity Maintenance
The basic GA can be adapted to generate a deployment solu-
tion for the problem discussed above. However, to generate
an efficient solution, two primary factors: selection pressure

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603477, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 6

ALGORITHM 1: Elitist Prevention
s–the size of elitist list; elist–list of elitist individuals; pop–list of
all individuals
if elist is empty then

ASCsort (pop) . ASCsort sort the pop as ascending order
elist← from pop[0] to pop[s− 1]
. copy the first s number of solutions to elist

end
for o in O do

for c in C do
if o is securely deployed on c then

SArray[o]← c
else

pop← combine elist and pop
ASCsort (pop)
delete s numbers of pop in tail
elist← from pop[0] to pop[s− 1]

end
end

end

ALGORITHM 2: Diversity Protection
pop–a list of all individuals; size–size of pop;
threshold–predefined threshold of diversity; rate–the current
mutation rate; Minrate–minimum mutation rate;
Maxrate–maximum mutation rate.
. function removeDup removes the duplications
of pop and then copy it to rpop
rpop← removeDup(pop)
sr← size of rpop
d← 1− sr

size
if d > threshold and rate < Maxrate then

increase rate
end
else if rate > Minrate then

decrease rate
end

and population diversity have to be considered carefully.
Moreover, these two factors are inversely related, and so the
GA must be carefully designed to balance the effect on the
population of diversity and selection pressure. In order to
solve this trade-off, we apply the elitism method [23] sum-
marised in Algorithm 1, to increase the selection pressure,
and at the same time control the diversity dynamically.

The purpose of the elitist method is to avoid destroy-
ing superior individuals in crossover and mutation. Thus,
once a solution is confirmed as elitist, it should be directly
inherited by the new generation of the population.

Low diversity of a population usually means that the
search reaches a local extrema, which significantly impacts
the solution. In order to solve this problem, we dynamically
control the mutation rate to influence the generation of the
new chromosome. Algorithm 2 shows how the diversity
protection works.

Firstly, we remove duplications in pop, and count the
total number (sr) of unique solutions. Based on that we can
have density d of the population, which is represented by
the ratio of duplicated solutions. Next, the mutation rate
will be increased if the density is greater than the predefined
diversity threshold and the mutation rate is less than the
maximum mutation rate. If the mutation rate is greater than
the maximum mutation rate, it will be decreased.

Fig. 3: The overview of adaGA

4.2.3 Adapting to the Framework
The adaption of a genetic algorithm has been divided into
five phases: coding, generating a candidate list, initialising
individuals, selection, crossover and mutation. We coded
our deployment solution as a vector [si1, s

j
2....s

k
n], where sji

means that service si is deployed on cloud cj . In order to
reduce the possibility of generating an insecure solution, we
chose the clouds from “Candidate List”, assigned them to
the corresponding objects, and then coded them as above.
However, applying these operations will not avoid produc-
ing a few new coded solutions which may not meet the
security requirements. In such cases, rule SIC is used to
verify the security of those solutions. If insecure code is
detected, the algorithm will generate a new one to replace
it.

After generating the initialised individuals, selection,
crossover and mutation operations are applied on the in-
dividuals to generate new generations. During this process,
Algorithm 1 is used to prevent elitist individuals, and two
methods are applied to perform the selection: one is a fitness
function that can transfer the fitness of a coding into a nu-
meric representation to select superior solutions. For this we
can use equation 4 above. The other is a diversity analysis
that does not impact the selection result, but influences the
crossover and mutation rate.

Crossover then takes part of features from two chromo-
somes and combines them to generate a new chromosome.
The crossover we used is one-point crossover [24].

To enhance the search range, mutation is used. This is
implemented by randomly selecting the chromosomes in
the current generation and changing them to new secure
chromosomes. This operation only happens with very low
probability as described in [25]. The overview of adaGA
with Elitist Prevent and Diversity Protection Algorithms is
shown in Figure 3, the whole processes are repeated until
the termination constraints are researched.
{In this paper we do not consider how to optimise the param-

eter setting due to the limited space, however in [26] and [25]
authors have explored more justification on parameter setting,
such as population size, crossover and mutation probability and
stop criteria.Therefore, in our experiment we just follow their
techniques about how to set the parameters of GA.}

In Section 5 the evaluation of our algorithm will be
presented and compared with HUGA (Hybrid Utility-based
Genetic Algorithm) [27] which was used to optimise the de-
ployment of workflow over a federated cloud, considering
QoS requirements.

4.3 Greedy Algorithm
The greedy algorithm is an iterative algorithm that incre-
mentally finds better solutions. Unlike the Genetic algo-

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603477, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 7

rithms that need to finish executing before returning a solu-
tion, the greedy algorithm generates a valid and improved
solution in each iteration. This is a desirable characteristic
for systems where the parameters change frequently and
the available time for calculating an improved deployment
varies significantly.

In this section, we develop a method for finding a de-
ployment solution as an extension of the NCF (Not Cheapest
First) [20] algorithm to adapt it to our framework. The NCF
is an extended version of greedy algorithm, which uses extra
information for planning a deployment, making short term
sacrifice for long term benefit. NCF, as summarised in Algo-
rithms 3 and 4, pre-deploys each service on the cloud which
minimises the cost and meets the security requirements in
isolation, therefore applying a set of optimisation methods
to refine the pre-deployment.

The algorithm consists of the following three steps. First,
it starts by applying security rules to verify whether security
requirements are met by the original workflow. The work-
flow is valid iff all return values from NRU and NWD are
true. Otherwise, the workflow is invalid, the security check
returns an error and the whole algorithm stops.

Next, we calculate the cost of deploying services on each
valid cloud, using the COD function. COD is calculated by
adding the computing cost of service si to the transmission
cost and storage cost of data sent from all its immediate pre-
decessor services that are not in the same cloud. The initial
deployment of services is based on the smallest COD value
of each service taking into account the security requirements
checked by SIC rule. Function InitialDeployment runs
until each service finds a cloud that can meet the security
requirement and its smallest COD value associated with this
cloud is stored in vector Temp.

