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ABSTRACT 30 

Bacteriophages present huge potential both as a resource for developing novel tools 31 

for bacterial diagnostics and for use in phage therapy. This is also valid for 32 

bacteriophages specific for Yersinia enterocolitica. To increase our knowledge on Y. 33 

enterocolitica –specific phages we characterized two novel yersiniophages. The 34 

genomes of the bacteriophages vB_YenM_TG1 (TG1) and vB_YenM_ϕR1-RT (ϕR1-35 

RT), isolated from pig manure in Canada and from sewage in Finland, consist of 36 

linear double-stranded DNA of 162,101 and 168,809 bp respectively. Their genomes 37 

encode 262 putative coding sequences and 4 tRNAs genes, and share 91% overall 38 

nucleotide identity. Based on phylogenetic analyses of their whole genome sequences 39 

and large terminase subunit protein sequences, a genus named Tg1virus within the 40 

family Myoviridae is proposed with TG1 and ϕR1-RT as member species. These 41 

bacteriophages exhibit a host range restricted to Y. enterocolitica, and display lytic 42 

activity against the epidemiologically significant serotypes O:3, O:5,27, and O:9 at 43 

and below 25°C. Adsorption analyses of LPS and OmpF mutants demonstrate that 44 

these phages use both the LPS inner core heptosyl residues and the outer membrane 45 

protein OmpF as phage receptors. Based on RNA-sequencing and quantitative 46 

proteomics we also demonstrate the temperature dependent infection is due to strong 47 

repression of OmpF at 37°C. In addition, ϕR1-RT was shown to be able to enter into a 48 

pseudolysogenic state. All together, this work provides further insight into phage-host 49 

cell interactions by highlighting the importance of understanding underlying factors 50 

which may affect the abundance of phage host receptors on the cell surface.  51 

 52 

IMPORTANCE 53 
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Only a small number of bacteriophages infecting Y. enterocolitica, the predominant 54 

causative agent of yersiniosis, have been previously described. Here, two newly 55 

isolated Y. enterocolitica phages were studied in detail with the aim of elucidating the 56 

host cell receptors required for infection. Our research further expands the repertoire 57 

of phages available for consideration as potential antimicrobial agents or as diagnostic 58 

tools for this important bacterial pathogen.   59 
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INTRODUCTION 60 

Yersinia enterocolitica, a facultative anaerobic, Gram-negative, non-sporulating, short 61 

bacillus isolated frequently from soil, water, animals, and foods, is an important 62 

zoonotic pathogen leading to human and animal enteric infection (1). The main 63 

animal reservoir for Y. enterocolitica is pigs, and pork derived products are thought to 64 

be the main source of human infections in addition to drinking of contaminated water 65 

and blood-transfusions (1, 2). Symptoms of yersiniosis may include diarrhea, terminal 66 

ileitis, mesenteric lymphadenitis, and septicemia (3). Among the species within the 67 

genus Yersinia, Y. enterocolitica is highly heterogeneous and is grouped into six 68 

phylogroups (4). The widely used bioserotype groups form the basis of the 69 

phylogroups such that phylogroup 1 contains the biotype 1A strains, phylogroup 2 the 70 

highly pathogenic biotype 1B strains, phylogroup 3 the bioserotype 4/O:3 strains, 71 

phylogroup 4 bioserotype 3/O:9 strains, phylogroup 5 bioserotype 2/O:5,27 strains 72 

and phylogroup 6 the serotype O:2,3 strains rarely isolated from hares  (4–7). Y. 73 

enterocolitica is also represented by over 60 serotypes that are determined by the 74 

variability of O-antigens present in the outer cell membrane (8, 9). The predominant 75 

pathogenic strains associated with yersiniosis belong to bioserotypes 1B/O:8, 76 

2/O:5,27, 2/O:9, 3/O:3, and 4/O:3, with the last being the most common in Europe, 77 

Japan, Canada, and the United States (1, 2). From 2010–2012, 98% of all reported 78 

yersiniosis infections worldwide were acquired in Europe, and most (97%) were 79 

caused by Y. enterocolitica, with the remainder caused by Y. pseudotuberculosis (10).  80 

In 2015, the most commonly reported Y. enterocolitica serotype in the European 81 

Union was O:3 (89%), followed by serotypes O:9 (7%), O:5,27 (2%) and O:8 (2%) 82 

(10).  83 
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Although several bacteriophages infecting Y. enterocolitica have been described, few 84 

have been studied in detail providing reliable information on morphology, host range, 85 

and or receptor specificity. To date, bacteriophages ϕYeO3-12(11–13) and 86 

vB_YenP_AP5 (14) with specificity for Y. enterocolitica O:3, phage PY54 exhibiting 87 

a host range restricted to Y. enterocolitica O:5 and O:5,27 (15), Yersinia phage ϕR1-88 

37 with a broad host range within the species Y. enterocolitica (16, 17) and Yersinia 89 

phage PY-100  (18) exhibiting a broader host range restricted to the genus Yersinia, 90 

have been described. These bacteriophages use different parts of the Y. enterocolitica 91 

lipopolysaccharide (LPS) as receptors (19). Analysis of the host-range combined with 92 

genetic and structural data have shown that the receptor for ϕR1-37 is the Y. 93 

enterocolitica O:3 LPS outer core (OC) hexasaccharide (16). The host receptor for 94 

phages ϕYeO3-12 and vB_YenP_AP5 has been determined to be the LPS O-antigen 95 

of serotype O:3 consisting of the sugar 6-deoxy-L-altropyranose (12, 14, 20). Given 96 

the interest in bacteriophages because of their potential use as therapeutic, diagnostic, 97 

and bio-control agents, the aim of this study was to characterize two newly isolated 98 

bacteriophages that are active against several epidemiologically significant Y. 99 

enterocolitica serotypes. In this study, the genome characterization, morphology, host 100 

range, host cell receptor specificity, and taxonomic position of the myovirus phages 101 

vB_YenM_TG1 (hereafter TG1) and vB_YenM_ϕR1-RT (hereafter ϕR1-RT) are 102 

described.  103 

 104 

MATERIALS AND METHODS 105 

Bacterial strains, phage isolation, and growth conditions. Bacterial strains, 106 

bacteriophages and plasmids are listed in Table 1. Bacteriophage ϕR1-RT was 107 

isolated from the incoming sewage of the Turku (Finland) city sewage treatment 108 
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plant, as described for other viruses (19) whereas bacteriophage TG1 was isolated 109 

from pig manure collected from a rural farm in Ontario, Canada as described 110 

previously  for the isolation of Y. enterocolitica  phages for phagetyping (21). For 111 

DNA extraction and morphological studies, ϕR1-RT was propagated on Y. 112 

enterocolitica strain YeO3-R1 (22) and TG1 on Y. enterocolitica strain YeO3-c (23). 113 

 114 

Electron Microscopy. The preparation of the phage particles for transmission 115 

electron microscopy (TEM) was done as described (17, 24). Details are presented in 116 

Supplementary Materials and Methods.  117 

 118 

Host Range. The lytic activity of ϕR1-RT and TG1 was tested on 109 and 160 strains 119 

(Table S1), respectively, belonging to 13 Yersinia species, as determined by standard 120 

spot tests (24). Briefly, 10 µl from a phage suspension containing approximately 108 121 

PFU were spotted in the middle of a lawn of bacteria incubating for 18-24 h. Each 122 

strain was tested three times at 25°C and at 37 °C. Bacterial strains were considered 123 

sensitive to the phage if the degree of lysis was observed as a complete clearing, 124 

clearing throughout but with a faint hazy background, substantial turbidity throughout 125 

the cleared zone, or a few individual plaques (24). Bacterial strains were considered 126 

resistant if there was no effect of the phage on bacterial growth. 127 

 128 

Genome sequencing and assembly. Details of the determination of the genomic 129 

sequences of phages ϕR1-RT and TG1 as well as the draft genomes of Y. 130 

enterocolitica strains YeO3-ϕR1-RT-R2, –R7 and –R9 are presented in 131 

Supplementary Materials and Methods.  132 

 133 
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Bioinformatics. Detailed description of the bioinformatics tools used is given in 134 

Supplementary Materials and Methods. 135 

 136 

Complementation of the Y. enterocolitica O:3 OmpF mutant. The full ORF of 137 

ompF gene plus the upstream promoter region of YeO3-c was cloned as a 2 kb PCR 138 

fragment that was amplified with Phusion DNA polymerase using primer pair OmpC-139 