COD(sci) =Scost(sci) + Ccost(sci)

+ Ecost(spi)

Finally, the core idea behind function Refinement is to
avoid scheduling services to clouds with huge communica-
tion costs. This function includes four cases which detect the
services of initial deployment that can be refined. Since the
services have been found, these services are assigned to a
cloud which minimises deployment costs, while this cloud
must meet security rule SIC.

4.4 Adaptive Rescheduling Algorithm
In this section, we introduce a heuristic algorithm which
has adapted to the DoFCF framework and dynamically
generated a new solution for handling cloud availability
changes.

The generic adaptive rescheduling algorithm for han-
dling the change of cloud availability works as follows:
when a change in cloud availability is detected, the planner
estimates the monetary cost for each service based on the
available clouds and information (e.g. execution time) of
each service. For our case, the estimation heuristic algorithm
can be applied to generate a new deployment solution for
the services in Selected over available clouds to meet the
security requirements as well as minimising the monetary
cost. Therefore, services are distributed based on the new
solution and then executed. In addition, the execution is

ALGORITHM 3: NCF
W–workflow; S set of service; D–set of dependencies between
related services; C–set of available clouds
if not((WorkflowSecurity(D,S))) then

Invalid Workflow
else

INI=InitialDeployment(D,S,C)
end
function WorkflowSecurity(D,S)
for di,j ∈ D do

if not (NRU(di,j , sj) and NWD(si, di,j)) then
return False

end
end
return True
function InitialDeployment(D,C)
. Topsort returns a topological order of W
for si ∈ topsort(W) do

for cj ∈ C do
if SIC == True then

if Temp[si] > COD(s
cj
i) then

Temp[si]← COD(s
cj
i)

end
end

end
end
return Temp

ALGORITHM 4: NCF (Refinement)
si,max– child service of the service si with maximum COD
value; SETP (si)– a set which includes service si,max and all its
parent services; SETC(si)– a set includes si and all its child
services.
US = topsort(W)
for si ∈ US) do

switch(si)
case1:

∑
sh∈SETP (si)

INI(sh) > MIN(SETP (si)) then
Deploy all services in SETP (si) to the cloud which
minimises the cost and remove(SETP (si)) from US.
case2:

∑
sh∈SETC(si)

INI(sh) > MIN(SETC(si)) then
Deploy all services in SETC(si) to the cloud which
minimises the cost and remove(SETC(si)) from US.
case3: both case1 and case2 are satisfied then
if MIN(SETP (si) > MIN(SETC(si) then

Deploy all services in SETC(si) to the cloud which
minimises the cost remove(SETC(si)) from US.

else
Deploy all services in SETP (si) to the cloud which
minimises the cost remove(SETP (si)) from US.

end
case4: both case1 and case2 are not satisfied then
Deploy si to the cloud which minimises its COD value and
si remove US

end

monitored until the workflow has been fully executed.
Alongside this, a new deployment must be generated in
polynomial time, because the time is accounted for in the
makespan of the workflow execution, which may bring
extra cost. In extreme cases, if it takes considerable time,
the available clouds may change again.

We designed and developed a dynamic rescheduling
algorithm to be adapted to our framework, which is sum-
marised in Algorithms 5 and 6. In this algorithm, we
assume that a workflow W is executed with the deploy-
ment DEP0. The ”Cloud monitor” is used to monitor
the workflow execution status and cloud status. Once the
monitor has detected any changes in cloud status, function
Redeployserviceswill be invoked to find the services which

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603477, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 8

ALGORITHM 5: Dynamic rescheduling
UP– set of unprocessed services; C–set of all available clouds;
DEP0–deployment
set initial UP = all services of W
while W not finished do

update C . C is updated via the communication with
CloudMonitor
update UP . UP is updated via removing the finished
services
if cloud status has changed in C then

Selected=Redeployservices(UP,C)
DEP1 = NCF (Selected, C) if clouds have failed in C
then

. submit current execution information to generate
a new deployment.
if DEP1 is not found then

break;
. not valid deployment

else
submit DEP1

DEP0 ← DEP1
end
. new cloud resources become available

else
. if the new deployment is cheaper than the State
present one
if DEP0.cost > DEP1.cost then

submit DEP1

DEP0 ← DEP1
else

do nothing
end

end
end

end

require redeployment. These actions are summarised in Al-
gorithm 6 as follows. Firstly, the availability of input data for
services in set UP is checked, which means that all inputs
data must be stored in the available clouds. Otherwise, the
elements in set UP will be copied to the Selected set and
added to the services which have been completely executed
but their outputs are not available to Selected. Then, the
function tracks back and repeats the same action until the
available inputs are found. In this case, Selectedwill include
the services in UP as well as the added services. Otherwise,
Selected is equal to UP .

Based on the selected services and the available clouds,
a new deployment DEP1 can be generated by applying a
NCF algorithm. If the cloud change is caused by the failure
of some clouds, DEP1 is used to deploy the services in
Selected directly. Otherwise, if the change is caused by a
new cloud becoming available, then the cost of DEP1 and
DEP0 will be compared (only considering the unfinished
services). If DEP1 is cheaper, the workflow will be sched-
uled to a new deployment solution, otherwise the execution
status and cloud status are monitored until the workflow is
completely executed.

4.5 Time Complexity
The time complexity of each algorithm is formalised as
follows:

HUGA algorithm can be split into three phases in order
to analyse the time complexity: selection, crossover and mu-
tation. Therefore, the time complexity of the selection phase
is O(|P | × |G| × |O|) where P is the size of population and
G is the number of generations. For crossover and mutation

ALGORITHM 6: Redeploy Services
DEP0–the original deployment; Selected-set of services for
redeploying; parents(si)–set of si’s parent services
function Redeployservices(UP ,C)
Selected← UP for si ∈ UP do

FINDNODES(parents(si), C, Selected)
end
return Selected
function Findnodes(parents(si),C,Selected)
if parents(si) == ∅ then

return
else

for sj ∈ parents(si) do
if sj 6∈ UP then

. DEP0(sj) indicates the cloud on which sj was
deployed
if DEP0(sj) ∈ C then
else

add sj to Selected if not included
FINDNODES(parents(sj), C, Selected)

end
end

end
end

phases, we need to operate on the whole chromosome,
so the complexity of both is O(|P | × |G|). Thus the time
complexity of HUGA is O(|P | × |G| × |O|).

Comparing adaGA with HuGA, adaGA contains an ad-
ditional Elitist phase for each generation which slightly
increases the time complexity. In each Elitist phase, the
algorithm observes the chromosomes for each population
and saves the best one. Thus, the complexity of this phase is
O(|P | × |G| × |O|). Therefore, the time complexity of adaGa
is O(|P | × |G| × |O|) as well.

In the NCF algorithm, we have already analysed the
time complexity in paper [20]. It is significantly impact by
the structure of the workflow. if the workflow is linear, the
complexity in the worst case becomes O(|O| × |C|). Con-
versely, for a star-shaped workflow the best case complexity
is O(|D| × |C|).

5 EXPERIMENTS AND EVALUATION

To evaluate the performance of our proposed framework,
we conducted a series of simulation experiments on a num-
ber of real scientific workflow applications. In addition, we
applied our framework to dynamically deploy a scientific
workflow over a set of e-SC instances on multiple clouds.
The experimental setting, and results are presented in the
following subsections.

5.1 Simulation Environment
In this work, the experiments must be repeatable in order
to easily compare and analyse different types of algorithms.
Therefore, to ensure repeatability, we evaluated our frame-
work using CloudSim to investigate the deployment and
scheduling of workflows in federated cloud environments.

5.1.1 Experiment Setup
In the evaluation of our framework, we consider four com-
mon types of workflow applications: CyberShake (earth-
quake risk characterisation), Montage (generation of sky
mosaics), LIGO (detection of gravitational waves) and

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603477, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 9

Workflow Medium Large Very large
CyberShake 30 100 1000
Montage 25 100 1000
LIGO 30 100 1000
Epigenomics 24 100 995

TABLE 2: Number of Tasks of each Workflow for Each of the
Three Scales

Type Location Exec Store In Out
(/hour) (/hour/GB) (/GB) (/GB)

C1 0 0.40 0.10 0 0.02
C2 2 2.20 0.60 0.03 0.01
C3 1 1.23 0.30 0.14 0.07
C4 2 3.70 0.60 0.10 0.05
C5 3 4.50 0.90 0.14 0.05
C6 4 5.5 1.30 0.14 0.13

TABLE 3: Cloud Pricing and Security Levels

Epigenomics (bioinformatics).1 The full characterisation of
these workflow applications can be found in [28], however,
we only consider the execution time, and the input and
output data of each service. Table 2 lists the four workflow
types with different numbers of tasks: medium, large and
very large.

The data privacy information for the workflows is un-
available to be used for assigning the security levels of each
object. Therefore, we randomly generated the security levels
for each object in these workflows.

Six VMs have been created, representing workflow exe-
cution environments, in six different data centres to repre-
sent six types of cloud (with different security levels). Addi-
tionally, each VM can run several services at the same time.
In this paper, we do not consider the performance issue.
Therefore each cloud shares the same configuration, within
1 core, 2 GB RAM and 12GB Disk. Table 3 details number
of clouds with location security levels, computation cost,
storage cost and communications cost, where In and Out
represent the transferring cost of incoming and outgoing
data respectively.

The experiment results, presented below, are the average
values of observing 1000 executions of each algorithm for
each type of workflow. For each of the 1000 repetitions, the
same random number generation seeds for each execution,
which guarantees each algorithm is exactly running over the
same infrastructure.

5.1.2 Monetary Cost Evaluation
As discussed earlier, the total cost includes execution cost,
running time storage cost and communication cost. The
pricing of each cloud listed in Table 3 shows that a more
secure cloud is generally more expensive. Our cost calcula-
tion does not consider additional costs like license and VM
image costs which are charged by some cloud providers.

Figs 4, 5 and 6 depict the normalised cost for the
four types and three size of workflow applications men-
tioned previously using three algorithms: NCF, HUGA, and
adaGA. Each figure represents cost calculations for a specific
workflow size to show the variations in the cost according
to the size.

1. The XML description files of the workflows are available via the
Pegasus project: https://confluence.pegasus.isi.edu/display/pegasus/
WorkflowGenerator

The results show that the algorithm adaGA can always
generate the cheapest deployment solution. For example,
in a case with medium size of “Montage” workflow, the
solution generated by adaGA can save up to 35% compared
to the NCF solution.

The types of workflow significantly impacted the solu-
tions generated by NCF. {Fig 4 shows that the costs of the
deployment solutions generated by the three algorithms are very
close when these algorithm are applied to the workflows of the
LIGO and Epigenomics in Medium size. } However, for the
other two types of workflows, the solutions generated by
NCF are much more costly than adaGA. Furthermore, the
differences are reduced with the increase in workflow size.
This is because NCF is not influenced by the search space
(larger workflow indicates more deployment solutions). In
addition, the search space significantly impacted the results
generated by adaGA and HUGA. However, the Elitist Pre-
vent and Diversity Protection methods were used in adaGA
to avoid the algorithm visiting the less desirable solutions.