F2 and OmpC-R2 (Table S2) into plasmids pTM100 and pSW25T to obtain plasmids 140 

pTM100_OmpF and pSW25T_OmpF, respectively (Table 1). Briefly, the PCR 141 

fragments were digested with MfeI and ligated with EcoRI digested, SAP-treated 142 

pTM100 or pSW25T. The constructed plasmids were mobilized to the OmpF mutant 143 

strain YeO3-c-R1-Cat17 by diparental conjugation as described earlier (25). 144 

 145 

Phage adsorption assay. To identify the phage cell host receptors, a variety of Y. 146 

enterocolitica O:3 mutants (Table 1) were utilized in phage adsorption experiments. 147 

Approximately 5x103 PFU of phage ϕR1-RT or phage TG1 in 100 μl was mixed with 148 

a 400-μl sample of bacteria (A600 ~1.2). The suspension was incubated at RT for 5 149 

min and centrifuged at 16,000 g for 3 min, and the phage titer remaining in the 150 

supernatant, i.e., the residual PFU percentage, was determined. LB was used as a non-151 

adsorbing control in each assay, and the phage titer in the control supernatant was set 152 

to 100%. Each assay was performed in duplicate and repeated at least three times. 153 

 154 

Total RNA extraction and RNA sequencing. Detailed description of the methods is 155 

presented in Supplementary information Materials and Methods. The RNA sequence 156 

data has been deposited to Gene Expression Omnibus (accession number GSE66516).  157 

 158 



 
8 

Quantitative proteomics. Detailed description of the methods is presented in 159 

Supplementary information Materials and Methods.  160 

 161 

Transduction assay. Y. enterocolitica O:3 strain YeO3-hfq::Km with hfq gene 162 

knocked-out with a kanamycin resistance cassette (Table 1) was used as a donor and 163 

transducing particles were produced by infecting this strain with phage ϕR1-RT using 164 

the soft agar overlay method. Following overnight incubation, phages were eluted 165 

from the soft agar using SM buffer. The transducing lysates were centrifuged and 166 

treated with chloroform to prevent contamination with the donor strain. The titer of 167 

the obtained transducing stock was 6.62 x 109 PFU/mL. The Y. enterocolitica strain 168 

6471/76 was used as the recipient. For the transduction of the recipient strain, 10 one 169 

mL aliquots of log-phase bacterial cultures containing 109 CFU/mL cells were mixed 170 

with 100 μl of 10-2 diluted transducing phage stock resulting at MOI of 0.006. After 171 

15 min the bacterial cells were centrifuged and washed with LB and centrifuging 172 

them down removed the unabsorbed phages. The final cell pellet was resuspended in 173 

100 μl LB, and the cells were allowed to recover during 30 min incubation with 174 

vigorous shaking. Subsequently, the bacterial cultures were plated on urea agar plates 175 

(0.1% peptone, 0.1% glucose, 0.5% NaCl, 0.2% KH2PO4, 0.00012% phenol red, 2% 176 

urea, 1.5% agar) supplemented with kanamycin (200 μg/mL) and incubated for 48h. 177 

The kanamycin resistant and urease negative colonies were considered as transduced. 178 

The transducing stock was also plated to ensure no contamination with donor strain.  179 

 180 

Growth curves. Overnight bacterial cultures were diluted 1:10 in fresh LB medium 181 

and 180 μl aliquots were distributed into honeycomb plate wells (Growth Curves Ab 182 

Ltd) where they were mixed with 20 μl aliquots of different ϕR1-RT phage stock 183 
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dilutions (100 – 10-4). A negative control was obtained by mixing 20 μl of phage stock 184 

with 180 μl of medium, whereas positive control consisted of 180 μl of bacterial 185 

culture and 20 μl of medium. The growth experiments were carried out at 4°C, 10°C, 186 

16°C, 22°C, and 37°C using the Bioscreen C incubator (Growth Curves Ab Ltd) with 187 

continuous shaking. The OD600 of the cultures was measured at selected time 188 

intervals. The averages were calculated from values obtained for the bacteria grown in 189 

5 parallel wells. 190 

 191 

Phage resistant mutant isolation. A culture of wild type Y. enterocolitica strain 192 

6471/76 was used to flood LB agar plates (LA). After the excess fluid was removed 193 

the plates were allowed to dry before two 100 μl aliquots of the ϕR1-RT stock were 194 

pipetted on the lawn of cells. The plates were incubated at 22°C and inspected daily 195 

for phage resistant colonies growing within the lysis zones. After three days several 196 

colonies appeared and among them three confirmed phage resistant derivatives were 197 

isolated. The strains were named YeO3-ϕR1-RT-R2, YeO3-ϕR1-RT-R7, and YeO3-198 

ϕR1-RT-R9. 199 

 200 

CatMu-library screening. The CatMu-transposon insertion library in Y. 201 

enterocolitica strain YeO3-R1 has been described elsewhere (26, 27). In the present 202 

work, a library representing 16,000 independent insertion mutants was screened. The 203 

library was grown in LA supplemented with 100 μg/ml chloramphenicol (LA-Clm) 204 

until OD600 = ~0.5. Phage ϕR1-RT was added to 1 mL of the library culture at MOI 205 

~10, fresh LB added to 5 mL and the culture was incubated at 22°C for 2h during 206 

which time all phage-sensitive bacteria were expected to be infected and lysed. The 207 

surviving bacteria were pelleted by centrifugation, washed twice with 1 mL LB to 208 
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remove remaining phages and after resuspending into 100 μl of LB plated on four 209 

LA-Clm plates that were incubated at 22°C. The ClmR colonies were re-streaked on 210 

LA-Clm plates for further study.  211 

 212 

Arbitrary PCR. Detailed description of the method is presented in Supplementary 213 

information Materials and Methods.  214 

 215 

Cloning, expression and purification of the phage long tail fiber host receptor 216 

binding protein. The phage TG1 distal long tail fiber (LTF) protein Gp37 was co-217 

expressed with phage encoded chaperones Gp57A and Gp38 to synthesize the native 218 

form of the putative receptor binding protein (RBP) as describer previously for the 219 

LTF of phage T4 (28). The Gp37 encoding gene was first cloned into the multiple 220 

cloning site (MCS) 1 of pCDF Duet-1 (conferring streptomycin resistance), producing 221 

pCDF Duet-1 Gp37. Then, the Gp38 encoding gene was cloned into the MCS 2 of 222 

pCDF Duet-1 Gp37, yielding pCDF Duet-1 Gp37-Gp38. Plasmid pET21a(+) 223 

conferring ampicillin resistance was used to clone the chaperone Gp57A encoding 224 

gene yielding plasmid pET21a(+) Gp57A. The plasmid constructs carry under the 225 

control of promoter T7, high level inducible gene expression with a His6 fusion tag at 226 

the N-terminus for purification by chelating affinity chromatography (Fig. S1). The 227 

genes encoding Gp38 and Gp57A however, were expressed without a purification tag. 228 

PCR, restriction analysis, and DNA sequencing were used to verify the structure of 229 

the plasmids. For expression, E. coli BL21 Star™ (DE3) PLysS cells (Invitrogen) 230 

were transformed with pCDF-Duet-1 Gp37 or pCDF-Duet-1 Gp37-Gp38 and the 231 

same plasmids were also co-transformed with pET21a(+) Gp57A. Plasmid bearing E. 232 

coli were grown aerobically at 37°C to an OD600 = ~0.6 with shaking at 200 rpm in 233 
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250 mL of 2xYT media (16 g/L tryptone, 10 g/L yeast extract, 5.0 g/L NaCl, 0.22 µm 234 

filter sterilized, pH 6.5-7.5) supplemented with 50 μg/mL of ampicillin and or 50 235 

μg/mL streptomycin as required. Protein expression was induced by the addition of 1 236 

mM isopropyl-d-1-thiogalactopyranoside (IPTG) (Sigma-Aldrich, USA) incubating 237 

for 24h at 30°C with shaking at 200 rpm. Cells were harvested by centrifugation at 238 

10,000 g for 15 min at 4°C and the pellets were resuspended in 25 mL of buffer A (50 239 

mM sodium phosphate, 300 mM NaCl, 10mM imidazole, pH 8.0) supplemented with 240 

a protease inhibitor cocktail (Roche). Cells were disrupted by 10 rounds of 15 s of 241 

sonication using a Virsonic Digital 475 ultrasonicator (VirTis, NY, USA) alternating 242 

with incubation on ice. Insoluble debris was removed by centrifugation at 18,000 g 243 

for 30 min at 4°C and the soluble fraction was filtered through a 0.22 μm pore size 244 

filter (EMD Millipore, USA). The protein was purified by immobilized metal ion 245 

affinity chromatography using a nickel-nitrilotriacetic acid (Ni-NTA) agarose column 246 