5.1.3 Time Complexity Evaluation
In order to evaluate the time complexity of each algorithm,
we measured the time consumed by each to find the op-
timised deployment for the four types of workflow on the
given clouds. According to our evaluation, Fig 8 shows that
algorithm NCF is significantly faster than the other algo-
rithms. Further, adaGA has better performance than HUGA
with medium size workflows. The reason is that the search
will be terminated if no better solution has been found
after repeating the pre-defined generations. Nevertheless,
as the workflow size increases, adaGA consumes more time
than HUGA to find the deployment solution. However, the
deployment solution for a very large size of “CyberShake”
workflow can be generated by adaGA in less than one
minute. Consequently, by considering cost savings, adaGA
can be the better choice.

Fig 8 also indicates that the time complexity of each
algorithm is not only dependent on the number of o (data
and services) and the available clouds, but also on the
structure of the target workflows and the security levels for
each o and cloud.

5.1.4 Cloud Availability Change Evaluation
In this part of the experiments, we simulated the change in
cloud availability by predefining the times when each cloud
was available. To do this we set the start time and termi-
nation time for each cloud before starting the simulation. A
Cloud Monitor was implemented to monitor cloud status, i.e.
detect changes in cloud environments. If a changed status
is detected, a notification is sent to the broker. Thus, the
broker can reschedule the running workflow to the available
clouds based on the cost of the new deployment. This was
evaluated for two types of change: Clouds fail and Availability
of new clouds.

Cloud fail was simulated by setting the terminal time
for the randomly selected clouds as uniformly distributed
between 0 and the makespan. In another words, during
the workflow execution, the number of cloud failures is
randomly between 0 to 6. Furthermore, we performed 1000
simulations, each with different cloud failure settings, and
recorded each execution, including how many clouds fail,

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603477, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 10

Fig. 4: Cost for Medium Size Workflows

Fig. 5: Cost for Large Size Workflows

Fig. 6: Cost for Very Large Size Workflows

Fig. 7: The observed outputs metrics are execution cost nor-
malised with the correspondent value obtained from the NCF
algorithm, noting Others/NCF

the makespan, completion of workflow execution. Con-
sequently, we can have the average of the cost and the
makespan based on the recording.

In this evaluation, we used “Epigenomic ” workflow
with medium, large and very large size. As an example
of the setting for the medium workflow size, we randomly
selected the clouds and set their termination time as uni-
formly distributed over [0,makespan] where the makespan
is the execution time of the selected workflow running as the
deployment generated by NCF. For the clouds that were not
selected, the termination time was set as infinite.

Thus, we can have three types of executions: (1) Success:
in this type, the workflow is completely executed without
rescheduling as the selected clouds finished executing in

the assigned tasks before their terminating time. (2) SBR:
the workflow is successfully executed by rescheduling on
the currently available clouds after a cloud has become
unavailable. (3) Fail: the workflow execution cannot be com-
pleted as no alternative deployments were available after a
cloud failure. This would be because of cloud unavailability
or because the available clouds do not meet the security
requirements.

Table 4 depicts the results of cloud failure. These demon-
strate that the failures occur more frequently with the
increasing sizes of workflow and execution time. We nor-
malise the results by using the ratio of value of the outputs
of the SBR executions with that from the Success executions,
recording SBR/Success. In the case of a very large work-
flow, we only have to pay an extra 2% money and 33% time
to avoid re-running the workflow from the beginning when
a failure happens during the workflow execution.

Workflows Execution status (%) Cost Time

Medium

Success:74 1 1
SBR:16 1.14 2.36
Fail:10 none none

Large
Success: 70 1 1
SBR: 20 1.1 1.15
Fail:10 none none

Very Large
Success: 54 1 1
SBR: 22 1.02 1.33
Fail: 24 none none

TABLE 4: Experiment results for cloud failure

To simulate Availability of new clouds, the workflow has to
be already running over a set of clouds with a deployment.
Thus, we pre-set clouds C6 and C5 as available for the initial
deployment. Furthermore, we randomly selected clouds
and set the start time of them as uniformly distributed over
[0,∞]. We generated 1000 settings and repeated the execu-
tions of the rescheduled workflow to new clouds based on
the monetary cost savings. This resulted in the execution
types shown in Table 5: (1) Success represents no new
clouds becoming available or the new clouds is not offering
cheaper deployment than the currently running one. (2) SBR
denotes the running workflow can be rescheduled to the
new available clouds to save execution costs.

Table 5 shows that the fluctuations of the saving cost are
very significant, depending on the types of the workflow
and available clouds. (In Table 5, we used the same normal-
isation rule as Table 4). Therefore, when new clouds become
available, users should participate in making the decision to
use a new deployment based on the estimated saving cost
and makespan.

Moreover, Table 5 shows that the makespan goes up,
while the monetary cost goes down. The reason is that when
a running task is shifted to a new cloud which is cheaper, the
running task has to be killed, and then be redeployed and
re-executed in the new cloud. If the new cloud is faster than
the current host cloud, the makespan might be reduced.
However, in this work we do not consider the performance
of the clouds and assume that clouds’ performance are the
same.
5.2 Realistic System Evaluation
To evaluate our algorithm in conditions closer to a produc-
tion use, we applied it to schedule scientific workflows in

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603477, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 11

NCF adaGA HUGA

R
a

ti
o

0

2

4

6

8

10

Medium Size Workf ows

CyberShake LIGO Montage Epigenomics

NCF adaGA HUGA

R
a

ti
o

0

10

20

30

Large Size Workf ows

CyberShake LIGO Montage Epigenomics

NCF adaGA HUGA

R
a

ti
o

0

50

100

150

200

Very Large Size Workf ows

CyberShake LIGO Montage Epigenomics

Fig. 8: The observed outputs metrics are execution time normalised with the correspondent value obtained from the NCF
algorithm, noting Others/NCF

Workflows Execution status (%) Cost Time

Medium
Success:92 1 1
SBR:8 0.98 1.46

Large
Success: 88 1 1
SBR: 12 0.90 1.21

Very Large
Success: 70 1 1
SBR: 30 0.99 1.33

TABLE 5: Experiment results for new cloud available

e-Science Central(e-SC). We used the e-SC APIs to create a
Cloud Services Broker that can orchestrate invocations of a
single workflow partition over a number of e-SC instances.