(Novex, Invitrogen) according to the manufacturer’s protocol. Captured proteins were 247 

eluted from the column using buffer B (50 mM sodium phosphate, 300 mM NaCl, 248 

500mM imidazole, pH 8.0) and concentrated using Amicon-Pro centrifuge filters 249 

(Millipore) with a 10,000 Da molecular mass exclusion limit incorporating three 250 

washes with 10 mM Tris–HCl of pH 8.5. Protein concentration was estimated by 251 

measuring sample absorbance at 280 and 260 nm using a Nanodrop 2000 UV-vis 252 

Spectrophotometer (Thermo Scientific, USA) and Qubit® Protein Assay Kit using a 253 

Qubit® 1.0 fluorometer (Life Technologies) as per the manufacturer instructions. 254 

Protein analysis was performed by Sodium dodecyl sulfate-polyacrylamide gel 255 

electrophoresis (SDS-PAGE) (29) using Mini-Protean®TGX Stain-Free Precast Gels 256 

(Bio-Rad Laboratories, USA) and Coomassie blue staining. Precision Plus Protein™ 257 

Unstained Standard (Bio-Rad Laboratories, Inc., Hercules, CA, USA) was used as a 258 



 
12 

size marker for the molecular analysis of proteins. Analysis of protein bands and 259 

molecular weight (MW) estimates was performed using a Molecular Imager® Gel 260 

Doc™ XR+ System (Bio-Rad Laboratories, Inc., Hercules, CA, USA) and Quantity 261 

One® software (Bio-Rad Laboratories, Inc., Hercules, CA, USA). Accurate MW 262 

determinations and Peptide mass fingerprinting analysis was performed via mass 263 

spectrometry (MS) at the Mass Spectrometry Facility, Advanced Analysis Centre of 264 

the University of Guelph (Ontario, Canada).   265 

 266 

Cell decoration with bacteriophage host recognition binding proteins. Confocal 267 

laser immunofluorescent microscopy was used to visualize the binding of the phage 268 

TG1 LTF protein Gp37 to Y. enterocolitica following methodology described by 269 

others (30). Yersinia strains grown in TSB at 25°C or 37°C for 24 hours were 270 

resuspended in wash buffer (50 mM Tris-HCl, pH 7.5) and 10 μl were spotted onto 271 

clean glass slides. After air-drying, the cells were fixed in a solution of 5 % 272 

gluteraldehyde for 10 min. and blocked with blocking buffer (5% BSA in 50 mM 273 

Tris-HCl buffer, pH 7.5) for 10 min. The slides were then incubated for 1 hour in a 274 

solution containing of 10 μg/mL of phage TG1 Gp37 (prepared in blocking buffer) 275 

followed by washing three times for 5 minutes in wash buffer. The slides were then 276 

incubated for 1 hour in anti-His6 tag (HIS.H8) mouse monoclonal antibody solution 277 

prepared in blocking buffer (1:1000 dilution) and washed three times for 5 minutes 278 

with wash buffer. In a dark room, the slides were then incubated for 1 hour in goat 279 

anti-mouse IgG DyLight 488 polyclonal antibody solution (1:500) prepared in 280 

blocking buffer and washed three times for 5 minutes with wash buffer. The slides 281 

were air dried prior to analysis. Cells were imaged using an upright Leica DM 6000B 282 

confocal laser microscope connected to a Leica TCS SP5 system. Images were 283 
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collected digitally using Leica LAS AF Imaging Software and processed using 284 

ImageJ (31). To verify the specificity of the fluorescent signal, control samples were 285 

immunolabelled as above, with the omission of incubation with the primary antibody. 286 

All antibodies were acquired from Pierce Scientific, USA. 287 

 288 

Genome sequences. The complete genome sequences of Yersinia phage 289 

vB_YenM_TG1 and vB_YenM_ϕR1-RT were deposited in the NCBI nucleotide 290 

database (GenBank) under the accession numbers KP202158 and HE956709, 291 

respectively. The RNA sequence data has been deposited to Gene Expression 292 

Omnibus (Acc. no GSE66516). 293 

 294 

RESULTS  295 

Phage Morphology. Phages ϕR1-RT and TG1 were negatively stained and examined 296 

by TEM. Both phages exhibit a prolate head with apparent icosahedral symmetry and 297 

a tubular contractile and rigid tail showing transverse striations (Fig. 1). The average 298 

dimension for the ϕR1-RT head is 82 ± 4 nm short edge-to-edge, 101 ± 5 nm vertex-299 

to-vertex and the tail including the baseplate is on average 130 ± 7 nm long. The 300 

average dimension for the TG1 head is 91 ± 2 nm short edge-to-edge, 115 ± 6 nm 301 

vertex-to-vertex and the tail including the baseplate is on average 129 ± 1 nm long. 302 

Collectively, these morphological features indicate that these phages belong to the 303 

Myoviridae family. 304 

 305 

Host specificity. The host range of phages TG1 and ϕR1-RT were determined by 306 

testing their lytic activity on 160 and 109 strains, respectively, belonging to thirteen 307 

Yersinia species, revealing virulence for Y. enterocolitica strains of serotypes O:1, 308 
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O:2, O:3, O:5, O:6, O:5,27, O:7,8, O:9 and some strains of serotype O:6,30 and 309 

O:6,31 while strains from other Y. enterocolitica serotypes and species within the 310 

genus Yersinia were resistant to phage infection (Table 2). TG1 and ϕR1-RT lysed 311 

their host when grown at 25°C but not at 37°C. Additionally, TG1 was unable to 312 

infect strains belonging to other 20 other genera (Table S3) demonstrating the 313 

phages’ host range is restricted to Y. enterocolitica. 314 

 315 

General features of the phage genomes. The genome of phage ϕR1-RT is 168,809 316 

bp long with a GC content of 34.5%. The genome encodes 262 ORFs, of which 217 317 

genes are encoded on the reverse strand (as displayed on the genetic map) and 45 318 

genes on the forward strand (Fig. S2), with sizes ranging from 117 bp (product of 38 319 

amino acids) to 3,738 bp (product of 1245 amino acids). The genome of TG1 is 320 

smaller than that of ϕR1-RT at 162,101 bp in length but with a similarly low GC 321 

content of 34.6%. TG1 also encodes 262 ORFs of which 223 genes are transcribed on 322 

the reverse strand (as displayed on the genetic map) and thirty-nine genes on the 323 

forward strand (Fig. S3), with sizes ranging from 114 bp (product of 37 amino acids) 324 

to 3,099 bp (product of 1032 amino acids). The GC content of these phages is 325 

significantly lower than that associated with the host with a GC content ranging from 326 

47.1 ± 0.2 (32) to 48.5 ± 1.5 % (33). The genomes encode additionally four identical 327 

tRNA genes (GlyGGA, TrpTGG, ArgAGA, MetATG) identified using tRNAScan (34) and 328 

ARAGORN (35).Constitutively low GC phage genomes are often supplemented with 329 

tRNA genes that, once expressed, enhance translation efficiency when infecting high 330 

GC content hosts (36). At the DNA level the TG1 genome shows 98% identity with a 331 

query coverage of 93%, for an overall DNA sequence identity of 91% with ϕR1-RT. 332 

All ORFs were screened using the BLASTP and PSI-BLAST algorithms (37, 38). 333 
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Based on protein homology, putative functions could be assigned to 121 (46%) gene 334 

products of phage TG1 and 115 gene products (44 %) of phage ϕR1-RT. Most of the 335 

identified homologs are conserved among T4-like phages and are either structural, or 336 

involved in DNA replication, recombination, repair, or packaging. Thus, the phage T4 337 

gene nomenclature was used to name these genes (Table S4). 338 

 339 

DNA replication, recombination, and repair. Numerous genes were identified 340 

within the phage ϕR1-RT and TG1 genomes that play a direct role in DNA 341 

replication, recombination, and repair. Among the genes directly involved in DNA 342 

replication are a DNA polymerase, a DNA ligase (Gp30), and three proteins with 343 

helicase activity. The closest homologs to the phage TG1 and ϕR1-RT polymerases 344 

are found in Edwardsiella phage PEi20 [BAQ22701.1] and Enterobacteria phage 345 

RB69 [NP_861746.1]; all members of the Myoviridae. Among the helicases, Gp41 346 

(or Dda) and UvsW homologs are involved in the reorganization of stalled DNA 347 

replication forks (39). Other putative proteins identified include homologs to the 348 

DNA polymerase sliding clamp loader complex Gp44/Gp62, sliding clamp accessory 349 

protein Gp45, single-stranded DNA binding protein Gp32, DNA helicase loader 350 

Gp59, and Gp61. In phage T4, the latter is a primase that interacts with helicase Gp41 351 

to form a helicase-primase complex (or primosome). The primosome together with 352 

the DNA helicase loader Gp59, unwinds the DNA template and primes DNA 353 

synthesis on the discontinuous strand. Among the proteins involved in recombination 354 

are type II topoisomerases Gp60 and Gp52, the recombination-related endonuclease 355 

pair Gp46/Gp47, the Rec-A like recombination protein UvsX, and a single stranded 356 

DNA binding protein, UvsY (40). Lastly, among the proteins involved in repair, a 357 

DenV homolog and several RNA ligases were identified. DenV is an N-glycosylase 358 
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UV repair enzyme that excises pyrimidine dimers; the major UV-lesions of DNA, 359 

while RNA ligases seal breaks in RNA and may also counteract host defense of 360 

cleavage of specific tRNA molecules (41). 361 

 362 

Nucleotide metabolism. Class I ribonucleotide reductases are responsible for the 363 

inter-conversion of ribo- to deoxyribonucleotides and are represented by NrdA-B or 364 

NrdE-F which require oxygen for activity, class II containing NrdJ, and the oxygen 365 

sensitive class III represented by NrdG-H (42). In TG1 and ϕR1-RT, genes coding for 366 

the aerobic ribonucleotide reductase complex subunits NrdA, NrdB, and NrdH were 367 

identified. Additionally, NrdC genes were also located. Other genes identified that are 368 

involved in nucleotide metabolism include: thymidylate synthase (Td), thymidine 369 

kinase (Tk), dNMP kinase, dCMP deaminase (Cd), dihydrofolate reductase (Fdr), 370 

dCTPase-dUTPase, and the exo-deoxyribonuclease DexA and endo-371 

deoxyribonuclease DenA. A combination of at least some of these genes is required to 372 

supplement the intracellular pool of nucleotides for phage DNA and RNA synthesis 373 

(41). 374 

 375 

Transcription. Based on the genome maps presented (Fig. S2 and S3), phage TG1 376 

and ϕR1-RT present a similar gene arrangement. A search for promoters based on 377 

sequence similarity to the host consensus s70 promoter TTGACA(N15-18)TATAAT 378 

with a 2 bp mismatch, identified 22 probable host promoters in the phage TG1 379 

genome and 24 probable host promoters in the ϕR1-RT genome which probably 380 

function in early transcription (Tables S5 and S6). Additionally, 15 of the putative 381 

host promoters are located in the same relative genomic positions within each phage 382 

genome. The genomic layout however, makes it clear that there must be additional 383 
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promoters functioning to direct the transition from host to viral metabolism. A search 384 

for phage-specific promoters using PHIRE (43) and by analysis of sequences of 100 385 

bp in length upstream of each ORF and submitting them to MEME (44), did not yield 386 

additional promoters that could be annotated with confidence. A search for putative 387 

rho-independent transcription terminators using ARNold (45, 46) yielded 21 putative 388 

terminators in the phage TG1 genome (Table S7) and 24 in the phage ϕR1-RT 389 

genome (Table S8). Nevertheless, the presence phage T4 homologs involved in the 390 

transcription of late genes: RegA, Gp33, and the sigma factor for late transcription 391 

Gp55, suggest that the mechanism for controlling late transcription is similarly 392 

complex (41). Likewise, the presence of repressor and translational regulatory protein 393 

homologs involved in middle and late transcription including: RegB, DsbA, Alc, 394 

MotA, and AsiA, lend further support to this suggestion. 395 

 396 

Morphogenesis. The putative structural proteins of TG1 and ϕR1-RT are 397 

homologous to existing phage proteins of the T4 supergroup of viruses (Table S4). 398 

Among the putative phage structural genes, the phage head is likely composed of the 399 

major capsid protein Gp23 and the phage capsid vertex protein Gp24. The prohead 400 

precursor and scaffolding proteins Gp68, and Gp67 as well as internal head proteins 401 

ipIII and ipII were also identified. Lastly the head portal vertex protein Gp20 that is 402 

connected to the neck and through which DNA enters during packaging and exits 403 

during infection was also identified. The whiskers and neck are composed of fibritin 404 

(wac) and the head completion proteins Gp13 and Gp14. The tail proteins include the 405 

tail sheath terminator Gp3, the tail completion protein Gp15, the tail sheath subunit 406 

Gp18, and the tail tube subunit Gp19. Proteins that form the baseplate wedge subunits 407 

and tail pins that then go on to associate with the central hub to form the viral 408 
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baseplate include: Gp5, Gp6, Gp7, Gp8, Gp9, Gp10, Gp11, Gp25, Gp27, Gp28, and 409 

Gp53. Among these, Gp5 (ORF150) contains a predicted bacteriophage T4-like 410 

lysozyme domain (cd00735) or Phage lysozyme domain (pfam00959), which aids 411 

penetration through the peptidoglycan layer during the initial infection process. In 412 

phage T4, Gp8 and Gp9 connect the long tail fibers of the virus to the baseplate and 413 

trigger tail contraction after viral attachment to a host cell, while Gp11 connects the 414 

short tail fiber protein Gp12 (ORF159) to the baseplate (47). The baseplate wedge 415 

subunit Gp25, forms a structural component of the outer wedge of the baseplate that 416 

has lysozyme activity, evident by the presence of conserved Gene 25-like lysozyme 417 

domain (pfam04965). Based on homology and gene synteny the proteins forming the 418 

long tail fibers in TG1 and ϕR1-RT are composed of the tail fiber proximal subunit 419 

Gp34, the tail fiber connector or hinge protein Gp35, the proximal tail fiber protein 420 

Gp36, and the distal tail fiber protein Gp37 (47). A variety of chaperones or assembly 421 

catalysts involved in morphogenesis were also discovered. Head formation 422 

chaperones include the capsid vertex assembly chaperone, the prohead assembly 423 

proteins Gp21 and Gp22, as well as the head assembly chaperone protein Gp31. 424 

Chaperones involved in tail formation include the baseplate hub assembly proteins 425 

Gp26 and Gp51. Chaperones for tail fiber assembly include gp57A, gp57B, and 426 

Gp38. 427 

 428 

Host cell recognition elements. In phage T4, phage tail associated receptor-binding 429 

proteins (RBPs) Gp37 and Gp12 are necessary for host cell recognition, attachment, 430 

and initiation of infection. In the phage TG1 and ϕR1-RT genomes ORF250 codes for 431 

a putative RBP protein of 609 amino acid residues and 503 amino acid residues in 432 

length, respectively, sharing 60% overall sequence identity. These proteins also share 433 
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40% sequence identity to the distal long tail fiber RBP of Cronobacter phage 434 

vB_CsaM_GAP161 [YP_006986537.1] and are homologs to the long tail fiber RBP 435 

Gp37 of phage T4 [AJC64544.1]. An alignment of these two proteins reveals a high 436 

degree of conservation at the N-terminus associated with the proximal tail fiber, as 437 

well as at the C-terminus associated with host recognition (Fig. S4). More 438 

specifically, the C-terminal 63 amino acids present a 95% sequence identity. 439 

Similarly, in the phage TG1 and ϕR1-RT genomes, ORF159 codes for the short tail 440 

fiber (STF) protein Gp12, both of 446 amino acid residues in length and which are 441 

almost identical to each other, sharing 95% overall sequence identity (Fig. S5). These 442 

proteins are homologous to the STF protein Gp12 of phage T4 [NP_049770.1].  443 

 444 

DNA Packaging. In phage TG1, ORF164 and ORF165/ORF167 genes code for the 445 

small (TerS) and large (TerL) DNA packaging subunits respectively of a phage 446 

terminase protein complex (or holoterminase) that initiates, drives, and terminates 447 

translocation of phage DNA into proheads (48). The homologous genes in phage 448 

ϕR1-RT are represented by ORF165 (TerS) and ORF166/ORF168 (TerL). Usually, 449 

terS and terL are arranged side by side but in phage TG1 and ϕR1-RT two ORFs 450 

homologous with terL are found. ORF165 in TG1 and ORF166 in ϕR1-RT show 451 

sequence similarity to the N-terminus of the phage T4 TerL. Likewise ORF167 in 452 

TG1 and ORF168 in ϕR1-RT show sequence similarity to the C-terminus of phage T4 453 