5.2.1 Design and Setup

According to the architecture of the cloud services broker,
shown in Fig 1, our tool consists of three components: Client,
Cloud Services Broker and Federated Cloud.

The Client includes a user interface (UI) which allows
users to create workflows for the e-Science Central work-
flow engine. The description of the created workflow can
then be passed to the Broker. Cloud Services Broker is the core
part of our tool and includes a planner to assign workflow
to federated cloud using the algorithms discussed earlier. e-
SC APIs are used to dispatch tasks to corresponding clouds
and monitor the execution. Failure Generator is used for
simulating failures by turning on or shutting down e-SC
instances. Federated Cloud is a set of e-SC instances which can
interact with the broker and other e-SC instances through e-
SC APIs, and process the tasks which are scheduled.

To evaluate our tool we selected one of the workflows
used in the cloud e-Genome project [29].

The workflow was implemented to process exome se-
quenced by using e-SC deployed on Microsoft Azure cloud.

While in the e-Genome project security aspects are not
a primary concern, guaranteeing that human genomic data
can be securely processed on the cloud is very important.
Therefore, we modelled the security requirements of the
selected e-Genome workflow by assigning security levels as

shown in Tables 6 and 7. Note that the data size transferred
among blocks and the execution time of each block are real
values taken from logs collected by e-SC. Table 6 shows data
sizes in GB, where 0 denotes less than 1 MB of data. The
pricing of Clouds C1, C2 and C3 in Table 3 was applied to
calculate the deployment cost.

To simulate this environment we set up three virtual
machines, each running a single instance of e-SC system.
VM1 was hosted on a personal PC and represented the
private cloud. Two other VMs were hosted in our University
virtualised environment and played the role of public cloud
providers C2 and C3.

Service Name Clearance Location Time(/h)
Sample Name S1 1 0 1
ImportF ile S2 1 0 1.5

Sample V alue Info S3 1 0 3
HG19 S4 1 0 0.1
Filter S5 2 0 10

Exome−Regions S6 1 0 7
Intervalpadding S7 0 0 20
ColumnJoin S8 2 0 0.1

AnnotateSample S9 2 0 5
Export S10 1 0 0.3

TABLE 6: Services representation and security and execution
time

Data Location Size (GB)
S1,8 1 0
S2,5 0 1.1
S3,8 2 0.01
S4,5 0 0.005
S4,7 0 0.005
S5,7 0 6.2
S6,7 0 10.3
S7,9 1 3.6
S8,9 0 0
S9,10 0 0.05

TABLE 7: Data security and size

Our evaluations included three steps: the first step tests
the static deployment algorithm. We kept all three e-SC

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603477, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 12

instances running and applied adaGA to make the deploy-
ment plan. The second step shows how to handle a cloud
failing, by shutting down one of the running e-SC instances
when the workflow was running. The setting of this step
is similar to that of CloudSim. Finally, we tested the avail-
ability of a new cloud by deploying the given workflow on
two clouds, and then turning on a new instance which offers
price advantage. Also, for the purpose of the experiment we
reduced the execution time of the given workflow to about
30 seconds by scaling down the amount of input data shown
in Table 7 by a factor of 6000.

5.2.2 Results and Analysis
Based on the presented experiment setup, all of the three
steps of the deployments are illustrated in Table 8. Precisely,
“Static” refers to first step, and “Cloud fail” and “New
Cloud” correspond to steps two and three respectively.

Static, shown in Table 8, represents the cheapest solution
which was generated using the adaGA algorithm by de-
ploying the workflow over cloud C1, C2 and C3 to meet the
security requirements. Services S1 S7 and S8 were deployed
on C2 and others were allocated on C1.

For the Cloud Fail, we used the deployment of Static
as the initial deployment (INI). However, cloud C1 failed
(shown as blue in Table 8) when service S9 was ready to
execute.

The available clouds are C2 and C3, and the inputs of S9

are stored in C2 (the outputs of S7 and S8), therefore, S9 can
be rescheduled to C3 to continue the execution (indicated in
“Cloud fail”, SBR). If S7 is deployed on C1 with the same
failure, S2, S4, S5, S6 and S7 should be re-executed in C3.
Thus S9 and S10 can be completed in C3.

In the third step, C2 and C3 were available for the
initial deployment (see Table 8 New Cloud, INI). After
the workflow was executed for one second , C1 became
available. S1 and S4 were completely executed on C2 and
C3 respectively, but S2, S6 and S3 were still running. Based
on the status information, a cheaper deployment solution
(see New Cloud SBR in Table 8) became available, which
required termination of S2 and S6, and then re-running
them on C1, as shown in green in Table 8.

Service Static Cloud fail New Cloud
INI SBR INI SBR

S1 C2 C2 C2 C2 C2
S2 C1 C1 C1 C3 C1
S3 C2 C2 C2 C2 C2
S4 C1 C1 C1 C3 C3
S5 C1 C1 C1 C3 C1
S6 C1 C1 C1 C3 C1
S7 C2 C2 C2 C2 C2
S8 C2 C2 C2 C2 C2
S9 C1 C1 C3 C3 C1
S10 C1 C1 C3 C3 C1

TABLE 8: Two deployments

Table 9 shows average values of the cost and makespan
of each deployment by repeating the executions 10 times.
Where SBRF represents the situation of handling C1 fail
(see Table 8 Cloud Fail SBR). Similarly, ININ and SBRN are
the experimental results of new cloud available, where the
makespan of SBRN is approximate one second more than
others (it will take one hour more by using the original

inputs). It is because C1 has to re-execute S2 and S6 from
the beginning.