TertL. BLASTX analysis (37, 38) reveals the terL gene in both phages is interrupted 454 

by a transposase (PHA02552). Additionally, during packaging, the DNA ends are also 455 

protected against host RecBCD nuclease action by Gp2, the DNA end protector 456 

protein (49); identified in phage TG1 and in ϕR1-RT as the product of ORF146. 457 
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Homing Endonucleases. Homing endonuclease genes (HEGs) are not genuine phage 458 

DNA, but rather belong to intron associated selfish DNA elements (50) and are 459 

commonly found interspersed throughout Myoviridae genomes (41). Among the 460 

HEGs identified in phage TG1, ORF148 and ORF232 exhibit similarity to shortened 461 

helix-turn-helix (HN-H) endonucleases, and ORF9, ORF43, and ORF66 to GIY-YIG 462 

group I intron endonucleases. BLASTX analysis (37, 38) reveals Gp47 463 

(recombination-related endonuclease II) is divided by ORF66 which contains the 464 

HEG. Likewise, the gene coding for UvsX is intersected by ORF43, which contains 465 

the HEG. ORF232 also divides the NrdA gene. In phage ϕR1-RT five HEGs are also 466 

found throughout the genome of which only ORF148 is homologous to the helix-turn-467 

helix (HN-H) endonuclease that is also located in phage TG1 between Gp4 and Gp53. 468 

ORF20, ORF51, ORF163, and ORF234 exhibit similarity to GIY-YIG group I intron 469 

endonucleases, none of which interrupt or intersect other ϕR1-RT genes. 470 

 471 

Lysis. The final stage of the phage lytic cycle involves the degradation of the bacterial 472 

cell wall and release of progeny phages induced by the effect a pore producing 473 

protein, the holin, and a peptidoglycan degrading enzyme, the endolysin (51). In TG1, 474 

ORF127 and ORF122 in ϕR1-RT each encode an obvious endolysin containing a 475 

bacteriophage T4-like lysozyme protein domain (pfam00959) and phage-related 476 

muramidase (COG3772). Access of the endolysin to the cell wall occurs through the 477 

presence of the holin. Holins are small phage encoded proteins characterized by the 478 

presence of TMDs, accumulating in the cytoplasmic membrane during infection until 479 

suddenly at a specific time, trigger to form lethal lesions resulting in destruction of the 480 

cell wall (51, 52). A search for the TG1 and ϕR1-RT holins revealed the putative 481 

product of their respective ORF253 gene contains a predicted t-holin domain 482 
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(pfam11031) with 70% identity to the phage holin of Enterobacteria phage CC31 483 

[YP_004010117.1]. The protein sequences are predicted to contain a single TMD 484 

spanning aa interval 30-49, as well as a large C-terminal periplasmic domain spanning 485 

the aa residue from position 50 to the end terminal amino acid at position 218; a 486 

characteristic bitopic topology found in the holin proteins of T4-like phages (53) 487 

Moreover, as in phage T4 the putative holin gene is separated from the endolysin 488 

gene. An additional search for Rz/Rz1 genes coding for transmembrane spanins 489 

involved in the disruption of the outer membrane of the host was also conducted 490 

based on gene arrangement and membrane localization signals (54). The search 491 

revealed two candidate genes, ORF225 and ORF224 in phage TG1 and ORF227 and 492 

ORF226 in phage ϕR1-RT, homologous to phage T4 pseT.3 (Rz) and pseT.2 (Rz1), 493 

respectively. As in phage T4, the Rz/Rz1 genes are adjacent to each other, arranged 494 

with overlapping stop and start codons, and additionally no part of the Rz1 sequence 495 

is embedded within the Rz coding region (54). In TG1 and ϕR1-RT, Rz possesses a 496 

single amino-terminal TMD, and Rz1 encodes an outer membrane lipoprotein based 497 

on the presence of a signal peptidase II (SPII) cleavage site located between amino 498 

acid residues 16 and 17 as predicted by LipoP (54, 55). Lastly, the presence of phage 499 

T4 homologs to rI lysis inhibition regulator membrane protein and rIII lysis inhibitor 500 

accessory protein in TG1 and ϕR1-RT suggest the potential for lysis inhibition (LIN) 501 

following superinfection (56, 57). 502 

 503 

Phylogeny of TG1. It is interesting to note that very similar bacteriophages with an 504 

overall DNA sequence identity of 91% were isolated from such different locations 505 

and sources, as phages TG1 and ϕR1-RT were isolated in Canada from pig manure, 506 

and in Finland from raw sewage, respectively. Moreover, less than 34% overall DNA 507 
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similarity exists with their closest neighbours within the Myoviridae (Table S9). The 508 

relatedness of these two phages was further explored using progressiveMauve (Fig. 2) 509 

(58, 59); CoreGenes (60, 61) which the Bacterial and Archaeal Virus Subcommittee 510 

of the International Committee on Taxonomy of Viruses (ICTV) has extensively used 511 

to compare the proteomes of viruses; and by phylogenetic analysis of their whole 512 

genome sequences (Fig. S6) and their large terminase subunit protein sequences (Fig. 513 

3). It is evident from phylogenetic analyses that TG1 and ϕR1-RT form a distinct 514 

taxonomic clade among their closest neighbours. Based on these observations and 515 

using a 95% DNA sequence identity as the criterion for demarcation for a species, a 516 

new genus named Tg1virus with phages TG1 and ϕR1-RT as member species was 517 

proposed to the ICTV (approved in 2016 and pending ratification). 518 

 519 

Growth curves. In order to study the efficiency of phage infection at different 520 

temperatures bacterial growth after phage infection with ϕR1-RT was measured. Host 521 

bacterial strain was grown at selected temperatures with addition of different phage 522 

stock dilutions. Bacterial growth was followed for 3 d at 4°C, 2d at 10°C and 16°C 523 

and 1 d at 22°C and 37°C. Lysis of the bacterial cultures was observed at 4°C, 10°C, 524 

16°C and 22°C, whereas at 37°C the bacteria were not significantly affected even 525 

with the highest initial phage concentrations (Fig. 4, panels A). The onset time of 526 

lysis depended on the temperature and initial phage titer. At 4°C the bacterial culture 527 

started to lyse after 56-60 h, at 10°C already at 16 h with highest phage titer and at 528 

24-28 h with the lowest phage titer. The corresponding times for 16°C and 22°C were 529 

6 and 12 h. While the lysis at 10°C and 16°C was complete, at 22°C strong regrowth 530 

after the initial lysis took place. At 4°C the 3 d incubation time was not long enough 531 

to follow the lysis to completion. Under all tested conditions negative (medium only) 532 
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controls showed no increase in the absorbance, whereas the positive (bacteria only) 533 

controls presented the normal bacterial growth pattern. 534 

 535 

Transduction. To study the transducing potential of ϕR1-RT, transduction of the 536 

KmR and urease-negative phenotype of strain YeO3-hfq::Km to the KmS and urease-537 

positive wild type strain 64741/76 was assayed. Repression of urease activity is one 538 

of the phenotypes of the hfq mutant (62) and could be used to confirm the 539 

transduction of the hfq::Km allele. The transduction assays were performed in 10 540 

parallel tubes using a MOI of 0.006. A total of 6.6×108 PFU from the transducing 541 

lysate resulted in a total of 3 KmR urease-negative colonies that were confirmed by 542 

PCR. From this the calculated transduction frequency in the experiment was 4.5×10-7 543 

transductants per PFU. 544 

 545 

Identification of the phage receptors – pseudolysogeny. As the LPS and protein 546 

profiles of the phage resistant mutants YeO3-ϕR1-RT-2, YeO3-ϕR1-RT-7, and 547 

YeO3-ϕR1-RT-9 did not differ from those of the wild type bacteria (data not shown) 548 

the genomic DNA of the mutant and the wild type strains were sequenced. The de 549 

novo assembly results showed that the total scaffold sizes of the assembled genomes 550 

of the three mutants were ~165-173 kb larger than that of the wild type parental strain 551 

(Table S10). This suggested that the mutants carried extra DNA and the size matched 552 

very close to the size of phage ϕR1-RT genome (168,809 bp). This immediately 553 

raised the possibility that the phage had lysogenized the host and would reside as a 554 

prophage. In all three draft genomes the phage genome sequence was indeed 555 

identified and in all it formed the scaffold 4.1 with almost identical sizes (Table S10). 556 