Deployment Time (seconds) Cost
Static 28.93 64.44
SBRF 28.94 67.23
ININ 28.92 84.62
SBRN 29.90 65.17

TABLE 9: The cost of different deployments

6 RELATED WORK

Cloud computing is a technology for transforming com-
puting as utility model such as water, electricity, gas and
telephony [30]. Therefore, it is unlike grid in that the total
ownership cost of running a workflow is considered to be
a much more important optimisation criterion. Compared
with other computing resources, cloud has unique features:
pay-as-you-go pricing, multiple instance types, elasticity,
without operation of infrastructure and so on. Thus, the
state-of-the-art techniques or mechanisms for workflow
management need to be adapted to the new computing
environments.

On a single cloud, most research efforts are aimed at
improving the performance of workflow systems. In [31],
the authors introduced an auto-scaling method that applied
a fixed sequence of transformations on the workflow in a
heuristic way. However, the sequence of workflow transfor-
mations are not unique, and different transformations have
quite different costs.

The most common approach is concentrated on work-
flow scheduling for running workflow in cloud to meet
performance and cost constraints. The authors in [32] de-
scribed a method which can dynamically provision VMs
for meeting the performance requirements of executing
workflows, and recover the computing resources when they
are over provisioned to reduce the monetary cost. Kllapi et
al. presented a method to deal with the trade-off between
makespan and financial cost for data processing flows [33].
The authors in [11] proposed an algorithm that uses the
idle time of provisioned resources and surplus budget to
replicate tasks so as to increase the likelihood of meeting
deadlines. At the same time, the economic cost of execution
is also minimised by carefully planning the provision of
VMs.

Considering security-driven scheduling, only few
groups of researchers have investigated this topic from
different angles in various contexts. Mace et al. [34] explored
the current information security issue of public cloud and
provided general security solutions to choose what work-
flows or subsets of workflows can be executed in a public
cloud while ensuring the security requirements are met. The
authors in [35] proposed a security-driven scheduling algo-
rithm for DAGs workflow which can achieve high quality of
application security, based on task priority rank to estimate
the security overhead of tasks. In addition, this algorithm
considered improving the performance of workflow execu-
tion.

Cloud federation work is relatively new in the cloud
computing area. Therefore, there is little available literature.
In [36], the private cloud (the user’s own machines) was
also assumed to be a free computing resource, with limited

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603477, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 13

computing power. A public cloud such as Amazon EC2 can
meet users’ performance requirements, but the cost must
also be minimised. A framework, called PANDA (PAreto
Near optimal Deterministic Approximation), was designed
for scheduling workflow across both public and private
clouds with the best trade-off between performance; hence
Pareto-optimality. Fard et al in [37] introduced a pricing
model and truthful mechanism for scheduling workflow to
different clouds, considering the monetary cost and comple-
tion time. In order to solve the trade-off between cost and
performance, a Pareto-optimal solution is adapted in the
scheduling algorithm. However, none of them considered
security and cloud availability change.

SABA (Security-Aware and Budget-Aware workflow
scheduling strategy) [9] provided a static workflow deploy-
ment solution over multi-clouds for optimising security,
makespan and monetary cost. The optimisation in this work
was based on a heuristic list which ranks the priority of
each task of the workflow through a normalisation function.
Jrad et al. [27] proposed a cloud broker to schedule larger
scientific workflows over federated clouds to match the QoS
and cost requirements. Since these two efforts are static
scheduling algorithms, they are unable to manage the cloud
availability change.

Regarding exception handling, the data flow-based ap-
proach in [38] was introduced to support hierarchical ex-
ception propagation and user-defined exception. This work
considered the exceptions caused by workflow itself, while
we focused on solving computing resource change prob-
lems.

Furthermore, in our previous work [10], we proposed
a dynamic method to handle cloud failure issues, while
the workflow is running on a federated cloud. However,
this method can not handle large scale workflow and also
did not consider the situation that a new cloud becomes
available.

7 CONCLUSION AND FUTURE WORK

In this paper, we have presented the DoFCF framework to
improve the security of the workflow applications while
they are distributed on a federated cloud. A cost model
has been designed to optimise the cost of each deploy-
ment option. Furthermore, we developed a novel dynamic
rescheduling method and added it to handle the change
of cloud resources availability in our framework. This will
support execution resuming when clouds fail and save the
cost when new clouds become available. Additionally, we
designed and implemented two algorithms for static de-
ployment planning, i.e., NCF and adaGA. These algorithms
have been applied to different types of workflows, then their
performance was discussed and analysed.

We evaluated the performance of our developed frame-
work by conducting a series of experiments on various
types of real scientific workflows. The experiments have
been performed using a simulation environment as well as
real workflow management system. The results show that
our framework is suitable for deploying universal scientific
workflows over federated clouds.

As future work, we will develop a matrix to measure the
security level of cloud datacenter. The existing studies only

consider the risks of cloud computing, but none of them
provides a quantitative measurement. This measurement
can be a strong support for this paper by providing the
realistic security level of each cloud datacenter.

ACKNOWLEDGMENTS

This work was supported by the RCUK Digital Economy
Theme [grant number EP/G066019/1 - SIDE: Social In-
clusion through the Digital Economy], and the European
Communitys Seventh Framework Programme (FP7/2007-
2013) under grant agreement n. 600854 SmartSociety Hy-
brid and Diversity-Aware Collective Adaptive Systems:
Where people meet machines to build smarter societies
(http://www.smart-society-project.eu/).

REFERENCES

[1] G. Juve and E. Deelman, “Scientific workflows in the cloud,” in
Grids, Clouds and Virtualization. Springer, 2011, pp. 71–91.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwin-
ski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia.
(2009) Above the clouds: A berkeley view of cloud computing.

[3] F. Zhang and M. Sakr, “Performance variations in resource scaling
for mapreduce applications on private and public clouds,” in
Cloud Computing (CLOUD), 2014 IEEE 7th International Conference
on, June 2014, pp. 456–465.

[4] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource
provisioning cost in cloud computing,” Services Computing, IEEE
Transactions on, vol. 5, no. 2, pp. 164–177, April 2012.

[5] Z. Zheng, H. Ma, M. Lyu, and I. King, “Collaborative web service
qos prediction via neighborhood integrated matrix factorization,”
Services Computing, IEEE Transactions on, vol. 6, no. 3, pp. 289–299,
July 2013.

[6] K. Finley. Godaddy outage takes down millions of sites,
anonymous member claims responsibility, year = 2012, url
= http://techcrunch.com/2012/09/10/godaddy-outage-takes-
down-millions- of-sites/, urldate = 2012.

[7] (2011) Summary of the amazon ec2 and amazon rds
service disruption in the us east region. [Online]. Available:
http://aws.amazon.com/message/65648/

[8] R. Buyya, R. Ranjan, and R. N. Calheiros, “Intercloud: Utility-
oriented federation of cloud computing environments for scaling
of application services,” in Proceedings of the 10th International
Conference on Algorithms and Architectures for Parallel Processing -
Volume Part I, ser. ICA3PP’10. Berlin, Heidelberg: Springer-Verlag,
2010, pp. 13–31.

[9] L. Zeng, B. Veeravalli, and X. Li, “Saba: A security-aware and
budget-aware workflow scheduling strategy in clouds,” Journal
of Parallel and Distributed Computing, vol. 75, no. 0, pp. 141 – 151,
2015.

[10] Z. Wen and P. Watson, “Dynamic exception handling for parti-
tioned workflow on federated clouds,” in Cloud Computing Technol-
ogy and Science (CloudCom), 2013 IEEE 5th International Conference
on, vol. 1, Dec 2013, pp. 198–205.

[11] R. Calheiros and R. Buyya, “Meeting deadlines of scientific work-
flows in public clouds with tasks replication,” Parallel and Dis-
tributed Systems, IEEE Transactions on, vol. 25, no. 7, pp. 1787–1796,
July 2014.

[12] H. Hiden, S. Woodman, P. Watson, and J. Cala, “Developing cloud
applications using the e-science central platform,” Royal Society
of London. Philosophical Transactions A. Mathematical, Physical and
Engineering Sciences, vol. 371, p. 20120085, 2013.

[13] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows
and e-science: An overview of workflow system features and
capabilities,” Future Generation Computer Systems, vol. 25, no. 5,
pp. 528–540, 2009.

[14] “Jclouds, howpublished = https://jclouds.apache.org, note = Ac-
cessed: 2015-09-24.”

[15] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1990.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603477, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 14

[16] P. Watson, “A multi-level security model for partitioning work-
flows over federated clouds,” in Cloud Computing Technology and
Science (CloudCom), 2011 IEEE Third International Conference on,
2011, pp. 180–188.

[17] D. E. Bell and L. J. LaPadula, “Secure Computer Systems: Mathe-
matical Foundations,” MITRE Corporation, Tech. Rep., Mar. 1973.

[18] C.E.Landwehr, “Formal models for computer security,” ACM Com-
puting Surveys, vol. 13, 1981.

[19] G. Reinelt, The Traveling Salesman: Computational Solutions for TSP
Applications. Berlin, Heidelberg: Springer-Verlag, 1994.

[20] Z. Wen, J. Cała, and P. Watson, “A scalable method for partitioning
workflows with security requirements over federated clouds,” in
Cloud Computing Technology and Science (CloudCom), 2014 IEEE 6th
International Conference on, Dec 2014.

[21] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge,
MA, USA: MIT Press, 1998.

[22] D. Gupta and S. Ghafir, “An overview of methods maintaining
diversity in genetic algorithms,” International Journal of Emerging
Technology and Advanced Engineering, vol. 2, no. 5, pp. 56–60, 2012.

[23] D. Bhandari, C. Murthy, and S. K. Pal, “Genetic algorithm with
elitist model and its convergence,” International Journal of Pattern
Recognition and Artificial Intelligence, vol. 10, no. 06, pp. 731–747,
1996.

[24] R. Poli and W. B. Langdon, “Genetic programming with one-point
crossover and point mutation,” in Soft Computing in Engineering
Design and Manufacturing. Springer-Verlag, 1997, pp. 180–189.

[25] D. E. Golberg, “Genetic algorithms in search, optimization, and
machine learning,” Addion wesley, vol. 1989, p. 102, 1989.

[26] W. Sun, “Population size modeling for ga in time-critical task
scheduling,” International Journal of Foundations of Computer Science,
vol. 22, no. 03, pp. 603–620, 2011.

[27] F. Jrad, J. Tao, I. Brandic, and A. Streit, “{SLA} enactment for large-
scale healthcare workflows on multi-cloud,” Future Generation
Computer Systems, vol. 4344, no. 0, pp. 135 – 148, 2015.

[28] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and
K. Vahi, “Characterizing and profiling scientific workflows,” Fu-
ture Generation Computer Systems, vol. 29, no. 3, pp. 682 – 692,
2013, special Section: Recent Developments in High Performance
Computing and Security.

[29] J. Cała, Y. X. Xu, E. A. Wijaya, and P. Missier, “From scripted HPC-
based NGS pipelines to workflows on the cloud,” in Procs. C4Bio
workshop, co-located with the 2014 CCGrid conference. Chicago, IL:
IEEE, 2014.

[30] D. Williams, H. Jamjoom, and H. Weatherspoon, “Plug into the
supercloud,” Internet Computing, IEEE, vol. 17, no. 2, pp. 28–34,
March 2013.