Significantly, in all three cases the scaffold sequences were 100% identical to phage 557 
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ϕR1-RT sequence without any flanking host sequences, suggesting that the phage 558 

genome resided in these bacteria as an autonomous replicating unit in a state known 559 

as pseudolysogeny. Such state has been described for T4-like phages (63).  560 

 561 

Identification of the phage receptors – transposon insertion library screening. As 562 

selection of spontaneous phage resistant mutants seemed to favor pseudolysogeny we 563 

decided to use a different approach. A CatMu-transposon library of strain YeO3-R1 564 

(26) was exposed the ϕR1-RT for 2 hr and the surviving phage-resistant mutants were 565 

grown on LA-Clm plates. The recovered colonies were tested to be true ϕR1-RT 566 

resistant mutants. In order to exclude pseudolysogens, the clones were screened with 567 

ϕR1-RT specific PCR, and negative ones were further analysed by CatMu-specific 568 

arbitrary PCR to identify the CatMu insertion site (26). For four of the candidates the 569 

transposon insertion site was identified as gene Y11_04441 of the Y. enterocolitica 570 

O:3 strain Y11 genome (NC_017564.1). In strain Y11 genome the gene was 571 

annotated to encode for the outer membrane porin OmpC, however, in all other Y. 572 

enterocolitica genomic sequences as OmpF, therefore we opted to use OmpF. To 573 

confirm that OmpF is the ϕR1-RT receptor, one of the mutants YeO3-R1-Cat17 was 574 

complemented with the wild type ompF gene either in trans with plasmid 575 

pTM100_OmpF or in cis by suicide plasmid pSW25T_OmpF. Both of these 576 

approaches resulted in regaining the phage sensitivity thus confirming that OmpF 577 

serves as ϕR1-RT receptor. 578 

 579 

The LPS inner core heptose region functions as a receptor. Adsorption 580 

experiments were carried out to study the ability of ϕR1-RT and TG1 to interact with 581 

Y. enterocolitica O:3 derivatives differing mainly in their LPS composition (Fig. 5). A 582 
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short 5 min adsorption time was used as it produced highest resolution between the 583 

strains. A general observation was that TG1 adsorbed faster than ϕR1-RT. Both 584 

phages showed negligible adsorption to YeO3-c-R1-Cat17, the ompF mutant strain 585 

and adsorbed well to both ompF-complemented strains. Both phages showed reduced 586 

but clear adsorption to the pseudolysogen, indicating changes in abundance or 587 

exposure of the phage receptor(s). Finally, the adsorption to the inner core mutants 588 

decreased with the truncation of the core oligosaccharide suggesting that the inner 589 

core heptoses are part of the secondary receptor (Fig. 5).  590 

 591 

Temperature-dependence of ompF expression. We then wondered whether the 592 

temperature-dependent sensitivity of Y. enterocolitica O:3 could be due to ompF 593 

regulation. The expression of ompF under different growth temperatures was analysed 594 

from RNA-sequencing and quantitative proteomics (LC-MS/MS) data. The 595 

transcriptomic data showed an inverse correlation between the expression of ompF 596 

and the temperature of incubation (Fig. 4, panels B). Consistently, the quantitative 597 

proteomics demonstrated much higher abundance of the OmpF protein in the 22°C 598 

sample when compared to the 37°C sample, where the abundance barely exceeded the 599 

threshold of identification (Fig. 4, panels B).  600 

 601 

In vitro expression of the long tail fiber protein Gp37 of phage TG1. In this study, 602 

co-expression with the phage encoded chaperones Gp38 (required for 603 

oligomerization) and Gp57A, which is also thought to participate in assembly (64, 65) 604 

was utilized in an attempt to synthesize the native form of distal long tail fiber protein 605 

of phage TG1 as previously described for the production of Gp37 from phage T4 (28). 606 

SDS-PAGE demonstrated that an oligomer of approximately 210 kDa was obtained 607 
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when Gp37 was co-expressed with Gp38 in a bicistronic plasmid (pCDF-Duet-1 608 

Gp37-Gp38) or when this same plasmid was co-expressed with Gp57A (Fig. S7, 609 

lanes 3 and 5). Under reduced conditions Gp37 appears as a monomer of 610 

approximately 70 kDa in size (Fig. S7, lanes 4 and 6). This estimate is close to the 611 

predicted molecular mass of the recombinant phage TG1 Gp37 determined via MS at 612 

approximately 68.050 kDa. Peptide mass fingerprinting confirmed the identity of the 613 

protein (Fig. S8). Based on the protein expression results obtained, it appears that in 614 

phage TG1 only the Gp38 chaperone is essential and the general chaperone Gp57A is 615 

not required for in-vitro protein folding of Gp37 as has been reported for phage T4 616 

(28). The formation of higher molecular weight oligomers of phage TG1 Gp37 is 617 

consistent with previous reports that describe RBPs of phages present as homotrimers 618 

in solution migrating in the SDS-PAGE with a mobility that corresponds to that of 619 

oligomeric forms (28, 66–68).  620 

 621 

Confirmation of host binding specificity. Host binding specificity was then tested 622 

through immunolabeling of bacterial cells with phage TG1 LTF protein Gp37 623 

followed by detection with anti-His6 antibodies and DyLight 488 conjugated 624 

secondary antibodies. Consistent with the temperature dependent infection of phage 625 

TG1, the application of the LTF protein Gp37 to Y. enterocolitica cells showed 626 

decoration of the surface of Y. enterocolitica O:3, O:5,27, and O:9 cells when these 627 

were grown at 25°C but not at 37°C (Fig. 6). Notably, binding was more apparent 628 

near the apex of the cells which is also reported to occur in other phages such as λ, 629 

T4, T7, KVP40 and ϕA1122, preferentially infecting cells at the poles (69). 630 

 631 

DISCUSSION 632 
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Among bacteriophages, the C-terminus of RBPs involved in ligand interactions 633 

usually exhibits considerable sequence divergence, thus providing diversity in host 634 

specificity. In the case of ϕR1-RT and TG1, the high sequence identity at the C-635 

terminus of their long tail fiber and short tail fiber proteins may account for the 636 

striking similarity in virulence of these two phages for Y. enterocolitica. Notably, 637 

phage ϕR1-RT shows virulence to strains of the same serotypes as phage TG1. Based 638 

on adsorption experiments, the outer membrane protein OmpF and the inner core 639 

heptosyl residues of the LPS serve as phage receptors for phage TG1 and ϕR1-RT.  It 640 

is worth noting however, that the E. coli strain DH10B/pTM100_OmpF was not 641 

sensitive to ϕR1-RT. We reasoned that this could be due to poor expression of Y. 642 

enterocolitica OmpF in E. coli or more likely that the LPS inner core, known to be 643 

used by T4-like phages as the secondary receptor (76, 77) was not compatible. The 644 

inner core structures of E. coli and Y. enterocolitica differ substantially potentially 645 

explaining this result.  646 

 647 

Multiple lines of evidence suggest OmpF is the primary host range determinant for 648 

these two bacteriophages. First, a multiple alignment of OmpF amino acid sequences 649 

of Y. enterocolitica (from a BLASTP search of sequence databases using the O:3 650 

OmpF sequence as query) suggest the restricted host range of these phages  among Y. 651 

enterocolitica serotypes could be due to OmpF. The alignment provided a distribution 652 

of conserved amino acid residues and the presence of regions with high and low 653 

homologies, which coincide with eight transmembrane domains and eight “external” 654 

loops, respectively of the topology of the OmpF porin from E. coli (70, 71). The 655 

search and alignment of the sequences (Fig. S9) revealed that the OmpF sequences of 656 

the ϕR1-RT sensitive serotypes are 100% identical. The most dramatic differences 657 
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between the serotypes map to loop 4. In the alignment most close to the O:3 sequence 658 

is the serotype O:7,8,19 OmpF that is 96% identical to O:3 and may still be sensitive 659 

to ϕR1-RT; in it the loop 4 sequence differs least, while in others differences are 660 

bigger and also accumulate in other loops, mainly in loops 5, 6, and 7 (Fig. S9).  The 661 

porin loops are plausible binding sites for bacteriophages as demonstrated by the 662 

interaction of E. coli OmpF and K20 phages which bind to the L5, L6, and L7 663 

external loops (72–74). Thus it is likely that the loop 4 sequence is targeted by the 664 

ϕR1-RT or TG1 receptor binding proteins, however, experimental evidence is 665 

necessary to confirm this. Secondly, RNA-sequencing and quantitative proteomics 666 

data, the analysis of growth curves of Y. enterocolitica infected with ϕR1-RT at 667 

various temperatures (4°C to 37°C), as well as phage host range analysis results 668 

conducted at 25°C and 37°C clearly indicate that the failure of ϕR1-RT and TG1 to 669 

infect Y. enterocolitica O:3 at 37°C is due to the strong repression of the ompF gene. 670 

The temperature dependent expression of OmpF results also agree with a previous 671 

study, where two-dimensional gel electrophoresis of whole-cell proteins of Y. 672 

enterocolitica cultured at 25°C and 37°C suggested that OmpF is downregulated 673 

when the bacteria were cultured at 37°C (75). Consistent with this observation, the 674 

application of immunolabelled phage TG1 receptor binding protein Gp37 to Y. 675 

enterocolitica cells showed decoration of the surface of Y. enterocolitica O:3, O:5,27, 676 

and O:9 cells when these were cultured at 25°C but not at 37°C. The decoration of the 677 

cell surface agrees with a high level expression of this major outer membrane protein 678 

class depending on the bacterial species and the environmental conditions, which can 679 

reach about 104–106 copies per cell (72). It is reasonable to suggest then that the 680 

phage TG1 distal long tail fiber protein Gp37 (and by extension, its homolog in ϕR1-681 

RT) is specifically involved in binding to OmpF while presumably, the short tail fiber 682 
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protein Gp12 binds to the inner core of LPS, as is reported to occur in other T even 683 

phages as a secondary receptor (76, 77).  684 

 685 

The in vitro temperature dependent infection of these two highly related phages, 686 

questions their potential use as biocontrol or therapeutic agents as has been suggested 687 

for the temperate Yersinia phage PY100 (18, 78). On the other hand, it is not known 688 

whether the ompF gene is expressed in vivo justifying further studies towards finding 689 

that out. However, due to their marked specificity for the epidemiological relevant Y. 690 

enterocolitica serotypes O:3, O:5,27, and O:9, these phages may prove useful for 691 

diagnostic purposes. In addition, the successful synthesis of the long tail fiber of 692 

phage TG1 opens up the possibility of its use as a probe as well as for the production 693 

of suitable amounts of protein for X-ray crystallography to elucidate its atomic 694 

structure or co-crystallization with its receptor OmpF to shed light on specific host 695 

cell receptor-virus interactions.  696 
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Table 1. Bacterial strains, plasmids and bacteriophages 

Strain Comments Reference 

   

Y. enterocolitica   

6471/76 (YeO3) Serotype O:3, wild type. Human stool isolate (23)  

6471/76-c (YeO3-c) Virulence-plasmid cured derivative of YeO3 (23)   

YeO3-ϕR1-RT-R2  ϕR1-RT resistant spontaneous derivative of YeO3 This work 

YeO3-ϕR1-RT-R7  ϕR1-RT resistant spontaneous derivative of YeO3 This work 

YeO3-ϕR1-RT-R9  ϕR1-RT resistant spontaneous derivative of YeO3 This work 

YeO3-R1 (=YeO3-c-R1) Spontaneous rough strain (22) 

YeO3-hfq::Km  Hfq::Km-GenBlock, KmR. Urease-negative (Leskinen et al., submitted 

for publication) 

YeO3-R1-Cat17 ompF::Cat-Mu derivative of YeO3-R1 This work 

YeO3-R1-Cat17::pSW25T_OmpF Cis complemented ompF::Cat-Mu strain  This work 

YeO3-R1-M164 waaF::Cat-Mu. derivative of YeO3-R1. ClmR (79) 

YeO3-R1-M196 galU::Cat-Mu derivative of YeO3-R1. ClmR (79) 

YeO3-R1-M205 hldE::Cat-Mu derivative of YeO3-R1. ClmR (79) 

YeO3-c-OC  (25) 

YeO3-c-OCR  (25)  

K14 Serotype O:9  

gc815-73 Serotype O:5,27 (80) 
8081 Serotype O:8 (81) 
   

Escherichia coli   

BL21 Star™ (DE3) PLysS  Invitrogen 

DH10B   

   

Plasmids   

pTM100  

 

(82) 

pTM100_OmpF Complementation plasmid with wild type ompF gene This work 



 
38 

cloned into pTM100 

 

pSW25T Suicide vector 

 

(83) 

pSW25T_OmpF Complementation suicide plasmid with wild type ompF 

gene cloned into pSW25T 

 

This work 

pCDF Duet-1 pCloDF13 replicon, T7lac promoter and 2 MCS sites 

each with an optional N-terminal His6 tag sequence.  

Streptomycin resistance marker.  

 

Novagen 

pET21a(+) ColE1 (pBR322) replicon, T7lac promoter, N-terminal T7 

tag sequence and optional C-terminal His6 Tag sequence. 

Ampicillin resistance marker.  

 

Novagen 

pCDF Duet-1 Gp37 Phage TG1 ORF250 (4-1,830 bp) cloned in frame into 

MCS1 of pCDF Duet-1 for expression of N-terminal His6 

tagged protein Gp37.  

 

This study 

pCDF Duet-1 Gp37-Gp38 Phage TG1 ORF251 cloned into MCS2 of pCDF Duet-1 

Gp37 for co-expression of N-terminal His6 tagged Gp37 

and tail fiber assembly chaperone Gp38. 

 

This study 

pET21a(+) Gp57A Phage TG1 ORF143 cloned into MCS of pET21a(+) for 

expression of general trimerization chaperone Gp57A. 

This study 

   

Bacteriophages   

TG1  This study 

ϕR1-RT   This study 
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Table 2. Lytic activities of phages TG1 and ϕR1-RT. The sensitivity was tested on 160 Yersinia species strains (Table S1) at 25°C. 

Yersinia species 
Phage sensitive 

serotypesa 

 Serotypes with phage 

sensitive (S) and  

resistant (R) strains 

Phage resistant serotypesb 

Y. enterocolitica O:1[2], O:2 [2], O:3 

[16], O:5 [9], O5,27 

[10], O:6 [2], O:7,8 [2], 

O:9 [13], 

 O:6,30 [1S/2R], O:6,31 

[1S/1R] 

O:1,2,3 [1], O:4 [1], O:4,32 [1], O:8 [14], 

O:10 [4], O:13 [1], O:13a,13b [1], O:13,7 

[2], O13,18 [1], O:14 [1], O:20 [2], O:21 

[3], O:25 [1], O:25,26,44 [1], O:26,44 

[1], O28,50 [1], O:34 [1], O:35,36 [1], 

O35,52 [1], O:41(27),K1 [1], O41(27),42 

[1], O:41(27),42,K1 [1], O:41,43 [1], 

O:41(27),43 [2], O:50 [1], K1 NT[2], 

NT[3] 

Y. aleksiciae    O:16 [2] 

Y. aldovae    UT [2] 

Y. bercovieri    O:58,16 [2], NT [1], UT[2] 

Y. frederiksenii    O:3 [1], O:16 [1], O:35 [1], O:48 [1], K1 

NT[1], NT[1], UT[2] 

Y. intermedia    O16,21 [1], O:52,54 [1], UT[2] 

Y. kristensenii    O:3 [1], O:12,25 [1], NT[2], UT[3] 

Y. mollareti    O:3 [1], O:59(20,36,7) [1], UT[2]  

Y. nurmii    UT[1] 

Y. pekkanenii    UT[1] 

Y. pseudotuberculosis    I [2], O:1b [2], O:3 [2] 

Y. rohdei    UT[2] 

Y. ruckeri    NT[1], UT[5] 

aThe number of strains studied is given in brackets. Phage ϕR1-RT sensitivity was tested only with the 109 UH-source strains (Table S1). 

bNT, non-typeable and either cross-reacting or not agglutinating with Y. enterocolitica O:3, O:5, O:8 or O:9 antisera. UT, untyped. 
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FIGURE LEGENDS 

Figure 1. Bacteriophage ϕR1-RT and TG1 morphology by electron microscopy. Panel A. ϕR1-

RT virions at 39,440x magnification. The virion head and tail are indicated, as well as long tail 

fibers (LTF) and a baseplate with protruding tail pins (B). Scale bar, 100 nm. Panel B. A ϕR1-RT 

virion at 84,320x magnification. A baseplate with protruding tail pins (B), and a neck and collar 

with neck fibers (A) can be observed. Scale bar, 50 nm. Panel C. A ϕR1-RT virion at 108,800x 

magnification. Suggested long tail fibers (LTF) can be seen bent up towards the head along the 

tail sheat, as described for bacteriophage T4 (84). Scale bar, 50 nm. Panel D. Bacteriophage TG1 

virion shown at 150,000x magnification. A neck and collar with neck fibers (A), a baseplate with 

protruding tail pins (B), and an extended long tail fiber (LTF) can be observed. Scale bar 

indicates size in nm. 