[31] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and
meet application deadlines in cloud workflows,” in High Per-
formance Computing, Networking, Storage and Analysis (SC), 2011
International Conference for, Nov 2011, pp. 1–12.

[32] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost- and
deadline-constrained provisioning for scientific workflow ensem-
bles in iaas clouds,” in Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’12. Los Alamitos, CA, USA: IEEE Computer Society Press,
2012, pp. 22:1–22:11.

[33] H. Kllapi, E. Sitaridi, M. M. Tsangaris, and Y. Ioannidis, “Sched-
ule optimization for data processing flows on the cloud,” in
Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’11. New York, NY, USA: ACM,
2011, pp. 289–300.

[34] J. Mace, A. van Moorsel, and P. Watson, “The case for dynamic
security solutions in public cloud workflow deployments,” in De-
pendable Systems and Networks Workshops (DSN-W), 2011 IEEE/IFIP
41st International Conference on, June 2011, pp. 111–116.

[35] T. Xiaoyong, K. Li, Z. Zeng, and B. Veeravalli, “A novel security-
driven scheduling algorithm for precedence-constrained tasks in
heterogeneous distributed systems,” IEEE Trans. Comput., vol. 60,
no. 7, pp. 1017–1029, Jul. 2011.

[36] M. HoseinyFarahabady, Y. C. Lee, and A. Zomaya, “Pareto-
optimal cloud bursting,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 25, no. 10, pp. 2670–2682, Oct 2014.

[37] H. Fard, R. Prodan, and T. Fahringer, “A truthful dynamic
workflow scheduling mechanism for commercial multicloud en-
vironments,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 24, no. 6, pp. 1203–1212, June 2013.

[38] X. Fei and S. Lu, “A dataflow-based scientific workflow composi-
tion framework,” Services Computing, IEEE Transactions on, vol. 5,
no. 1, pp. 45–58, Jan 2012.

Zhenyu Wen received the B.E. degree in com-
puter science and technology from Zhejiang
Gongshang University, Zhejiang, China, in 2009,
and the M.S and Ph.D. degree in computer
science from Newcastle University, Newcastle
Upon Tyne, U.K., in 2011 and 2015. He is
currently a PostDoctoral Researcher with the
School of Informatics, the University of Edin-
burgh, Edinburgh, U.K. He has authored a num-
ber of research papers in the field of cloud com-
puting. His current research interests include

Multi-objects optimisation, Crowdsources, Artificial Intelligent and Cloud
computing.

Rawaa Qasha is a 3rd year PhD student at the
school of Computing Science, Newcastle Univer-
sity, UK. I received the master degree from Com-
puter Sciences department, University of Mosul,
in 2000. Prior to start PhD career I was a lecturer
(assistant professor) in computer science at Uni-
versity of Mosul, Iraq. My research interests con-
centrate on Cloud computing, distributed sys-
tem, workflow deployment, E-Science system.

Zequn Li received the B.E degree in Computer
Science from Shandong University of Finance
and Economics in Shandong, China and M.S de-
gree in Advanced Computer Science from New-
castle University in Newcastle upon Tyne, United
Kingdom. Currently he is a PhD student in the
school of Mathematics and Information Science,
Northumbria University, United Kingdom. His re-
search interests include Machine Learning and
Distributed Systems.

Rajiv Ranjan Dr. Rajiv Ranjan is a Associate
Professor (Reader) in Computing Science at
Newcastle University, United Kingdom. At New-
castle University he is working on projects re-
lated to emerging areas in parallel and dis-
tributed systems (Cloud Computing, Internet of
Things, and Big Data). Previously, he was Julius
Fellow (2013-2015), Senior Research Scientist
(equivalent to Senior Lecturer in Australian/UK
University Grading System) and Project Leader
in the Digital Productivity and Services Flag-

ship of Commonwealth Scientific and Industrial Research Organization
(CSIRO Australian Governments Premier Research Agency). Prior to
that he was a Senior Research Associate (Lecturer level B) in the
School of Computer Science and Engineering, University of New South
Wales (UNSW). Dr. Ranjan has a PhD (2009) in Computer Science
and Software Engineering from the University of Melbourne. Dr. Ranjan
is broadly interested in the emerging areas of distributed systems.
The main goal of his current research is to advance the fundamental
understanding and state of the art of provisioning and delivery of appli-
cation services (web, big data analytics, content delivery networks, and
scientific workflows) in large, heterogeneous, uncertain, and emerging
distributed systems.

Paul Watson is Professor of Computer Sci-
ence, Director of the Informatics Research Insti-
tute, and Director of the North East Regional e-
Science Centre. He also directs the UKRC Digi-
tal Economy Hub on Inclusion through the Digital
Economy. Prior to moving to Newcastle Univer-
sity, Paul worked at ICL as a system designer
of the Goldrush MegaServer parallel database
server. He previously gained a Ph.D. and be-
came a Lecturer at Manchester University. His
research interests are in scalable information

management including data-intensive e-Science, dynamic service de-
ployment and e-Science applications. In total, Paul Watson has over
forty refereed publications, and three patents.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603477, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 15

Alexander Romanovsky is a Professor with
the School of Computing Science (Newcastle
University, UK) and the leader of the School’s
Secure and Resilient Systems Group. He co-
ordinates the EPSRC platform grant on Trust-
worthy Ambient Systems and the RSSB Safe-
Cap+ grant on railway integrated optimum ca-
pacity, safety and energy strategies. He is a co-
investigator of the EPSRC PRiME programme
grant on Power-efficient, Reliable, Many-core
Embedded systems. Before this, he coordinated

the major EU FP7 DEPLOY IP that developed the Rodin tooling environ-
ment for formal stepwise design of complex dependable systems using
Event-B. Rodin is now widely used by companies in Europe, China,
Japan, USA, Canada and Brazil. Prof Romanovsky’s main research
areas are system dependability, fault tolerance, safety, modelling and
verification.