Figure 2. ProgressiveMauve alignment of phage TG1 and ϕR1-RT. The genome of ϕR1-RT 

[HE956709] is indicated on the top and that of TG1 [KP202158] is shown in the bottom of the 

figure. The degree of sequence similarity between regions is given by a similarity plot within the 

coloured blocks with the height of the plot proportional to the average nucleotide identity. Below 

these are illustrated the phage genes as outlined boxes on the plus (above horizontal) and minus 

(below horizontal) strands.  

Figure 3. Phylogenetic analysis of the large terminase subunit protein sequences of phages TG1, 

ϕR1-RT and related bacteriophages. The phylogenetic analysis was constructed using “one click” 

at phylogeny.fr using MUSCLE for multiple alignment and PhyML for phylogeny (85). 

Figure 4. Phage ϕR1-RT does not propagate at 37°C. Panel A. The growth curves of Y. 

enterocolitica infected with ϕR1-RT. Bacteria were cultured with different concentrations of 

phage particles in LB at 4°C, 10°C, 16°C, 22°C, and 37°C. Each graph represents the average of 

five replicates. Note the different scales used for the X-axis at different temperatures. Panel B. 

Analysis of the ompF gene expression (left) and protein abundance (right) at different 

temperatures. The mean expression levels of the ompF gene were obtained from RNA-

sequencing analysis. The production levels of the OmpF protein was obtained from normalized 

mean spectral values for the proteins detected by the LC-MS/MS analysis. Error bars represent 

the calculated standard deviation.  

Figure 5. Phages ϕR1-RT and TG1 use OmpF and LPS inner core heptose region of Y. 

enterocolitica O:3 as receptors. Panel A. Adsorption experiments were performed with different 

LPS and ompF mutants, with the complemented strains, and with the pseudolysogen. All strains 

are OmpF positive with the exception of YeO3-c-R1-Cat17. The TG1 and ϕR1-RT adsorptions to 

the bacteria at 5 min are shown as residual PFU percentages. Error bars indicate standard 

deviations. The no bacteria control (LB) and strains used for adsorptions are indicated below the 

columns. The LPS chemotypes of the strains are indicated on top of the columns. Panel B. The 

schematic structures of the Y. enterocolitica O:3 LPS molecules of different chemotypes (86). 

Please note that Y. enterocolitica O:3 carries simultaneously the S and Ra type LPS molecules. 

This is indicated in panel A by a plus sign. O-ag, O-antigen or O polysaccharide; OC, outer core 

hexasaccharide; IC, inner core; LA, lipid A. 

Figure 6. Confocal immunofluorescence microscopy images of Y. enterocolitica cells after 

incubation with LTF protein Gp37 derived from phage TG1. Gp37 decorates the cell surface of Y. 

enterocolitica strain K14 of serotype O:9 (a), Y. enterocolitica strain gc815-73 of serotype O:5,27 

(c), and Y. enterocolitica strain 6471/76 of serotype O:3 (e) grown at 25°C, whereas Y. 

enterocolitica strain 8081 of serotype O:8 (g) does not show cell decoration with Gp37. Similar 
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images to that presented in g were observed when the same strains were grown at 37°C. 

Differential interference contrast microscopy images of a, c, e and g, are shown in b, d, f and h, 

respectively. Scale bar represent size in µm. 

 

SUPPLEMENTARY FIGURE LEGENDS 

Figure S1. Plasmid constructs for chaperone-assisted expression of the distal long tail fiber 

protein Gp37 of phage TG1. The location of the origins of replication, antibiotic resistance genes 

(Sm R, streptomycin resistance; Amp R, ampicillin resistance), relevant promoters (T7 lac 

promoter), Lac I repressor, Multiple cloning sites (yellow) and sequences coding phage Gp37 

(red), and chaperones Gp38 and Gp57A (green) are presented. 

Figure S2. Map of the phage ϕR1-RT genome [HE956709]. The genes are shown by different-

colored arrows. The arrow direction indicates the coding direction of the genes. The genes 

encoding putative proteins with an assigned function are shown in black (see also Table S3). The 

locations of tRNA encoding genes are shown in blue. Hypothetical proteins with an unknown 

function are depicted in yellow. Homing endonuclease genes are shown in orange. Putative host 

promoters are shown as pink triangles above the sequence, and putative rho independent 

terminators are shown as green triangles below the sequence. 

Figure S3. Map of the phage TG1 genome [KP202158]. The genes are shown by different-

colored arrows. The arrow direction indicates the coding direction of the genes. The genes 

encoding putative proteins with an assigned function are shown in black (see also Table S2). The 

locations of tRNA encoding genes are shown in blue. Hypothetical proteins with an unknown 

function are depicted in yellow. Homing endonuclease genes are shown in orange. Putative host 

promoters are shown as pink triangles above the sequence, and putative rho independent 

terminators are shown as green triangles below the sequence. 

Figure S4. Multiple sequence alignment of the long tail fiber (Gp37) sequences of phage TG1 

and ϕR1-RT. Multiple sequence alignment was performed using Clustal W via Geneious R9 

software version 9.0.2. (Biomatters Ltd). Positions which have a single, fully conserved aa 

residue (100% similarity) are highlighted in black; aa present in 2 of the sequences are 

highlighted in grey. The homologous phage T4 Gp37 sequence was included in the alignment or 

comparison. 

Figure S5. Multiple sequence alignment of the short tail fiber (Gp12) protein sequences of  

phage TG1 and ϕR1-RT. Multiple sequence alignment was performed using Clustal W via 

Geneious R9 software version 9.0.2. (Biomatters Ltd). Positions which have a single, fully 

conserved aa residue (100% similarity) are highlighted in black; aa present in 2 of the sequences 

are highlighted in grey. The homologous phage T4 Gp12 sequence was included in the sequence 

alignment for comparison. 

Figure S6. Protein mass fingerprinting of phage TG1 Gp37. The amino acid sequence of phage 

TG1 Gp37 is shown. Peptide fragments from the analysis of gel slices corresponding to the 

reduced form of the protein and identified via protein mass fingerprinting are underlined and 

shown in bold. 

Figure S7. Whole genome phylogeny of phages TG1, ϕR1-RT and related bacteriophages. The 

phylogenetic tree was generated using using “one click” at phylogeny.fr using MUSCLE for 

multiple alignment and PhyML for phylogeny (85).  
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Figure S8. Expression of N-terminal His6 tagged phage TG1 Gp37. 4-15% Tris-HCl SDS-PAGE 

run at 4°C, 100V. Lane 1, pCDF-Duet-1 Gp37 (unheated sample); Lane 2, pCDF-Duet-1 Gp37 

under reduced conditions (sample heated at 100°C for 10 min in the presence of SDS and β-

mercaptoethanol); Lane 3, pCDF-Duet-1 Gp37-Gp38 (unheated sample); Lane 4, pCDF-Duet-1 

Gp37-Gp38 reduced conditions; Lane 5, pCDF-Duet-1 Gp37-Gp38 co-expressed with pET21a(+) 

Gp57A (unheated sample); Lane 6 pCDF-Duet-1 Gp37-Gp38 co-expressed with pET21a(+) 

Gp57A reduced conditions; Lane 7, pCDF-Duet-1 Gp37 co-expressed with pET21a(+) Gp57A 

(unheated sample); Lane 8, pCDF-Duet-1 Ggp37 co-expressed with pET21a(+) Gp57A reduced 

conditions; Lane M, molecular weight markers.  

Figure S9. CLUSTAL W multiple sequence alignment of the OmpF proteins of Y. enterocolitica 

and related species. The external loops, indicated by brown highlighting and box, were identified 

based on OmpF alignment of YeO3 OmpF with that of E. coli, shown at the bottom. The N-

terminal signal-peptide is indicated by blue highlighting and box. Use the zoom-in option to see 

details of the alignment. 

 

SUPPLEMENTARY TABLES 

 

Table S1. List of Yersinia strains used in phage host range experiments 

Table S2. Primers used in this work 

Table S3. Bacterial strains used to examine the cross infectivity of phage TG1 

Table S4. Annotations of bacteriophage TG1 and ϕR1-RT genes 

Table S5. Putative Phage TG1 promoters 

Table S6. Putative Phage ϕR1-RT promoters 

Table S7. Predicted terminator sequences of phage TG1 

Table S8. Predicted terminator sequences of phage ϕR1-RT 

Table S9. TG1 genome BLASTN analysis  

Table S10. Whole genome sequencing statistics after de novo assembly of ϕR1-RT resistant 

mutants.  
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Figure 6 


